Spinning the OWL-S Process Model*
Toward the Verification of the OWL-S Process Models

Anupriya Ankolekar, Massimo Paolucci, and Katia Sycara

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
{anupriya,paolucci,katia}@cs.cmu.edu

Abstract. In this paper, we apply automatic tools to the verification of
interaction protocols of Web services described in OWL-S. Specifically,
we propose a modeling procedure that preserves the control flow and the
data flow of OWL-S Process Models. The result of our work provides a
modeling and verification procedure for OWL-S Process Models.

1 Introduction

Verification of the interaction protocol of Web services is crucial to both the im-
plementation of Web services and to their use and composition. The verification
process can prove important and desirable properties of the control flow of a Web
service. A Web service interaction protocol may be verified by a service provider
to ensure that the advertised protocol is indeed correct, e.g. does not contain
deadlocks. A Web service provider may also want to guarantee additional prop-
erties, e.g. purchased goods are not delivered if a payment is not received. A Web
service client may want to verify an interaction protocol to obtain a guarantee
that the protocol is correct, e.g. it does not contain an infinite loop, and that
it conforms to the client’s requirements. For example, the client may want to
ensure that whenever a payment is received by the service provider, the goods
are delivered to the client.

In this paper, we explore the verification of OWL-S! interaction protocols
using automatic verification tools, such as SPIN [1]. OWL-S is a well-established
language for the description of Web services on the Semantic Web. The OWL-S
Process Model describes the interaction protocol between a Web service and its
clients. Such protocols are inherently non-deterministic and can be arbitrarily
complex, containing multiple concurrent threads that may interact in unexpected
ways. By performing an efficient exploration of the complete set of states that
can be generated during an interaction between a Web service and its clients,
SPIN is able to verify numerous properties of the OWL-S Process Model.

* The research was funded by the Defense Advanced Research Projects Agency as
part of the DARPA Agent Markup Language (DAML) program under Air Force
Research Laboratory contract F30601-00-2-0592 to Carnegie Mellon University.

L' Our work is based on the draft release of OWL-S 1.1 available at
http://www.daml.org/services/owl-s/1.1/.

2 Ankolekar et al.

Previous work on OWL-S verification is scant. Narayanan et al., in [2], pro-
pose a Petri Net-based operational semantics, which models the control flow of
a Process Model exclusively?. On the basis of this mapping, a number of theo-
rems on the computational complexity of traditional verification problems such
as reachability of states and discovery of deadlocks are proven. The results show
that the complexity of the reachability problem is PSPACE-complete. This result
is not surprising given the complexity of the OWL-S Process Modeling language.

We extend on Narayanan’s seminal work in three directions. First we provide
a model of data flow in addition to control flow. As a result the verification
procedure can detect harmful interactions between data and control flow that
would be undetected otherwise. An example of these interactions in given is
section 4.3. Second, as part of our modeling methodology, we define a set of
abstractions that remove unverifiable details. The use of abstractions results
in a simpler model that nevertheless preserve all the essential details that are
required for verification. These abstractions were implicitly used in Narayanan’s
work, but not explicitly specified. Third, we provide initial results on the actual
verification of OWL-S Process Models using existing verification tools such as
SPIN. The result of our work is a complete procedure for the modeling and
verification of OWL-S Process Models.

The rest of the paper is organized as follows. In section 2, we will provide a
quick overview of OWL-S 1.1 through a running example based on the Amazon
Web service. In section 3, we will provide an introduction to verification with
Spin. In section 4 we will provide a mapping of the example from OWL-S 1.1 to
the PROMELA language which is used to construct models that the SPIN system
can analyze. In section 5, we will provide examples of verification using SPIN.
Finally, in section 6 we will discuss our results and future work.

