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Abstract. We attempt a structured view at the ontological query answering prob-
lem by distinguishing between two antagonistic perspectives: The knowledge rep-
resentation perspective considers the ontology as a part of the specified knowl-
edge whereas the database perspective assumes it to be part of the query. These
two perspectives give rise to two computation strategies: (data-driven) forward
chaining and (query-driven) backward chaining, based on which different types
of decidability criteria can be defined. We give an overview of the two views as
well as ensuing conditions for decidability, focusing on existential rules as onto-
logical formalism that has lately gained a lot of renewed interest from both the
KR and DB communities.

1 Introduction

Intelligent methods for search and management of large amounts of knowledge require
a firm theoretical basis blending paradigms and approaches from databases and knowl-
edge representation. It has been widely acknowledged that the task of retrieving infor-
mation from a body of knowledge via querying can greatly benefit from a mediating
logical layer between the factual data and the query. The ontological query answering
framework, phrased in terms of formal logic, is to check the entailment D |=Σ Q, where
D, called the database, is a set of ground facts, Σ, called the ontology, is a set of sen-
tences of some logic, and Q, the query, is a logical sentence. The logical formalisms
used to express Σ and Q may differ, they are referred to as ontology language and query
language, respectively. In words, the task is to find out if some statement Q follows
from D given the background knowledge Σ. One can distinguish between two perspec-
tives differing in whether Σ is considered as part of the query or belonging to the data.
These two viewpoints are sketched in Fig. 1.
The Knowledge Representation View. This view is characterized by the idea that
D provides only incomplete information about the state of affairs and that Σ serves
the purpose of enriching this information with logical consequences of D ∪ Σ, before
querying it via Q. The combination of D and Σ is then often referred to as knowledge
base and is viewed as integrated and condensed description of a domain of interest. A
prominent example for this view are description logics (DLs [2]) where D is referred
to as ABox whereas Σ is called TBox.1 Until not long ago, the query languages used in
DL research were restricted to {false} ((un)satisfiability checks) or ground facts – until

1 Some advanced description logics separate Σ into TBox and RBox, depending on the type of
logical sentences.
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Fig. 1. The two views on ontological query answering.

today inferencing problems of such restricted type are denoted DL standard reasoning
tasks; only over the last two decades, attention has shifted toward settings where Q can
be a conjunctive query.

The Database View. This perspective conceives Σ as part of the query, enhancing the
query language’s expressivity. In the plain version of this setting, Σ is supposed to be
conservative over D: there is a separation into predicates occurring in D (also called
extensional database predicates, short EDBs) and those only occurring in Σ (referred
to as intensional database predicates, short IDBs), where the latter are thought to not
carry meaning independent of the actual query, rather they are auxiliary predicates,
used to store intermediate results toward the computation of the query. In particular, Σ
should not allow for inferring new facts over EDB predicates from D. In this scenario,
the inferencing task can be rewritten into D |= ∀P.(

∧
Σ → Q), where P is a sequence of

all IDB predicates in Σ viewed as second-order variables. The most widespread example
of this view are Datalog queries.

The two perspectives give rise to two fundamentally different approaches for solving
the query answering problem. The KR view calls for a transformation of the knowledge
base (D, Σ) into a more explicit representation, whereas the DB view suggests the same
for the ontology-mediated query (Σ,Q).

In the following, we will see how these two antagonistic generic strategies can be
instantiated. As a key showcase, we will use existential rules, which will be introduced
next.

2 Existential Rules

This section introduces the framework of existential rules which are also known under
many other names, including tuple-generating dependencies (TGDs), Datalog±, and
∀∃-rules.

Definition 1. An existential rule (or simply rule in the context of this paper) is a first-
order formula of the form

∀x.
(
B1 ∧ . . . ∧ Bk → ∃y.H1 ∧ . . . ∧ Hl

)
,



where B1, . . . , Bk,H1, . . . ,Hl (with k ≥ 0 and l ≥ 1) are atoms all of whose variables
are in the scope of some quantifier, and where no variable occurs more than once in
x, y. A Datalog rule is a rule with no existential quantifiers. A rule with k = 0 is called
a fact (a conclusion that is unconditionally true), a set of facts is also referred to as a
database.

