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Abstract. Spreadsheets are well-known to be frequently-used but error-prone
communication devices. They are useful since they are active (e.g., automatic
computation), provide a cognitive notation system drawing on visualizing val-
ues, meanings and relations at the same time (enabled by labeled, color-coded
grids), and provide easy-to-use domain-specific operations (e.g., computational
functions). The latter, in particular, is enabled by the text-style formula format
in spreadsheets, in which variables are replaced by cell references. For simply-
structured formulae this works very well. To keep the formulae simple, computa-
tions are modularized into subformulae and as such distributed over and beyond
the spreadsheet. This makes the provenance (tree) of spreadsheet values difficult
to understand – a probable cause for the high error rate in spreadsheets.
To explore and navigate the subformulae involved in the computation of a cell
value we present the subformula explorer “FEncy”, a tree-based, explorative in-
terface: Whenever a user clicks on a cell its formula becomes the root of a cell-
dependency graph. Each child node displays the formula of a cell (or range) ref-
erence used in the parent formula either in the original text-style or potentially in
math notation. Moreover, each node represents a direct link to the respective cell
(or range), so that it can be used for formula navigation as well.

1 Introduction

What is a mathematical formula? According to Wikipedia, in mathematics it is “an en-
tity constructed using the symbols and formation rules of a given logical language”.
Even though there are multiple mathematical communities of practice which use a
partly different set of symbols and slightly varying formation rules, there is a common
understanding how to encode several information levels into formulae by extending the
linear form of text.

Fig. 1. Typographical Line Elements [FNT]



On the one hand, this construction of a formula, O’HALLORAN calls a “grammati-
cal strategy for encoding meaning efficiently [. . . which is achieved . . . ] through spatial
and positional notation in a form that is not found in language.” [O’H05, p. 112]. In
Fig. 1 we can see some common typographical line elements. The spatial information
needed to characterize the form of a typical English text can be characterized via these
line elements. But very often formulae need more space.

Accommodating our running example in Fig. 3, the equation

σ4 =
1

3

7∑
j=4

δ24j (1)

with variables σ4 and δ4j represents the simple formula used in cell [B4].
Here, if we take a closer look (Fig. 2), we realize that the equation transcends the

ascender and descender height with respect to the typographical baseline of the used
font quite a bit. If we look closely, we also realize right away that not only specific
spatial and positional notation is used, the common font type is also broken, there are,
for example, greek letters. For mathematicians these are not unexpected and hardly
something to think about since they have internalized the notational naming convention
within formulae, that is the relation between fonts and functional status of objects. This
common mathematical practice of authoring and interpreting formulae evolved over
centuries and proved to be effective and efficient for mathematicians.

Fig. 2. Equation (1) with Typography

On the other hand, in a spreadsheet there are also mathematical formulae. We can,
for instance, reformulate Equation( 1) as a computational formula in a spreadsheet like
this:

[B4] = 1/3 ∗ SUMSQ(D4 : G4) (2)

The differences between the different representations is obviously vast. In this paper
we use the example given in Sect. 2 as a running example. In particular we discuss the
differences in notation in Sect. 3 to motivate the design in general and the suggested
formula notation options in particular of our (sub)formula explorer “FEncy” described
in Sect. 4. We consider related work in Sect. 5 and conclude in Sect. 6 with an outlook
on further work.



2 Running Example “Summer in Bremen”

Fig. 3. The Spreadsheet “Summer in Bremen”

Let us suppose that we want to de-
scribe the summer in Bremen sta-
tistically. Real-world distributions
are typically not fully known, e.g.
the rain could stop for 5 minutes
when the observer went to the cof-
fee bar to get some more coffee. In
this case, the variance of the whole
distribution is estimated by com-
puting the variance of a sample
of n observations drawn suitably
randomly from the whole sample
space according to Equation (3)
where x1, . . . , xk represent the measurements and x̄ = 1

n

∑n
k=1 xk their arithmetic

mean.