2 OWL-S Process Model

The OWL-S Process Model is organized as a workflow of processes. Each pro-
cess is described by three components: inputs, preconditions and results. Results
specify what outputs and effects are produced by the process under a given con-
dition. For example, a process may have different results depending on whether
the client is a premium user, or an ordinary user. OWL-S processes describe the
information transformation produced by the Web service; while preconditions
and effects describe the state transition produced by the execution of a Web
service.

Processes in the workflow are related to each other by data flow and con-
trol flow. Control flow allows the specification of the temporal relation between
processes. OWL-S supports a wide range of control flow mechanisms includ-
ing sequence to describe processes that follow each other, spawning of concur-
rent processes, synchronization points between concurrent processes, conditional
statements, non-deterministic selections of processes.

2 Narayanan’s semantics was defined for an earlier version of OWL-S (namely DAML-S
0.5), which did not model data-flow.

Spinning OWL-S 3

Sequence
Shop
Choice Ir
Browse BookFound
of —----m—-m-mmmTTTTIo + Prodict
i else
! then |
Atomic Atomic
ArtistSearch - - Fail
Atomic \\ | Atomic
AuthorSearch | /| AddToShoppingCart
Book - N
Product

Fig. 1. The Process Model of Amazon.com’s Web service

OWL-S distinguishes between atomic and composite processes. Atomic pro-
cesses are indivisible processes that result in a message exchange between the
client and the server. Composite processes are used to describe the control flow
relation between processes. Fig. 1 shows a fragment of the Process Model adopted
by Amazon.com’s Web service. The nodes of the tree correspond to composite
processes that represent different control constructs such as Choice for non-
deterministic choices, Sequence for deterministic sequences of processes, and
If conditionals. Atomic processes are represented as the leaves of the tree. For
example, Author Search requires the client to provide information such as the
name of an author. It then reports books by that author that have been found.

Data flow allows the specification of the relation between inputs and outputs
of processes. An example of data flow is shown using dashed lines in Fig. 1.
An output of the process AuthorSearch is a book which is then passed to the
parent process, Browse and further up until it reaches the input of the process
AddToShoppingCart. The scope of the data flow is limited to within a composite
process. Therefore processes in a composite process can exchange data among
themselves or with the parent process, but with no other processes. As the
figure shows, data exchanges between two arbitrary processes, as for example
AuthorSearch and AddToShoppingCart result from the composition of data flow
links in the whole Process Model.

3 Model Checking with SPIN

OWL-S Process Models are typically verified using human inspection, simulation
and testing. However, due to their complex and concurrent nature, OWL-S Pro-
cess Models are not very amenable to such verification techniques. Instead, we

4 Ankolekar et al.

use model checking, a method that has been fairly successful in the verification
of distributed systems, such as Web services (e.g. BPEL [4]). Model checking
exhaustively checks all possible executions of a system to verify that certain
properties hold. It can thus formally prove the correctness of a system.

To construct such proofs, model checking requires three decisions to be made.
The first one is to decide what claims to prove: a claim states invariant properties
of the code, e.g. that a variable will always be instantiated or that it will always
reach a given value. Typically, two kinds of properties are proven about a given
protocol: safety properties, which guarantee that specified undesired states, such
as deadlocking states, are never reached; and liveness properties, which specify
that desired states are eventually reached.

The second decision relates to what to abstract, in other words which aspects
of the protocol are relevant to the claims to be verified, and which ones can
be abstracted away as irrelevant. Irrelevant aspects of the protocol may include
those that can be verified better in other ways, for instance type safety can be
ensured using a type checker. Moreover, eliminating irrelevant or unverifiable
aspects of the protocol reduces the complexity of the model, thereby increasing
the likelihood that an exhaustive analysis of all possible execution traces can be
done successfully. A simplified model of the implementation, one that captures
the essentials of the design, but avoids the full complexity of the implementation,
can often be verified easily, even when the full implementation cannot.

