
Submitted to:
THedu’14

c© W. Neuper
This work is licensed under the
Creative Commons Attribution License.

GCD — a Case Study on Lucas-Interpretation

Walther Neuper
Institute for Software Technology

University of Technology
Graz, Austria

neuper@ist.tugraz.at

1 Status Quo of Prototyping Lucas-Interpretation

Lucas-Interpretation [5] combines computation and deduction such that a learner has free choice in in-
teraction while solving problems in applied mathematics: a next step can be requested from the system
and/or can be input with feedback from the system. Thus interactive support in stepwise problem solving
comes close to traditional paper and pencil work. Next steps are computed by a program, while interpre-
tation works stepwise like in a debugger and maintains an environment together with a logical context.
The latter provides automated provers with data to check user input by establishing (or not establishing)
deductions of input formulas from the context.

The prototype of Lucas-Interpretation in the ISAC project1 raises several open research questions.
One of them are the limits of “next-step-guidance”: Which kinds of input guarantee the interpreter to
resume execution? So far, there is one positive answer [2], lemma 7 on p.182.

Another open question is revealed in the proof of the above mentioned lemma, which involves reach-
ability, not yet tackled in Isabelle [8]: How relates logical consistency of a calculation with the opera-
tional semantics of the respective program? Interest on clarification of theoretical foundations for Lucas-
Interpretation is motivated by a case study [7]: this study revealed that ISAC’s programming language is
too complicated to hand over authoring to the public.

A promising way to make ISAC’s programming language easier to use is to approach Isabelle’s
function package [4]. Most urgent for practical use is inclusion of rewriting (see example [5].p.92) into
the function package; however, this inclusion will introduce a new class of termination proofs. Another
kind of examples are engineering problems like [5].p.85; however, for these examples logical consistency
is still unclear: clarification involves operational semantics of the programming language, which has not
yet been tackled.

The present study investigates a class of examples, which is not affected by either difficulties, neither
be rewriting and termination nor by engineering problems with involved semantics.

2 Case Study on Interaction in GCD Calculation

Calculation of the greatest common divisor (GCD) of polynomials is a typical example from computer
algebra. These examples are characterised by lots of proved properties, see for instance for Isabelle’s
polynomials 2.

1http://www.sit.tugraz.at/isac
2http://isabelle.in.tum.de/dist/library/HOL/HOL-Library/Polynomial.html

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://www.sit.tugraz.at/isac
http://isabelle.in.tum.de/dist/library/HOL/HOL-Library/Polynomial.html


2 Case Study on Lucas-Interpretation

2.1 Make coefficient type closed under division in polynomial rings

In the present Isabelle distribution polynomial division requires coefficients to form a field. Mathemati-
cians prefer rings to be closed under division for both for the polynomial ring as well as for the coefficient
ring. This property of division with remainder carries over to the GCD.

In order to achieve this closure we introduce polynomial remainder sequences according to [9].p.84.
This requires only little adaptions of existing code: pdivmod rel is renamed to prsmod rel, div is re-
named to prs (polynomial remainder sequence) and all other identifiers are left as they are in the distri-
bution, while respective code is slightly changed.

This is the abstract definition as relation using multiplication as weakly inverse operation (“?” is ∃,
“%” is λ ), smult is scalar multiplication:

definition prsmod_rel :: "’a::ring_div => ’a poly => ’a poly => ’a poly => ’a poly => bool"

where "prsmod_rel a x y q r <->

smult a x = q * y + r /\ (if y = 0 then q = 0 else r = 0 \/ degree r < degree y)"

definition prs :: "’a::ring_div poly => ’a poly => (’a ’a poly)" (infixl "prs" 70)

where "x prs y = (THE (a, q). ?r. pdivmod_rel a x y q r)"

definition mod :: "’a::ring_div poly => ’a poly => ’a poly" (infixl "mod" 70)

where "x mod y = (THE r. ?a q. prsmod_rel a x y q r)"

For these definitions the usual algebraic properties can be proved and finally a code lemma provides
executability, which automatically transfers to prs and mod:

lemma prsmod_fold_coeffs [code]:

"prsmod p q = (if q = 0 then ((0, 0), p)

else fold_coeffs (%a ((m, s), r).

