
 

 
 Takeshi Masuda  

 Kouji Kozaki   

 
 Graduate School of Engineering Osaka University#1  

The Institute of Scientific and Industrial Research (ISIR) ，Osaka University#2 

Abstract.  Quality of ontology is important because it is connected directly with 

the performance of an application system using the ontology. However ontology 

refinement to improve its quality needs knowledge and experiments in ontology 

development. Therefore, ontology refinement task is too difficult especially for 

beginners in ontology building. In order to solve this problem this article pro-

poses an ontology refinement support system based on similarity among is-a hi-

erarchies and an evaluation of it. The system can support content refinements for 

ontologies. 

1 Introduction 

Nowadays, ontologies are constructed in various fields such as medical infor-

mation, mechanical design, and etc. These ontologies are used as knowledge bases and 

knowledge models for application systems. Quality of ontologies is an important factor 

for the application system which uses them because it directly affects to its perfor-

mance. Therefore a construction of better quality ontology is a considerable issue. 

However, in order to build well organized ontologies we need knowledge and 

experience about ontology construction and also expertise in their target domain. For 

this reason, it is not easy for beginners to construct good ontologies. Because of these 

backgrounds, ontology construction and refinement support system are expected. 

There are some approaches to support ontology building. One is an approach to 

give some guidelines for the whole process of ontology building [1]. Some researchers 

propose semi-automatic method to support ontology building process. For example, 

proposes a semi-automatic method to construct a large scale ontology using semi- struc-

tured information such as Wikipedia [2]. On the other hand, ontology refinement is also 

one of important process to improve quality of was ontologies. This paper proposes an 

ontology refinement method and an ontology refinement support system based on it. 

 A Basic Consideration on Ontology Refine Method using

 Similarity among Is-a Hierarchies  

62



The rest of this paper is organized as follows. Section 2 outlines existing ap-

proaches on supporting method for ontology refinement. In section 3, we propose on-

tology refinement method based on similarity among is-a hierarchies. Section 4 dis-

cusses evaluation of the proposed method. Finally, Section 5 concludes this paper. 

2 Ontology Refinement Supporting Method 

There are two kinds of supporting methods for ontology refinements to improve 

quality of ontologies. One is a method to detect and correct formal errors in ontologies. 

And the other is a method to refine contents of ontologies. The former includes many 

methods for consistency checking and debugging function for ontologies [3]. Poveda 

et al. collect common errors found in OWL ontologies, which are called ontology pit-

falls, and develop a system to detect these pitfalls and correct some of them [4]. On the 

other hand, when it comes to the latter, there are a few methods to refine contents of 

ontologies. Although some methods such as voting system [5] and visualization to sup-

port understanding of ontologies are proposed, they require human intervention in order 

to judge right and wrong of contents of ontologies. That is, in these approaches, 

knowledge of their target domains and experiences on ontology building are necessary 

to evaluate their contents. Therefore they are not enough to support content refinement 

of ontologies. To overcome this problem, this paper propose an ontology contents re-

finement support system which could be help for users who do not have enough expe-

riences on ontology building and domain knowledge.  

3 Ontology Refinement Based on Similarity among Is-a 

Hierarchies 

3.1 Similarity among Is-a Hierarchies 

There is a guideline for building well-organized ontologies that “Each subclass 

of a super class is distinguished by the values of exactly one attribute of the super class. 

[6]” When ontologies are built under the guideline, we can find many is-a hierarchies 

whose conceptual structures are similar to other is-a hierarchies in the same ontologies. 

For example, in Fig.1, “vehicle” is classified into two lower concepts such as “ground 

vehicle” and “aircraft” according to their “movement space”. These characteristics are 

represented by referring to other concepts as a class restriction for “movement space”. 

In “vehicle” class, the class constraint of “movement space” slot is “natural space”. 

And it is specialized in slots of its lower concepts “ground vehicle” and “aircraft” to 

“ground” and “air” respectively. As the result, is-a hierarchies of “vehicle”, “movement 

space” slot and “natural space” have partly similar structures. 

