
Application of the Linked Data Visualization Model on Real
World Data from the Czech LOD Cloud

Jakub Klímek
Czech Technical University in

Prague
Faculty of Information

Technology
klimek@fit.cvut.cz

Jiří Helmich
Charles University in Prague
Faculty of Mathematics and

Physics
helmich@ksi.mff.cuni.cz

http://xrg.cz/

Martin Nečaský
Charles University in Prague
Faculty of Mathematics and

Physics
necasky@ksi.mff.cuni.cz

http://xrg.cz/

ABSTRACT
In the recent years the Linked Open Data phenomenon has
gained a substantial traction. This has lead to a vast amount
of data being available on the Web in what is known as the
LOD cloud. While the potential of this linked data space
is huge, it fails to reach the non-expert users so far. At the
same time there is even larger amount of data that is so
far not open yet, often because its owners are not convinced
of its usefulness. In this paper we refine our Linked Data
Visualization Model (LDVM) and show its application via
its implementation Payola. On a real-world scenario built
on real-world Linked Open Data created from Czech open
data sources we show how end-user friendly visualizations
can be easily achieved. Our first goal is to show that using
Payola, existing Linked Open Data can be easily mashed
up and visualized using an extensible library of analyzers,
transformers and visualizers. Our second goal is to give po-
tential publishers of (Linked) Open Data a proof that simply
by publishing their data in a right way can bring them pow-
erful visualizations at virtually no additional cost.

Categories and Subject Descriptors
H.5.2 [User interfaces]: GUIs, Interaction styles; H.3.5
[Online Information Services]: Data sharing; H.3.5 [Online
Information Services]: Web-based services

Keywords
Linked Data, Visualization, Semantic Web

1. INTRODUCTION
Recently, vast amount of data represented in a form of

Linked Open Data (LOD) has appeared on the Web. The
key LOD principle is linking data entities in a machine in-
terpretable way so that they form a huge data space dis-
tributed across the Web: the LOD cloud. The LOD cloud
is not interesting for end-users until there are useful tools
available built on top of it. Very important are tools which
are able to present various kinds of LOD to users who want
to explore the data. This includes LOD browsers and visual-
ization tools. An end-user often does not know more about
datasets than that there are some data structures contained
which could be visualized. For example, entities in a dataset

Copyright is held by the author/owner(s).
LDOW2014, April 8, 2014, Seoul, Korea.

can be geocoded. In that case, the user may require to start
the exploration on a visualization of those entities on a map.
Or the dataset may contain a hierarchical structure and var-
ious techniques for hierarchy visualizations can be used.

ARES

Business

Entities

COI.CZ

Geocoordi

nates

Institution

s of public

power

(OVM)

Consolida

ted Law

NUTS

codes

LAU

regions

Demogra

phy

Budgets

Exchange

rates

CPV 2008

Elections

results

Research

projects

Czech

Public

Contracts

Court

decisions

RUIAN

TED

Public

Contracts

OVM

Agendas

Governmental

Business-entities

Geographical

Statistical

Figure 1: Czech Linked Open Data (CzLOD) Cloud

The reader may argue that this does not depend on the
fact that we work with LOD, which is true. Any non-
LOD dataset can also be explored this way. However, LOD
brings an important new dimension (besides the uniform
data model – RDF) to the problem of data presentation,
especially when we talk about visualization. Suppose that
we have a dataset with addresses, we geocoded them and
display them on a map. Suppose now that this is a LOD
dataset and that we have other LOD datasets without GPS
coordinates, but linked to the geocoded entities of the for-
mer one. We can build a tool which displays any of these
linked datasets on a map as well. This, of course, applies
only when the links make sense in terms of location, but the
point is that compared to non-LOD datasets, it is easy to
create and use links in LOD.

In our previous work, we presented the Linked Data Vi-
sualisation Model (LDVM) [4]. It enables us to combine

http://xrg.cz/
http://xrg.cz/

various LOD datasets and visualize them with various kinds
of visualizations. It separates the part which prepares the
data for visualizations from the actual visualizers. Visual-
izers then specify their expected input data structure (e.g.,
hierarchical with labels, geo-coordinates, etc.) in RDF using
broadly accepted vocabularies. This allows reuse of visual-
izers for a broad range of LOD datasets. We focus on two
groups of users and their cooperation. First are expert users
who can easily prepare analyses and visualization compo-
nents and the second group are lay users. They can use and
combine components prepared for them by the experts us-
ing a LDVM implementation without extensive knowledge of
RDF and SPARQL. An example of such a use by a lay user
can be visualizing a given analysis using various visualizers
or running the same analysis on various data sources.

Contributions. The primary purpose of this paper is
to demonstrate the benefits that LDVM brings to users on
real-world data. We show that our implementation Payola
allows any expert user to easily access his SPARQL endpoint
of choice or upload his RDF file, perform analyses using
SPARQL queries and visualize the results using a library
of visualizers. At the same time, the components created
by experts can be also easily used and reused by lay users.
We present several visualization scenarios of real-world data
from the Czech LOD (CzLOD) cloud. The Czech LOD cloud
contains various datasets we publish in our research group.
We describe these datasets briefly in this paper as well. Each
scenario takes several datasets from the CzLOD cloud, com-
bines them together, extracts a data structure which can be
visualized and offers appropriate visualizers to the user.

Outline. The rest of this article is organized as follows:
In Section 2 we survey the CzLOD cloud and describe the
currently available datasets. In Section 3 we present the
Linked Data Visualization Model (LDVM), a simple yet
powerful formalism for building analyses, transformations
and visualizations of Linked Data. In Section 4 we briefly
describe Payola, our implementation of LDVM. In Section 5
we present our real world examples of analyzers, transform-
ers and visualizers on our running LDVM instance and put
our contributions in a perspective of publishing data of pub-
lic administration bodies. In Section 6 we briefly survey
related work and finally, in Section 7 we conclude.

2. CZECH LOD CLOUD
In this section, we introduce a survey of the Czech Linked

Open Data (CzLOD) cloud. As the data itself is not the
main contribution of this paper, we will not go into too
much detail. We are working on the cloud continuously in
the OpenData.cz initiative since 2012 to show the owners of
the data, who are mainly public bodies, what benefits can
be gained from proper publication. The cloud is accessible
at http://linked.opendata.cz/sparql and runs on Open-
Link Virtuoso 7 Open-Source triplestore 1 and currently
contains approximately 100 million triples not counting the
largest dataset, RUIAN, which is described later. Figure 1
contains a map of the CzLOD cloud similar to the global
LOD cloud. It is also color coded, red are the datasets about
Czech business entities, green are the geographical datasets,
yellow are the governmental datasets and blue are the statis-
tical datasets. In addition, the CzLOD cloud also includes
various e-Health datasets, which are, however, beyond the

1
https://github.com/openlink/virtuoso-opensource

scope of this paper.

