
Formalizing a Named Explicit Substitutions
Calculus in Coq

Washington L. R. de C. Segundo1, Flávio L. C. de Moura1?, Daniel L. Ventura2

1Departamento de Ciência da Computação Universidade de Braśılia, Braśılia, Brazil
2Instituto de Informática, Universidade Federal de Goiás, Goiânia, Brazil

wtonribeiro@gmail.com, flaviomoura@unb.br, daniel@inf.ufg.br

Abstract. Explicit Substitutions (ES) calculi are extensions of the λ-
calculus that internalize the substitution operation, which is a meta-
operation, by taking it as an ordinary operation belonging to the gram-
mar of the ES calculus. As a formal system, ES are closer to imple-
mentations of functional languages and proof assistants, and are useful
for studying properties of such systems. Nevertheless, several ES calculi
do not satisfy important properties related with the simulation of the
λ-calculus, such as confluence on open terms, simulation of one step β-
reduction, full composition and the preservation of strong normalization
(PSN). The latter, which states that λ-terms without infinite reduction
sequences can only be finitely reduced in the ES calculus, is easily lost in
such extensions. In a recent work, D. Kesner developed the λex-calculus,
which is the first ES calculus that satisfies all the good properties ex-
pected for an ES calculus. In this work we present a formalization of
the λex-calculus in the Coq Proof Assistant, which is fully available at
http://www.cic.unb.br/∼flavio/publications.html.

1 Introduction

An Explicit Substitutions (ES) calculus is an extension of the λ-calculus that
internalizes the substitution operation by extending its grammar such as:

t, u ::= x | λx.t | t u | t[x/u] (1)

where, beside the variable x, abstraction λx.t and application t u, there is a
term t[x/u] denoting an explicit substitution, i.e., a pending substitution that
needs to wait to be performed [4]. The free occurrences of the variable x in t are
bound in both λx.t and t[x/u], as usual. As a formal system, an ES calculus is
composed by a set of rewriting rules with two parts whose aim is to simulate the
λ-calculus. The first part is composed by a rule that starts the simulation of the
β-reduction, and the second part is used to explicitly perform the substitution
operation. For instance, the λx-calculus [18,19,24,5] is defined by the following

? Corresponding author partially supported by FEMAT.



rewriting system:

(λx.t)u → t[x/u]
x[x/u] → u
y[x/u] → y (x 6= y)
(t1 t2)[x/u]→ t1[x/u] t2[x/u]
(λy.v)[x/u] → λy.v[x/u] (x 6= y)

where the first rule starts the simulation of the β-reduction and the other rules
are responsible for executing, by propagating through the term’s structure, the
pending substitution operation. In this way, the β-step (λx.(x y)) z →β z y can
be simulated by (λx.(x y)) z → (x y)[x/z]→ x[x/z] y[x/z]→ z y[x/z]→ z y.

Most of the defined calculi follow one of two approaches: the first one uses
names for declaring variables as presented in (1). The advantage of this ap-
proach is that its terms are more readable, but α-equivalence, i.e. the class of
terms modulo renaming of bound variables, needs to be carefully manipulated.
Therefore, implementations of such calculi are not straightforward. Calculi in
this family include the λx-, λex- [16], λlxr- [17], λsub- [21] and λes-calculi [16].
The second approach uses de Bruijn indexes [8] to represent variables in such a
way that each term has a unique representation and hence α-equivalence is no
longer necessary. For instance the λ-term (λx.(x y)) z is represented by (λ(0 1))1,
where the 1 inside the λ denotes the position of the variable y in a fixed context,
and the 1 outside the λ denotes the second variable in this context. Note also
that the 0 is bound by the λ while the 1 inside it represents the same variable
as 0 outside thus (λ(0 1)) 0 represents (λx.(x y)) y. Therefore, α-equivalence
is not a problem in this approach, but an algebraic manipulation of indexes is
necessary while performing substitutions. A simple example of calculus in this
approach is given by the λs-calculus [13] whose grammar, rules and an update
function upik(b) are given by:

a, b ::= n | λa | a b | a[n/b]

(λa)b → a[0/b]

n[i/b] →

n− 1 if n > i
upi0(b) if n = i
n if n < i

(a1 a2)[i/b]→ a1[i/b] a2[i/b]
(λa)[i/b] → λa[i+ 1/b]

upik(λa) → λ(upik+1(a))

upik(n) →
{
n+ i if n > k
n if n ≤ k

upik(a1 a2)→ upik(a1) upik(a2)

In this calculus, the previous example can be simulated as follows: (λ(0 1))1→
(0 1)[0/1]→ 0[0/1] 1[0/1]→ up00(1) 0→ 1 0. Examples of calculi with de Bruijn
indexes are Cλξφ [9], λσ [1], λse [14], λsusp [22] and λws [7].