The third decision to be made is how to model the protocol, in such a way
that the model preserves the behaviors to be checked. Thus, generating a veri-
fication model for an interaction protocol entails the translation of the protocol
into a formal specification, which encapsulates the modeling decisions, i.e. imple-
ments the decided-upon abstractions and specifies the claims to be verified. This
specification is input to a model checking tool, such as SPIN, to automatically
verify that the protocol satisfies the claims. On the other hand, if the protocol
contains an error, a model checker can provide a counter-example, identifying
the conditions under which the error occurs.

In this work, we use the SPIN model checker, a generic verification system
that supports the design and verification of a system of asynchronous processes.
SPIN accepts design specifications in PROMELA (a Process Meta Language) and
correctness claims in LTL (Linear Temporal Logic). In the rest of this section
we provide an overview of PROMELA, an insight in LTL and the type of claims
can be formulated in PROMELA. The presentation will necessarily be shallow,
concentrating only on the details that are relevant for our work. The readers
are referred to Chapters 3 and 6 of [1] for a more comprehensive discussion of
PROMELA and LTL.

3.1 PROMELA

PROMELA is a high-level specification language which has been designed for
the representation of software models for SPIN. A model in PROMELA consists
of a set of asynchronous processes. Processes in PROMELA are introduced by
the proctype keyword, as in proctype A() and are instantiated with the run

Spinning OWL-S 5

operator. Instantiated processes are inherently concurrent. Thus, the sequence
run AQ); run B() spawns off two concurrent threads: one computing A(), the
other BQ). If processes are to be executed in a particular order, e.g. in a sequence,
they must be explicitly synchronized.

To define processes, PROMELA provides a set of basic control constructs that
include selection statements that can be used to model conditionals as well as
non-deterministic choices depending on whether a boolean guard condition is
provided. In addition, PROMELA provides iteration statements that can be used
to model loops; other control constructs also provided are goto statements (with
process-local scope) and break statements.

Data flow is supported by two different constructs: variables and message
channels. Variables can be used to model data assignment, while channels are
used to model data flow between processes. Both variables and channels are
either globally scoped or locally scoped within a single process. Furthermore,
PROMELA supports variable and channel typing. Channels can have a predeter-
mined storage capacity. When the channel capacity has been reached, additional
messages sent to the channel will be dropped. Receive statements that retrieve
messages from channels block until a message is present in the channel. There-
fore, in addition to data flow, channels can also be used to implement multi-
process synchronization. As we shall see below, this synchronization mechanism
will be exploited to implement OWL-S sequences®.

All the traditional programming language types such as int, char, boolean,
arrays and records are provided. In addition, PROMELA supports a form of enu-
merated type called mtype, which is typically used to describe message types.
PROMELA does not support an OOP-style (Object-Oriented Programming type
hierarchy. This limitation affects our modeling of OWL-S Process Models, as
explained below.

3.2 Expressing claims in PROMELA

While SPIN always perform the verification of basic properties of the model, such
as the deadlock detection, it also support the specification of model-specific cor-
rectness claims. These claims specify what should be true in a given state of
execution of the model, but also the can be used to specify what kind of invari-
ance and state reachability properties should the model have. Claims on states
are expressed through the assert(p) statement that specifies that a property
p should be true in a given state. As discussed below in section 4.2, we will use
assert statements for the verification of data-flow by requiring that inputs that
are targets of data-flow links should always be instantiated.

3 An alternative to channels is the use of variables, as follows: a process would set
a particular synchronization variable just before it terminates and other processes
would wait for the variable to become true before executing. Although this mecha-
nism is attractively simple, it breaks down in certain cases. Since PROMELA admits
only two kinds of scope, global or local to a single process, any synchronization vari-
able must necessarily be globally defined. However, global variables invariably break
down when multiple instances of processes can be spawned dynamically.

6 Ankolekar et al.

Claims on invariance and reachability of states are expressed in Linear-time
Temporal Logic (LTL), a formalism for describing sequences of transitions be-
tween the states of a reactive system [3]. LTL allows the definition of logic
formulae, such as Op that specify that p will eventually be true (in a future
state); invariance claims such as Op to specify that p will always be true; and
error conditions with never (p) specifying that p will never hold. These claims
can be used to verify whether a given process is ever executed, or the relation
between processes.