Business entities datasets. In the heart of the CzLOD
cloud is the ARES dataset. It is data from various Czech
registries and mainly the Business registry. In the Czech Re-
public, every business entity has its unique 8-digit identifica-
tion number. Based on this number, it is easy to devise a rule
for unique business entity URI creation. For example, the
Czech Ministry of Interior is identified by http://linked.

opendata.cz/resource/business-entity/CZ00007064. For
each business entity in the Business registry, the dataset con-
tains its official name, type, address of headquarters, kinds
of its activities, names of shareholders, etc.

Another dataset about business entities is COI.CZ, which
contains data about inspections, resulting fines, and bans is-
sued by the Czech Trade Inspection Agency. Each inspection
record contains the business entity identification number, lo-
cation, region (NUTS code and LAU code) and information
about the resulting fine or ban. Again, this data links easily
to our other datasets about business entities via the URL
based on the identification number. The source data is pub-
lished as 3 star open data2 (CSV files) by the agency3.

Our Research projects dataset contains information about
research grants funded by various Czech grant agencies. For
each project there is data about amounts of money paid to
each of the participants for each year of the project as well
as identification numbers of all participants and additional
information about the projects. The source data can be
exported as Excel files from a web portal maintained by the
Research, Development and Innovation Council 4.

Geographical datasets. Our newest and biggest geo-
graphical dataset is RUIAN - register of territorial iden-
tification, addresses and real estates. It has more than 600
million triples and contains data about all address points,
streets, parts of towns, towns, cities, various levels of regions
and also about every building and every lot in the Czech Re-
public including the hierarchy. Each object in RUIAN has
assigned geocoordinates, which can be transformed to GPS
coordinates. This creates a powerful base for geocoding in
the Czech Republic. RUIAN is also linked to NUTS and
LAU codes, which are 5-level European codes for towns, re-
gions etc. The source data is in XML and freely accessible5.
Other geographical datasets contain the already mentioned
NUTS and LAU codes hierarchies. Additionally, the (Geoco-
ordinates) dataset contains geocoordinates for each address
found in our datasets created by geocoding.

Governmental datasets. Currently, there are three kinds
of governmental datasets in the CzLOD cloud. The first
kind contains information about institutions of public power
(OVM), e.g., ministries, cities, but even public notaries, etc.
For each institution, that is also a business entity, there is
its identification number, address, type and also information
about its offices and their opening hours. In addition, there
is a dataset with agendas of these institutions, that are also
linked to laws according to which they are established. This
data gives a good base for, e.g., mobile applications that
give the user his location and opening hours of the nearest
notary, etc. The second kind of our governmental datasets

2
http://5stardata.info/

3
http://www.coi.cz/cz/spotrebitel/

open-data-databaze-kontrol-sankci-a-zakazu/
4
http://www.isvav.cz

5
http://vdp.cuzk.cz/

http://linked.opendata.cz/sparql
https://github.com/openlink/virtuoso-opensource
http://linked.opendata.cz/resource/business-entity/CZ00007064
http://linked.opendata.cz/resource/business-entity/CZ00007064
http://5stardata.info/
http://www.coi.cz/cz/spotrebitel/open-data-databaze-kontrol-sankci-a-zakazu/
http://www.coi.cz/cz/spotrebitel/open-data-databaze-kontrol-sankci-a-zakazu/
http://www.isvav.cz
http://vdp.cuzk.cz/

Source RDF and non-RDF
Data

Analytical RDF
Abstraction

Data Transformation

Visualization RDF
Abstraction

View

Visualization Transformation

Visual Mapping Transformation

Visualization
Operators

View
Operators

Analytical
SPARQL

Operators

Analyzer

Visualizer

Visualization
Transformer

Figure 2: High level LDVM overview.

are law datasets. The main part consists of consolidated laws
of the Czech Republic. The other part consists of decisions
of Czech Supreme court linked to laws. In addition, there
are datasets with information about public contracts.

Statistical datasets. Our statistical datasets include data
about demography and budgets of cities linked to the cloud
via NUTS and LAU codes. We also have exchange rates of
all currencies to Euro from the European Central Bank. Fi-
nally, there are results of elections to the Czech parliament.

3. LINKED DATA VISUALIZATION MODEL
In this section we briefly go through the Linked Data Visu-

alization Model (LDVM), which we defined in our previous
work [4]. First, we give an overview of the model and then
we formalize its key elements.

3.1 Overview of LDVM
The Linked Data Visualization Model (LDVM) is an adap-

tation of the general Data State Reference Model (DSRM) [5]
for the specifics of the visualization of RDF and Linked Data.
It is an abstract data process inspired by a typical Knowl-
edge Discovery Process [10]. We extend DSRM with three
additional concepts – analyzers, transformers and visualiz-
ers. They denote reusable software components that can
be chained to form an LDVM instance. Figure 2 shows an
overview of the LDVM. The names of the stages, transforma-
tions and operators proposed by DSRM have been slightly
adapted to the context of RDF and Linked Data. LDVM
resembles a pipeline starting with raw source data (not nec-
essarily RDF) and results with a visualization of the source
data. It is organized into 4 stages that source data needs to
pass through:

1. Source RDF and non-RDF data: raw data that can
be RDF or adhering to other data models and formats

(e.g. XML, CSV) as well as semi-structured or even
non-structured data (e.g. HTML pages or raw text).

2. Analytical abstraction: extraction and representation
of relevant data in RDF obtained from source data.

3. Visualization abstraction: preparation of an RDF data
structure required by a particular visualization tech-
nique (e.g., 1D, 2D, 3D or multi-dimensional data, tree
data, etc.)

4. View: creation of a visualization for the end user.
Data is propagated through the LDVM pipeline by apply-

ing 3 types of transformation operators:
1. Data transformation: transforms the raw data repre-

sented in a source data model or format into a repre-
sentation in the RDF data model; the result forms the
base for creating the analytical RDF abstraction.

2. Visualization transformation: transforms the obtained
analytical abstraction into a visualization abstraction.

3. Visual mapping transformation: maps the visualiza-
tion abstraction data structure to a concrete visual
structure on the screen using a particular visualization
technique specified using a set of parameters.

