
Planning and Change in Graph Structured Data under
Description Logics Constraints ∗

Shqiponja Ahmetaj1, Diego Calvanese2, Magdalena Ortiz1, and Mantas Šimkus1

1 Institute of Information Systems, Vienna University of Technology, Austria
2 KRDB Research Centre for Knowledge and Data, Free University of Bozen-Bolzano, Italy

1 Introduction

The complex structure and increasing size of information that has to be managed in
today’s applications calls for flexible mechanisms for storing such information, making
it easily and efficiently accessible, and facilitating its change and evolution over time.
The paradigm of graph structured data (GSD) [8] has gained popularity recently as
an alternative to traditional relational DBs that provides more flexibility and thus can
overcome the limitations of an a priori imposed rigid structure on the data. Indeed,
differently from relational data, GSD do not require a schema to be fixed a priori.
This flexibility makes them well suited for many emerging application areas such
as managing Web data, information integration, persistent storage in object-oriented
software development, or management of scientific data. Concrete examples of models
for GSD are RDFS [4], object-oriented data models, and XML.

Here, we build on recent work that advocates the use of Description Logics (DLs)
for managing change in GSD [7] that happens as the result of (agents or users) executing
actions. We consider GSD, understood in a broad sense, as information represented by
means of a node and edge labeled graph, in which the labels convey semantic information.
We identify GSD with the finite structures over which DLs are interpreted, and use DL
knowledge bases as descriptions of constraints and properties of the data. We express
actions using a specially tailored action language in which actions are finite sequences
of (possibly conditional) insertions and deletions performed on the extensions of labels.
In this setting, the static verification problem, which consists on deciding whether the
execution of a given action will preserve some given integrity constraints on any possible
GSD, has been studied in [7]. Here, we discuss further problems that can be considered
as variants of planning, such as deciding if there is a sequence of actions that leads
a given structure into a state where some property (either desired or not) holds, or
deciding whether a given sequence of actions leads every structure into a state where
some property necessarily holds. We develop algorithms for variations of these problems,
and characterize their computational complexity. We consider both the case of known
and arbitrary initial state. We show that existence of a plan (of unbounded length) is
undecidable even for lightweight DLs and a simple forms of actions. Motivated by this
we study planning for plans of bounded length, and provide tight complexity bounds for
the considered variants of the problem. An extended version of this work, with proofs of
the technical results and more detailed discussion can be found in [1].
∗ This research has been partially supported by FWF projects T515 and P25518, by WWTF

project ICT12-015, by EU IP Project Optique FP7-318338, and by the Wolfgang Pauli Institute.

2 Description Logics for Graph Structured Data

We now introduce the DL ALCHOIQbr, which we use to describe constraints on GSD.
In DLs, the domain of interest is modeled using individuals (denoting objects), concepts
(denoting sets of objects), and roles (denoting binary relations between objects). We
assume countably infinite sets NR of role names, NC of concept names, NI of individual
names, and NV of variables. Roles are defined inductively: (i) if p ∈ NR, then p and p−

(the inverse of p) are roles; (ii) if {t, t′} ⊆ NI∪NV, then {(t1, t2)} is a role; (iii) if r1, r2
are roles, then r1 ∪ r2 and r1 \ r2 are roles; and (iv) if r is a role and C is a concept, then
r|C is a role. Concepts are defined inductively as well: (i) each A ∈ NC is a concept;
(ii) if t ∈ NI ∪ NV, then {t} is a concept (called nominal); (iii) if C1, C2 are concepts,
then C1 u C2, C1 t C2, and ¬C1 are concepts; (iv) if r is a role, C is a concept, and n
is a non-negative integer, then ∃r.C, ∀r.C, 6n r.C, and >n r.C are concepts.

A concept (resp., role) inclusion has the form α1 v α2, where α1, α2 are concepts
(resp., roles). A concept (resp., role) assertion has the form t : C (resp., (t, t′) : r),
where {t, t′} ⊆ NI ∪NV, C is a concept, and r is a role. Concepts, roles, inclusions, and
assertions without variables are called ordinary. We define (ALCHOIQbr-)formulae
inductively: inclusion and assertions are formulas, and if K1,K2 are formulas, so are
K1 ∧ K2, K1 ∨ K2, and ¬K1. A knowledge base (KB) is a formula with no variables.

Notice thatALCHOIQbr extends the expressive DLALCHOIQ [3] with Boolean
combinations of axioms, a constructor for a singleton role, union, difference and restric-
tions of roles, and variables as place-holders for individuals. We consider here also the
lightweight DL DL-Lite [6], which closely matches the expressive power of traditional
conceptual modeling formalisms, such as UML class diagrams and ER schemas.

