
 8

User Interface Paradigms for Visually Authoring Mid-Air
Gestures: A Survey and a Provocation

Mehmet Aydın Baytaş1, Yücel Yemez2, Oğuzhan Özcan1
1Design Lab

Koç University, 34450 İstanbul
2Department of Computer Engineering

Koç University, 34450 İstanbul
{mbaytas, yyemez, oozcan}@ku.edu.tr

ABSTRACT
Gesture authoring tools enable the rapid and experiential
prototyping of gesture-based interfaces. We survey visual
authoring tools for mid-air gestures and identify three
paradigms used for representing and manipulating gesture
information: graphs, visual markup languages and
timelines. We examine the strengths and limitations of
these approaches and we propose a novel paradigm to
authoring location-based mid-air gestures based on space
discretization.

Author Keywords
Gestural interaction; gesture authoring; visual
programming; interface prototyping.

ACM Classification Keywords
H.5.2 Information Interfaces & Presentation (e.g. HCI):
User Interfaces

INTRODUCTION
The recent proliferation of commercial input devices that
can sense mid-air gestures, led by the introduction of the
Nintendo Wii and the Microsoft Kinect, has enabled both
professional developers and end-users to harness the power
of full-body gestural interaction. However, despite the
availability of the hardware, applications that leverage
gestural interaction have not been thriving. A striking fact is
that while the Kinect has broken records as the fastest-
selling consumer electronics device in history, sales of
games that utilize the Kinect have been poor [5]. This has
been associated with design and user experience issues
stemming from difficulties in designing and developing
software [7]. Specifically, for both adept programmers and
comparatively non-technical but creative users such as
students, designers, artists and hobbyists, the amounts of
time, effort and domain-specific knowledge required to
implement custom gestural interactions is prohibitive.

Ongoing research aims to support gestural interaction
design and development with gesture authoring tools. These
tools aim at enabling rapid and experiential prototyping,
which are essential practices for creating compelling
designs [2]. However, few projects have gained widespread

adoption. One issue that contributes to the low rate of
adoption is the difficulty of balancing the trade-offs
between complexity and expressive power of the paradigm
used to represent and manipulate gesture information:
Interfaces employed for gesture authoring may become
convoluted and difficult to use in order to fully tap into the
expressive power of human gesture; or they may omit
useful features as they aim for usability and rapidity.

In this paper, we survey existing paradigms for visually
authoring mid-air gestures and present a provocation, a
novel gesture authoring paradigm, which we have
implemented in the form of an end-to-end application for
introducing gesture control to existing software and novel
prototypes.

The rest of this paper is organized as follows: We first
present three user interface paradigms – graphs, visual
markup languages and timelines – used in current visual
gesture authoring tools. Existing implementations of each
paradigm are examined and discussed in terms of their
capabilities and limitations. Results from evaluations with
real users, if published, are emphasized. We then present a
provocation in the form of a novel user interface paradigm
for authoring mid-air gestures, based on space discretization
and influenced by existing paradigms. We discuss future
work and conclude by presenting a summary of our results.

PARADIGMS FOR AUTHORING MID-AIR GESTURES
Authoring tools for mid-air gestural interfaces are still in
their infancy. Development tools provided by vendors of
gesture-sensing input devices are focused on textual
programming. Ongoing research suggests a set of diverse
approaches to the problem of how to represent and
manipulate three-dimensional gesture data. Existing works
approach the issue in three ways that constitute distinct
paradigms. These are:

1. using 2-dimensional graphs of the data from the
sensors that detect movement;

2. using a visual markup language; and,

3. representing movement information using a timeline of
frames.

These paradigms often interact with two programming
approaches: Demonstration and declaration. Programming
by demonstration enables developers to describe behavior
by example. In the case of gestures, many examples of the

EGMI 2014, 1st International Workshop on Engineering Gestures for
Multimodal Interfaces, June 17 2014, Rome, Italy.
Copyright © 2014 for the individual papers by the papers' authors.
Copying permitted only for private and academic purposes. This volume is
published and copyrighted by its editors.
http://ceur-ws.org/Vol-1190/.

 9

same behavior are often provided in order to account for the
differences in gesturing between users and over time.
Declarative programming of gestures involves describing
behavior using a high-level specification language. This
specification language may be textual or graphical.