The premise of a rule is called the body while the conclusion is called the head.

The rule language hereby introduced is a syntactic fragment of first-order predicate
logic (FOL), and we consider it under the according semantics.

Definition 2. Let Σ be a set of rules. A Boolean conjunctive query (BCQ) is a formula
∃v.Q where Q is a conjunction of atoms and v contains all variables in Q. A BCQ ∃v.Q
is entailed by Σ if it is entailed under standard FOL semantics.

Checking BCQ entailment for unrestricted existential rules is undecidable [14,8]
even with very strong restrictions on the vocabulary or the number of rules [4]. There-
fore, a large body of work has been devoted to the identification of restricted rule lan-
guages which retain decidability and still allow for sufficient expressiveness.

Still, the existential rules have nice model-theoretic properties which often allow
for more efficient reasoning compared to first-order logic in general: the existence of
canonical models. For every database D and set of existential rules Σ there exists a
universal model I, i.e., I satisfies I |= D, I |= Σ, and for each model J of D and Σ
there exists a homomorphism from J to I. Note that there may be several universal
models which are not isomorphic to each other, but there is always a “smallest” one
(more formal: one for which identity is the only endomorphism), which is unique up to
isomorphism and normally called the core.

Universal models are particularly useful when considering entailment of logical
formulae whose validity is preserved under homomorphisms, that is, formulae ϕ for
which I |= ϕ implies J |= ϕ if a homomorphism from I to J exists. For first-order
logic, the Łos-Tarski-Lyndon Theorem states that every such formula can be expressed
by a positive existential sentence, and consequently by a union of BCQs.

In short: for existential rules and (unions of) Boolean conjunctive queries, query
answering (an entailment problem) boils down to model checking in a universal model.
Thus, computing some representation of a universal model is a central approach for
reasoning with existential rules.

3 KB View – Database Rewriting

Referring back to the described views on the query answering problem, we saw that
the “KR view” conceives the ontology as part of the (incomplete) data(base), meant to
enrich the latter with further information. This view suggests an inferencing approach
which iteratively computes the (possible) factual consequences of the ontology, thus
making the knowledge base more explicit and the database less incomplete. Another
way to illustrate such a strategy is to view D as a partial model, which may violate
some of Σ and is consequently “repaired” by adding new information. This may not only



require adding new facts about known domain elements but it might also necessitate to
add new domain elements whose existence can be inferred.

A very general example for such a “model explication” approach is the semantic
tableau method in FOL [9,33], which has also been used in many other logics, most
notably DLs [3,21]. It is important to note that the way in which the model is “repaired”
is non-deterministic in the general case and may in fact lead to different models.

Luckily, the situation is better for existential rules, for which the repair strategy is
known as the chase, introduced by Maier et al. [27] and extended to query containment
by Johnson et al. [23]. Intuitively the chase procedure starts with a given set of factual
data (ground facts) and “applies” rules in a production rule, forward-chaining style
by introducing new domain elements whenever required by an existentially quantified
variable in a rule head. In this setting, the model repairs are deterministic up to renaming
and lead toward a canonic model; the only non-determinism left is which instance of
which rule to pick for the next “repair step” and how exactly applicability of rules is
defined; depending on the particular strategy, different types of the chase have been
described (such as oblivious vs. non-oblivious chase, Skolem chase, core chase).

For arbitrary existential rules, termination of the chase cannot be guaranteed, and
an infinite set of new domain elements and facts may be created. In general, the chase
can thus only serve as semi-decision procedure for query entailment.

It is therefore natural to ask for conditions, under which the chase (or some modifi-
cation of it) can be used as a decision procedure. In fact, many of the decidable existen-
tial rule fragments come about by establishing properties about the chase they create.
Thereby, one is normally interested in properties which can be established indepen-
dently from the underlying database.