When a concept is specialized into its lower concepts, some of its slots are also 

specialized according to is-a hierarchies of concepts which are referred as their class 

constraints. In the same way, we can find similar structures of is-a hierarchies of “bi-

cycle”, “handle” slot and “handle” in Fig.1.  

63



In this paper, we call “an is-a hierarchy of slots whose class constraints are spe-

cialized” “slot hierarchy”, and “an is-a hierarchy of concepts which are referred as 

class constraints of these slots” “referred concept hierarchy”. “Slot hierarchy” and its 

“referred concepts hierarchy” have a similar structure. In addition, because a “slot hi-

erarchy” is built according to a basic concept hierarchy1 in which these slots are de-

fined, the basic concept hierarchy also has similar structure with the slot hierarchy. 

Therefore, we can find partly similar structure among “basic concept hierarchy”, “slot 

hierarchy” and “referred concept hierarchy” each other (see Fig.1).  

 

 

Fig. 1. Similarity among Is-a Hierarchies 

3.2 Ontology Refinement Using Similarity among Is-a Hierarchies 

In this paper, we consider ontology refinement system using similarity among 

three kinds of is-a hierarchies introduced in the previous section. There are two direc-

tions to use the similarity among them for the ontology refinement.  

 

(1) The first direction is to propose refinement of a basic concept hierarchy according 

to structure of its referred concept hierarchy. The refinement system compares “referred 

concept hierarchy” to “slot hierarchy”, then it proposes some modification of the “slot 

hierarchy” to have similar structure with the referred concept hierarchy. As the result, 

the user also refines “basic concepts hierarchy” according to the proposal. 

 

(2) The other direction is to propose refinement of a referred concept hierarchy accord-

ing to structure of a basic concept hierarchy which refers to it. The refinement system 

compare “slot hierarchy” to “basic concept hierarchy”, then it make proposal to modify 

                                                           
1 It corresponds to a normal class hierarchy. We call it basic concept hierarchy to distinguish it 

with slot hierarchy and referred concept hierarchy. 

64



so that they have a same structure. The proposal involves addition of some concepts to 

“referred concepts hierarchy”. According to the proposal, the user decides what concept 

should be added and modifies the ontologies. 

In this paper, we call the former approaches “Forward refinement” and the later 

ones “Backward refinement”. 

3.3 Forward Refinement 

Outline of Forward Refinement 

For forward refinement, at first the system compare a referred concept hierarchy 

to the slot hierarchy which refers to it. For comparing them, the system focuses on 

concepts which are not refereed by any concepts in the slot hierarchy. When the referred 

concept hierarchy contains such un-referred concepts, it means that these two hierar-

chies are not similar structure. Therefore, such un-referred concepts are considered as 

support target concepts for forward refinement. 

Here, we consider an example for proposals for modifications of an ontology based on 

forward refinement. In is-a hierarchy shown in Fig.2, “gear change” is a support target 

concept for forward refinement because it is not referred by any other concepts. Then 

the system consider its upper and lower concepts, “driving operation” and “shift to a 

lower gear”. These two concept are referred by “driving action” and “slowdown” as 

class constraints of the same slot “part of action”. Based on this observation, the refine-

ment system can propose to add “part of action” slot on “speed control”(fig.2 ①), 

which is a middle concept between “driving action” and “slowdown”, and refer “gear 

change” (the support target concept) as its class constraint(fig.2 ②). By following this 

proposal, “basic concepts hierarchy”, “slot hierarchy” and “referred concepts hierar-

chy” become a similar structure. 

In this way, the system makes proposals for modification of an ontology so that 

these three kinds of hierarchies have similar structures by focusing on un-referred con-

cepts and their upper and lower concepts. There are patterns how the system propose 

modification of an ontology based on forward refinement. In order to detect which pat-

terns are applicable by the system, we have to make them explicit as conditions which 

computer are able to distinguish. Using these condition, the system can find out pro-

posals for ontology refinement automatically. 

65



 

Fig. 2. Refinement Suggestion Example 

 Patterns for Forward Refinement 

Patterns for forward refinement are classified into the following three types by 

the structure of focusing referred concept hierarchy. 