let (m’, n) = fact_quot (coeff (pCons a r) (degree q)) (coeff q (degree q))

in ((if m’ = 0 then m else m * m’, pCons n (smult m’ s)),

smult m’ (pCons (a * m) r) - smult n q)) p ((1, 0), 0))"

Now the Euclidean algorithm on R[x] can be defined similar to ring R, just using the remainder function
mod. Function primitive produces a polynomial of coefficients with GCD equal to one. Note, that gcd
is used for different types: once for the coefficients (gcd da db), once for polynomials (gcd a b):

function gcd’ :: "’a::ring_div poly => ’a poly => ’a poly"

where "gcd’ a b = (if b = 0 then a else gcd’ b (a mod b))"

definition gcd :: "’a::{ring_div,Gcd,equal,ord,idom} poly => ’a poly => ’a poly"

where "gcd a b =

(let (da, a’) = primitive a; (db, b’) = primitive b; (_, g) = primitive (gcd’ a’ b’)

in smult (gcd da db) g)"

Traditional CA, for instance [9], prefers to compute polynomial GCD not simply by polynomial remain-
der sequences as shown above. The reason was, that coefficients get very large very quickly, see the
example on p.3. Since there are arbitrary precision numbers in Isabelle (and SML), this is no problem
anymore.



W. Neuper 3

2.2 Examples for interaction on Euclid’s algorithm

A primary educational aim of Lucas-Interpretation is to make algorithms accessible to learning by step-
wise interaction. This aim is accomplished straight forward in rewriting, i.e. in algebraic simplification,
in differentiation, etc. But this aim is not straight forward in computer algebra. Below we investigate two
kinds of interaction, one which supports learning by observation primarily and another which supports
learning by doing steps by writing expressions like in paper and pencil work.

Learning by observation of invariants Understanding division and the related generation of polyno-
mial remainder sequences is supported by looking at the invariant (the fixpoint) of the recursion. Below
is an example for (1+ 2x+ 3x2 + 4x3 + 5x4 + 6x5) prs (7+ 8x+ 9x2), which yields the final remainder
−3917−1972x in the sequence; the polynomials are represented by lists of integers3:
[1, 2, 3, 4, 5, 6] . 3 = [0, 0, 0, 2] * [7, 8, 9] + [3, 6, 9, ~2, ~1, 0]

[1, 2, 3, 4, 5, 6] . 27 = [0, 0, ~1, 18] * [7, 8, 9] + [27, 54, 88, ~10, 0, 0]

[1, 2, 3, 4, 5, 6] . 243 = [0, ~10, ~9, 162] * [7, 8, 9] + [243, 556, 872, 0, 0, 0]

[1, 2, 3, 4, 5, 6] . 2187 = [872,~90,~81, 1458] * [7, 8, 9] + [~3917, ~1972, 0, 0, 0, 0]

And the Euclidean algorithm for the example given in [9].p.94, when shown the invariant at each recur-
sion, leads to the result gcd (−18− 15x− 20x2 + 12x3 + 20x4− 13x5 + 2x6) (8+ 28x+ 22x2− 11x3− 14x4 +

x5 +2x6) = . . ., where a closer look identifies the result as −2− x+ x2:
[~18, ~15, ~20, 12, 20, ~13, 2] . 1 = [1] * [8, 28, 22, ~11, ~14, 1, 2] + [~26, ~43, ~42, 23, 34, ~14]

[8, 28, 22, ~11, ~14, 1, 2] . 98 = [~41, ~14] * [~26, ~43, ~42, 23, 34, ~14] + [~282, 617, ~168, ~723, 344]

[~26, ~43, ~42, 23, 34, ~14] . 59168 = [787, ~2408] * [~282, 617, ~168, ~723, 344] + [~1316434, ~3708859, ~867104, 1525321]

[~282, 617, ~168, ~723, 344] . 6783102487 = [~2345549, 1529768] * [~1316434, ~3708859, ~867104, 1525321] + [~5000595353600, ~2500297676800, 2500297676800]

[~1316434, ~3708859, ~867104, 1525321] * 7289497600 = [1919, 4447] * [~5000595353600, ~2500297676800, 2500297676800] + []

For somebody, who is familiar with the two algorithms, the iterations of the invariants are informative.
But a learner, who approaches the algorithm first time, needs some additional information.