Since these claims are on the states or their reachability, the control flow
of the distributed system is emphasized, rather than the data computations
performed by the system. In fact, PROMELA is designed to discourage the spec-
ification of computations that are internal to a process.

4 Mapping OWL-S Process Models to PROMELA

The mapping of OWL-S to PROMELA hinges on the decision of which aspects
of the OWL-S Process Model are to (and can) be expressed in PROMELA, and
on how to perform such a mapping. In the rest of this section we discuss the
abstractions that we propose, and the mapping rules from the OWL-S Process
Model to PROMELA statements.

4.1 Abstractions

Preconditions and Effects There is a profound difference between the execu-
tion environment of the OWL-S Process Model on one side and that of more tra-
ditional programming languages for which Spin has been constructed. Although
the mapping of OWL-S Process Models to PROMELA % can map processes, in-
puts and outputs (to variables), and control flow constructs, there is no clear
mapping for preconditions and effects. We believe this is because, unlike the case
in typical programming languages, the execution of an OWL-S Process Model
depends crucially on the knowledge of the agent executing it.

To appreciate the distinction being made, consider a write operation on a
file. A precondition for this operation is the existence of the file, and the effect
is that the argument of the write operation will be written to the file. Neither
the precondition nor the effect are explicitly stated. Rather, most programming
languages make an implicit assumption that the precondition is true, and if it
is not, an exception will be thrown.

In OWL-S, preconditions are explicitly stated. The agent executing a process,
evaluates the preconditions and checks their truth in its knowledge base. If the
preconditions are true, the process can be safely executed. Otherwise, the agent
may try to make those preconditions true, or it may defer executing the process
or it may simply ignore them, hoping for the best. This ability, to make decisions
based on preconditions and exploit the effects of other processes, has no coun-
terpart in most programming languages. Specifically, preconditions and effects

4 or any other programming language

Spinning OWL-S 7

cannot be modeled in PROMELA . As a consequence, we abstract preconditions
and effects away in the PROMELA model constructed.

Conditions Besides preconditions and effects, conditions occur in Result state-
ments and if statements, but these are treated somewhat differently. OWL-S
Result conditions reflect the state of the server. For example, while interacting
with a Web service like Amazon’s, the client may discover that the book being
sought is not available. There is nothing the client can do about it, nor could
the condition have been evaluated ahead of time. From the point of view of soft-
ware verification, such a condition could be considered a random variable which
may equally be true or false. We therefore model Results as a non-deterministic
choice between the conditional outputs and effects.

Similarly, if conditions in OWL-S depend on the knowledge of the agent at
execution time, in particular on the effects of previous steps and their interaction
with the agent’s knowledge. Such conditions cannot be represented in SPIN .
Furthermore, the knowledge state of the agent cannot be known ahead of time
nor can it be inferred from the execution trace of previous statements. Therefore,
as in the case of Results, we abstract if statements as a non-deterministic choice
between the then and else statements.

Data Flow Our final modeling abstraction relates to the content of the in-
formation exchanged in data flow links, and more generally, to the information
represented by inputs and outputs. For a given data flow link that map outputs
to inputs, one would ideally like a guarantee that the class of the input always
subsumes the class of the output. Verifying this using SPIN would require the
subsumption relations in the ontology of the client to be represented within
the PROMELA model. In addition, SPIN would need to be able to compute a
subsumption hierarchy of classes. Since this would immediately overwhelm the
verifier, we abstract from the actual values of inputs and outputs. Instead, the
types of inputs and outputs are modeled simply as integers and data flow links
as channels. Inputs that are not bound by a data flow link are expected to be ini-
tialized with some suitable value, usually 0. The evaluation of type subsumption
claims are deferred to a pre-processor that can methodically verify the integrity
of all data flow links.