There are operators within the stages that allow for in-
stage data transformations:

1. Analytical SPARQL operators: transform the output
of the data transformation to the final analytical ab-
straction (e.g. aggregations, enrichment from LOD).

2. Visualization operators: further refine the visualiza-
tion abstraction data structure (e.g., its condensation
if it is too large for a clear visualization).

3. View operators: allow a user to interact with the view
(e.g., rotate, scale, zoom, etc.).

3.2 LDVM stages
Source RDF and non-RDF Data Stage. The first stage

considers RDF as well as non-RDF data sources. The data
transformation transforms the source data to an RDF rep-
resentation that forms a base for creating an analytical ab-
straction. If the source RDF data does not have a suitable
structure for the following analysis, the transformation can
be a sequence of one or more SPARQL queries that map the
source data to the required structure.

Analytical RDF Abstraction Stage. The output of the sec-
ond stage (analytical RDF abstraction) is produced by ap-
plying a sequence of various analytical SPARQL operators
on the RDF output produced by the data transformation.
We call the sequence an analyzer (see Figure 2). Our goal is
to enable users to reuse existing analyzers for analyzing vari-
ous datasets. We want to enable users to find analyzers that
can be applied for analyzing a given data set and, vice versa,
to find datasets that may be analyzed by a given analyzer
automatically. Therefore, it is necessary to be able to decide
whether an analyzer can be applied on a given dataset, i.e.
whether the analyzer is compatible with the dataset. We
formalize the notion of compatibility later in Section 3.3.

Visualization Abstraction Stage. We want to ensure that
visualizers are reusable for different analytical abstractions.
However, building specific visualizers for particular analyti-
cal abstractions would not enable such reuse. This is because
each visualization tool visualizes particular generic charac-
teristics captured by analytical abstractions. For example,
there can be a visualizer of tree structures using the TreeMap
technique or another visualizer of the same structures using
the SunBurst technique. And, another visualizer may visu-

Class Hierarchy
Analyzer

Property
Hierarchy Analyzer

Public Spending
Analyzer

DBpedia

EU Public
Contracts

TreeMap
Visualizer

Columns on
GMaps Visualizer

ClassProp-2-SKOS
Vis. Transformer

PCO-2-GeoLocQB
Vis. Transformer

Sunburst
Visualizer

Place-2-SKOS Vis.
Transformer

Figure 3: Sample analyzers and visualizers

alize 2-dimensional structures on Google Maps. An analyti-
cal abstraction may contain encoded both the tree structure
as well as the 2-dimensional structure. All three mentioned
visualizers can be applied to the analytical abstraction as
well as on any other abstraction which contains the same
structures encoded. Therefore, we need to transform the
analytical abstraction into the form accepted by the desired
visualizers. An example can be that we have a visualizer for
a tree-like structure which accepts the SKOS6 vocabulary
with its skos:broader property for the hierarchy. The ana-
lytical abstraction might already contain this hierarchy, then
no visualization transformation is required. Or, the analyt-
ical abstraction might contain a tree-like hierarchy modeled
using rdfs:subClassOf property and it needs to be trans-
formed here. This transformation is performed by the vi-
sualization abstraction stage. We call the transformation a
visualization transformer. Again, a user can reuse various
transformers for extracting visualization abstractions of the
desired kind from compatible analytical abstractions.

View Stage. The output of the (view) stage is produced
by a component called a visualizer. A view is a visual rep-
resentation of a visualization abstraction on the screen. A
visualizer performs visual mapping transformation that may
be configured by a user using various parameters, e.g. vi-
sualization technique, colors and shapes. The user can also
manipulate the final view using the view in-stage operators
such as zoom and move. A visualizer can be reused for visu-
alizing various visualization abstractions that contain data
structures accepted by the visualizer.

3.3 Formalization
The core concepts of LDVM are reusable components, i.e.

analyzers, visualization transformers and visualizers. An-
alyzers and visualization transformers consume RDF data
via their input interfaces and produce RDF data as their
output. Visualizers consume RDF data and produce a vi-
sualization a user can interact with. The goal is to formally
introduce the concept of compatibility of a component with

6
http://www.w3.org/TR/skos-reference/

its input RDF data. We formalized the model in our pre-
vious work [4]. However, since then as the implementation
progressed, we have simplified the formalization for it to be
more practical and with no effect on its power. Given the
formalization, we are then able to decide whether a given
analyzer can be applied on a given RDF dataset. Similarly,
we can decide whether a visualization transformer can be ap-
plied on a given analytical abstraction, etc. Our approach is
based on the idea to describe the expected input of a LDVM
component with an input signature and the expected out-
put with an output data sample. The signature and the
data sample are provided by the creator of the component.
Each component can then check whether its input signature
is compatible with the output sample of the previous com-
ponent. The input signature comprises a set of SPARQL
ASK queries which should be inexpensive so that they can
be evaluated quickly on a number of datasets. The output
data sample is a small RDF data sample that shows the for-
mat of the output of the component. The input signature
of one component is then compatible with the output data
sample of another component when all the SPARQL ASK
queries of the signature are evaluated on the data sample as
true. Our rationale is to provide a simple and lightweight so-
lution, which allows to check the compatibility of a number
of components without complex reasoning.

Definition 1 (Input signature). A set of SPARQL
ASK queries SC = {Q1, Q2, . . . , Qn} is an input signature
of a LDVM component C.

Note that an analyzer can potentially extract data from
multiple data sources, e.g., SPARQL endpoints or RDF files.
Then the analyzer would have to have a separate input sig-
nature for each data source. However, for simplicity, we omit
this slight extension. Analyzers and visualization transform-
ers provide an output data sample, against which an input
signature of another LDVM component can be checked.

Definition 2 (Output data sample). RDF data DC
representing the maximum possible structure of the output
data format produced by a LDVM component C using mini-
mum amount of triples is an output data sample of C. This
only applies to analyzers and visualization transformers.

Definition 3 (Compatibility). We say that LDVM
component C with input signature SC is compatible with
LDVM component D with output data sample DD iff each
Qi ∈ SC = {Q1, Q2, . . . , Qn} returns true when executed on
DD, i.e.,

∏n
i=1 E(Qi, DD) = 1 where E(Qi, DD) ∈ {0, 1} is

the evaluation of SPARQL ASK query Qi against data DD.