The formalization presented in this work takes advantages of both approaches:
it uses de Bruijn indexes to represent bound variables, while free variables are
represented by named variables. This framework, called the locally nameless rep-
resentation, is already available in Coq and a more detailed explanation of its
advantages can be found in [6].



2 Formalizing Explicit Substitutions Calculi

In this section we present the basic notions that will be used in our formalization
of the λex-calculus1, an ES calculus with names, in the Coq proof assistant. The
notion of terms is general and could be used for any calculus having the syntax
as in (1). In fact, the notion of terms given below is an extension of the formaliza-
tion of the λ-calculus presented in [6]. Terms are defined over a signature of pre-
terms whose set of variables is formed by the bound variables (pterm bvar), in-
dexed by natural numbers, and named free variables (pterm fvar). Applications
(pterm app), abstractions (pterm abs) and explicit substitutions (pterm sub)
have the standard signature.
Inductive pterm : Set :=
| pterm bvar : nat → pterm
| pterm fvar : var → pterm
| pterm app : pterm → pterm → pterm
| pterm abs : pterm → pterm
| pterm sub : pterm → pterm → pterm.

Notation t1[t2] := (pterm sub t u).

Terms of the λex-calculus are defined by an unary predicate over pre-terms.
The intuition is that a term is a pre-term without dangling de Bruijn indexes. We
extended the predicate term to pre-terms with explicit substitution as follows:
Inductive term : pterm → Prop :=
| term var : ∀ x,

term (pterm fvar x )
| term app : ∀ t1 t2,

term t1 → term t2 → term (pterm app t1 t2 )
| term abs : ∀ L t1,

(∀ x, x \notin L → term (t1 ^ x )) → term (pterm abs t1 )
| term sub : ∀ L t1 t2,

(∀ x, x \notin L → term (t1 ^ x )) → term t2 → term (t1[t2]).

where term sub is the constructor that defines the conditions for (t1[t2]) to be
a term. In this definition, the expression (t1 ^ x ) represents the term obtained
from t1 after replacing all the occurrences of the ith de Bruijn index that is in
the scope of i binders for x, i.e., all the occurrences of 0 that is not in the scope
of a binder, of 1 that is in the scope of one binder, of 2 that is in the scope of two
binders, and so on, are replaced for x in t1 . The condition x \notin L avoids
the capture of free variables by the substitution operation2. Therefore, if
(t1 ^ x ) and t2 are terms then (t1[t2]) is also a term.

2.1 The λex-calculus

The λex-calculus [15] was the first ES calculus that simultaneously satisfies all
the desired properties for an ES calculus: termination, confluence on open terms,

1 The full formalization is available at www.cic.unb.br/∼flavio/publications.html
2 The details can be found in [6]

nat.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes


simulation of one step β-reduction, full composition and preservation of strong
normalization (PSN). It is defined by the following rewriting system

(λx.t) u →B t[x/u]

x[x/u] →Var u

t[x/u] →Gc t, if x /∈ fv(t) (2)

(t v)[x/u] →App t[x/u] v[x/u]

(λy.t)[x/u]→Lamb λy.t[x/u]

(t[y/v])[x/u]→Comp t[x/u][y/v[x/u]], x ∈ fv(v)

and an equation for permutation of independent substitutions

t[y/v][x/u] =C t[x/u][y/v], if x /∈ fv(v) and y /∈ fv(u) (3)

where the rewriting relation generated by the rules in (2) is denoted by Bx, and
by x if one considers all the rules but B. The equivalence relation generated by
the conversions α and C is denoted by e, and the reduction relation generated
by each rewriting relation modulo e specifies rewriting of e-equivalence classes
as follows:

t→ex t
′ iff ∃s, s′ such that t =e s→x s

′ =e t
′ (4)

t→λex t
′ iff ∃s, s′ such that t =e s→Bx s

′ =e t
′

The formalization of α-equivalence is unnecessary due to the locally nameless
representation, as explained in the introduction. Nevertheless, the formalization
of the equivalence of terms modulo the equation (3) is not straightforward and
constitutes an important contribution of this work. The reduction relations in
(4) allow a, possible empty, permutation of substitutions before and/or after the
rewriting step, and its formalization is done in several steps as explained below.
First, we inductively define the permutation of independent substitutions:
Inductive eqc : pterm → pterm → Prop :=
| eqc rf: ∀ u, eqc u u
| eqc rx: ∀ t u v, term u → term v → eqc (t[u][v]) ((& t)[v][u]) .