The various abstractions detailed above do not hinder the verification of
other, more complex, claims that involve the interaction of data and control
flow, as explained in section 4.3 below.

4.2 Modeling OWL-S Processes

In this section, we describe the mapping of OWL-S Process Models to PROMELA .
Using the organization of processes in OWL-S, we first present the mapping of
generic composite processes, highlighting the basic data flow and control mech-
anisms. We then describe the mapping rules for the different types of control

8 Ankolekar et al.

(1) proctype Shop () {

(2) chan syncChan = [1] of { int,mtype };
(3) chan dataChan = [1] of { int };

(4) pid x1, x2;

(5) x1 = run Browse(syncChan, dataChan);

(6) if

) :: syncChan??eval(xl),done ->

(8) x2 = run ProductFound(syncChan, dataChan);
(9) if :: syncChan??eval(x2),done -> skip; fi
(10) f£fi;

an ¥

Fig. 2. The Shop Process

flow statements realized by composite processes, concluding with a description
of atomic processes. Throughout this section, the Amazon process example (Fig.
1) will be used to illustrate the mapping rules.

Modeling Composite Processes OWL-S Processes map naturally onto pro-
cesses in PROMELA. For example, Fig. 2 shows the result of the translation of
the top-level Shop process to PROMELA. Since Shop is a top-level process, it
does not take any arguments. Other process definitions shown in Fig. 4, such as
Browse, require as input a channel for control flow, syncChan, and optionally an
additional channel for data flow, named dataChan.

In OWL-S, Composite Processes have the responsibility for orderly execution
of their child processes. Each parent process, therefore, creates a syncChan and
a dataChan to be used by its child processes. The syncChan channel holds tuples
consisting of an integer, corresponding to the process id of the sending process,
and done. Messages sent to dataChan are integers, representing the data values
sent via data flow links. Fig. 2 shows the definition of these channels, within the
Shop process, in lines 2-3. The channels have a storage capacity of at most one
message. They are passed to the processes Browse and ProductFound, as shown
in lines 5 and 8 respectively.

Modeling Split and SplitJoin Since processes in PROMELA are intrinsically
concurrent, Split and SplitJoin can be naturally implemented as follows: the
counterpart of each construct is a process in PROMELA, which simply spawns all
its child processes. At this point, a Split process would immediately terminate,
whereas a SplitJoin process would wait for the termination of the processes it
spawned.

Since there are no Split and SplitJoin statements in the Amazon exam-
ple, Fig. 3 shows a prototypical implementation of a SplitJoin in lines 3-4.
The process spawns off two processes A() and B() with no data flow link in
between. The guards in lines 6 and 8 check whether childSync contains a done

Spinning OWL-S 9

message sent by childA or childB, respectively. The entire SplitJoin process
blocks until the guard becomes true, thus synchronizing the process with the
termination of its child processes. Finally, in line 11, the process signals its own
termination. The implementation of a Split statement would be identical, but
skip lines 5-10, which implement the Join synchronization.

(1) proctype SplitJoin(chan syncChan, dataChan) {
(2) chan childSync = [2] of { int,mtype I};

(3) pid childA = run A(childSync);

(4) pid childB = run B(childSync);

(56) if

(6) :: childSync?7eval(childA) ,done ->
M if

(8) :: childSync?7eval(childB) ,done;
(9 fi

(10) fi

(11) syncChan!_pid,done;

(12)}

Fig. 3. Implementation of a prototypical SplitJoin statement

Modeling Sequences While concurrent processes can be implemented in a rel-
atively straightforward way, the modeling of OWL-S sequences requires explicit
synchronization, much like the SplitJoin. We implement sequences by first
spawning off the first process in the list, blocking until the process terminates,
then spawning off the second process. The implementation of the Shopprocess,
a sequenceof Browse and ProductFound processes is shown in Fig. 2. The
PROMELA specification of Shop first spawns the Browse process in line 5. In the
if statement, the execution of Shop is blocked (line 7) until it receives a done
message from Browse, signaling that the Browse process is complete. Shop then
spawns ProductFound (line 8) and waits for it to complete before terminating
itself.