Given the output data samples are small and the SPARQL
ASK queries are inexpensive, we can, for a given SPARQL
endpoint, automatically offer all possible visualizations us-
ing available LDVM components to our lay users. The pro-
cess for checking of available visualizations using LDVM
starts with the analyzers. Each analyzer performs SPARQL
ASK queries from its input signature. If it is compatible (all
ASKs return true), it is marked as available. Next are the
visualization transformers. Because they are optional and
also can be chained, they need to perform their checks in it-
erations. In the first iteration, all transformers perform their
ASKs from their input signatures on the output data sam-
ples of available analyzers. Those who succeed are marked

http://www.w3.org/TR/skos-reference/

available. In the next iteration, all transformers that are not
available perform their ASKs on the output data samples of
the newly available transformers. This ends when there is
no new available transformer. Finally, all visualizers per-
form their ASKs on all available analyzers and visualization
transformers. The result is a set of all possible combinations
of what can be visualized in the given SPARQL endpoint.
See Figure 3 for illustration.

4. IMPLEMENTATION: PAYOLA
Payola7 is a web framework for analyzing and visualiz-

ing Linked Data [12]. It enables users to build their own
instances of LDVM pipelines. Payola provides an LDVM
analyzer editor in which SPARQL queries and custom plu-
gins can be combined. Firstly, the user defines a set of data
sources such as SPARQL endpoints or RDF files as input
data and then connects other plugins to them. Some of the
plugins are designed to provide simple SPARQL constructs.
Join and Union plugins enable users to analyze a dataset
created from multiple datasets stored in separate SPARQL
endpoints. It is also possible to transform results of an an-
alyzer with a custom transformer. When the pipeline is
evaluated, the user can choose a visualizer to see the results
in various forms. Throughout the LDVM pipeline all data
is RDF and the user can download the results in a form of
an RDF file.

Payola also offers collaborative features. A user is able to
create an analyzer and share it with the rest of the Payola
users. That enables them to run such an analyzer as well
as to create a new analytical plugin, which is based on that
analyzer. As analytical plugins have parameters that affect
their behavior, a new analyzer–based plugin may also have
parameters, which can be chosen from the parameters of the
plugins of the original analyzer. This feature supports for-
mation of an ecosystem where expert users create analyzers
for those who are less experienced. Combining those analyz-
ers into new ones enables even inexperienced users to create
a complex analyzer with less effort.

It is possible to extend Payola with custom plugins for
analysis and visualization. For instance, a user is allowed to
upload a code snippet of a new analytical plugin via our web
interface. The framework compiles the code and integrates
the created plugin immediately into the application.

Let us briefly describe some of the latest Payola features.
Based on the previous user evaluation presented in [4], we
focused our work on improving the user experience. We
introduced changes to make it even easier for non–expert
users to browse LDVM pipeline results without extensive
knowledge of LOD principles or Payola itself.

The latest Payola version offers a one–click solution for
presenting results of an LDVM pipeline in a chosen visu-
alizer. When an LDVM pipeline is created, it is assigned
a unique URL. When a user accesses such a URL, Payola
automatically loads the pipeline and creates the desired vi-
sualization (see Section 5.3.2). To speed things up, we also
implemented caching of analyzer results so that we can serve
more users in a shorter time without repeated analysis eval-
uation. This brings us very close to what we see as a final
stage of delivering a visualization to a non–expert user – em-
bedding an LDVM visualization based on an LDVM pipeline
into an external website. That is a part of our future work.

7
http://payola.cz

5. DEMONSTRATION OF LDVM
In this section, we present our real world example of im-

plementation and usage of LDVM. We present various ana-
lyzers, visualization transformers and visualizers, which are
actual LDVM components with input signatures and out-
put data samples. The examples run in Payola, our LDVM
implementation (see Section 4).

5.1 Analyzers
In this section, we describe two analyzers that create ana-

lytical abstractions from the CzLOD cloud, their input sig-
natures and output data samples. An analyzer is a software
component that produces RDF data and for a given data
source (or possibly more data sources) can say whether it
can extract data from this data source or not. It can, for
instance, represent a complex computation over simple data
or it can simply be a SPARQL query, which is a case of our
two examples. Note that when an analyzer is in a form of
a SPARQL CONSTRUCT query, its input signature corre-
sponds to its WHERE clause and its output data sample is
an instance of its CONSTRUCT clause.

5.1.1 A1: Institutions of public power
The first analyzer A1 takes data from 2 datasets: Institu-

tions of public power (OVM) and Geocoordinates. From the
OVM dataset, it extracts the institutions with their types
and addresses8. The types of the institutions are expected
to be skos:Concepts and the labels of the types are expected
to be skos:prefLabels. From the Geocoordinates dataset,
the analyzer extracts geocoordinates gained by geocoding
the OVM addresses. The input signature of the analyzer
consists of one ASK query SA1 = {QA1} :

Q of A1
[] s:name [] ;

ovm:typSubjektu ?type ;
s:address ?address .

?address s:streetAddress [];
s:postalCode [];
s:addressRegion [];
s:addressLocality [];
s:geo ?g.

?type skos:prefLabel [] .
?g s:longitude [];

s:latitude [] .

And an example of its output data sample DA1 is:

D of A1
<ovm > s:geo <geo > ;

s:title "title";
s:description "desc" ;
ovm:typSubjektu <type >.

<type > skos:prefLabel "Type" .
<geo > s:latitude "50.088289";

s:longitude "14.404446".

Our SPARQL endpoint contains this kind of data and
therefore QA1 returns true, which means that A1 is com-
patible with our SPARQL endpoint.

5.1.2 A2: Inspections of COI.CZ
The second analyzer A2 takes data from 5 datasets: In-

spections of the Czech Trade Inspection Agency (COI.CZ),
ARES (Business Registry), NUTS codes hierarchy, LAU
codes hierarchy and also Geocoordinates. From COI.CZ it
extracts information about inspections which resulted into

8s is a prefix for http://schema.org/

http://payola.cz
http://schema.org/

sanctions. Specifically, it extracts their dates, places, result-
ing fines, links to business entities inspected and links to
LAU regions in which the inspection took place. From LAU
regions, the analyzer takes names of the regions and links
to broader NUTS codes. From NUTS codes, the analyzer
takes names of the regions and their hierarchy.

From ARES, the analyzer extracts names of inspected
business entities. Finally, from Geocoordinates, it extracts
the geocoordinates of addresses found in COI.CZ. The in-
put signature of this analyzer consists of 2 SPARQL ASK
queries SA2 = {QA2

1 , QA2
2 } :

Q1 of A2
[] a s:CheckAction;

s:location/s:location ?region;
s:location/s:geo ?geo;
s:object ?object;
dcterms:date ?date ;
s:result ?result.