(i) Focusing on the support target concept and both of its upper and lower concepts 

as the referred concept hierarchy. 

(ii) Focusing on the support target concept and its upper concept as the referred 

concept hierarchy2. 

(iii) Focusing on the support target concept and one of its lower concept as the re-

ferred concept hierarchy3. 

 

On the other hand, which kinds of modifications are proposed for ontology re-

finement depends on the basic concept hierarchy to which the proposed modification 

are apply. Therefore patterns for forward refinement are classified into two more types 

as followings, 

A) There is a concept which can be added a new slot referring to the support target 

concept as its class constraint in the basic concept hierarchy. 

B) There is no concept which can be added a new slot referring to the support target 

concept as its class constraint in the basic concept hierarchy. 

                                                           
2  We does not care whether the support target concept has lower concept or not. We assume 

that the ontology does not have multiple inheritances. 
3  As the support target concept which has multiple lower concepts, this system propose each 

suggestions for each lower concepts. And we distinguish these proposals as different one. 

When we discuss the result in section 4, we also count these proposals as different suggestions. 

66



In the case of type B), the system can propose two kinds of modification methods; 

(1) to add new slot on an existing concept and refer target concept as its class constraint 

and (2) to add new concept which has a slot referring to the support target concept as 

its class constraint. The users can choose the method (2) when they consider the method 

(1) is not appropriate, that is, the existing concept could not have the proposed slot. In 

the case of type B, the system can propose only the method (2) because there is no 

concept which can be added the new slot. 

Based on the above classifications, forward refinement is classified into six patterns by 

combinations of the above (i) - (iii) and A) - B). 

3.4 Backward Refinement 

 Outlines of Backward Refinement 

For backward refinement, the system firstly compares a “slot hierarchy” to its 

“basic concept hierarchy”. Then, the system proposes to add a new concept to its “re-

ferred concept hierarchy” so that these three hierarchies have similar structure. For ex-

ample, a “basic concepts hierarchy” shown in Fig.3 consists of “car race”, “formula car 

race”, “F1 race”, “F3 race” and “Indy 500 race”.  At the same time, their “machine 

type” slots are specialized according to its “referred concept hierarchy” shown in Fig.4 

and compose its “slot hierarchy”. However in this example, these two hierarchies are 

not similar. In this case, the system can propose to add a new middle concept which is 

referred to as a class constraint concept of the “machine type” slot at “formula car 

race” concept in the referred concept hierarchy in Fig. 4 so that it has the similar struc-

ture with its slot hierarchy.  

Backward refinement has a significant different from forward refinement. It is 

that the system always proposes to add new concept on the “referred concept hierarchy” 

for backward refinement. 

 

Fig. 3. Base Concepts Hierarchy and Slots Hierarchy about “car race” 

67



 

Fig. 4. Referred Concept Hierarchy 

 Patterns for Backward Refinement 

Patterns for backward refinement are classified into the following three types by 

the structure of focusing basic concept hierarchy. 

(i) Focusing on a pair of upper and lower slots which compose a “slot hierarchy” 

and the “basic concepts hierarchy” which consists of concepts which have 

these slots. 

(ii) Focusing on a slot, the “basic concept” which has the slot and the “basic con-

cepts hierarchy” which consists of the concept and its upper concept. 

(iii) Focusing on a slot, the “basic concept” which has the slot and the “basic con-

cepts hierarchy” which consists of the concept and its lower concept. 

On the other hand, which kinds of modifications are proposed for ontology re-

finement In addition, the structure of its referred concept hierarchy affects to which 

kinds of modifications are proposed for ontology refinement. Therefore patterns for 

backward refinement are classified into two more types by considering its referred con-

cepts hierarchy as follows; 

A) Focusing referred concept hierarchy and basic concept hierarchy have similar 

structure and there is a concept which can be referred as class constraint for its 

slot hierarchy in the referred concept hierarchy. 

B) There is no concept in the focusing “referred concepts hierarchy” which can 

be referred as class constraint for its slot hierarchy. 