The constructor eqc rf defines the reflexivity of eqc, i.e., of equation (3), and
eqc rx permutes two independent substitutions. The independence of the sub-
stitutions [u] and [v] in t[u][v] is assured by the conditions (term u) and
(term v) because no dangling bound variable is allowed to occur in terms. As a
consequence, we have that eqc is also symmetric and transitive, and hence eqc
defines an equivalence relation. The permutation of independent substitutions
done by the constructor eqc rx requires an adjustment of the indexes of the term
t that is replaced by (& t := bswap rec 0 t), which is obtained from t after re-
placing each occurrence of the index bound to the substitution [u] by the one
bound to the substitution [v] and vice-versa. This swap of indexes is formally
defined by the idempotent recursive function bswap rec.

The parallel contextual closure of eqc is denoted by the permutation of inde-
pendent substitutions in any position of a term. The parallel contextual closure



generalizes the standard contextual closure by allowing applications of a reduc-
tion in parallel positions:

(∀ x, x \notin L → p contextual closure eqc (t^x ) (t’^x )) →
p contextual closure eqc u u’ →
p contextual closure eqc (t[u]) (t’[u’])

So, in order to take advantage of rewriting facilities of Coq, we need to show
the compatibility of λex-contexts w.r.t. the equivalence relation eqc. This means,
for example, that two term applications that are eqc equivalent result in corre-
sponding arguments are eqc equivalent. The same happens to abstractions and
explicit substitutions eqc equivalent terms. In this way, one can directly replace
equivalent λex-terms using the rewrite tactic of Coq [26]. For this purpose,
and since (p contextual closure eqc) is no longer transitive, we defined the
transitive parallel contextual closure of eqc, denoted by =e.

Finally, the reduction relation in (4) is parametrized by a relation R as fol-
lows: ∃ t’ u’, (t =e t’)/\(contextual closure R t’ u’)/\(u’ =e u), where R
will be instantiated either with ex or lex.

The rewriting rules in (2) are formalized via binary predicates over the set
of pre-terms. Therefore, the rule B, here called rule b, has type pterm→ pterm
→ Prop, where the first argument corresponds to the left hand side of the rule,
and the second argument corresponds to its right hand side:

Inductive rule b : pterm → pterm → Prop :=
reg rule b : ∀ (t u:pterm), body t → term u →
rule b (pterm app(pterm abs t) u) (t[u]).

Notation ”t → B u” := (rule b t u).

The system x, called sys x, is given by the remaining rules in (2). The rules
Lamb and Comp need to take into account the correct manipulation of bound
variables in t while propagating the substitution over a binder operator. In par-
ticular, the conditions body (t[u]) and ¬term u in reg rule comp assure that
the substitutions [u] and [v] are not independent.

Inductive sys x : pterm → pterm → Prop :=
| reg rule var : ∀ t, term t → sys x (pterm bvar 0 [t]) t
| reg rule gc : ∀ t u, term t → term u → sys x (t[u]) t
| reg rule app : ∀ t1 t2 u, body t1 → body t2 → term u →
sys x ((pterm app t1 t2)[u]) (pterm app (t1[u]) (t2[u]))
| reg rule lamb : ∀ t u, body (pterm abs t) → term u →
sys x ((pterm abs t)[u]) (pterm abs ((& t)[u]))
| reg rule comp : ∀ t u v, body (t[u]) → ¬ term u → term v →
sys x (t[u][v]) (((& t)[v])[ u[ v ] ]).

Notation ”t → x u” := (sys x t u).

The result of the (implicit) substitution, replacing all occurrences of index 0
(at the root level), of term t by a term u is written (t ^^ u).

The first non-trivial property that is proved is called full composition: it
states that the explicit substitution simulates the implicit substitution of the
λ-calculus and nothing else:

:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
:type scope:'x7E' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic


Lemma full comp: ∀ t u, body t → term u → t[u] -->ex+ (t ^^ u).

