Triple-space computing:
Semantic Web Services based on persistent publication of
information

D. Fensel

Digital Enterprise Research Institute (DERI)
DERI Innsbruck, Leopold-Franzens Universitét Innsbruck, Austria
DERI Galway, National University of Ireland, Galway
dieter.fensel@deri.org

Abstract. This paper discusses possible routes to moving the web from a
collection of human readable pieces of information connecting humans, to a web
that connects computing devices based on machine-processable semantics of data
and distributed computing. The current shortcomings of web service technology
are analyzed and a new paradigm for fully enabled semantic web services is
proposed which is called triple-based or triple-space computing.

1 Introduction

The web is a tremendous success story. Starting as an in-house solution for exchanging
scientific information it has become, in slightly more than a decade, a world wide used
media for information dissemination and access. In many respects, it has become the
major means for publishing and accessing information. Its scalability and the comfort
and speed in disseminating information is unprecedented. However, it is solely a web
for humans. Computers do not have access to the provided information and in return do
not provide any support in processing this information. Two complementary trends are
about to change this transformation of the web, from being for humans only, into a web
that interweaves computers to provide support for human interactions at a much higher
level than is available with current web technology.

* The semantic web is about adding machine-processable semantics to data. The
computer can “understand” the information and therefore process it on behalf of
the human user (cf. [Fensel, 2003]).

« Web services try to employ the web as a global infrastructure for distributed
computation, for integrating various applications, and for the automatization of
business processes (cf. [Alonso et al., 2003]). The web will not only be the place
where human readable information is published but the place where global
computing is realized.

Eventually, semantic web services promise the combination of semantic web with web
service technology. A fully mechanized web for computer interaction would become a
new infrastructure on which humans organize their cooperations and business
relationships (cf. [Fensel & Bussler, 2002]).

These trends promise to provide the holy grail of computer science. The semantic web
promises to make information understandable to a computer and web services promise

to provide smooth and painless integration of disparate applications. Web services offer
a new level of automatization in eWork and eCommerce, where fully open and flexible
cooperation can be achieved, on the fly, with low programming costs. However, the
current implementations of web service technology are still far from reaching these
goals. There are a couple of obvious reasons for this. Integrating heterogeneous and
dynamically changing applications is a tremendous task. Currently, a bizarre flow of
standards and pseudo-standards are published to achieve this goal. We are still far away
from the point where we can ensure that there is emerging consensus around some
proposals and from deciding on whether these proposals deliver what they are
promising. Also many of the existing proposals cover the required functionality at a
very low level, only. Spoken in layman term’s, remote procedure calls over HTTP may
not be the right level of functionality to align business processes in a smooth and
scalable fashion. Established standards in the pre-web eCommerce area such as EDI/
EDIFACT! provides a much higher level of support for mechanizing business
transactions.

These obstacles may eventually be overcome, however these may also be an indication
of a deeper problem around web services. Actually as we show in this paper, web
services do not have much in common with the web. They are based on message
exchange rather than on addressable and persistent publication, which is a key principle
underlying the web. Thus, they have to deal with all the issues around message
exchange and how to implement reference-, time-, and space-decoupled interactions.
Actually web services are not sufficiently advanced to use the web as a means of
information publishing and access.

Investigating true web services, that are based on the web paradigm for exchanging
information, is at the core of this paper. We will investigate the potential of tuple- or
space-based computing and the necessity to combine it with semantics. We will call this
proposal triple-based computing and we show how this naturally fits into the vision of a
semantic web. In a nutshell, realizing services on top of the semantic web may be a
more realistic pathway to achieving semantic web services rather than trying to enrich
web services with semantic annotations.

The contents of this paper are organized as follows. Section 2 discusses the web, the
semantic web, web services, and eventually semantic web services as the web of
machines that may evolve from the web primarily for humans. Section 3 analyzes web
services and questions whether they actually have much to do with the web. Section 4
provides a vision on what actual web services could look like. They would use the web
as a global tuplespace and the required extension of this tuplespace into a triplespace
naturally adds semantics and the semantic web to them. Section 5 concludes the paper.