?result a coicz:Sanction;
s:result/gr:hasCurrencyValue [] .

?object gr:legalName [] .
?region a ec:LAURegion;

ec:level 2 .
?geo s:latitude [];

s:longitude [].
FILTER(datatype (?date) = xsd:date)

QA2
1 checks for the inspections s:CheckAction, its region

(LAU), geocoordinates, business entity, date and fine. The
fine has to have an amount, the business entity has to have
a legal name, the region must be LAU level 2. QA2

2 checks
the LAU and NUTS datasets whether there is the region
hierarchy present and whether the regions have their names.

Q2 of A2
[] a s:CheckAction;

s:location/s:location ?region;
s:result/s:result [] .

?region a ec:LAURegion;
ec:level 2 ;
dcterms:title [] ;
ec:hasParentRegion ?lau1.

?lau1 dcterms:title [] ;
ec:hasParentRegion ?nuts3 .

?nuts3 rdfs:label [] ;
ec:hasParentRegion ?nuts2 .

?nuts2 rdfs:label [] ;
ec:hasParentRegion ?nuts1 .

?nuts1 rdfs:label [].

This data is present in our SPARQL endpoint so both the
queries return true. Therefore, A2 is compatible with our
data source. An example of the output data sample DA2 is:

D of A2
<ca> a s:CheckAction;

s:location <region > ;
s:geo <geo >;
s:title "title";
s:description "description";
dcterms:date "2014 -02 -16"^^xsd:date ;
rdf:value 2 .

<geo > s:latitude "50.088289";
s:longitude "14.404446".

<region > a ec:LAURegion;
ec:level 2 ;
rdfs:label "label" ;
ec:hasParentRegion <lau1 >.

<lau1 > rdfs:label "label" ;
ec:hasParentRegion <nuts3 > .

<nuts3 > rdfs:label "label" ;
ec:hasParentRegion <nuts2 > .

<nuts2 > rdfs:label "label" ;
ec:hasParentRegion <nuts1 > .

<nuts1 > rdfs:label "label".

5.2 Visualization transformers
In this section we describe a sample visualization trans-

former. It can be used to connect output RDF data from our
analyzers or any other compatible analyzers to the inputs of
our visualizers. A visualization transformer can be any soft-
ware component that transforms data between different for-
mats or performs aggregations for better visualization. Note
that because we use RDF, the visualization transformers are
in fact SPARQL CONSTRUCT queries. Again, their input
signatures correspond to their FROM clauses and their out-
put data samples correspond to their CONSTRUCT clauses.

5.2.1 T1: Region hierarchy to SKOS hierarchy
Because we have various tree structure visualizers that

accept tree structures using skos:Concepts for nodes with
skos:prefLabel for labels and skos:broader properties for
edges and also accept optional rdf:value for the size of a
leaf, we need to transform the hierarchy extracted in ana-
lyzer A2 (see Section 5.1.2) accordingly. The region hierar-
chy, that is in the output data sample of analyzer A2 con-
sists of ec:LAURegions for regions, s:CheckAction for the
inspections made by COI.CZ. In addition, the inspections
have their sanction amounts in rdf:value, which we want
to visualize as sizes of their corresponding leaves in the re-
sulting tree visualization. Therefore, the input signature of
T1 consists of one SPARQL ASK query ST1 = {QT1} which
corresponds to the output data sample of A2:

Q of T1
[] a s:CheckAction;

s:location ?region;
s:title [] ;
rdf:value [] .

?region a ec:LAURegion;
ec:level 2 ;
rdfs:label [] ;
ec:hasParentRegion ?lau1.

?lau1 rdfs:label [] ;
ec:hasParentRegion ?nuts3 .

?nuts3 rdfs:label [] ;
ec:hasParentRegion ?nuts2 .

?nuts2 rdfs:label [] ;
ec:hasParentRegion ?nuts1 .

?nuts1 rdfs:label [] .

An example of its output data sample DT1 will correspond
to the input signature of visualizer V1 (see Section 5.3.2):

D of T1
<ca> a skos:Concept;

skos:prefLabel "title";
rdf:value 100 ;
skos:broader <region > .

<region > a skos:Concept;
skos:prefLabel "label" ;
skos:broader <lau1 > .

<lau1 > a skos:Concept;
skos:prefLabel "label" ;
skos:broader <nuts3 >.

<nuts3 > a skos:Concept;
skos:prefLabel "label" ;
skos:broader <nuts2 >.

<nuts2 > a skos:Concept;
skos:prefLabel "label" ;
skos:broader <nuts1 >.

<nuts1 > a skos:Concept;
skos:prefLabel "label".

5.3 Visualizers
In this section, we present sample visualizers which visu-

alize the results of the aforementioned analyzers. Moreover,

Figure 4: Tree hierarchy visualizations of a pipeline based on analyzer A2 and transformer T1. A treemap on
the left side, sunburst and circle layout packing on the right side.

they demonstrate how visualizers benefit from the concept of
input signatures and compatibility checks. For each of visu-
alizers, we will describe its input signature. Since a product
of a visualizer is not a dataset, but a visualization, there is
no specification of an output data sample. The compatibil-
ity check is, once again, a SPARQL ASK query which is,
in the case of a visualizer, executed against an output data
sample of the last transformer in a given LDVM pipeline.

Since one of the main reasons why the LDVM was pro-
posed is to facilitate the process of LOD exploration, we
have chosen to utilize some well-known visualization tech-
niques to present a dataset in a form, which is understand-
able by non-expert users. We have experimented with two
commonly used visualization techniques: a tree hierarchy
visualization and a map visualization. One of the goals of
our experiments was to show that it is possible to integrate
well-known visualization libraries into an application, which
works with RDF and is based on the LDVM.

5.3.1 V1: Tree hierarchy visualizers
Tree hierarchy visualization is a commonly used visual-

ization technique. The results of the analyzers A1 and A2

(followed by the transformer T1) contain hierarchical data
structures which can be visualized in this way. As described
before, we chose the SKOS vocabulary as a format for tree
visualizations and therefore we present QV1 as the input sig-
nature for a tree hierarchy visualizer V1:

Q of V1
[] a skos:Concept ;

skos:prefLabel [] ;
rdf:value [] ;
skos:broader ?b .