The paradigms we list above do not have to be used
exclusively, and nor do demonstration and declarative
programming. Aspects of different paradigms may find
their place within the same authoring tool. A popular
approach to authoring gestures is to introduce gestures by
demonstration, convert gesture data into a visual
representation, and then declaratively modify it

In this section, we describe the above approaches in detail,
with examples from the literature. We comment on their
strengths and weaknesses based on evaluations conducted
with software that implement them.

Using Graphs of Movement Data
Visualizing and manipulating movement data using 2-
dimensional graphs that represent low-level kinematic
information is a popular approach for authoring mid-air
gestures. This approach is often preferred when gesture
detection is performed using inertial sensors such as
accelerometers and gyroscopes. It also accommodates other
sensors that read continuously variable data such as
bending, light and pressure. Commonly the horizontal axis
of the graph represents time while the vertical axis
corresponds to the reading from the sensor. Often a “multi-
waveform” occupies the graph, in order to represent data
coming in from multiple axes of the sensor. Below, we
study three software tools that implement graphs for
representing gesture data: Exemplar, MAGIC and GIDE.

Exemplar
Exemplar [3] relies on demonstration to acquire gesture
data and from a variety of sensors - accelerometers,
switches, light sensors, bend sensors, pressure sensors and
joysticks. Once a signal is acquired via demonstration, on
the resulting graph, the developer marks the area of interest
that corresponds to the desired gesture. The developer may
interactively apply filters on the signal for offset, scaling,
smoothing and first-order differentiation. (Figure 1)
Exemplar offers two methods for recognition: One is
pattern matching, where the developer introduces many
examples of a gesture using the aforementioned method and
new input is compared to the examples. The other is
thresholding, where the developer manually introduces
thresholds on the raw or filtered graph and gestures are
recognized when motion data falls between the thresholds.
This type of thresholding also supports hysteresis, where
the developer introduces multiple thresholds that must be
crossed for a gesture to be registered.

Figure 1: The Exemplar gesture authoring environment. [3]
From left to right, the interface reflects the developer’s
workflow: Data from various sensors connected to the system
is displayed as thumbnails and the sensor of interest is
selected; filters are applied to the incoming signal; areas of
interest are marked for pattern recognition or thresholds are
set; and the resulting gesture is mapped to output events.

Exemplar’s user studies suggest that this implementation of
the paradigm is successful in increasing developer
engagement with the workings and limitations of the
sensors used. Possible areas of improvement include a
technique to visualize multiple sensor visualizations and
events and finer control over timing for pattern matching.

System for Multiple Action Gesture Interface Creation
(MAGIC)
Ashbrook and Starner’s MAGIC [1] is another tool that
implements the 2-dimensional graphing paradigm. The
focus of MAGIC is programming by demonstration. It
supports the creation of training sets with multiple
examples of the same gesture. It allows the developer to
that keep track of the internal consistency of the provided
training set; and check against conflicts with other gestures
in the vocabulary and an “Everyday Gesture Library” of
unintentional, automatic gestures that users perform during
daily activities. MAGIC uses the graph paradigm only to
visualize gesture data and does not support manipulation on
the graph. (Figure 2)

One important feature in MAGIC is that the motion data
graph may be augmented by a video of the gesture example
being performed. Results from user studies indicate that this
feature has been highly favored by users, during both
gesture recording and retrospection. Interestingly, it is
reported that the “least-used visualization” in MAGIC “was
the recorded accelerometer graph;” with most users being
“unable to connect the shape of the three lines” that
correspond to the 3 axes of the accelerometer reading “to
the arm and wrist movements that produced them.”
Features preferred by developers turned out to be the
videos, “goodness” scores assigned to each gesture
according to how they match gestures in and not in their
own class, and a sorted list depicting the “distance” of a
selected example to every other example.

 10

Figure 2: MAGIC’s gesture creation interface. [2]

Gesture Interaction Designer (GIDE)
More recently, GIDE [8] features an implementation of the
graph paradigm for authoring accelerometer-based mid-air
gestures. GIDE leverages a “modified” hidden Markov
model approach to learn from a single example for each
gesture in the vocabulary. The user interface implements
two distinct features: (1) Each gesture in the vocabulary is
housed in a “gesture editor” component which contains the
sensor waveform, a video of the gesture being performed,
an audio waveform recorded during the performance, and
other information related to the gesture. (2) A “follow”
mode allows the developer to perform gestures and get real-
time feedback on the system’s estimate of which gesture is
being performed (via transparency and color) and where
they are within that gesture. (Figure 3) This feedback on the
temporal position within a gesture is multimodal: The
sensor multi-waveform, the video and the audio waveform
from the video are aligned and follow the gestural input.
GIDE also supports “batch testing” by recording a
continuous performance of multiple gestures and running it
against the whole vocabulary to check if the correct
gestures are recognized at the correct times.