In both examples the “=” might immediately motivate the learner to check the equality of the two
sides — so appropriate tools for calculation are required; Isabelle’s tool for such trials is given by notepad
begin . . . end; an analogous tool must be available in any frontend for Lucas-Interpretation. And there are
other parts of the invariant, which are not immediately evident: In the first example the remainder’s (at
the right margin) degree decreases until it is smaller than the divisor’s degree; in the second example the
second summand’s (at the right margin) degree decreases and the algorithm stops if it becomes zero —
these informations are part of the logical context, so specific elements of the context must be accessible
easily and probably specific hints might be useful additionally.

Learning by step-wise input Another promise of Lucas-Interpretation is support for activity based
learning in stepwise problem solving close to traditional paper and pencil work supervised by a human
tutor. Below we take div as a special case of prs.

There are courses, where division of polynomials is taught and exercised manually. One can also
imagine, that at some occasion, for instance encountering partial fraction decomposition for some inte-
gral, a student wants to know in detail, how division works on polynomials. Or somebody wants to com-
pare the division algorithm for polynomials with the division of integers. All these cases would expect
steps as follows for a smaller example than those above, for instance (4+3x+2x2 + x3) div (2+ x) =
(3+ x2)− 2

2+x :

3The factors on the left-hand side are introduced in order to stay within the ring of integers.



4 Case Study on Lucas-Interpretation

[4, 3, 2, 1] . 1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[4, 3, 2, 1]

- [0, 0, 2, 1] <--- [2, 1] . 1

-----------------------------

[4, 3, 0, 0] quot = [0] @ [1] @ (1 . [])

[4, 3] . 1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[4, 3]

- [6, 3] <--- [2, 1] . 3

-----------------------------

[~2, 0] quot = [] @ [3] @ (1 . [0, 1])

The traditional handwritten algorithm represents polynomials with the highest power first; here the order
is reversed as usual in computer mathematics; so there are open questions for detailed design and for
cooperation with educators in order to meet learners’ requirements.

The left column is what pupils are taught to do by hand (except the additional factors ·1 and ·3
generalising to polynomial remainder sequences). So, at this level of Lucas-Interpretation (and not on
the pedagogical level of user guidance) for all terms like [4,3,2,1], ·1, [0,0,2,1] etc both should be
possible: input by the learner or output by the system. The right columns is up to debate; as given above
it just reflects the details of constructing the quotient.

Step-wise input to Euclid’s algorithm on polynomials seems not reasonable, see the example on
p.3. If such input is indeed requested, then it seems feasible only together with a notepad for auxiliary
calculations.

3 Conclusions for Further Development

The findings from the case study are the following:

(a) Invariants, in computer science known for representing the essence of algorithms, turn out helpful
for understanding mathematical algorithms, too. Instantiation of an invariant with the values at
each iteration of an algorithm gives a sequence of steps. This sequence is instructive for learners
asking how a result is calculated step by step from the input. The findings originate from polyno-
mial division and GCD and seem to transfer to a large class of algorithms in computer algebra.

(b) Polynomial division done by hand involves steps far off the code in a streamlined program in a
functional language. Also this finding carries over to the few algorithms in computer algebra,
where calculation by hand is exercised traditionally.

(c) Both of the findings, (a) and (b) suggest to make a kind of notepad available for investigations and
trials during study of invariants as well as during stepwise calculation.

These findings relate to the present state in the prototyped Lucas-Interpretation:

ad (a) A tactic INVARIANT can be included in ISAC’s programming language. This tactic takes a term
containing the respective variables as arguments and returns no value; rather, Lucas-Interpretation
identifies INVARIANT as a breakpoint and handles interaction as a side-effect: it hands over
control to the learner for the purpose of investigation.