2 Elements and directions in achieving semantic web services

We split the discussion of elements and directions in achieving semantic web services
into two parts. Section 2.1 discusses the major elements the future web may be based
on. We start the discussion with the web itself and continues with discussing the

1. http://www.unece.org/trade/untdid/welcome.htm

semantic web, web services, and their combination in semantic web services. Section
2.2 follows up the discussion by investigating two different paths that may eventually
lead from the current web to semantic web services.

2.1 Four dimensions describing the future of the web

Figure 1 illustrates four major stages in the development of the web: (1) the web as a
collection of information accessible to the human reader; (2) the semantic web that adds
machine-processable semantics and mechanized information processing; (3) web
services that employ the web as a platform for distributed computing; and (4) semantic
web services that combine both in providing mechanized service discovery,
parametrization, composition, and execution. We will briefly elaborate on all four
stages.

The World Wide Web is a big and impressive success story, both in terms of the
amount of available information and of the growth rate of human users. It has started to
penetrate most areas of our daily lives and business. This success is based on it’s
simplicity. The restrictiveness of HTTP and HTML allowed software developers,
information providers, and users to gain easy access to this new media, helping it to
reach a critical mass. However, this simplicity may hamper the further development of
the Web. Or in other words: What we see currently is the very first version of the web
and the next version will probably be even bigger and much more powerful compared to
what we have now. It started as an in-house solution for a small group of users. Soon, it
established itself as a world-wide communication media for hundreds of millions of
people. In a small number of years it will interweave one billion people and will
penetrate many more types of devices than just computers.

It is also clear that the current state of web technology is generating serious obstacles for
it’s further growth. The bottlenecks of current web technology create problems in
searching information, problems in extracting information, problems in maintaining

A

Web Services Semantic Web
| I X
UDDI, WSDL, SOAP Services
.8
g
s
=
)]
Web Semantic Web
URI, HTML, HTTP P> XML, RDF, OWL

-

Semantics

Figure1 The four major stages in the development of the Web.

information, and problems in generating information. All these problems are caused by
the simplicity of current web technology. Computers are used as devices to post and
render information. However, they do not have any access to the actual content and
therefore can provide only very limited support in accessing and processing this
information. In consequence, the main burden in accessing, extracting, interpreting, and
processing information is left to the human user.

Tim Berners-Lee created the vision of a Semantic Web that provides automated
information access based on machine-processable semantics of data and heuristics that
make use of these meta data. The explicit representation of the semantics of data
accompanied with domain theories (i.e., ontologies) will enable a web that provides a
qualitatively new level of service. New recommendations? such as XML, RDF, and
OWL allow the adding of machine-processable semantics to the information present on
the web. The semantic web will weave together an incredibly large network of human
knowledge, with complementary machine processability. Various automated services
will support the user in achieving goals via accessing and providing information in a
machine-understandable form. This process may ultimately lead to extremely
knowledgeable systems with various specialized reasoning services that may support us
in nearly all aspects of our daily life, becoming as necessary for us as access to electric
power.

The current web is mainly a collection of information but does not yet provide support
in processing this information, i.e., in using the computer as a computational device.
Recent efforts around UDDI?, WSDL*, and SOAP? have tried to lift the web to a new
level of service. Software applications can be accessed and executed via the web based
on the idea of Web services. Web services can significantly increase the web
architecture's potential, by providing a way of automating program communication.
Therefore, they are the focus of much interest from various software development
companies. Web services connect computers and devices with each other using the
Internet to exchange data and combine data in new ways. The key to web services is on-
the-fly software composition through the use of loosely coupled, reusable software
components. This has fundamental implications in both technical and business terms.
Software can be delivered and paid for as fluid streams of services as opposed to
packaged products. It is possible to achieve automatic, ad hoc interoperability between
systems to accomplish organizational tasks. Examples include both business
application, such as automated procurement and supply chain management, and non-
commercial applications, which include military applications. Web services can be
completely decentralized and distributed over the Internet and accessed by a wide
variety of communications devices. Organizations can be released from the burden of
complex, slow and expensive software integration and instead focus on the value of
their offerings and mission critical tasks. The dynamic enterprise and dynamic value
chains would become achievable and may be even mandatory for competitive
advantage.