3.1 Chase Finiteness through Acyclicity

Finiteness of the (core) chase (for every possibly database D) is a straightforward cri-
terion for ensuring decidability, and rule sets with this property are also called finite
extension sets [4]. Moreover, finiteness of the core chase occurs exactly if a finite uni-
versal model exists. This criterion is undecidable in general (whence it is referred to as
an abstract criterion), but several sufficient conditions on rule sets guaranteeing chase-
finiteness have been identified. Pure Datalog (also known as full implicational depen-
dencies [14] or total TGDs [8]) is an immediate example, as no new domain elements
are created at all and for a finite set of domain individuals only finitely many facts can
be created.

A group of concrete criteria (that is, criteria which can be syntactically checked) for
chase finiteness aims at analyzing the ways how the execution of some rule may trigger
executability of other rules. If there is the possibility that, due to cyclic such triggering
relationships, more and more domain elements might have to be added when computing
the chase, non-termination may arise. The group of criteria aiming at excluding such
cyclic dependencies is referred to as acyclicity conditions. One example of this is (weak)
acyclicity [17,18] which was subsequently refined into joint acyclicity [25]. Another
approach, pursuing a similar goal by different means is to require acyclicity of the graph
of rule dependencies [5]. A comprehensive overview of the existing acyclicity notions
is provided by Grau et al. [20].



3.2 Chase Treeishness through Guardedness

A more relaxed condition than finiteness of the chase is that the (possibly infinite) chase
enjoys a variant of the bounded treewidth property, a notion originating from graph
theory but easily transferrable to databases. In words, a (possibly infinite) database D
has treewidth of n, if n is the minimal number such that one can come up with an
auxiliary structure (called the tree decomposition) which is a (possibly infinite) tree
whose nodes (called bags) are sets containing at most n + 1 domain elements from D
such that (1) whenever D contains some atom p(d), there must be a bag containing all
elements from d and (2) for every domain element d from D, the substructure induced
by all bags containing d is a tree. Intuitively, the treewidth is a measure of the “tree-
ishness” of the database: the lower the treewidth, the more tree-like the database. In
particular, tree-shaped databases have treewidth 1.

Now, a rule set is called a bounded-treewidth set [4] if there is such a treewidth
bound n for its core chase on any database D (where n may depend on D). Decidability
of BCQ entailment for bounded-treewidth sets follows from known decidability results
for first-order logic theories with the bounded treewidth model property [15]. Again, it
is undecidable if a given rule set has this property, but it is possible to come up with
sufficient criteria which can be checked easily. Of course, as every finite-extension set is
a bounded-treewidth set, all acyclicity conditions would be sufficient criteria. But there
is another type of criteria, which covers cases where the chase turns out to be infinite.
These criteria are referred to as guardedness conditions.

Guardedness (first introduced for full first-order logic [1]) requires that all or certain
of the universally quantified variables of a rule appear together in a single “guard” atom
in the rule body. Requiring a guard for every universally quantified variable leads to the
notion of plain guarded rules [10]. Requiring a guard only for variables that also appear
in the head (the so-called frontier of the rule) yields frontier-guarded rules [4,6]. Both
notions can be generalized by not requiring guards for variables that cannot possibly
represent existentially introduced elements. This idea has been used to arrive at weakly
guarded rules [10] and weakly frontier-guarded rules [4,6].

It turns out that all the above notions of guardedness have a nice computational
property: in the course of constructing the chase, the tree-decomposition can be built
up simultaneously in a greedy way. It turns out that if a rule set has this property (in
which case it is called a greedy bounded-treewidth set), BCQ answering can be imple-
mented by a generic worst-case-optimal algorithm that works on the level of the tree-
decomposition and computes a finite representation of the full (infinite) chase. This is
achieved by detecting repetitions, such that the full tree decomposition can be repre-
sented by a finite part of it plus some information how to unfold it into the full infinite
structure [34].