User studies on GIDE reveal that the combination of multi-
waveform, video and audio was useful in making sense of
gesture data. Video was favored particularly since it allows
developers to still remember the gestures they recorded
after an extended period of not working on the gesture
vocabulary. Another finding from the user studies was the
suggestion that the “batch testing” feature where the
developer records a continuous flow of many gestures to
test against could be leveraged as a design strategy –
gestures could be extracted from a recorded performance of
continuous movement.

Figure 3: The “follow” mode in the GIDE interface. [8]

Discussion
Graphs that display acceleration data seem to be the
standard paradigm for representing mid-air gestures tracked
using acceleration sensors. This paradigm supports direct
manipulation for segmenting and filtering gesture data, but
manipulating acceleration data directly to modify gestures
is unwieldy. User studies show that graphs depicting
accelerometer (multi-)waveforms are not effective as the
sole representation of a gesture, but work well as a
component within a multimodal representation along with
video.

Visual Markup Languages
Using a visual markup language for authoring gestures can
allow for rich expression and may accommodate a wide
variety of gesture-tracking devices, e.g. accelerometers and
skeletal tracking, at the same time. The syntax of these
visual markup languages can be of varying degrees of
complexity, but depending on the sensor(s) used for gesture
detection, making use of the capabilities of the hardware
may not require a very detailed syntax. In this section we
examine a software tool, EventHurdle, that implements a
visual markup language for gesture authoring; and we
discuss a gesture spotting approach based on control points
which has not been implemented as a gesture authoring
tool, but provides valuable insight.

EventHurdle
Kim and Nam describe a declarative hurdle-driven visual
gesture markup language implemented in the EventHurdle
authoring tool [6]. The EventHurdle syntax supports gesture
input from single-camera-based, physical sensor-based and
touch-based gesture input. In lieu of a timeline or graph,
EventHurdle projects gesture trajectory onto a 2-
dimensional workspace. The developer may perform the
gestures, see the resulting trajectory on the workspace, and
declaratively author gestures on the workspace by placing
“hurdles” that intersect the gesture trajectory. Hurdles may
be placed in ways that result in serial, parallel and/or
recursive compositions. (Figure 4) “False hurdles” are
available for specifying unwanted trajectories. While an
intuitive way to visualize movement data from pointing
devices, touch gestures and blob detection; this approach
does not support the full range of expression inherent in 3-
dimensional mid-air gesturing.

 11

Figure 4: EventHurdle's visual markup language allows for a
variety of compositions: (from top left) a simple gesture with
one hurdle; serial and parallel compositions; combinations of
serial and parallel compositions; recursive gesturing. [6]

Gestures defined in EventHurdle are configurable to be
location-sensitive or location-invariant. By design,
orientation- and scale-invariance are not implemented in
order to avoid unnecessary technical options that may
distract from “design thinking.”

User studies on EventHurdle comment that the concept of
hurdles and paths is “easily understood” and it “supports
advanced programming of gesture recognition.” Other than
this, supporting features, rather than the strengths and
weaknesses of the paradigm or comparison with other
paradigms, have been the focus of user studies.

Control Points
Hoste, De Rooms and Signer describe a versatile and
promising approach that uses spatiotemporal constraints
around control points to describe gesture trajectories [4].
While the focus of the approach is on gesture spotting (i.e.
segmentation of a continuous trajectory into discrete
gestures) and not gesture authoring, they do propose a
human-readable and manipulable external representation.
(Figure 5) This external representation has significant
expressive power and support for programming constructs
such as negation (for declaring unwanted trajectories) and
user-defined temporal constraints. While the authors’
approach is to infer control points for a desired gesture from
an example, the representation they propose also enables
the manual placement of control points.