In the case of type A), the system can propose two kinds of modification meth-

ods; (1) to add new slot on an existing concept in the basic hierarchy and refer to a 

concept in the referred hierarchy as its class constraint and (2) to add new concept in 

the referred hierarchy and add new slot which refers to the concept as its class constraint 

on an existing concept in the basic hierarchy. The users can choose the method (2) when 

they consider the method (1) is not appropriate, that is, there is no concept which is 

appropriate as a class constraint of the added slot. In the case of type B), the system can 

propose only the method (2) because there is no concept which can be referred as class 

constraint for the added slot. 

Based on the above classifications, backward refinement is classified into six 

patterns by combinations of the above (i) - (iii) and A) - B). 

 

68



3.5  The Prototype of the Ontology Refinement System. 

Based on ontology refinement methods discussed the above, we designed and 

developed a prototype of ontology contents refinement support system. This system 

consists of the following three modules; 

- The candidates estimating module estimates and proposes possible modifications 

for ontology refinement based on pattern matching discussed in section 3.3 and 

3.4.   

- The candidates display and select module shows the results proposed by the can-

didates estimating module.  The users can select proposed modification they want 

to apply.  

- The modification apply module applies the selected modification on the target on-

tology. 

 

Currently, this prototype system supports for only forward refinement. We are 

developing supporting function for backward refinement. The system is implemented 

using Java with some APIS called HozoCore and Hozo OAT (Ontology Application 

Toolkit) which are libraries deal with ontologies developed by Hozo. 

4 Evaluation 

4.1 Evaluation Methods 

Target ontologies 

To evaluate the proposed refinement system, we applied the prototype system to 

refine several ontologies. Its targets are 9 ontologies built by beginners and 3 ontologies 

which are developed by ontology experts and open to the public. 4 of them are ontolo-

gies which were revised by beginners after meeting ontology experts about given ad-

vices for them. They are shown as ontologies whose name have suffix “2” (e.g. race2) 

in Table.1.  

 

Evaluation criteria 

In this paper, we used the following evaluation criteria. 

(1)   Applicable scope 

In the case of forward refinement, the system proposes some modifications fo-

cusing on un-referred concepts as support target concept. Therefore, in order to evaluate 

applicable scope of the method, we calculated the following rate in each target ontol-

ogy. 

(a) The rate of support target concepts to the all concepts in the target ontology  

(b) The rate of concepts which the system could propose any modifications for re-

finement to support target concepts in the target ontology 

(2)   Validity of proposed modifications for refinement 

69



The author evaluated whether proposed modifications are appropriate for ontol-

ogy refinements. This evaluation was conducted for one of target ontologies built by 

beginners (“race1” in Table.1).  

4.2 Result and Consideration 

 Applicable Scope 

Table.1 shows the evaluation result for applicable scope of forward refinement. 

The rates of support target concepts to the all concepts in each target ontology are 49% 

for ontologies built by beginners 61% for ontologies built by experts on average 

(Tabel.1-(a)). This result is reasonable because of two reasons. First, all concepts do 

not have to be similar completely. Second, ontologies built by experts have some con-

cept as concepts at middle layer of the ontology. The rates of concepts which the system 

could propose any modifications for refinement to them  are 49% for the beginner’s 

ontologies and 34% for the experts’ ontologies on average (Table.1-(b)). We suppose 

this result shows that the proposed method could cover enough number of concepts as 

its target for refinement support. 

 

 

Table 1. Evaluation result for applicable scope of forward refinement. 

 

70



 

Fig. 5. Distribution of Proposed Refinement Candidates Patterns 

 

Fig.5 said that the number of pattern (i)-A) and (i)-B) are fewer than other pat-

terns. It is because they have stricter conditions to be applied, which consider both of 

upper and lower concepts of support target concepts, than others. The pattern (i) is also 

expected higher validity than others because of its condition. On the other hand, the 

number of pattern (iii)-A) is also fewer than others. It is because the pattern is applied 

when the lower concept of the support target concept refer a concept which has no upper 

concept while there is only few such concept.  

 

 Validity of Proposal Modifications for Refinement  

The author evaluated whether proposed modifications are appropriate for “race2” 

which was built by beginner. As a result, 20% of the suggestions by this system is 

evaluated as appropriate modifications (see Table.2).  