Modeling Choices and Conditionals OWL-S Choices and Conditionals are
both implemented using PROMELA’s guarded non-deterministic choice state-
ments if :: fi. A non-deterministic choice in PROMELA is defined by an if
statement in which all guard conditions are true. The implementation of the
Browse process, shown in Fig. 4, provides an example of a choice between two
atomic processes, AuthorSearch and ArtistSearch. The conditions of the if
statement at lines 6 and 11 are both true, so PROMELA non-deterministically
chooses one of the branches for execution. After spawning the chosen process,
the execution blocks, waiting for the process to complete, and then sets the out-
put product. An OWL-S conditional would be implemented similarly, but with

10 Ankolekar et al.

the if condition as a guard to the then statement and an else guard to the
else statement. According to PROMELA semantics, the else guard is only true,
if all other guards are false.

(1) proctype Browse (chan syncChan, dataChan) {
(2) chan childSync = [1] of { int,mtype I};

(3) chan childData = [1] of { int };

(4) pid child; int product;

(5) if

(6) :: true -> child = run AuthorSearch(childSync, childData);
(7 if

(8) :: childData?product -> dataChan!product;

9) :: childSync??eval(child) ,done;

(10) fi

(11) :: true -> child = run ArtistSearch(childSync, childData);
(12) if

(13) :: childData?product -> dataChan!product;

(14) :: childSync?7eval(child) ,done;

(15) fi

(16) fi;

(17) syncChan!_pid,done;

(18)}

Fig. 4. The Browse Process

Modeling Atomic Processes Finally, we present the mapping of an atomic
process, which produces different results, to PROMELA. We abstract the condi-
tion associated with each result, rather we model the selection of results with a
non-deterministic choice. The implementation of the atomic process AuthorSearch
is shown in figure 5. The conditional outputs are specified in lines 3 and 6 with
a non-deterministic choice. If line 3 is selected, then the variable bookResult is
assigned to 1 (line 4) and its value is sent out on the data channel (line 5). The
other atomic processes, ArtistSearch and AddToShoppingCart can be specified
analogously.

Modeling Data Flow The data flow is represented by a variable that rep-
resents the output and the dataChan channel that transfers data between pro-
cesses. Different parts of the data flow have been represented in the samples
code showed above. For instance, lines 3 to 5 of Fig. 5 represent the output
bookResult and the transmission of its value on the dataChan channel. Lines 8
and 13 of Fig. 4 show how channels are chained in composite processes, where
the results of child processes are transmitted as the results of the parent pro-
cess. This chaining implements the data flow chain, shown in Fig. 1. Finally,

Spinning OWL-S 11

(1) proctype AuthorSearch (chan syncChan, dataChan) {
(2) if /* implement conditional outputs */

3 :: true -> atomic {

(4) int bookResult= 1;
(5) dataChan!bookResult;}
(6) :: true -> skip

(7 fi;

(8) syncChan! _pid,done;

9

Fig. 5. The AuthorSearch Process

the data transmitted across all the links of the chain should reach the input of
another atomic process and be consumed there. Line 3 of Fig. 6 shows the im-
plementation of the input product and its instantiation with the value coming
from dataChan. The line assert (product) (line 4) specifies a claim on the state
reached, namely that the value of product should not be zero. In other words, it
verifies that the input is instantiated to some value.

(1) proctype AddToShoppingCart (chan syncChan, dataChan) {

(2) /* check whether there is something on the data channel */
(3) int product; dataChan?product;

(4) assert(product);

(5) syncChan! _pid,done;

(e ¥

Fig. 6. The AddToShoppingCart Process

Modeling Loops Although PROMELA supports loops, their interaction with
the data flow mechanism introduced in OWL-S 1.1. is still unclear. Therefore,
we defer the modeling of loops to future work.