As usual in DLs, the semantics is given in terms of interpretations. An interpretation
is a pair I = 〈∆I , ·I〉, where ∆I 6= ∅ is the domain, AI ⊆ ∆I for each A ∈ NC,
pI ⊆ ∆I ×∆I for each p ∈ NR, and oI ∈ ∆I for each o ∈ NI. We make the unique
name assumption (UNA), i.e., distinct individuals are interpreted as distinct objects. For
ordinary roles {(o1, o2)}, we let {(o1, o2)}I = {(oI1 , oI2)}, and for ordinary roles r|C ,
we let (r|C)I = {(e1, e2) | (e1, e2) ∈ rI and e2 ∈ CI}. The function ·I is extended to
the remaining ordinary concepts and roles in the usual way [3].

An interpretation I satisfies an ordinary inclusion α1 v α2, denoted I |= α1 v α2,
if αI1 ⊆ αI2 , and an ordinary assertion β = o : C (resp., β = (o1, o2) : r), denoted
I |= β, if oI ∈ CI (resp., (oI1 , o

I
2) ∈ rI). Satisfaction is extended to knowledge

bases as follows: (i) I |= K1 ∧ K2 if I |= K1 and I |= K2; (ii) I |= K1 ∨ K2 if
I |= K1 or I |= K2; (iii) I |= ¬K if I 6|= K. If I |= K, then I is a model of K. The
finite satisfiability problem is to decide given a KB K if there exists a model I of K
with ∆I finite. The finite satisfiability problem for ALCHOIQbr KBs has the same
computational complexity as for the standard ALCHOIQ:

We are interested in the problem of effectively managing GSDs satisfying the con-
straints expressed in a DL KB K. Hence, we must assume that such data are of finite
size, i.e., they correspond naturally to finite interpretations that satisfy the constraints in
K. In other words, we consider configurations of the GSD that are finite models of K.

Many of the reasoning problems we study here will be reduced to finite satisfiability,
which is NEXPTIME-complete for ALCHOIQbr [7]. Contrast this with DL-Lite, for
which (finite) satisfiability is NLOGSPACE-complete [2].

Example 1. The following interpretation I1 represents (part of) the project database of
a research institute. There are two active projects and three employees working in them.

PrjI1 = {p1, p2}, ActivePrjI1 = {p1, p2}, FinishedPrjI1 = {},
EmplI1 = {e1, e3, e7}, worksForI1 = {(e1, p1), (e3, p1), (e7, p2)}.

We assume constants pi with pi
I = pi for projects, and analogously constants ei for

employees. The KB K1 expresses constraints on this project database: all projects are
active or finished, the domain of worksFor are the employees, and its range the projects.

(Prjv ActivePrj t FinishedPrj) ∧ (∃worksFor.>v Empl) ∧ (∃worksFor−.>v Prj)

3 Updating Graph Structured Data

For manipulating GSD, we use the following language. The basic actions allow one to
insert or delete individuals from extensions of concepts, and pairs of individuals from
extensions of roles. The candidates for additions and deletions can be chosen by means
of complex concepts and roles. The language also allows for composition of actions and
conditional action execution.

Definition 1 (Action language). Basic actions β and (complex) actions α are built
according to the following grammar, where A is a concept name, C is an arbitrary
concept, p is a role name, r is an arbitrary role, and K is an arbitrary ALCHOIQbr–
formula. The special symbol ε denotes the empty action:

β −→ (A⊕ C) | (A	 C) | (p⊕ r) | (p	 r) α −→ β · α | K ?α;α | ε

A (complex) action α is called simple if (i) no (concept or role) inclusions occur in
α, and (ii) all concepts of α are Boolean combinations of concept names, nominals, and
concepts of the form ∃r.>.

A substitution is a function σ from NV to NI. For a formula, an action or an action
sequence Γ , we use σ(Γ) to denote the result of replacing in Γ every occurrence of a
variable x by the individual σ(x). An action α is ground if it has no variables. An action
α′ is called a ground instance of an action α if α′ = σ(α) for some substitution σ.

Intuitively, an application of an action (A ⊕ C) on an interpretation I stands for
the addition of the content of CI to AI . In turn, removing CI from AI can be done
by applying (A 	 C) on I. The two operations can also be performed on extensions
of roles. Composition stands for successive action execution, and a conditional action
K ?α1;α2 says that α1 is executed if the interpretation is a model of K, and α2 is
executed otherwise. We now formally define the semantics of actions.