2. http://www.w3c.org/

3. http://www.uddi.org/

4. http://www.w3.org/TR/wsdl

5. http://www.w3.org/TR/soap12-partl/

Still, more work needs to be done before the web service infrastructure can make this
vision come true. Current web service technology provides limited support in
mechanizing service recognition, service configuration and combination (i.e., realizing
complex workflows and business logics with web services), service comparison and
automated negotiation. In a business environment, the vision of flexible and
autonomous web service translates into automatic cooperation between enterprise
services. Any enterprise requiring a business interaction with another enterprise can
automatically discover and select the appropriate optimal web services relying on
selection policies. This can be achieved by adding machine-processable semantics to the
description of web services based on semantic web technology. Semantic web services
can be invoked automatically and payment processes can be initiated.” Any necessary
mediation would be applied based on data and process ontologies and the automatic
translation and semantic interoperation. An example would be supply chain
relationships where an enterprise manufacturing short-lived goods must frequently seek
suppliers as well as buyers dynamically. Instead of employees constantly searching for
suppliers and buyers, the web service infrastructure does it automatically within the
defined constraints. Other applications areas for this technology are Enterprise-
Application Integration (EAI), eWork, and Knowledge Management.

2.2 Two ways to heaven

When taking a closer look at Figure 1 it turns out that two potential paths in achieving
semantic web services are implicitly present there. You can move to semantic web
services via the web service track or via the semantic web track (see Figure 2).7

Projects such as DERI® and DIP? follow the first path. The current web service stack is

A

Web Services Semantic Web
UDDI, WSDL, SOAP Services

.8

g

<

IS

=

@)
Web ™ - Semantic Web
URI, HTML, HTTP XML, RDF, OWL

-
Semantics

Figure2 The two major footpaths in developing the Web.

6. See for initiatives in this area OWL-S (http://www.daml.org/services/), IRS-II (http://
kmi.open.ac.uk/projects/irs/), and WSMO (http://www.wsmo.org/).
7. This section results from personal communication with Tim Berners-Lee and Eric Miller.

taken as a starting point and semantic annotations are designed to complement these
elements. Semantics should be added to WSDL interface descriptions and choreography
and orchestration elements. A strong mediation service is developed to cope with all the
various miss-matches in data, protocol and process specifications.

In fact, this is not the only possible road to semantic web services. Alternatively one
could directly focus on further developing the semantic web. By putting more and more
ontologies and semantically annotated data on the web, services will evolve naturally
that make use of these descriptions. In practical terms, one could ontologize existing
standards such as EDI and EDIFACT and invite new business partners to make use of
these public descriptions for implementing their trading relationships. Instead of
deploying standards for service descriptions (and there is already a frightening number
of pseudo standards in the arena) one could provide more and more reusable formalized
descriptions on the web of services that can be exploited to achieve their functionality.
This idea will be discussed further in the next section when we discuss the severe
shortcomings of the current web service infrastructure.

3 Are web services really web services? - No!

Besides their name, web services do not have much to do with the web. Let’s illustrate
this briefly by assuming a time machine would bring us back to the pre-web time. What
was a very common way, back then, of accessing a research paper? One was posting an
email kindly asking for the paper and a friendly colleague posting it as an attachment.
Dissemination of information was based on message exchange. The communication
overhead in publishing and accessing information was high and dissemination was
therefore quite limited and slow. Then the web came into being and changed the
situation significantly. The author had to publish the paper once by putting it on his web
page. After this, he could forget about it and focus on writing new papers. New services
such as citeseer'? even ensure durability of this publication beyond the life time of a
web page (i.c., they disable the delete operation on the information space). All the
potential readers could get instant access to the paper without requiring a two-stage
message-exchange process. This tremendously scaled and speeded up the dissemination
process of information. When comparing web services with this essential web principle
it becomes quite obvious that web services are not about the web.

Web services require close coupling of applications they integrate. Applications
communicate via message exchange requiring strong coupling in terms of reference and
time. The communication has to be directed to the web service addressed and the
communication must be synchronous. If both parties do not implement and jointly agree
on the specific way this mechanism is implemented, then the applications must support
asynchronous communication. The web is strongly based on the opposite principles.
Information is published in a persistent and widely accessible manner.'! Any other
application can access this information at any point in time without having to request

8. http://www.deri.org/

9. http://dip.semanticweb.org/

10. http://citeseer.ist.psu.edu/cs

11. For privacy issues, protected sub-fragments of the web can be defined.

the publishing process to directly refer to it as a receiver of it’s information. It is true
that web services uses the internet as a transport media (relying on protocols such as
FTP, SMTP, or HTTP), however that is all they have in common with the web.