Proof. The proof is done by induction on t as in [15], but the induction principle
need to be adapted to the locally nameless notation because t is not a term in this
notation. In fact, t is a body, and hence the induction is on the body structure.
Apart from this, everything else runs as in the original proof.

The simulation of one step β-reduction is another important property of ES
calculi. It states that one step β-reduction in the λ-calculus can be simulated in
the ES calculus in a finite number of steps:

Lemma sim beta reduction : ∀ t t’, (t -->Beta t’ ) → (t -->lex* t’ ).

Proof. The proof is done by induction on t -->Beta t’ . For the base case one
has to show that pterm app (pterm abs t) u -->lex* (t ^^ u), which after an
application of rule b reduces to t[u] -->ex+ (t ^^ u), and we conclude by
lemma full comp. The inductive cases are straightforward.

2.2 Towards a Formalization of PSN for the λex-calculus

In this subsection we present the steps towards a formalization of the PSN
property for the λex-calculus, which is a desirable property for ES, but it can
be easily lost. In fact, there are many examples in the literature of ES calculi
that do not enjoy PSN, such as the λσ- [20] and the λse-calculus [10]. The first
step is to formalize a many-step strategy for x-terms that preserves λex-normal
forms, and which is used to characterize the strongly normalizing λex-terms.
Inductive many step : pterm → pterm → Prop :=
| p var : ∀ (x : var) (t t’ : pterm) (lu lv : list pterm),

((NF lex) %% lu) → many step t t’ →
many step ((pterm app ((pterm fvar x) // lu) t) // lv)

((pterm app ((pterm fvar x) // lu) t’) // lv)
| p abs : ∀ L (t t’ : pterm),

(∀ x, x \notin L → many step (t ^ x ) (t’ ^ x )) →
many step (pterm abs t) (pterm abs t’ )
| p B : ∀ (t u : pterm) (lu : list pterm),
many step ((pterm app (pterm abs t) u) // lu) (t[u] // lu)
| p subst1 : ∀ (t u : pterm) (lu : list pterm),
SN lex u →
many step (t[u] // lu) ((t ^^ u) // lu)
| p subst2 : ∀ (t u u’ : pterm) (lu : list pterm),

(¬ SN lex u) → many step u u’ →
many step (t[u] // lu) (t[u’] // lu) .

Notation ”t  t’” := (many step t t’ ).

The strategy above can be simulated in the λex-calculus as stated by the
following lemma. And so we proved that it is deterministic, fact that is only
stated in [15]. Both proofs are done by induction followed by inversion on the

list.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes
list.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes
list.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes
list.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes
:type scope:'x7E' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic


strategy  :

Lemma perp proposition : ∀ t t’, term t → (t  t’ ) → (t -->lex+ t’ ).

Lemma det many step : ∀ t u v, term t → ((t  u) ∧ (t  v) → u = v).

The PSN proof for the λex-calculus relies on the fact that strong normal-
ization can be inductively defined. The so called IE property establishes the
conditions for a term to be strongly normalizing in the λex-calculus. A term is
strongly normalizing (SN) if every reduction sequence starting from it is finite.
Therefore, the SN predicate inductively characterizes when a term t is strongly
normalizing w.r.t. a reduction relation R by assuring the existence of a natural
number n that bounds the maximum size of any reduction from t.
Inductive SN ind
(n : nat) (R : pterm → pterm → Prop) (t : pterm) : Prop :=
| SN intro : (∀ t’, R t t’ → ∃ k, k < n ∧ SN ind k R t’ ) → SN ind n R t.

Definition SN R t := ∃ n, SN ind n R t.

The PSN property for the λex-calculus is proved under the hypothesis that
IE holds. We are currently working on the formalization of the IE property, but
it is not straightforward, as shown in [15].

Hypothesis IE property : ∀ t u lv, body t → term u →
SN lex u → SN lex ((t ˆˆ u) // lv) → SN lex ((t[u]) // lv).

A perpetual strategy gives either an infinity reduction sequence of a term
when it exists, or a reduction sequence leading to some normal form. The theo-
rem perpetuality states that the many step strategy is perpetual by relating it
with the SN predicate.

Theorem perpetuality : ∀ t t’, term t → (t  t’ ) → SN lex t’ → SN lex t.

Proof. The proof is by induction on the strategy many step. The IE property
is used in the base case for the rule p subst1.