Definition 2. Assume an interpretation I and let E be a concept or role name. If E is a
concept, let W ⊆ ∆I , and if E is a role, let W ⊆ ∆I ×∆I . Then let I ⊕E W (resp.,
I 	E W) denote the interpretation I ′ such that (i) ∆I

′
= ∆I , (ii) EI

′
= EI ∪W

(resp., EI
′
= EI \W), and (iii) EI

′

1 = EI1 , for all symbols E1 6= E. For a ground
action α, we define a mapping Sα from interpretations to interpretations:

S(A⊕C)·α(I) = Sα(I ⊕A CI) S(p⊕r)·α(I) = Sα(I ⊕p rI)
S(A	C)·α(I) = Sα(I 	A CI) S(p	r)·α(I) = Sα(I 	p rI)

Sε(I) = I SK?α1;α2(I) =

{
Sα1(I), if I |= K,
Sα2(I), if I 6|= K.

Note that we have not defined the semantics of actions with variables. In our approach,
all variables of an action are seen as parameters whose values are given before execution
by a substitution with actual individuals, i.e., by grounding.

The static verification problem amounts to checking, given a KB K and an action α,
that for every finite model I of K and every ground instance α′ of α, Sα′(I) |= K, i.e.,
the execution of α preserves the satisfaction of the constraints expressed by K.

Theorem 1 ([7]). The static verification problem is coNEXPTIME-complete for input
KBs in ALCHOIQbr, and coNP-complete for DL-Lite input KBs and simple actions.

The proof of this theorem relies on a regression technique that incorporates into
a given K the effects of an action α, and reduces reasoning about its effects on any
structure satisfying K to reasoning about a single KB. In particular, static verification is
reduced to finite KB unsatisfiability. This regression technique is also the main tool for
most upper bounds in the next section, but we must omit proofs due to lack of space.

4 Planning

When data evolves, there may be desirable states that we want to ensure, or undesirable
states that we want to avoid. For example, a finished project should never be made active
again. We tackle such issues next, through some planning problems. We use DLs to
describe states of KBs, which may act as goals or preconditions. A plan is a sequence
of actions from a given set, whose execution leads from the current state to a state that
satisfies a given goal. To support unbounded introduction of fresh values in the data, we
allow for the domain to be expanded with a finite set of domain elements.

Definition 3. Let I = 〈∆I , ·I〉 be a finite interpretation, Act a finite set of actions,
and K a KB (the goal KB). A finite sequence P = 〈α1, . . . , αn〉 of ground instances of
actions from Act is called a plan for K from I (of length n), if there exists a finite set ∆
with ∆I ∩∆ = ∅ such that Sα1···αn(I ′) |= K, where I ′ = 〈∆I ∪∆, ·I〉.
Example 2. Recall I1 and K1 from Example 1. The following goal KB requires that p1
is not an active project, and that e1 is an employee. Consider the following actions α1

and α2. Action α1 moves p1 from the active to the finished projects, and removes the
employees working only for p1 from the corresponding tables. Action α2 transfers e1
from project p1 to project p2 (only if the necessary preliminary checks are successful).

Kg = ¬(p1:ActivePrj) ∧ e1:Empl

α1 = ActivePrj	 {p1} · FinishedPrj⊕ {p1} · worksFor 	 worksFor|{p1} ·
Empl	 ¬∃worksFor.Prj

α2 =(p2:Prj ∧ (e1, p1):worksFor) ? worksFor 	 {(e1, p1)} · worksFor ⊕ {(e1, p2)};ε

The sequence 〈α2, α1〉 is a plan for Kg from I1, and the interpretation Sα2·α1
(I1) that

reflects the resulting status of the data looks as follows. Note that Sα2·α1
(I1) |= K1∧Kg .

PrjSα2·α1 (I1) = {p1, p2}, ActivePrjSα2·α1 (I1) = {p2}, FinishedPrjSα2·α1 (I1) = {p1},
EmplSα2·α1 (I1) = {e1, e7}, worksForSα2·α1 (I1) = {(e1, p2), (e7, p2)},

We define the next planning problems:
(P1) Given a set Act of actions, a finite interpretation I, and a goal KB K, does there

exist a plan for K from I?
(P2) Given a set Act of actions and a pair Kpre , K of formulae, does there exist a

substitution σ and a plan for σ(K) from some finite I with I |= σ(Kpre)?
(P1) is the classic plan existence problem, formulated in the setting of GSD. (P2) also
aims at deciding plan existence, but rather than the full actual state of the data, we have as
an input a precondition KB, and we are interested in deciding the existence of a plan from
some of its models. To see the relevance of (P2), consider the complementary problem:
a ‘no’ instance of (P2) means that, from every relevant initial state, (undesired) goals
cannot be reached. For instance, Kpre = Kic ∧ x : FinishedPrj and K = x : ActivePrj
may be used to check whether starting with GSD that satisfies the integrity constraints
and contains some finished project p, it is possible to make p an active project again.

Unfortunately, these problems are undecidable in general.