The authors do not describe an implementation that has
been subjected to user studies. However, they discuss a
number of concepts that add to the expressive power of
using control points as a visual markup language to
represent and manipulate gesture information. The first is
that it is possible to add temporal constraints to the markup;
i.e. a floor or ceiling value can be specified for the time
taken by the tracked limb or device to travel between
control points. This is demonstrated not on the graphical
markup (which can be done easily), but on textual code
generated to describe a gesture – another valuable feature.
The second such concept is that the control points are

surrounded by boundaries whose size can be adjusted to
introduce spatial flexibility and accommodate “noisy”
gestures. Third, boundaries can be set for negation when the
variation in the gesture trajectory is too much. The authors
discuss linear or planar negation boundaries only, but
introducing negative control points into the syntax could
also be explored. Finally, a “coupled recognition process” is
introduced, where a trained classifier can be called to
distinguish between potentially conflicting gestures; e.g. a
circle and a rectangle that share the same control points.

One limitation of this approach is the lack of support for
scale invariance. One way of introducing scale invariance
may be to automatically scale boundary sizes and temporal
constraints with the distance between control points.
However, it is likely that the relationship between optimal
values for these variables is nonlinear, which could make
automatic scaling infeasible.

Discussion
The expressive power and usability of a visual markup
language may vary drastically depending on the specifics of
the language and the implementation. The general
advantage of this paradigm is that it is suitable for
describing and manipulating location-based gesture
information (rather than acceleration-based information
commonly depicted using graphs). This makes using a
visual markup language suitable for mid-air gestures
detected by depth-sensing cameras, where the interaction
space is fixed and the limbs of the users move in relation to
each other. Either the motion sensing device or certain parts
of the skeletal model could be used to define a reference
frame and gesture trajectories could be authored in a
location-based manner using a visual markup language.

Timelines
Timelines of frames are commonly used in video editing
applications. They often consist of a series of ordered
thumbnails and/or markers that represent the content of the
moving picture and any editing done on it, such as adding
transitions.

Figure 5: Using control points to represent gestures [4]. (Left)
A “noisy” gesture still gets picked up due to relaxed
boundaries around control points. (Right) Negation is
introduced via vertical boundaries so that large movements in
the vertical axis are distinguished from the desired gesture.

 12

System UI Paradigm Programming Approach Insights from user studies

Exemplar [3] Graphs Demonstration Increases engagement with sensor
workings and limitations.

MAGIC [1] Graphs (multi-waveform) Demonstration
Users unable to connect waveform
to physical movements. Optional
video is favored.

GIDE [8] Graphs (multi-waveform
with video) Demonstration Multimodal representation helps

make sense of gesture data.

EventHurdle [6] Visual markup language Declaration Easily understood. Supports
“advanced” programming.

Control Points [4] Visual markup language Declaration / Demonstration Not implemented.
Gesture Studio 1 Timeline Demonstration Not published.

Table 1: Summary of studies on systems that exemplify three user interface paradigms for visually authoring mid-air gestures.

Gesture Studio
One application that implements a timeline to visualize
gesture information is the commercial Gesture Studio.1 The
application works only with sensors that detect gestures
through skeletal tracking using an infrared depth camera.
Developers introduce gestures in Gesture Studio by
demonstration, through performing and recording
examples. The timeline is used to display thumbnails for
each frame of the skeleton information coming from the
depth sensor. The timeline is updated after the developer
finishes recording a gesture, while during recording a
rendering of the skeletal model tracked by the depth sensor
provides feedback. After recording, the developer may
remove unwanted frames from the timeline to trim gesture
data for segmentation. Reordering frames is not supported
since gestures are captured at a high frame rate (depending
on the sensor, usually around 30 frames per second), which
would make manual frame-by-frame editing inconvenient.
The process through which these features have been
selected is opaque, since there are no published studies that
present the design process or evaluate Gesture Studio in
use.

Discussion
In gesture authoring interfaces, timelines make sense when
gesture tracking encompasses many limbs and dynamic
movements that span more than a few seconds. Spatial and
temporal concerns for gestures in 2 dimensions, such as
those performed on surfaces, can be represented on the
same workspace. The representation of mid-air gestures
requires an additional component such as a timeline to
show the change over time.