3.3 Combining Acyclicity and Guardedness

The principles of acyclicity and guardedness employ different strategies to ensure the
desired chase properties. Acyclicity avoids indefinite repetitions of creation of new do-
main elements whereas guardedness allows to create new atoms involving known do-
main elements only if these elements already occur together in an atom, thereby pre-
venting that formerly unconnected individuals are arbitrarily linked together by newly



created atoms. The different variants of guardedness presented above already indicate
that the plain guardedness criterion can be relaxed in several ways, since not all vari-
ables in a rule are equally “dangerous”: only those variables that have the potential of
triggering the creation of new domain individuals need to be guarded. In fact, this crite-
rion can be further relaxed, drawing from acyclicity ideas: variables are only dangerous
if they can trigger the creation of infinitely many new domain individuals through cyclic
execution (in which case they are called glut variables), whereas variables bringing
about only finitely many new elements can still be considered well-behaved. It turns
out that it suffices to guard only the glut variables to obtain a bounded-treewidth set.
Glut-guarded and glut-frontier-guarded rules thus defined [25] subsume all known no-
tions of bounded-treewidth sets and are among the most expressive existential rules
formalisms, at the cost of high computational complexity of BCQ answering.

4 DB View – Query Rewriting

When taking the perspective of treating the ontology as part of the query, a straightfor-
ward strategy is to try and transform this ontology-mediated query into a more explicit
representation (using a simpler query language). There is a wide variety of possible
target query languages for such a transformation. Figure 2 depicts some of the most
popular ones, together with two new ones that were recently introduced as favorable
trade-off between expressivity and computational intricacy [30].

A rather basic example for a query-rewriting approach is SLD resolution used in
logic programming, where a query is rewritten in all possible ways by factoring in the
rules of the logic program in a backward-chaining way. In the case of existential rules,
a similar strategy can be applied, with the difference that, unlike in SLD resolution, it
cannot be performed query atom by query atom. Rather, so-called pieces (groups of
atoms which are connected via variables) have to be rewritten together [5].

4.1 Rewriting into (Unions of) Conjunctive Queries

This piece-based rewriting technique produces in every step a union of Boolean con-
junctive queries, which are subsumed by the original ontology-mediated query (that is,
whenever one BCQ of the union has a match in a database, the original query matches
as well). Moreover, if this step-wise computation stabilizes, it also subsumes the origi-
nal query and we have arrived at a perfect rewriting of the original query into a union of
BCQs. Thus, dually to the finite chase condition, one can define finite unification sets
as rule sets Σ where this rewriting procedure applied to (Σ,Q) terminates for arbitrary
BCQs Q [4]. For such rule sets we also obtain a sub-polynomial AC0 data complexity
for BCQ entailment checking. Again, recognizing finite unification sets is undecidable,
and various decidable sublanguages are known. Examples include atomic-hypothesis
rules and domain restricted rules [4], linear Datalog± [11], sticky sets of TGDs, and
sticky-join sets of TGDs [12,13].
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Fig. 2. Overview of complexities and relations of monadically defined queries (MODEQS) and
nested MODEQS (NEMODEQS) to other query formalisms; information indicated for conjunc-
tive queries (CQ) and conjunctive 2-way regular path queries (C2RPQ) also hold when allowing
unions (UCQ and UC2RPQ); all other formalisms are closed under unions.

4.2 Rewriting into Datalog

Unfortunately, rewriting into queries expressible in first-order logic is not always possi-
ble. In fact, most of the known existential rule fragments have a data complexity beyond
AC0, which proves that they cannot be first-order rewritable.

Since considerably more of the known existential rule fragments have PTime data
complexity, and Datalog is a well-established querying formalism supported by highly
optimized tools, several rewritings into Datalog have been proposed [6,7,19]. Moreover,
Datalog-rewritings have been proposed for Horn Description Logics of varying expres-
sivity [26,24,28]. For non-Horn Description Logics, whose data complexity is typically
coNP-hard, rewriting into Datalog is not possible, assuming P,NP. Instead, rewritings
into disjunctive Datalog have been developed [22,31].