An inductive characterization of strongly normalizing terms is very conve-
nient because it simplifies proofs. The predicate ISN characterizes the set of
strongly normalizing terms in the λex-calculus. This claim is proved by the
lemma ISN prop which states the equivalence between ISN and SN lex .

Inductive ISN : pterm → Prop :=
| isn var : ∀ (x : var) (lu : list pterm),

(∀ u, (In u lu) → ISN u) → ISN ((pterm fvar x) // lu)
| isn NF : ∀ (u : pterm),
NF lex u → ISN u
| isn app : ∀ (u v : pterm) (lu : list pterm),
ISN (u[v] // lu) → ISN ((pterm app (pterm abs u) v) // lu)
| isn subs : ∀ (u v : pterm) (lu : list pterm),
ISN ((u ^^ v) // lu) → ISN v → ISN (u[v] // lu)
| isn abs : ∀ L (u : pterm),

:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
nat.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
:nat scope:x '<' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Peano
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
list.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes
In.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Lists.List
list.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes
list.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes


(∀ x, x \notin L → ISN (u ^ x )) → ISN (pterm abs u) .

The preservation of strong normalization for the λex-calculus is proved by
showing that every λ-term without infinite reduction sequences do not have
infinite reduction sequences in the λex-calculus, i.e., if a λ-term t is strongly
normalizing then it is also strongly normalizing in the λex-calculus.

Lemma ISN prop : ∀ t, term t → (ISN t ↔ SN lex t).

Theorem PSN : ∀ t, Lterm t → SN Beta t → SN lex t.

Proof. The proof is done by induction on SN Beta t, defined as follows [27]:
Inductive SN Beta : pterm → Prop :=
| sn beta var : ∀ (x : var) (lu : list pterm),

(∀ u, (In u lu) → SN Beta u) → SN Beta ((pterm fvar x) // lu)
| sn beta abs : ∀ L (u : pterm),

(∀ x, x \notin L → SN Beta (u ^ x )) → SN Beta (pterm abs u)
| sn beta meta sub : ∀ (t u : pterm) (lv : list pterm),
SN Beta u → SN Beta ((t ^^ u) // lv) →
SN Beta ((pterm app (pterm abs t) u) // lv).

The full formalization follows [15] and is divided in 5 Coq files that sum up
about 4000 lines of code, excluding the framework provided by [6].

Related work There is a formalization of the λσ-calculus proving its conflu-
ence [25]. In [12], termination of both the λσ- and λs-calculus are formalized in
ALF [11]. Nevertheless, both the λσ- and the λs-calculus uses de Bruijn indexes
and do not have equations, and hence its formalization do not need a framework
for dealing with equivalence classes of terms.

The framework in [6] was used in the formalization of the full composition
property for the untyped structural λ-calculus [23].

3 Conclusion and Future Work

Formalization of ES calculi are important because they form the theoretical basis
for the implementation of functional languages and proof assistants. In this way,
ES calculi allow, as a formal framework, not only the study of properties and
further improvements of the implemented systems, but also the study of the
λ-calculus itself [3].

In this work, we presented a formalization of the λex-calculus in Coq using
a framework based on locally nameless representation [6]. In this formalization
we proved that the λex-calculus satisfies a number of interesting properties such
as full composition, simulation of one step β-reduction and that the many step
strategy, which can be simulated in the λex-calculus, is used to characterize
strongly normalizing terms. Assuming the IE property, we proved that the λex-
calculus enjoys the PSN property.

:type scope:x '<->' x.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Logic
list.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes
In.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Lists.List
list.html#http://coq.inria.fr/distrib/8.4pl3/stdlib/Coq.Init.Datatypes


As future work, we will formalize the IE property and metaconfluence, i.e.,
confluence on open terms for the λex-calculus. This will provide a complete
formalization of the λex-calculus. We will investigate whether our formalization
could be adapted to formalize other calculi that uses names instead of de Bruijn
indexes, such as the family of ES calculi that acts at a distance [21,2].

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. Journal
of Functional Programming, 1(4):375–416, 1991.

2. B. Accattoli and D. Kesner. The structural lambda-calculus. In 19th EACSL
Annual Conference on Computer Science and Logic (CSL), volume 6247 of LNCS,
pages 381–395. Springer-Verlag, 2010.

3. B. Accattoli and D. Kesner. The permutative lambda calculus. In Nikolaj Bjørner
and Andrei Voronkov, editors, LPAR, volume 7180 of Lecture Notes in Computer
Science, pages 23–36. Springer, 2012.