?b a skos:Concept ;
skos:prefLabel [] .

Query QV1 enforces that the visualized dataset contains a
leaf node with a value specified, as well as a reference to its
parent. To traverse the hierarchy, we use the skos:broader

property, which stands for the has parent relationship. It is
now easy to check compatibility of QV1 with DA1 and DT1 .

We chose to implement 4 different tree hierarchy visual-
izers. To demonstrate the flexibility of a LDVM-compliant
framework, we decided to use a freely available visualiza-
tion techniques based on a well-known and commonly used
document manipulation library D3.js9. Specifically, we in-
troduce the following visualizers: Zoomable Treemap, Sun-
burst, Zoomable Sunburst, and Layout Packing. The library
provides a module which produces adjacency diagrams or a
hierarchical layout using recursive circle-packing for a given
tree structure. It is not a hard task to build the expected
tree structure of JavaScript objects based on the data that
conforms the described input signature. Among others, we
use Apache Jena10 to serialize the results of an analyzer or
a transformer into RDF/JSON 11. The serialization is trans-
ferred to a user’s web browser, processed by a visualizer
and passed to the visualization library, which computes the
visualization itself. Note that LDVM does not specify im-
plementation details, we could use JSON-LD, RDF/XML,
Turtle or any other serialization format, moreover an arbi-
trary non-RDF format.

We present some visualizations based on aforementioned
analyzers in Figure 4 (live demos 12 13 14).

5.3.2 V2: Geo data visualizers
Geo data visualization is another example of commonly

used visualization techniques. There are many Open Data
mashups that integrate map visualizations in order to pro-
vide an eye–catching presentation of arbitrary datasets.

The input signature of a map visualizer can be actually
very simple. We define QV2 to be the only query of an input
signature of the visualizer V2:

Q of V2
?[] s:geo ?c ;

s:description [] ;

9
http://d3js.org

10
https://jena.apache.org/

11
https://dvcs.w3.org/hg/rdf/raw-file/default/rdf-json/index.html

12
http://vis.payola.cz/coi-treemap

13
http://vis.payola.cz/coi-z-sunburst

14
http://vis.payola.cz/coi-packed

http://d3js.org
https://jena.apache.org/
https://dvcs.w3.org/hg/rdf/raw-file/default/rdf-json/index.html
http://vis.payola.cz/coi-treemap
http://vis.payola.cz/coi-z-sunburst
http://vis.payola.cz/coi-packed

Figure 5: Map visualization with the faceted brows-
ing feature enabled. It presents data of a pipeline
based on analyzer A1.

s:title [] .

?c s:geoCoordinates [
s:latitude [] ;
s:longitude [] .

] .

Again, it is easy to see that such a query would return true
when matched against DA1 or DA2 . Hence, V2 is compatible
with A1 and A2.

We integrated two different map visualization libraries in
order to provide three different visualizers. Two of them are
based on the Google Maps JavaScript API 15 and the third
one utilizes the ArcGIS API for JavaScript16. The former
stands for a classic map visualization where a resource with
geo data is represented on a map by a single marker. The
other one generates a heatmap layer. The signature does not
contain any additional values. Each resource contributes to
the generated heatmap layer equally, while locally increasing
the intensity of the heatmap by one. The third visualizer uti-
lizes a clustering layer which automatically groups markers
that are close to each other. When zooming in, markers are
getting further apart. Therefore, the layer dissolves clusters
into smaller ones or reveals single markers.

These map visualizers clearly motivate the notion of in-
put signatures. We have three different software compo-
nents doing the same task so it is very natural to unify their
input format. As in the case of hierarchies, we could uti-
lize other vocabularies with properties such as wgs84:lat or
geo:point, which, in fact, have the same semantic meaning.
That is also one of the reasons for the support of transformer
chaining in LDVM. We could have a LDVM pipeline, where
an analyzer outputs data in a proprietary geographic coordi-
nate system, followed by a transformer, which converts such
a system to WGS84 using the wgs84 ontology, followed by a
transformer, which converts wgs84 to s:geoCoordinates.

To make the basic map visualizer more usable, we ex-
tended it to provide a faceted browsing capability. Let us
use the results of analyzer A1 for demonstration. Consider
input signature QV2 and the output data sample DA1 . A vi-
sualizer with this signature ignores other properties, such as
ovm:typSubjektu (type of institution). The types of insti-
tutions are instances of skos:Concept, which is often used
as a type. This might suggest that the property links the

15
https://developers.google.com/maps/documentation/javascript/

16
https://developers.arcgis.com/javascript/

resource (institution) to its type. In our case, the institution
type can be a notary, a municipality, a ministry, etc. We al-
low the users to use these properties as facets to customize
the visualization when exploring the dataset by letting them,
e.g., to change a color of a specific type of institutions or even
hide them.

Figure 6: Map visualization of the data produced by
analyzer A2.

To detect this type of properties, the following query is
executed against the visualized dataset:

select distinct ?p where
{

[] <http :// schema.org/geo > [];
?p [] .

}

It gives us a list of properties that might be used for
marker grouping. Since such a list contains also properties
defined by the input signature, we need to involve property
blacklisting to exclude properties that would probably cre-
ate a group for each marker separately (titles, descriptions,
etc.).

Examples of visualizations with faceted browsing can be
seen in Figures 517 and 618 (see footnotes for links to live
demos). When multiple properties are matched, we need to
solve some minor issues such as compute visibility based on
all filters or how to apply multiple color settings to a single
marker. In the case of the color, we let the user decide which
property is to be used to change colors of markers.

5.4 Evaluation
One of the main aims of LOD is to enable data reuse in

unforeseen ways by third parties. Specifically, public bodies
representatives often state that they do not want to publish
raw data, because it does not have a nice visualization for
the public. And then they spend large amounts of money to
build custom portals with functionality that has been imple-
mented many times before that visualize their unpublished
data. They are hard to convince that publishing the data
itself, not to mention in some standardized format or even
as LOD, can bring them benefits. This is because for the
general public the data is useless without interpretation in
a form of an application. What the public bodies do not
realize is that the development of those applications could
be left to third-parties. With these facts in mind we can
say that with Payola framework and LDVM as its formal

17
http://vis.payola.cz/ovm-gmaps

18
http://vis.payola.cz/coi-gmaps

https://developers.google.com/maps/documentation/javascript/
https://developers.arcgis.com/javascript/
http://vis.payola.cz/ovm-gmaps
http://vis.payola.cz/coi-gmaps

background, we can show a library of analyzers, transform-
ers and visualizers that can be easily used and reused for
all Linked Data. In addition, we have concrete examples
as evidence of feasibility of this approach as shown in this
paper. We also showed that implementation of open source
visualizers such as those from D3js.org as plugins to Payola
can be done easily. The data from COI.CZ, that are pre-
sented in this paper, are one of the COMSODE datasets.
The publisher of this data in COI.CZ now gets a free and
powerful visualization of its data and integration with other
datasets and all he had to do was to publish a CSV file.