4.3 Verifying Interaction between Data and Control Flow

Data and control flow can often interact in unexpected ways. The simple process
model depicted in Fig. 7 shows one such interaction that may prove harmful.
The figure depicts a choice process, named Browse, that can be realized by
either an atomic process named ArtistSearch or by an atomic process named
AuthorSearch. A data flow link exists between the output of ArtistSearch to
the input of AuthorSearch. Although this Process Model is legal in OWL-S, it is
flawed. This is because either AuthorSearch or ArtistSearch is executed, but
not both. Thus, whenever AuthorSearch is executed, ArtistSearch is not and
therefore the input to AuthorSearch is never instantiated.

12 Ankolekar et al.

Choice
Browse

Atomic Atomic

ArtistSearch AuthorSearch
Artist--— Author

Fig. 7. An example of interaction between data and control flow in OWL-S

The PROMELA model generated by the mapping described thus far, would
detect the harmful interaction between control flow and data flow. The model
of the choice statement specifies that one of the two atomic processes will exe-
cute, while the assert constraint on the input of AuthorSearch requires that
ArtistSearch is always instantiated. Since there does not exist a model where
both claims are simultaneously true, SPIN would report an error.

The ability to detect such interactions between data flow and control flow
in OWL-S Process Models is one of the main contributions of this work, which
goes beyond other verification models constructed for OWL-S. Indeed we claim
that the model provided by Narayanan et al. [2], would not detect the flaw in
the process model described above.

5 Verification of the Amazon example

Given a PROMELA specification of an OWL-S Process Model, SPIN constructs
a verifier, that can check several claims on the execution of the Process Model.
These properties include the values of certain variables at certain points in the
code and true statements that can be made about execution states (state proper-
ties) or the paths of execution (path properties). In addition, since SPIN searches
the entire state space of a verification model, it can also identify unreachable or
dead code in a Process Model.

In this section, we present various kinds of verification that can be performed
on a PROMELA model generated by the mapping described in the sections above.
Using SPIN and the PROMELA specification presented in the previous section,
several properties of the execution of the Amazon OWL-S Process Model were
verified. These properties were verified as part of five tests described below. For
each test, the size of the model constructed by SPIN, the time taken in seconds
to construct the model and the time for verification were measured®.

5 The tests were carried out on a 750MHz Pentium 4 machine with 256 MB of memory.

Spinning OWL-S 13

| | #States | Model Construction Time | Verification Time|

Amazon 132 0.20 0.01
Data flow 139 0.35 0.02
Liveness 345 0.15 0.04
Loop-2 654382 0.03 8.77
Loop-3 3902280 0.04 >7200

Table 1. Performance of OWL-S verification using SPIN (time in seconds).

1. Simple Amazon: In the first case, the PROMELA specification of the Ama-
zom.com Web service was checked for basic safety conditions, such as the
absence of deadlocks and the correctness of the data-flow within the model
which derive directly from the mapping reported in the previous section.

2. Data flow: To the simple Amazon model, we added an assert statement to
verify the data flow between the Browse and ProductFound processes. The
statement specifies that Browse must return a product before the product is
added to the shopping cart, i.e. before ProductFound executes the process
AddToShoppingCart.

3. Liveness: Several interesting liveness claims can be made about the Amazon
example. For example, a client may wish to verify that the Amazon Web ser-
vice will always complete and not execute in an infinite loop, before deciding
to use it. In other words, the user would like to express the requirement
that “ShopBook process will eventually complete.” In LTL this statement is
expressed as follows:

{Done_ShopBook

Another liveness claim a client may wish to verify is that if a desired product
is found with Amazon, then the client can always add it to the shopping cart.
This can be expressed as ”in every execution sequence in which a product
was found, the next process to be executed is AddToShoppingCart.” In LTL
this statement is expressed as follows:

O(productAvailable — X (QODone_AddToShoppingCart))

In other words, whenever productAvailable is true, in the next state, the
AddToShoppingCart process will eventually complete.