σ =
1

n− 1

n∑
k=1

(xk − x̄)2 (3)

In the spreadsheet seen in Fig. 3, observed half-an-hour periods of full sunshine resp.
rain in Bremen, i.e., the measurements, on four days in June are noted in ranges [D3:G3]
resp. [D5:G5]. The difference xk − x̄ is called the mean deviation of xk. The mean
deviation of those measurements can be found in ranges [D4:G4] resp. [D6:G6]. The
sample variance for sunshine in Bremen, for example, in cell [B4] is calculated from the
mean deviation according to Equation (3) with the spreadsheet formula in Equation (2).
Finally, the arithmetic mean of the sample variances is presented in cell [B7].

We use this example throughout the paper as running example.

3 Readability of Spreadsheet Formulae

In general, the set of symbols used in spreadsheet formulae consists of given functions
like SUM, individual macro extensions, numbers, and cell references like [B4] (in A1
referencing style referring to the cell in column B and row 4) or [R4C2] (in R1C1
referencing style pointing to the same cell). In MS Excel’10, for example, the set of
symbols enlists 339 functions and 220×256 cell references per worksheet. An essential
component of spreadsheet players is their computational foundation: they can compute
values from formulae, that is, they can simplify formulae to values. It is important to
note that – even though it acts like a programming language – “the formula language
itself is entirely textual” [Nar93, p. 49].

The formation rules are rather simple: concatenate the ingredients into a string of
ASCII characters. From the user perspective NARDI points out that authoring and un-
derstanding formulae “the user must master only two concepts: cells as variables and
functions as relations between variables” [Nar93, p. 42]. This is suspected to be the
underlying reason for spreadsheets being the world’s most used programming environ-
ment: the task of writing formulae (program scripts) is transformed into the task of



writing text in a well-understood domain language consisting of typically 3-5 [SP88],
at most 10 [Nar93, p. 43] and potentially – in MS Excel e.g. – 339 functions. It is
rather interesting that the formula language hasn’t changed at all since the very first
appearance of spreadsheet applications, therefore we can call it a successful formula
language.

Note that the ease of writing down spreadsheet formulae comes at the cost of reading
them. For a simple formula, there is no problem in interpreting this linear notation of
a formula – if the reader is very familiar with the used naming convention for cells in
spreadsheets.

The confusion begins if the spreadsheet author used the rather uncommon R1C1
referencing style, e.g., for Equation (2):

[R4C2] = 1/3 ∗ SUMSQ(RC(2) : RC(5)) (4)

Here, the cell referencing is relative to the cell that will contain the calculated value,
e.g. RC(2) = R(0)C(2) refers to [D4] (with D=B+2,4=4+0).

Fig. 4. German R1C1 Notation of Equation (4)

It gets even more con-
fusing if the spreadsheet
author used e.g. the Ger-
man MS Excel version
with R1C1 referencing style
(where “Z(eile)” stands for
“R(ow)”, “S(palte)” replaces
“C(olumn)”, and ”SUMSQ”
translates to “QUADRATE-
SUMME”) as in Fig. 4.

Besides this specific rep-
resentation format knowl-

edge, the reader might also get easily overwhelmed if the formula is complex. As read-
ers are typically experts in their specific fields, but laymen in spreadsheet technology,
this is in analogy to command line interfaces which work very well for simple com-
mands used by laymen or for complex commands used by power users. Therefore, one
explicit aim of a spreadsheet author has to be the optimal reduction of complex formu-
lae.

Fig. 5. Modularization: Mean and Variance in [B7]

This can be done via modular-
ization, in particular by collapsing
parts of formulae into variables by
using these parts as autonomous
formulae to calculate different cell
values. In Fig. 5 we can see a ver-
sion of Fig. 4, this time in the more
common A1 referencing style. The
mean of all cell values in range
[B3:B6] is calculated in [B7].

Moreover, the cells in the
ranges [D4:G4] and [D6:G6] con-



tain formulae of the kind (as shown in Fig. 6):

[D4] = SUM(D3;−$H$3) (5)

Thus, in [B7] as seen in Fig. 5 we have the recursively resolved equations as shown
in Fig. 7.