6. RELATED WORK
More and more projects are focused on analyzing, explor-

ing and visualizing Linked Data. The most sophisticated
survey to date has been presented by Dadzie and Rowe [6].
They concluded that most of the tools were not suitable to
be used by lay users and the situation has not significantly
improved since. One is still required to understand the ba-
sics of the Semantic Web while using Linked Data browsers
such as Tabulator [2] and Explorator [1]. The user is ex-
pected to navigate a graph through tabular views displaying
property–value pairs of explored resources. However, they
do not offer features that would enable a user to overview a
whole dataset. At the time of writing of this paper, Tabu-
lator did not support current versions of web browsers and
therefore it was not possible to completely check up on its
progress. Compared to our one-click pipeline execution,
which enables an expert user to prepare a visualization and
share it with a non-expert one, we find Explorator a rather
complicated tool. It is not very easy even for an expert
user to start using it. Another exploration tool is Freebase
Parallax 19, which offers advanced visualizations like time-
lines, maps and other rich snippets, but works with a fixed
data source – Freebase. Semaplorer [15] is an exploration
mashup based on multiple large datasets. It demonstrates
the power of Linked Data while being focused on the tourism
data domain. It provides faceted browsing capabilities for 4
different types of facets (person, time, tag and location).

There are several tools that visualize data based on vo-
cabularies in a similar way that our new visualizers do.
Let us start with visualizers like map4rdf 20, LinkedGeoData
browser [16] and Facete21, which understands spatial data.
The first two focus on geographical data visualizations, but
both are built on top of specific datasets. That means that
compared to Payola, the user is not able to apply the visual-
izer to his own dataset. map4rdf supports faceted discovery
of Spanish institutions and enables the user to add a specific
overlay containing statistical SCOVO-based data in a form
of a timeline visualization. According to [7], the authors
are currently working on DataCube vocabulary support. Its
most interesting feature is filtering of values by choosing
an arbitrary region on a map. LinkedGeoData browser en-
ables its users to explore POIs all over the world. Facete
is a JavaScript SPARQL-based Faceted Search library. It
enables users to explore an arbitrary dataset stored on an
arbitrary SPARQL endpoint. Using facets a user is able to
narrow down the volume of the explored data. Facete offers
a basic table view, but it also provides some more sophis-

19
http://parallax.freebaseapps.com

20
http://oeg-dev.dia.fi.upm.es/map4rdf/

21
http://cstadler.aksw.org/facete/

ticated visualization widgets. One of them is focused on
visualization of spatial data. Since Facete is an exploration
tool, it completely lacks features that would provide data
analysis or transformation like Payola does. It just enables
a user to explore and filter data from a chosen SPARQL
endpoint. Another group are vocabulary-based visualizers.
CubeViz [9] offers the same circle packing layout visualiza-
tion as Payola does, but based on the DataCube vocabulary.
Payola also offers an experimental version of a DataCube
visualizer, but is not limited to it. FoaF Explorer22 is fo-
cused on visualizing FOAF profiles. One can also mention
ViDaX [8], a Java desktop Linked Data visualizer based
on the Prefuse 23 visualization library. Based on ontologies
and property types, it suggest suitable visualizations to its
users. However, we did not find a copy of the tool anywhere
so we were unable to experiment with it. Rhizomer [3] of-
fers various types of visualizations for different datasets. It
suggests a reasonable workflow for datasets exploration: 1)
Overview, 2) Filter, 3) Visualize. It includes the treemap,
timeline, map and chart visualizers. However, it focuses just
on the visualization stage of a LDVM pipeline.

There are also tools which let the user to build a custom
analyzer as Payola does. The best known is Deri Pipes [13],
which is a platform that enables a user to create mashups
and perform data transformations. However, it is focused
just on data analysis which means that there could be a Pay-
ola analytical plugin which would use a pipeline produced
by Deri Pipes as another analyzer data source. Open Data
Mashup 24 provides a very similar functionality, but it also
offers visualizations based on vocabularies, including map
visualizations. It is based on two types of widgets a user
is able to combine together. The first one is a data source,
the second one is a visualizer. However, it distinguishes only
two dataset types - statistical and spatial and lacks flexibil-
ity since a visualizer receives data a widget which combines
a data source, an analyzer and a transformer.

We have also seen some generic graph visualizers like Vi-
sualRDF 25, which is a work in progress and is being cur-
rently developed while utilizing the D3.js library. Tools
like IsaViz [14], Fenfire [11] and RDF–Gravity26 use the
well-known node-link visualization technique to represent a
dataset. Payola also offers generic graph visualizations, but
on top of that, it provides a way of customizing the visu-
alization based on ontologies and user-defined vocabularies.
Using an extensible library of visualizers, Payola is able to
visualize an arbitrary dataset.

IsaVis also belongs to a group of tools implementing Fres-
nel - Display Vocabulary for RDF 27, which specifies how a
resource should be visually represented by Fresnel-compliant
tools like LENA 28 and Longwell 29. Those are also focused
only on the visualization stage of LDVM. Fresnel vocabulary
could be perceived as a LDVM visualization abstraction.

We have already mentioned Facete, which is a SPARQL
based JavaScript library. There are also other similar li-

22
http://xml.mfd-consult.dk/foaf/explorer/

23
http://prefuse.org/

24
http://ogd.ifs.tuwien.ac.at/mashup/

25
https://github.com/alangrafu/visualRDF

26
http://semweb.salzburgresearch.at/apps/rdf-gravity/

27
http://www.w3.org/2005/04/fresnel-info/

28
https://code.google.com/p/lena/

29
http://simile.mit.edu/issues/browse/LONGWELL

http://parallax.freebaseapps.com
http://oeg-dev.dia.fi.upm.es/map4rdf/
http://cstadler.aksw.org/facete/
http://xml.mfd-consult.dk/foaf/explorer/
http://prefuse.org/
http://ogd.ifs.tuwien.ac.at/mashup/
https://github.com/alangrafu/visualRDF
http://semweb.salzburgresearch.at/apps/rdf-gravity/
http://www.w3.org/2005/04/fresnel-info/
https://code.google.com/p/lena/
http://simile.mit.edu/issues/browse/LONGWELL

braries like Sgvizler30 or Visualbox31, which enables a user
to embed a dataset visualization into their website. Un-
like Facete, they require a user to have a deep knowledge
of SPARQL language, since that is the only possible way of
using those tools. Last but not least, we mention a publish-
ing framework Exhibit32. It enables the user to create web
pages with advanced search and filtering features providing
visualizations like maps, timelines or charts. However, it
requires the input data to be in a form of JSON and rec-
ommends using Babel33 service to transform RDF and other
data formats into the desired JSON variant.