Given this obvious evidence it is surprising that many more authors already have not
complained about the erroneous naming of web services, that could be likened to the
situation in the emperor’s new clothes. Actually, the criticisms of the REST community
(cf. [Fielding, 2000]) back up this argument and the position of this paper. Their two
major criticisms around web services are about improper usage of URIs and messing up
the state-less architecture of the web (cf. [Fielding & Taylor, 2002], [zur Muehlen et al.,
2004)).

When sending and receiving SOAP messages, the content of the information is hidden
in the body and not addressed as an explicit web resource with it’s own URI. Therefore,
all web machinery involving caching or security checks is disabled since its use would
require the parsing and understanding of all possible XML dialects that can be used to
write a SOAP message. Referring to the content via an explicit URI in an HTTP request
would allow the content of a message to be treated like any other web resource.

The web service stack can be used to model state-full resources. However, one of the
basic design principle of the web and REST architectures is not to provide state-full
protocols and resources explicitly. Thus, application integration and servers for this
architecture are easy to build. Every HTTP request for a URI should retrieve the same
contents independently of what has happened before in other sessions or in a history of
the current session. This allows thin servers to be used, that do not need to store, manage
and retrieve the earlier session history, for the current session.!”> When a stateful
conversation is required this should be explicitly modelled by different URIs. In
consequence, there should not be one URI for a web service and hidden ways to model
and exchange state information but each potential state of a web service should be
explicitly addressable by a different URI. This conforms to the web and REST’s way of
modelling a stateful conversation for a state-less protocol and adhers to their
architecture.

These criticisms of the REST community reinforces this paper’s arguments. Web
services do not rely on the central principles of the web: publication of information
based on a global and persistent URI, instead, stateful conversations based on the
hidden content of messages are established. The next section explores what web
services would look like that are fully based on the web and it’s underlying principles
that made it such a success.

4 Triple-spaced computing

This section will discuss what a service paradigm that conforms with the basic
principles of the web could look like. We start by discussing tuple-spaced computing as
a paradigm to exchange data between applications. Then we introduce the concept of
semantic self-description of information, which naturally lead us into a discussion of the

12. Actually cookies are a work-around of this principle, however they break when a client is run
on different machines.

triple space.

4.1 Tuple-spaced computing

Tuple-based computing has been introduced in parallel programming languages, such as
Linda, to implement communication between parallel processes (cf. [Gerlernter, 1992]).
Instead of sending messages backward and forward a simple means of communication
is provided. Processes can write, delete!, and read tuples from a global persistent
space.14 A tuple is a set of ordered typed fields, each of which either contains a value or
is undefined and a tuplespace is an abstract space containing all tuples and visible to all
processes. The API for this is extremely simple and all complexity in message
processing disappears (actually it is hidden in the middleware that implements the
tuplespace). This tuplespace is similar to a blackboard in expert systems, where rules do
not send messages to all other rules when they derive a fact. Rather, this is published by
adding it to the publicly-visible board.

Tuple or space-based computing has one very strong advantage: It de-couples three
orthogonal dimensions involved in information exchange (cf. Figure 3): reference, time,
and space.

* Processes communicating with each other do not need to explicitly know each
other. They exchange information by writing and reading tuples from the
tuplespace, however, they do not need to set up an explicit connection channel, i.e.,
reference-wise the processes are completely de-coupled.

¢ Communication can be completely asynchronous since the tuplespace guarantees
persistent storage of data, i.e., time-wise the processes are completely de-coupled.

» The processes can run in completely different computational environments as long
as both can access the same tuplespace, i.e., space-wise the processes are
completely de-coupled.

reference

A

time

P space

Figure 3 Three separate dimensions of cooperation, taken from [Angerer, 2002].