Theorem 2. (P1) and (P2) are undecidable, already for DL-Lite KBs and simple actions.

To regain decidability, we define ‘bounded’ versions of these problems. (P1) becomes
decidable if the size of ∆ in Definition 3 is bounded. (P2) remains undecidable even
for ∆ = ∅, but it becomes decidable if we place a bound on the length of plans. In the
following we assume numbers are coded in unary.
(P1b) Given a set Act of actions, a finite interpretation I, a goal KB K, and a positive

integer k, does there exist a plan for K from I where |∆| ≤ k?
(P2b) Given a set of actions Act , a pair Kpre ,K of formulae, and a positive integer k,

does there exist a substitution σ and a plan of length at most k for σ(K) from
some finite interpretation I with I |= σ(Kpre)?

The problem (P1b) can be solved in polynomial space for ALCHOIQbr, and a
matching lower bound holds even for settings more restricted than DL-Lite (the goal is
a basic assertion a : C and only simple actions with no complex DL expressions are
allowed). Note that planning in our setting is not harder than deciding plan existence in
standard automated planning formalisms such as propositional STRIPS [5].

Theorem 3. The problem (P1b) is PSPACE-complete.

Now we establish the complexity of (P2b), both in the general setting where Kpre

and K are in ALCHOIQbr, and for the restricted case of DL-Lite.

Theorem 4. The problem (P2b) is NEXPTIME-complete. It is NP-complete if Kpre ,K
are expressed in DL-Lite and all actions in Act are simple.

Now we consider problems that are related to ensuring that plans always achieve
a goal K, given a possibly incomplete description Kpre of the initial data. They are
variants of the so-called conformant planning, which deals with incomplete information.
The first such problem is to ‘certify’ that a candidate plan is always a plan for the goal.

(C) Given a sequence P of actions and formulae Kpre , K, is σ(P) a plan for σ(K) from
every finite interpretation I with I |= σ(Kpre), for every substitution σ?

Finally, we are interested in deciding the existence of a plan that always achieves
the goal, for every possible state satisfying the precondition. Solving this problem
corresponds to the automated synthesis of a program for reaching a certain condition.
(S) Given a set Act of actions and formulae Kpre , K, does there exist a sequence P

of actions from Act such that σ(P) is a plan for σ(K) from every finite I with
I |= σ(Kpre), for every substitution σ?

(Sb) Given a set Act of actions, formulae Kpre ,K, and a positive integer k, does there
exist a sequence P of actions from Act such that σ(P) is a plan for σ(K) of length
at most k, from every finite I with I |= σ(Kpre), for every substitution σ?

Theorem 5. (i) Problem (S) is undecidable, already for DL-Lite KBs and simple actions.
(ii) Problems (C) and (Sb) are coNEXPTIME-complete. (iii) If Kpre ,K are expressed in
DL-Lite and all actions in Act are simple, then (C) is in coNP and (Sb) is in NPNP.

The upper bounds in the third item are tight for an extension of DL-Lite that allows
to use regression for capturing action effects. We omit details due to lack of space.

5 Conclusions

We believe this work provides powerful tools for analyzing the effects of executing
complex actions on graph structured data, possibly in the presence of integrity constraints
expressed in DLs. The considered problems are intractable even for restricted fragments
of DL-Lite and forms of actions. However, these are worst case bounds, and we believe
that practicable algorithms can still be obtained. In our future work we want to verify
this, and identify meaningful restrictions to regain tractability.

References
1. S. Ahmetaj, D. Calvanese, M. Ortiz, and M. Šimkus. Managing change in graph-structured

data using description logics. In Proc. of AAAI, 2014. Long version with proofs available at
http://arxiv.org/abs/1404.4274.

2. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and
relations. JAIR, 36:1–69, 2009.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation and Applications. CUP, 2003.

4. D. Brickley and R. V. Guha. RDF vocabulary description language 1.0: RDF Schema. W3C
Recommendation, W3C, Feb. 2004. http://www.w3.org/TR/rdf-schema/.

5. T. Bylander. The computational complexity of propositional STRIPS planning. AIJ, 69:165–
204, 1994.

6. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. JAR, 39(3):385–429,
2007.

7. D. Calvanese, M. Ortiz, and M. Šimkus. Evolving graph databases under description logic
constraints. In Proc. of DL, volume 1014 of CEUR, ceur-ws.org, pages 120–131, 2013.

8. S. Sakr and E. Pardede, editors. Graph Data Management: Techniques and Applications. IGI
Global, 2011.

http://arxiv.org/abs/1404.4274
http://www.w3.org/TR/rdf-schema/
ceur-ws.org

	Planning and Change in Graph Structured Data under Description Logics Constraints