7. CONCLUSIONS
In this paper, we presented the Czech LOD cloud – a set of

interlinked LOD datasets we have published in our research
group and we used it for demonstration of the benefits of
the Linked Data Visualization Model (LDVM) for LOD vi-
sualization. We briefly recapitulated the basic principles of
LDVM, updated its formalization and shortly described our
own implementation of LDVM - Payola. Then we presented
several visualization scenarios of datasets from the Czech
LOD cloud. The scenarios demonstrated benefits of LDVM
for users – how they can combine various LDVM components
to extract required data structures from their datasets (with
so called analyzers and visualization transformers) and how
even lay users can easily reuse suitable visualizers to visual-
ize the extracted structures.

8. ACKNOWLEDGMENTS
This work was partially supported by a grant from the Eu-

ropean Union’s 7th Framework Programme number 611358
provided for the project COMSODE and also partially by
the TAČR grant no. TA02010182.

9. REFERENCES
[1] S. Araujo, D. Shwabe, and S. Barbosa. Experimenting

with Explorator: a Direct Manipulation Generic RDF
Browser and Querying Tool. In WS on Visual
Interfaces to the Social and the Semantic Web
(VISSW2009), 2009.

[2] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly,
R. Dhanaraj, J. Hollenbach, A. Lerer, and D. Sheets.
Tabulator: Exploring and analyzing linked data on the
semantic web. In 3rd Int. Semantic Web User
Interaction WS, 2006.

[3] J. Brunetti, R. Gil, and R. Garcia. Facets and
Pivoting for Flexible and Usable Linked Data
Exploration. In Interacting with Linked Data
Workshop, ILD’12, Crete, Greece, May 2012.

[4] J. M. Brunetti, S. Auer, R. Garćıa, J. Kĺımek, and
M. Nečaský. Formal Linked Data Visualization Model.
In Proceedings of the 15th International Conference on
Information Integration and Web-based Applications &
Services (IIWAS’13), pages 309–318, 2013.

[5] E. H. Chi. A Taxonomy of Visualization Techniques
Using the Data State Reference Model. In IEEE

30
http://dev.data2000.no/sgvizler/

31
http://alangrafu.github.io/visualbox/

32
http://www.simile-widgets.org/exhibit/

33
http://service.simile-widgets.org/babel/

Symposium on Information Vizualization 2000,
INFOVIS ’00, Washington, DC, USA, 2000. IEEE.

[6] A.-S. Dadzie and M. Rowe. Approaches to visualising
Linked Data. Semantic Web, 2(2):89–124, 2011.

[7] A. de León, F. Wisniewki, B. Villazón-Terrazas, and
O. Corcho. Map4rdf - Faceted Browser for Geospatial
Datasets. In Proceedings of the First Workshop on
USING OPEN DATA. W3C, June 2012.

[8] B. Dumas, T. Broché, L. Hoste, and B. Signer. Vidax:
An interactive semantic data visualisation and
exploration tool. In Proceedings of the International
Working Conference on Advanced Visual Interfaces,
AVI ’12, pages 757–760, New York, NY, USA, 2012.
ACM.

[9] I. Ermilov, M. Martin, J. Lehmann, and S. Auer.
Linked open data statistics: Collection and
exploitation. In P. Klinov and D. Mouromtsev,
editors, Knowledge Engineering and the Semantic
Web, volume 394 of Communications in Computer
and Information Science, pages 242–249. Springer
Berlin Heidelberg, 2013.

[10] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From
data mining to knowledge discovery in databases. AI
magazine, 17(3):37, 1996.

[11] T. Hastrup, R. Cyganiak, and U. Bojars. Browsing
Linked Data with Fenfire. In Linked Data on the Web
(LDOW2008) workshop, in conjunction with WWW
2008 conference, 2008.

[12] J. Kĺımek, J. Helmich, and M. Nečaský. Payola:
Collaborative Linked Data Analysis and Visualization
Framework. In 10th Extended Semantic Web
Conference (ESWC 2013), pages 147–151. Springer,
2013.

[13] D. Le-Phuoc, A. Polleres, M. Hauswirth,
G. Tummarello, and C. Morbidoni. Rapid prototyping
of semantic mash-ups through semantic web pipes. In
Proceedings of the 18th international conference on
World wide web, WWW ’09, pages 581–590, New
York, NY, USA, 2009. ACM.

[14] E. Pietriga. IsaViz: a Visual Environment for
Browsing and Authoring RDF Models. In WWW
2002, the 11th World Wide Web Conference,
Honolulu, Hawaii, USA, 2002. World Wide Web
Consortium.

[15] S. Schenk, C. Saathoff, S. Staab, and A. Scherp.
SemaPlorer—interactive semantic exploration of data
and media based on a federated cloud infrastructure.
Web Semantics: Science, Services and Agents on the
World Wide Web, 7(4):298–304, 2009.

[16] C. Stadler, J. Lehmann, K. Höffner, and S. Auer.
LinkedGeoData: A Core for a Web of Spatial Open
Data. Semantic Web Journal, 2011.

http://dev.data2000.no/sgvizler/
http://alangrafu.github.io/visualbox/
http://www.simile-widgets.org/exhibit/
http://service.simile-widgets.org/babel/

	Introduction
	Czech LOD Cloud
	Linked Data Visualization Model
	Overview of LDVM
	LDVM stages
	Formalization

	Implementation: Payola
	Demonstration of LDVM
	Analyzers
	A1: Institutions of public power
	A2: Inspections of COI.CZ

	Visualization transformers
	T1: Region hierarchy to SKOS hierarchy

	Visualizers
	V1: Tree hierarchy visualizers
	V2: Geo data visualizers

	Evaluation

	Related work
	Conclusions
	Acknowledgments
	References