Note that even though the underlying formulae are one of the most simple ones,
already the concatenated formula turns out to look rather complex to grasp. The reason
consists of the fact that the cell references in Equation (10) can still be resolved easily
by a reader, but the cell references in Equation (11) are more distributed and thus much
harder to follow. HERMANS ET AL. report that nested formulae are hard to understand
for end-users, which was also speculated in [Bre08]. “We conclude that users find it
difficult to work with long calculation chains” [HPD12, p. 10]. Somewhat surprisingly
they continue that this difficulty “does not influence their perceived understanding of
the formula or their ability to explain it” [HPD12, p. 10]. A closer read reveals that
their users are spreadsheet professionals, thus spreadsheet authors that not only do have
the background knowledge for the specific spreadsheet at hand, they also know of the
data architecture they created. They do not need to understand the concrete formula any
longer as they trust in the underlying (hopefully) sound architecture.

As it is well-known that human short-term memory is rather limited (7 +/- 2 items
can be kept in short term memory at any given time), the modularization of formulae is
not an option, but rather a requirement for authoring readable spreadsheets. It is obvious
that this modularization enables at the same time a high error rate with errors that are
hard to debug.

The formula explorer FEncy is based on the idea that the cell references can be auto-
matically resolved into a cell-independent format e.g. presentation MathML [Aus+10]
with variables that have mnemonic names, that is, names that hint at their meaning.
For example, it is a quasi-standard to index a set of data points by a counter variable
in {i, j, k, l,m, n}, to assign the name ȳ to the mean of data points yk, to name vari-
ances σ, and to name differences δ. Now look at Equations (10) to (12) in common
mathematical notation:

0, 333333 = σ̄ (6)

=
1

2

6∑
i=3

σi (7)

=
1

2

6∑
i=3

1

3

7∑
j=4

δ2ij

 (8)

=
1

6

6∑
i=3

7∑
j=4

(xij − x̄i)2 (9)

Note that typically a reader familiar with math notation will have noticed at the latest in
Equation (7), that there is something strange going on with the mean being a sum of 4
numbers divided by the normalizing term 2. Looking at Fig. 5 we notice why the effect



Fig. 6. Modularization: Deviation in [D4]

is correct, but the formula isn’t. Therefore, math notation might also help to discover
semantic errors in formulae.

The modularization can be kept, if we visualize the formula dependencies in form
of a graph, where every node contains information about a formula.

4 The (Sub)Formula Explorer FEncy

To keep spreadsheet formulae simple, computations are modularized into subformulae
and as such distributed over and beyond the spreadsheet. Even though the modular-
ization simplifies the formula itself, it resolves in a very complex provenance (tree) of
spreadsheet values. The basic idea of FEncy consists in an interactive visualization of
the modularization of a formula. To explore and navigate the subformulae involved in
the computation of a cell value we developed a semantically supported, tree-based, ex-
plorative interface: Whenever a user clicks on a cell its formula becomes the root of a
“formula graph”, i.e., a graph with cell/range nodes and cell/range-dependency edges.
Each child node displays the formula of a cell (or range) reference used in the parent
formula.

For example, in Fig. 7(a) we can see an entire formula graph developed after the
user clicked cell [B7]. This cell contains the formula 1/2∗SUM(B3 : B6), that is Equa-
tion (10). The values in the cells in the cell range [B3:B6] are computed by equivalents
of the formula 1/3 ∗ SUMSQ(D4, G4) taken from cell [B4]1. With FEncy, if the user
clicked cell [B7], the root node as in Fig. 8 would be created and the cell-dependency
of the underlying formula on range [B3:B6] would give rise to a child node represent-
ing it in the formula graph. If the user wanted to see the child node of this, then she
could click the expand button on the upper right and a node for the functional block in
range [D4:G4] would appear.

On a more technical note, the formula explorer FEncy is a semantic service inte-
grated into the open source Semantic Alliance Framework [Dav+12]. This framework
allows to superimpose semantic services over an existing (and possibly proprietary)
application provided that it gives open-API access to user events. Elements in the appli-
cation are connected to according concepts in structured background ontologies, which,
for instance, contain a representation of the respective domain and some instance spe-
cific information. Semantic services can draw on the ontology information to offer in-
telligent services, which are offered to the user via the Semantic Alliance framework in

1 Ranges used as cell references in formulae are typically functional blocks, i.e., cell ranges
that have the same functional content, see [KK13] for more details.