13. Actually, deleting tuples may not really be necessary in an exponentially growing space such
as the web.

14. Global in the local framework of an application that is decomposed by parallel processes.

This strong decoupling in all three relevant dimensions has obvious design advantages
for defining reusable, distributed, heterogeneous, and quickly changing applications like
those promised by web service technology. Also, complex APIs of current web service
technology are replaced by simple read and write operations in a tuplespace. Notice that
a service paradigm based on the tuple paradigm also revisits the web paradigm:
information is persistently written to a global place where other processes can smoothly
access it without starting a cascade of message exchanges.

Johanson and Fox [Johanson & Fox, 2004] describe the application of tuplespaces for
coordination in interactive work spaces, focussing on providing software infrastructure
for the dynamic interaction of heterogeneous and ad hoc collections of new and legacy
devices, applications, and operating systems. The reasons why they refer to tuplespaces
as the underlying communications model resembles all the requirements for web
services that should enable fully flexible and open eWork and eCommerce. The
following is a list of some of the requirements mentioned by Johanson and Fox
[Johanson & Fox, 2004]: limited temporal decoupling, referential decoupling,
extensibility, expressiveness, simple and portable APIs, easy debugging, scalability, and
failure tolerance and recovery.

In side remarks [Johanson & Fox, 2004] also report shortcomings of current tuplespace
models. They lack the means to name spaces, semantics, and structure in describing the
information content of the tuples. The tuplespace provides a flat and simple data model
that does not provide nesting, therefore, tuples with the same number of fields and field
order, but different semantics, cannot be distinguished. Instead of following their ad-hoc
repairs we propose a simple and promising solution for this. We propose to refine the
tuplespace into a triple space, where <subject, predicate, object> describe content and
semantics of information. The object can become a subject in a new triple thus defining
a graph structure capturing structural information.

Fortunately with RDF'® (cf. [Klyne & Carroll, 2004]) this space already exists and
provides a natural link from the space-based computing paradigm into the semantic
web. Notice that the semantic web is not made unnecessary based on the tuple-spaced
paradigm. The global space can help to overcome heterogeneity in communication and
cooperation, however, it does not provide any answer to data and information
heterogeneity. In fact, this aspect is what the semantic web is all about.

4.2 Triple-spaced computing

The web and the tuplespace have many things in common. They are both global
information spaces for persistent publication. Therefore, they share many of the same
underlying principles. They differ in their application context. The web is a world wide
information space for the human reader and the tuplespace is a local space for parallel
processes in an application. Thus, the web adds some features that are currently lacking
in the tuplespace.

First, with URIs the web provides a well-defined reference mechanism that has world-

wide scalability to address chunks of information. Tuplespaces lack this mechanism
since they were designed mostly for closed and local environments. Johanson and Fox

15. http://www.w3.org/RDF/

[Johanson & Fox, 2004] already reported this as a bottleneck when applied in their
setting of heterogeneity and dynamic change.

Second, the namespace mechanism of the web allows different applications to use the
same vocabulary without blurring their communications. Namespaces help to keep the
intended information coverage of identifiers separate even if they are named equally.
Namespaces provides a well-defined separation mechanism that scales on a world-wide
scale to distinguish chunks of information.

Third, the web is an information space for humans and the tuplespace is an information
space for computers, however, the semantic web is for machines too. It provides
standards to represent machine-processable semantics of data. We already mentioned
RDF that provides nested triples as a data model to represent data and their formal
semantics on the web. This enables applications to publish and to access information in
a machine processable manner. RDF Schema [Brickley & Guha, 2004] defines classes,
properties, domain and range restrictions, and hierarchies of classes and properties on
top of RDF. Thus, a richer data model than nested triples can be used to model and
retrieve information. This gets even further extended by OWL [McGuinness & van
Harmelen, 2004], a data modeling language based on description logic.

Therefore, the semantic web has the true potential to become the global space for
application integration, like the tuplespace became a means for the local integration of
parallel processes. It provides the means for global integration with the inherent
complexity stemming from information heterogeneity and dynamic changes. As with
tuplespace, it makes problems with protocol and process heterogeneity transparent, by
it’s uniform and simple means for accessing and retrieving information. Complex
message exchange is replaced by simple read and write operations in a global space.