4. M. Bezem, J. W. Klop, and R. de Vrijer, editors. Term Rewriting Seminar –
Terese. Cambridge University Press, 2003.

5. R. Bloo and K. Rose. Preservation of strong normalisation in named lambda
calculi with explicit substitution and garbage collection. In CSN-95: COMPUTER
SCIENCE IN THE NETHERLANDS, pages 62–72, 1995.

6. A. Charguéraud. The Locally Nameless Representation. Journal of Automated
Reasoning, pages 1–46, 2011.

7. R. David and B. Guillaume. A lambda-calculus with explicit weakening and explicit
substitution. Mathematical Structures in Computer Science, 11(1):169–206, 2001.

8. N. G. de Bruijn. Lambda-Calculus Notation with Namefree Formulas Involving
Symbols that Represent Reference Transforming Mappings. Indag. Mat., 40:348–
356, 1978.

9. N. G. de Bruijn. A namefree lambda calculus with facilities for internal definition of
expressions and segments. Technical Report T.H.-Report 78-WSK-03, Technische
Hogeschool Eindhoven, Nederland, 1978.

10. B. Guillaume. The λs e-calculus Does Not Preserve Strong Normalization. J. of
Func. Programming, 10(4):321–325, 2000.

11. M. Hanus. The alf system. In PLILP, pages 423–424, 1991.
12. F. Kamareddine and H. Qiao. Formalizing strong normalization proofs of explicit

substitution calculi in alf. Journal of Automated Reasoning, 30(1):59–98, 2003.
13. F. Kamareddine and A. Ŕıos. A λ-calculus à la de Bruijn with Explicit Substitu-

tions. In Proc. of PLILP’95, volume 982 of LNCS, pages 45–62. Springer, 1995.
14. F. Kamareddine and A. Ŕıos. Extending a λ-calculus with Explicit Substitution

which Preserves Strong Normalisation into a Confluent Calculus on Open Terms.
Journal of Functional Programming, 7:395–420, 1997.

15. D. Kesner. Perpetuality for full and safe composition (in a constructive setting). In
Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna
Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP (2), volume 5126 of Lecture
Notes in Computer Science, pages 311–322. Springer, 2008.

16. D. Kesner. A Theory of Explicit Substitutions with Safe and Full Composition.
Logical Methods in Computer Science, 5(3:1):1–29, 2009.

17. D. Kesner and S. Lengrand. Resource operators for the λ-calculus. Information
and Computation, 205:419–473, April 2007.



18. R. Lins. A new formula for the execution of categorical combinators. 8th Conference
on Automated Deduction (CADE), volume 230 of LNCS:89–98, 1986.

19. R. Lins. Partial categorical multi-combinators and church rosser theorems. Tech-
nical Report 7/92, Computing Laboratory, University Kent at Canterbury, May
1992.

20. P.-A. Melliès. Typed λ-calculi with explicit substitutions may not terminate. In
Proceedings of TLCA’95, volume 902 of LNCS. Springer-Verlag, 1995.

21. R. Milner. Local bigraphs and confluence: Two conjectures: (extended abstract).
ENTCS, 175(3):65–73, 2007.

22. G. Nadathur and D. S. Wilson. A Notation for Lambda Terms: A Generalization
of Environments. TCS, 198:49–98, 1998.

23. Fabien Renaud. Les ressources explicites vues par la théorie de la réécriture. PhD
thesis, 2011.

24. K. Rose. Explicit cyclic substitutions. In Michaël Rusinowitch and Jean-Luc
Rémy, editors, 3rd International Workshop on Conditional Term Rewriting Sys-
tems (CTRS), volume 656, pages 36–50. Springer-Verlag, 1992.

25. A. Säıbi. Formalization of a lambda-Calculus with Explicit Substitutions in Coq. In
TYPES ’94: Selected papers from the International Workshop on Types for Proofs
and Programs, pages 183–202, London, UK, 1995. Springer-Verlag.

26. M. Sozeau. A new look at generalized rewriting in type theory. J. Formalized
Reasoning, 2(1):41–62, 2009.

27. F. van Raamsdonk. Confluence and Normalization for Higher-Order Rewriting.
PhD thesis, Amsterdam University, Netherlands, 1996.


	Formalizing a Named Explicit Substitutions Calculus in Coq