The fact that most known formalisms with PTime data complexity allow for a rewrit-
ing into Datalog may give rise to the hope that any existential rule fragment with PTime
data complexity might be Datalog rewritable. Such a general finding would also res-
onate well with the fact that the result is easy to prove for databases with a little bit of
extra information: a linear order on the elements. While this would have been a very
desirable result, it turns out not to be the case. The following was shown via a pumping
argument for Datalog derivations:



Proposition 1 ([16]). Let Q be the Boolean query matching any database D with two
distinguished elements s and t and one binary predicate, which represents a directed
graph that either has a cycle or is an acyclic graph having a path from s to t of length
2(2m2

) for some natural number m. Then, Q is expressible in first-order logic with a least
fixed point operator (and hence computable in PTime), but cannot be expressed as a
Datalog query.

Our negative result now follows from the existence of an existential rule query that
expresses Q using an appropriate Turing machine simulation.

4.3 Rewriting into Well-behaved Datalog fragments

While rewriting into Datalog queries is applicable to many logical fragments, Datalog
queries are much more difficult to handle than (unions of) conjunctive queries when
it comes to certain tasks which are important for database management. In particular,
checking query containment is known to be undecidable for Datalog queries [32]. It is
therefore desirable to not use full Datalog as the target query language of rewriting but
rather to restrict to fragments of it who are known to be computationally more “well-
behaved”. We recently identified such query languages which are both expressible in
Datalog and in monadic second-order logic while subsuming expressive query for-
malisms such as monadic Datalog queries and conjunctive 2-way regular path queries
(cf. Fig. 2) and showed that they can be used for query rewriting in the presence of rule
sets featuring recursive joins, which have turned out to be difficult to handle by other
approaches [30].

5 The Mixed View

In some cases the ontology Σ turns out to be structured in a way that Σ as a whole is not
suited for any of the two presented approaches, but it can be partitioned into two parts
Σ1 and Σ2 such that the knowledge base (D, Σ2) allows for answering queries of some
type into which (Σ1,Q) can be rewritten. This situation is depicted in Fig. 3.

Typically, this requires that Σ1 is “on top of” Σ2 applying some notion of strati-
fication. For example, this stratification can be characterized in terms of conservative
extensions or – in case Σ1 and Σ2 are sets of existential rules – via rule dependencies [5].
This approach allows to establish decidability for a variety of different settings, such as

– Q being a conjunctive query, Σ1 being a finite unification set, Σ2 being a bounded-
treewidth set [5]

– Q being a conjunctive query, Σ1 being rewritable into homomorphism-preserved
monadic second-order queries and Σ2 being a bounded-treewidth set [30],

– Q being a conjunctive 2-way regular path query (a nontrivial generalization of con-
junctive queries) and Σ being a Horn-SROIQ knowledge base2 [29]. As it turns
out, every such Σ can be represented as Σ1 ∪ Σ2, where Σ1 (the so called RBox)

2 SROIQ is the very expressive Description Logic underlying the OWL 2 DL ontology lan-
guage and Horn-SROIQ is its Horn fragment.



”Neutral” Stratified Mixed View
D |=Σ Q D |=Σ1∪Σ2 Q D ∪ Σ2 |= (

∧
Σ1)→ Q

query Q

stratifiable
ontology Σ = Σ1 ∪ Σ2

data D



query Q

ontology Σ1

ontology Σ2

data D



ontology-mediated
query (Σ1,Q)

knowledge base
(D, Σ2)

Fig. 3. The mixed view on ontological query answering.

and Q can be rewritten into another conjunctive 2-way regular path query Q’ to be
executed against the knowledge base (D, Σ2) (where D and Σ2 are referred to as
ABox and TBox, respectively, in description logic terms).

6 Conclusion

We have reviewed the state of the art in ontological query answering, while focusing on
the particular case of existential rules. We argued that the currently available approaches
can be roughly separated into two large groups (and combinations thereof) one rewriting
the data, the other rewriting the query. While this already helps getting a clearer picture
of the field, the ultimate goal would be a joint characterization, capturing these two
classes by means of a common criterion. Hopefully, this would allow for defining more
expressive, decidable querying frameworks.
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