Discussion
We have presented a number of systems that exemplify
three user interface paradigms for visually authoring mid-
air gestures for computing applications (see Table 1 for a
summary). For sensor-based gesturing, the standard

1 http://gesturestudio.ca/

paradigm used to represent gesture information appears to
be projecting the sensor waveforms onto a graph. Graphs
appear to work well as components that represent sensor-
based gestures, allow experimentation with filters and
gesture recognition methods, and support direct
manipulation to some extent. User studies show that while
the graphs alone may not allow developers to fully grasp
the connection between movements and the waveform [1],
they have been deemed useful as part of a multimodal
gesture representation [8]. Using hurdles as a visual markup
language offers an intuitive and expressive medium for
gesture authoring, but it is not able to depict fully 3-
dimensional gestures. Using spherical control points may be
more conducive to direct manipulation while still affording
an expressive syntax, but no implementation of this
paradigm exists for authoring mid-air gestures. Finally,
timelines of frames may come in handy for visualizing
dynamic gestures with many moving elements, such as in
skeletal tracking; but used in this fashion they allow only
visualization and not manipulation.

There are paradigms that allow for the authoring of sensor-
based gestures both declaratively and through
demonstration. For skeletal tracking interfaces, tools based
on demonstration exist, but we have not come across visual
declarative programming tools for skeletal tracking
interfaces. In the next section, we propose a user interface
paradigm for declaratively authoring mid-air gestures for
skeletal tracking interfaces.

PROVOCATION: SPACE DISCRETIZATION AS A NOVEL
PARADIGM FOR AUTHORING MID-AIR GESTURES
The paradigms that we surveyed above each have their
strengths and weaknesses. We wish to propose a novel
paradigm for declaratively authoring mid-air gestures,
which we will call space discretization. This paradigm
conceptually supports both declaration and demonstration
as ways to introduce gestures, and direct manipulation to
edit them. The paradigm is adaptable for sensor-based
interactions and touch gestures. We will present a rendition
aimed at authoring gestures for skeletal tracking interfaces.

 13

Figure 6: A 2-dimensional “Z” gesture defined using ordered

hotspots in discretized space.

Overview and Implementation
We have implemented this paradigm as part of an
application called Hotspotizer. The application has been
developed as an end-to-end suite to facilitate rapid
prototyping of gesture-based interactions and adapting
arbitrary interface for gesture control. Collections of
gestures can be created, saved, loaded, modified and
mapped to a keyboard emulator within the application. The
current version is configured to work with the Microsoft
Kinect sensor and is available online as a free download.2

The paradigm we implemented works by partitioning the
space around the tracked skeletal model into discrete spatial
compartments. In a manner that is similar to the use of
control points in Hoste, De Rooms and Signer’s approach,
these discrete compartments can be marked and activated to
become “hotspots” that register movement when a tracked
limb enters them. (Figure 6) Our approach may be likened
to modifying the control points paradigm to use cubic
instead of spherical boundaries and allow the placement of
control points only at discrete locations in space. This is
due to the difficulty of manipulating continuously moveable
control points in 3 dimensions. Furthermore, using discrete
hotspots instead of control points allows for the boundaries
of the control points to be in custom shapes rather than
spheres only. Considering the precision of current skeletal
tracking devices, the difficulty of manipulating free-form
regions rather than discrete compartments does not pay off.

In Hotspotizer, the compartments are cubes that measure 15
cm on each side and the workspace is a cube, 300 cm on
each side, the centroid of which is fixed to the tracked
skeleton’s “hip center” joint returned by the Kinect sensor.
(Figure 7) The workspace has been sized to accommodate
larger users, and the compartments have been sized,
through empirical observations, to reflect the sensor’s
precision. The alignment of the workspace to the user’s
body results in gestures being location-invariant with
respect to the user’s position relative to the depth camera.

2 http://designlab.ku.edu.tr/design-thinking-research-
group/hotspotizer/

Figure 7: A 3-dimensional “swipe” gesture to be performed
with the right hand, implemented in Hotspotizer. The front
view (A) and the side view (B) depict the third frame, selected
from the timeline (C). The 3D viewport (D) depicts all three
frames, using transparency to imply the order.

However, gestures in Hotspotizer are always location-
dependent with respect to the gesturing limb’s position
relative to the rest of the body. Scale- and orientation-
invariance are not automatically supported, but it is possible
to arrange hotspots in creative ways that allow the same
gesture to be executed on different scales.

Splitting gesture data into frames, which are navigated
using a timeline, supports authoring dynamic movements.
The side view and front view grids only display hotspots
that belong to one frame at a time, since placing all of the
hotspots that belong to different frames of a gesture on the
same grids results in a convoluted interface. During gesture
tracking, if the tracked limb enters any one of the hotspots
that belongs to a frame, the entire frame registers a “hit.”
For a gesture to be registered, its frames must be hit in the
correct order and the time that elapses between subsequent
frames registering a hit must not exceed a pre-defined
timeout. Conceptually the timeout could be adjustable; in
the current implementation, for the sake of a simple user
interface, it is hard-coded to 500ms in Hotspotizer.