(a) The Expanded Formula
Tree in Cell [B7] (with
Spreadsheet Formulae)

(b) The Expanded For-
mula Tree in Cell [B7]
(with Math Formulae)

local, but application independent windows. For the most common spreadsheet appli-
cations MS Excel and LibreOffice there are already existing Semantic Alliance
APIs.



0, 333333 = 1/2 ∗ SUM(B3 : B6) (10)

= 1/2 ∗ SUM(1/3 ∗ SUMSQ(D4, G4) : 1/3 ∗ SUMSQ(D6, G6)) (11)

= 1/2 ∗ SUM(1/3 ∗ SUMSQ(SUM(D3;−$H$3),SUM(G3;−$H$3))

: 1/3 ∗ SUMSQ(SUM(D5;−$H$5),SUM(G5;−$H$5))) (12)

Fig. 7. Recursively Solving Equations for cell [B7]

FEncy offers more than a tree-based visualization of the (sub-)formulae in a spread-
sheet. In a nutshell, every node of the formula graph consists of a list of elements:

– The title expressing the underlying meaning of a cell value or a range of values,
– a link to the corresponding cell/range in the spreadsheet,
– the dependencies this cell/range depends on,
– its data value,
– an explanation of its meaning,
– the spreadsheet formula (or its equivalent math formula), and
– iterators to move through the cells with their resp. values of a range.

Fig. 8. Node Variants in Cell [B7]

Let us have a closer look, for exam-
ple, at a node like the left one in Fig. 8.
The cell [B7] is associated with the ontol-
ogy concept “mean variance”. The title of
this concept followed by the cell reference
“B7” itself is used as a title for the node.
The underline of the cell reference indi-
cates that it represents a link to this cell.
On the upper right-hand side we can see
a collapse and an expand button, which
collapses or expands the formula graph
respectively if clicked. The cell value of
cell [B7] is 0, 333333 and is shown in the
node as well. In the grey box the beginning of the explanation of the concept “mean
variance” given in the ontology is visible. Hovering over the grey box will trigger the
expansion of it, so that the entire definition will be visible (see an example in Fig. 9). By
using the JOBAD framework[JOBAD], the user can even interact with the information
items within this explanation: If other concepts are referenced in this definition (indi-
cated by blue font usage), a click will open another window with the according concept
definition. This way, a user can explore the background ontology and comprehend the
meaning of the formula much deeper. The lower part of the node contains the formula,
here the formula for [B7], if existent; see an empty formula example in Fig. 9. The hov-
ering effect kicks in here as well, in particular, if the formula exceeds a certain size, the
entire formula will only be visible while hovering over the formula box.

Cell [B7] itself is not part of a functional block, but e.g. cell [D5] is. As the value
in [B7] depends down in the formula tree on the value in this cell, we can find the node
for [D5] as the last one in the formula graph in Fig. 7(a) or more conveniently in Fig. 9.



Fig. 9. Expansion on Hover over Definition Box

This functional block covers the observed and summarized data. Each measurement
depends on which day it was taken and what weather condition is reported, in other
words the measurement functional block depends on the day functional block [D3:G3]
and the weather functional block [[A3], [A5]]. This dependency is noted in the node
directly under the title (in grey font). Moreover, we can see that cell [D5] contains the
value for “Day 1” and “Rain”. The triangular buttons allow a user to skim through the
values in the respective functional blocks, and navigate to the respective spreadsheet
cells via the link “D5” right after the title. This feature allows the user to easily navigate
through related information items while abstracting away from the concrete structure.
If any of the information items presented above are missing, the UI of the node adapts.

In a future prototype, if the user double clicks on the formula in a node, then
the spreadsheet formula is converted into a math formula using MathML (see right
node in Fig. 8). The option of presenting both variants seems sensible as a switch of
formats should always be easily reversible to avoid confusion. The ontology concept
“mean variance” includes knowledge about the symbol notation δ̄. Moreover, as the
range [B3:B6] is associated with the concept “sample variance” with its symbol nota-
tion δ, a parser should be able to figure the math formula as seen in the right node in
Fig. 8. To give a taste of the potential of this conversion, we include Fig. 7(b). Another
idea, we want to pursue shortly is that the user can even edit the formula and push the
changes back to the spreadsheet.