 

 

Table 2. Validity of proposed Modifications for Refinement of race2 ontology 

71



Here, we consider an example of proposed modification which is evaluated as 

inappropriate. When the system regards “artifact” as a support target concept because 

it is not referred and its upper concept “entity” is referred by “target” slot at “action” 

concept, the system makes a proposal that to add a new lower concept of “action” and 

add “target” slot whose class constraint is “artifact” on the new concept [fig.6]. This 

suggestion means to add a new concept like “artifact target action”, but such concept is 

unnatural to define. Such unnatural examples were appeared at around top level concept 

in the ontology. Note here that these examples are just unnatural while they are not 

ontological errors. 

 

Fig. 6.  Inappropriate Example of Refinement Candidate 

 

On the basis of this observation, we removed top level concepts from the support 

target concepts and evaluated validity of proposed modifications again. As the result, 

the validity rate promoted 20% to 39% (see Table.3). This suggest us it is effective to 

remove top level concept from supporting target concepts for improving validity of the 

propose method.  

 

Table 3. Validity of proposed modifications for refinement of race2 ontology after top 

level concepts are removed from supporting target concepts. 

 

72



4.3 Discussion 

In the proposed ontology refinement method, the users decide whether they apply 

suggested modifications or not. So, we believe that 39% of validity is enough high to 

use it. In addition, inappropriate suggestions are just unnatural while they are ontolog-

ical correct. Therefore, we think they are not so inconvenient for ontology refinement. 

However, it is difficult for beginners to decide whether they apply suggested modifica-

tions. Therefore, it is an important future work to consider how to compare priority of 

refinement proposal and how to support finding the most appropriate modification for 

refinement.  

Another important future work is to evaluate the proposed method for more on-

tologies. At the present, the author evaluated validity of forward refinement for only 

one ontology made by beginner. We plan to evaluate for more other ontologies and for 

backward refinement in the future. 

5 Conclusion 

This article proposed an ontology refinement support system based on similarity 

among is-a hierarchies and evaluated the proposed method partly. The system can sup-

port content refinements for ontologies. The feature of the proposed refinement system 

is to refine ontology semi-automatically. In the future, we will evaluate and consider 

the backward refinement, and develop the refinement system using forward and oppo-

site refinement and improve the precision of this system’s proposal. 

  

73



References 

1. Natalya F. Noy and Deborah L. McGuinness. ``Ontology Development 101: A Guide to 

Creating Your First Ontology''. Stanford Knowledge Systems Laboratory Technical Report 

KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880, March 

2001.  

2. Takeshi Morita, Yuka Sekimoto, Susumu Tamagawa, Takahira Yamaguchi. : Building Up 

a Class Hierarchy with Properties from Japanese Wikipedia. WI-IAT '12 Proceedings of the 

The 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intel-

ligent Agent Technology - Volume 01, Pages 514-521 

3. Oscar Corcho [OEG], Catherine Roussey [LIRIS], Luis Manuel Vilches blázquez [OEG], 

Ivan Pérez [IMDEA]. : Pattern-based OWL ontology debugging guidelines Dans Workshop 

on Ontology Patterns (WOP 2009), collocated with the 8th International Semantic Web Con-

ference (ISWC-2009)., Eva Blomqvist, Kurt Sandkuhl, Francois Scharffe, Vojtech Svatek. 

ed. Washington D.C., USA. pp. 68-82. CEUR Workshop proceedings Vol 5. ISSN 1613-

0073. 

4. María Poveda-Villalón, Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez. : Validat-

ing Ontologies with OOPS! Knowledge Engineering and Knowledge Management Lecture 

Notes in Computer Science Volume 7603, 2012, pp 267-281 

5. Benjamin M Mark D. Wilkinson. : Ontology engineering using volunteer labor. WWW '07 

Proceedings of the 16th international conference on World Wide Web, Pages 1243-1244 

6. Tutorial on ontological engineering - Part 2: Ontology development, tools and languages  

New Generation Computing, OhmSha&Springer, Vol.22, No.1, pp.61-96, 2004 

74