Having said this, it is also clear that this is not the end but just the beginning of an
exercise. No application can quickly check the entire semantic web to find an interesting
triple. Conversely, no application would simply publish a triple and then wait forever
until another application picks it up. Clever middleware is required that provides a
virtual global triplespace without requesting each application either to download or to
search through the entire semantic web.'® The triplespace needs to be divided up to
provide security and privacy features as well as scalability. However, none of these
requirements are really new. They apply to any application that deals with the web on a
global scale.

5 Conclusions

Johanson and Fox [Johanson & Fox, 2004] expect ubiquitous computing as the “killer
app” for tuple-space based computing because of the model’s portability, extensibility,
flexibility, and ability to deal with heterogeneous environments. Actually, truly web-
service enabled eWork and eCommerce shares many, if not all of the features of
ubiquitous computing. In fact, we think that a tuplespace-based communication model
is close in spirit to the web and may help to bring web services to their full potential. It
requires moving from a message-oriented communications model into a web where

16. See for example the work of the company Tecco, http://www.tecco.at/en/index.html.

information is published (broadcast) based on a global and persistent URI.

The tuplespace helps to overcome many problems around heterogeneity in information
distribution and information access. Since applications are decoupled in reference, time,
and space, many issues in protocol and process alignment disappear because they are
provided by the underlying middleware that implements the tuplespace. Still, the
tuplespace does not contribute anything to the solution of data and information
heterogeneity. In fact, there are already ad hoc proposals to add semantics to the data
represented in it. Alternatively, this paper proposed a straightforward approach using
semantic web technology to provide a well established mechanism for that. It will
transfer the tuplespace into an RDF-based triplespace. This triplespace provides the web
with the means to exchange data between applications based on machine-processable
semantics. Therefore, this triplespace may become the web for machines as the web,
based on HTML, became the web for humans.

Acknowledgement.

The paper is simply a synthesis of discussions I had with Tim Berners-Lee and
Eva Kiihn. It reflects only the private opinion of the author and not the official
policy of DERI.

References

[Alonso et al., 2003] G. Alonso, F. Casati, H. Kuno, and V. Machiraju: Web Services, Springer,
2003.

[Angerer, 2002] B. Angerer: Space Based Computing: J2EE bekommt Konkurrenz aus dem
eigenen Lager, Datacom, no 4, 2002.

[Brickley & Guha, 2004] D. Brickley and R.V. Guha (eds.): RDF Vocabulary Description
Language 1.0: RDF Schema, W3C Recommendation, February 2004, http://www.w3c.org/TR/
rdf-schema/

[Fensel, 2003] D. Fensel: Ontologies: Silverbullet for Knowledge Management and Electronic
Commerce, 2nd edition, Springer, 2003.

[Fensel & Bussler, 2002] D. Fensel and C. Bussler: The Web Service Modeling Framework
WSME, Electronic Commerce Research and Applications, 1(2), 2002.

[Fielding, 2000] R. T. Fielding: Architectural styles and the design of network-based software
architectures, PhD Thesis, University of California, Irvine, 2000.

[Fielding & Taylor, 2002] R. T. Fielding and R. N. Taylor: Principled Design of the Modern Web
Architecture, ACM Transactions on Internet Technology (TOIT), 2(2), May 2002:115-150.

[Gerlernter, 1992] D. Gerlernter: Mirrorworlds, Oxford University Press, 1992.

[Johanson & Fox, 2004] B. Johanson and A. Fox: Extending Tuplespaces for Coordination in
Interactive Workspaces, Journal of Systems and Software, 69(3), January 2004:243-266.

[Klyne & Carroll, 2004] G. Klyne and J. J. Carroll (eds.): Resource Description Framework
(RDF): Concepts and Abstract Syntax, W3C Recommendation, February 2004, http:/
www.w3.org/TR/rdf-concepts/

[McGuinness & van Harmelen, 2004] D L. McGuinness and F. van Harmelen (eds.): OWL Web
Ontology Language: Overview, W3C Recommendation, February 2004, http://www.w3c.org/
TR/owl-features/

[zur Muehlen et al., 2004] M. zur Muehlen, J. V. Nickerson, and K. D. Swenson: Developing Web
Services Choreography Standards - The Case of REST vs. SOAP, Decision Support Systems,
37,2004.