5 Related Work

The visualization of data-flows within spreadsheets is not a new idea. In MS Excel
itself there is a tracing tool that visualises precedents and dependents of a selected cell.
The visualization breaks if the dependencies are beyond the worksheet or even more so
beyond the workbook.

In [CKR01] the authors studied the comprehension factor of formulae visualized
in distinct ways. They frame formula understanding in terms of the reader’s cognitive
load and thus as a visual memory problem. They find that the “ideal organization is the
simple tree. It is the easiest to chunk. In the simple tree the surface organization of the
formula tree is in harmony with its deep structure.” [CKR01, p. 487].



KANKUZI and AYALEW presented in [KA08] a graph-based visualization of spread-
sheets. Based on a Markov Clustering algorithm they generate a data-flow graph which
visualizes cell cluster dependencies in an extra window aside the spreadsheet applica-
tion window and provides semantic navigation similar to the one presented in FEncy.
Instead of using functional blocks, i.e., sets of cells that belong together semantically,
these authors use statistical clustering. Even though this probably provides a similar
grouping effect, the spreadsheet reader won’t know why the cells are grouped. With
FEncy we cannot only offer the reader this reason, i.e., the semantic relating concept,
we also allow the reader to dig into the definition of this concept.

In [Raj+00] a tree representation for formulae is suggested according to predomi-
nant Software Engineering techniques. In particular, a formula is divided into a structure
tree containing operators and functions and an arguments tree containing cell addresses
and constants. This tree visualization of a formula is suggested to be done when au-
thoring a spreadsheet, whereas FEncy is a tool that supports reading a spreadsheet.
In [JMS06] a tool for generating formulae in several formats (possibly spreadsheet for-
mat) is presented. Again, the sole focus is given to the developer or author of formulae,
nothing is said about the enhanced readability or comprehensibility of a formula.

www.spreadsheetstudio.com offers another type of formula explorer. The
modularity of MS Excel formulae is made use of as is in FEncy. This formula ex-
plorer offers a modal pop-up window that presents the formula of the selected cell.
The formula is automatically segmented into sensible parts like cells, ranges, function
plus function parameters, constants etc. If the user hovers over the formula shown then
the corresponding value is presented. If a segment corresponding to a cell or range
is left-clicked, then the formula of that MS Excel object is shown as before. Thus,
this formula explorer allows a similar navigation thru a formula via its subformulae.
Moreover, the MS Excel cursor also moves to the MS Excel object selected in the
formula window. There are two main differences between FEncy and SpreadsheetStu-
dio. First, the latter can only show formulae in one cell at any given time, whereas
the former can present all formulae depending on one cell. Secondly, SpreadsheetStu-
dio exclusively uses the MS Excel notation of formulae, whereas FEncy offers their
mathematical notation. This is not a question of ’font choice, but of cognitive adaptation
to the task at hand, that is, formula understanding.

ASUNCION suggests in [Asu11] to capture the provenance of cell values by unob-
trusively document their history and to make this set of data available for later query-
ing. This kind of provenance capture certainly is appealing because of its automation
facility, but the provenance is not stored on a semantic level. Thus, the author has to
recognize data to be able to interpret the provenance correctly. Otherwise this kind of
data handling seems to be very tedious.

6 Conclusion and Further Work

In this paper we have presented FEncy, a (sub)formula explorer for spreadsheets, that
allows readers to deeper understand what formulae, which concrete calculated values,
what underlying concepts are spread how and where over the document.



We hope that FEncy will prove to be a useful service, especially as we are plan-
ning to extend its capability towards a light formula resp. concept editor, that allows to
update existing formulae resp. ontology items. Even though the cell values are shown
in the resp. formula nodes, we believe that the provenance of cell values is still not
enough covered. The graph structure gives a hint where the data originally come from,
but very often outside data bases are used for data input of spreadsheets. In particu-
lar, the spreadsheet author is typically a data architect. For him the primitives are data
resources. Therefore, a set of new information objects could be introduced to spread-
sheets. If they were present, then FEncy could visualize it as well, to obtain a formula
visualization that not only keeps all relevant information in one place, it also uses the
notation that is most efficient.
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