W. Neuper 5

ad (b) The steps of a traditional calculation are unrelated to the code of an algorithm; so it seems best
to relate these steps to some single location in the program, probably a subprogram. Such a sub-
program then is free to implement any pedagogically motivated steps; this architectural solution
seems to respect the interface to ISAC’s user guide, which is implemented in Java and resides in
the front-end.

ad (c) A notepad will be a special kind of “worksheet” in ISAC. Such a notepad does not start with
a formal specification for a subsequent calculation. Rather, it might inherit the present logical
context from the worksheet the trials come from.

The findings and their relation to the present state suggest these steps in future ISAC development:

1. Extend ISAC’s programming language with a new tactic INVARIANT and implement it as a break-
point for Lucas-Interpretation.

2. Extend ISAC’s programming language with function definitions as close as possible to Isabelle’s
function package. Evaluate these functions in the Lucas-Interpreter reusing machinery of Isabelle’s
code generator [3].

3. Narrow existing programs in ISAC gradually to the syntax of the function package; parallel to this
“standardization” of the programming language adapt the code generator’s machinery to cooperate
with the Lucas-Interpreter.

These steps shall increase the usability of ISAC’s programming language and thus promote spreading of
a new generation of educational math software [6].

References

[1] (eduTPS 2013): Theorem-Prover based Systems for Education. eJMT, the Electronic Journal of Mathematics
& Technology. Available at https://php.radford.edu/~ejmt/ContentIndex.php#v7n2. Special Issue
“TP-based Systems and Education”.

[2] Gabriella Daróczy & Walther Neuper (2013): Error-Patterns within “Next-Step-Guidance” in TP-based Ed-
ucational Systems. [1], pp. 175–194. Available at https://php.radford.edu/~ejmt/ContentIndex.
php#v7n2. Special Issue “TP-based Systems and Education”.

[3] Florian Haftmann (2013): Code generation from Isabelle/HOL theories. Theorem Proving Group at TUM,
Munich. Available at http://isabelle.in.tum.de/dist/Isabelle2013/doc/codegen.pdf. Part of
the Isabelle distribution.

[4] Alexander Krauss (2013): Defining Recursive Functions in Isabelle/HOL. Theorem Proving Group TUM,
Munich. Available at http://isabelle.in.tum.de/dist/Isabelle2013/doc/functions.pdf. Part
of the Isabelle distribution.

[5] Walther Neuper (2012): Automated Generation of User Guidance by Combining Computation and Deduc-
tion. Electronic Proceedings in Theoretical Computer Science 79, Open Publishing Association, pp. 82–101,
doi:10.4204/EPTCS.79.5.

[6] Walther Neuper (2013): On the Emergence of TP-based Educational Math Assistants. [1], pp. 110–129. Avail-
able at https://php.radford.edu/~ejmt/ContentIndex.php#v7n2. Special Issue “TP-based Systems
and Education”.

[7] Jan Ročnik (2013): Trials with TP-based Programming for Interactive Course Material. [1], pp. 91–109.
Available at https://php.radford.edu/~ejmt/ContentIndex.php#v7n2. Special Issue “TP-based Sys-
tems and Education”.

https://php.radford.edu/~ejmt/ContentIndex.php#v7n2
https://php.radford.edu/~ejmt/ContentIndex.php#v7n2
https://php.radford.edu/~ejmt/ContentIndex.php#v7n2
http://isabelle.in.tum.de/dist/Isabelle2013/doc/codegen.pdf
http://isabelle.in.tum.de/dist/Isabelle2013/doc/functions.pdf
http://dx.doi.org/10.4204/EPTCS.79.5
https://php.radford.edu/~ejmt/ContentIndex.php#v7n2
https://php.radford.edu/~ejmt/ContentIndex.php#v7n2


6 Case Study on Lucas-Interpretation

[8] G. Rosu, A. Stefanescu, S. Ciobacá & B.M. Moore (2013): One-Path Reachability Logic. In: Logic in
Computer Science (LICS), pp. 358–367, doi:10.1109/LICS.2013.42.

[9] Franz Winkler (1996): Polynomial algorithyms in computer algebra. Springer.

http://dx.doi.org/10.1109/LICS.2013.42

	Status Quo of Prototyping Lucas-Interpretation
	Case Study on Interaction in GCD Calculation
	Make coefficient type closed under division in polynomial rings
	Examples for interaction on Euclid's algorithm

	Conclusions for Further Development