In essence, we propose a design for an expressive user
interface paradigm for authoring mid-air gestures detected
through skeletal tracking. Aspects of this design are based
on the control points paradigm described in [4]. We
modified the paradigm to confine the locations of the
control points to discrete pre-defined locations and use
cubic control point boundaries of fixed size, which can be
added together to create custom shapes. We also introduce a
timeline component so that spatial and temporal constraints
can be manipulated unambiguously.

Future Work
Future work includes features to enrich the expressiveness
of the paradigm and evaluating its performance in use.

The current implementation of the paradigm in Hotspotizer
supports only declaration – manually specifying hotspots by
selecting relevant areas on a grid. The interface may be
extended to allow the introduction of gestures through

 14

demonstration, by inferring hotspots automatically from
recorded gestures.

“Negative hotspots” to mark compartments that should not
be crossed when gesturing are a possibility for future
iterations on Hotspotizer. So is supporting gestures
performed by multiple limbs; possibly by using a multi-
track timeline and coupling keyframes where movements of
the limbs should be synchronized.

In order to describe more complex gestures, it may make
sense to introduce classifier-coupled gesture recognition.
One shortage of the paradigm is that it does not
accommodate the repeated usage of hotspots within
different frames of a gesture well. If a gesture requires that
a certain hotspot be hit twice, for example, the current
implementation does not afford a way of detecting whether
the first or the second hit is registered as a user performs the
gesture.

Finally, as the precision of skeletal tracking devices
increases and in order to accommodate devices that track
smaller body parts such as the hands, adjustable workspace
and compartment sizing may be introduced.

Formative evaluations have been conducted throughout the
development Hotspotizer, focusing on prioritizing features
and the visual design of the interface. Results of these,
along with summative evaluations that compare the
application to existing solutions and uncover user strategies
for using the tool will be published in the future.

CONCLUSION
We reviewed existing paradigms for authoring mid-air
gestures and discussed how graphs of sensor waveforms are
suitable components that represent acceleration-based
gesture data; how visual markup languages are better suited
for location-based gesture data; and how timelines are used
to communicate dynamic gesturing. We presented a novel
gesture authoring paradigm for authoring mid-air gestures
sensed by skeletal tracking: a visual markup language based
on space discretization supported by a timeline to visualize
temporal aspects of gesturing. Future work may build

supporting features onto this paradigm and evaluate its
performance in use by developers.

ACKNOWLEDGEMENT
The work presented in this paper is part of research
supported by the Scientific and Technological Research
Council of Turkey (TÜBİTAK), project number 112E056.

REFERENCES
1. Ashbrook, D. and Starner, T. MAGIC: A Motion Gesture

Design Tool. Proceedings of the 28th international conference
on Human factors in computing systems - CHI ’10, ACM
Press (2010), 2159.

2. Buxton, B. Sketching User Experiences: Getting the Design
Right and the Right Design. Morgan Kaufmann, Boston, 2007.

3. Hartmann, B., Abdulla, L., Mittal, M., and Klemmer, S.R.
Authoring sensor-based interactions by demonstration with
direct manipulation and pattern recognition. Proceedings of
the SIGCHI conference on Human factors in computing
systems - CHI ’07, ACM Press (2007), 145.

4. Hoste, L., De Rooms, B., and Signer, B. Declarative Gesture
Spotting Using Inferred and Refined Control Points.
Proceedings of the 2nd International Conference on Pattern
Recognition Applications and Methods (ICPRAM 2013),
(2013).

5. Hughes, D. Microsoft Kinect shifts 10 million units, game
sales remain poor. HULIQ, 2012.
http://www.huliq.com/10177/microsoft-kinect-shifts-10-
million-units-game-sales-remain-poor.

6. Kim, J.-W. and Nam, T.-J. EventHurdle. Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
- CHI ’13, ACM Press (2013), 267.

7. Stein, S. Kinect, 2011: Where art thou, motion? CNET, 2011.
http://www.cnet.com/news/kinect-2011-where-art-thou-
motion/.

8. Zamborlin, B., Bevilacqua, F., Gillies, M., and D’inverno, M.
Fluid gesture interaction design. ACM Transactions on
Interactive Intelligent Systems 3, 4 (2014), 1–30.