4. Loop-2 and Loop-3: In order to test how loops could affect the performance
of SPIN, we added a loop to the Promela model, which created multiple con-
current instances of ShopBook. Narayan et al. [2] shows that the complexity
the verification of the OWL-S Process Model with loops is PSPACE while
the complexity of the same model without loops is NP-complete. Although
we do not officially model OWL-S loops because their interaction with the
data flow is yet to be completely worked out, we tried to estimate the effect of
adding loops to our model by forcing the search process to loop until a prod-
uct is found. In the cases of Loop-2 and Loop-3, two and three concurrent
instances of ShopBook were created respectively.

14 Ankolekar et al.

The experiment shows that the verification of OWL-S Process Models that
do not contain any loops can be done very effectively. This is an important result
since we expect that the great majority of Process Models will be loop-free.

Consistent with Narayanan’s claim, the search complexity increases greatly,
when the OWL-S Process Model is augmented with additional loops. However,
it should be pointed out that the loops we constructed are among the most
difficult to verify since they spin off two concurrent executions of the Amazon’s
Process Model. Sequential executions of Process Models would certainly exhibit
less interaction.

The exponential increase in number of states and verification time, while
troublesome, seems to be manageable since checking more than two concur-
rent instances of ShopBook is superfluous and violates the requirement that the
verification model be the minimum sufficient model to perform the verification
successfully. Verifying two concurrent instances of ShopBook reveal all the dan-
gerous interaction effects just as well as three concurrent instances do. Therefore,
we do not gain in verification power by checking more than two instances. In our
future research we will search for a better modeling of loops that will minimize
the state explosion that has been revealed by our experiments.

6 Conclusions and Future Work

In this paper we proposed a procedure for the verification of correctness claims
about OWL-S Process Models. We described a mapping of OWL-S statements
into equivalent PROMELA statements that can be evaluated by the SPIN model
checker. In the process, a number of abstractions were presented for OWL-S
Process Models. The abstractions reduce the complexity of verification while
producing a model that is sufficiently rich to be able to make useful claims
about OWL-S Process Models.

The work presented here is a starting point and we see numerous possible ex-
tensions to it. For instance, we intend to relax some of the modeling abstractions
to report a richer output. In particular, we would like to specify not only the
reachability of states, but also under which conditions a state is reachable. This
information is important for a Web service client because it typically needs to
know what information must be sought in order to guarantee a correct execution
of the Process Model and what kind of commitments it will have to make.

Another extension of this work that we would like to pursue is the automatic
generation of liveness claims. Based on the OWL-S markup and an appropriate
services ontology, a Web service client should be able to reason about processes
in an OWL-S Process Model, generating claims on-the-fly, such as ”the Delivery
process always executes after the Buy process.” These claims can then be verified
before the client decides to invoke the Web service. There are multiple sources of
liveness claims; in this paper we tested the reachability of one particular state,
but the client of a service may also want to verify the correctness with respect
to policies that the client has to satisfy.

Spinning OWL-S 15

Finally, this work does not include any modeling of the interaction between
the client and the server. We intend to extend the verification to the data map-
pings specified in the OWL-S Grounding. Such verification may provide guaran-
tees on the data that processes will receive from the Server.

References

1. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 2003.

2. S. Narayanan and S. Mcllraith. Simulation, verification and automated composition
of web services. In Proceedings of the Eleventh International World Wide Web
Conference (WWW-11), May 2002.

3. E. M. Clarke, O. Grumberg and D. A. Peled. Model Checking. The MIT Press,
2000.

4. X. Fu, T. Bultan and J. Su. Analysis of interacting BPEL web services. In Pro-
ceedings of the Thirteenth International World Wide Web Conference (WWW-138),
May 2004.

