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Preface

VISCERAL (Visual Concept Extraction Challenge in Radiology) aims to organize series of
benchmarks on the processing of large-scale 3D radiology images, by using an innovative
cloud-based evaluation approach.

While a growing number of benchmark studies compare the performance of algorithms for
automated organ segmentation in images with restricted field of views, emphasis on anatom-
ical segmentation and landmark localization in images with wide field-of-view (e.g. show-
ing entire abdomen, trunk, or the whole body) has been limited. VISCERAL Anatomy2

benchmark series, namely Organ Segmentation and Landmark Detection Benchmarks, aim
to address this need. This ISBI VISCERAL Challenge, a part of Anatomy2 series, has
been organized on May 1st 2014, within the IEEE International Symposium on Biomedical
Imaging (ISBI) in Beijing, China.

The challenge participants have submitted segmentation and localization results two weeks
before the challenge session, that were evaluated against test data by the organizers with
results presented during the challenge session. Each participant presented his method in a
15 minute oral session during the challenge session. Participants also submitted short papers
summarizing their specific methodologies that were used to generate their results.

This volume contains two parts. The first part consist of one paper authored by the
organizers of the challenge, and the second part presents a compilation of the submissions
by the challenge participants. We thank the authors for their submissions and the program
committee for their hard work.

Orcun Goksel
On behalf of VISCERAL Consortium
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Tomàs Salas Fernandez6, Roger Schaer1, Abdel Aziz Taha5,
Marianne Winterstein4, Allan Hanbury5

University of Applied Sciences Western Switzerland, Switzerland1

Swiss Federal Institute of Technology (ETH) Zürich, Switzerland2
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Abstract

The VISual Concept Extraction challenge in RAdioLogy
(VISCERAL) project has been developed as a cloud–based
infrastructure for the evaluation of medical image data in
large data sets. As part of this project, the ISBI 2014 (Inter-
national Symposium for Biomedical Imaging) challenge was
organized using the VISCERAL data set and shared cloud–
framework. Two tasks were selected to exploit and com-
pare multiple state–of–the–art solutions designed for big data
medical image analysis. Segmentation and landmark localiza-
tion results from the submitted algorithms were compared to
manually annotated ground truth in the VISCERAL data set.
This paper presents an overview of the challenge setup and
data set used as well as the evaluation metrics from the vari-
ous results submitted to the challenge. The participants pre-
sented their algorithms during an organized session at ISBI
2014. There were lively discussions in which the importance
of comparing approaches on tasks sharing a common data set
was highlighted.

Copyright c© by the paper’s authors. Copying permitted only for private and academic purposes.

In: O. Goksel (ed.): Proceedings of the VISCERAL Organ Segmentation and Landmark Detection Benchmark at
the 2014 IEEE International Symposium on Biomedical Imaging (ISBI), Beijing, China, May 1st, 2014
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1 Introduction

Computational approaches that can be scaled to large amounts of medical data are needed to
tackle the ever–growing data resources obtained daily from the hospitals [Doi05]. Handling this
enormous amount of medical data during clinical routine by health professionals has complexity
and scaling limitations. It is also very time–consuming, and hence requires unsupervised and
automatic methods to perform the necessary data analysis and processing for data interpretation.
There are already many algorithms and techniques for big data analysis, however, most research
groups do not have access to large-scale annotated medical data to develop such approaches for
medical images. Distributing these big data sets (on the order of terabytes) requires efficient and
scalable storing and computing capabilities. Evaluation campaigns and benchmarks can objectively
compare multiple state–of–the art algorithms to determine the optimal solution for a certain clinical
task [HMLM14, GSdHKCDF+13].

The Visual Concept Extraction Challenge in Radiology (VISCERAL) project was developed as
a cloud–based infrastructure for the evaluation of medical image analysis techniques on large data
sets [LMMH13]. The shared cloud environment in which the VISCERAL project takes place allows
access and processing of these data without having to duplicate the data or move it to participants’
side. Since the data are stored centrally, and not distributed outside the cloud environment,
the legal and ethical requirements of such data sets can also be satisfied, so also confidential
data sets can be benchmarked in this way as only a small training data set can be accessed by
participants [EILI+10]. The cloud infrastructure is provided and funded by the VISCERAL project.
The participants are provided with computationally powerful virtual machines that can be accessed
remotely in the shared cloud infrastructure while working on the training data and tuning their
algorithms. Participant access is withdrawn during the evaluation phase and only the organizers
access the machines. The algorithms are brought to the data to perform automated processing and
data mining. The evaluation of the performance of these methods can therefore be done with real
clinical imaging data and the outcomes can be reused to improve the methods.

The whole body 3D medical imaging data including manual labels that is provided by VIS-
CERAL includes a small subset with ground truth annotated by experienced radiologists. Through
evaluation campaigns, challenges, benchmarks and competitions, tasks of general interest can be
selected to compare the algorithms on a large scale. This manually annotated gold corpus can be
used to identify high quality methods that can also be combined to create a much larger “reason-
ably annotated” data set, satisfactory but perhaps not as reliable as manual annotation. Using
fusion techniques this silver corpus will be created with the agreement between the segmentations
of the algorithms on a large–scale data set. This maximizes the gain of manual annotation and also
identifies strong differences between participating systems on the annotated organs.

2 ISBI Challenge Framework

The registration procedure for the ISBI challenge was that of the VISCERAL series benchmark
that includes several campaigns. The participants filled information details and uploaded a signed
participation agreement form, which corresponds to ethics requests for usage of the data. Since
the VISCERAL data set is stored on the Azure Cloud, each participant then received access to an
Azure virtual cloud–computing instance. There were 5 operating systems available to choose from
including Windows 2012, Windows 2008, Ubuntu Server 14.04 LTS, openSUSE 13.1 and CentOS
6.5. All cloud– computing instances have an 8–core CPU with 16 GB RAM to provide the same
computing capabilities to different solutions proposed. The participant gets administrator rights
on their virtual machine (VM) and can access remotely to deploy their algorithms and add any
supporting library/applications to their VM. The VISCERAL training data set can then be accessed

Jiménez del Toro et al: ISBI VISCERAL Challenge Organization
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Figure 1: The ISBI training set.

and downloaded securely within the VMs through secured URL links.

2.1 Data Set

The medical images contained in the VISCERAL data set have been acquired during daily clinical
routine work. Data sets of children (<18 years) were not included based on the recommendations
of the ethical committee. In the provided data sets multiple organs are visible and depicted in a
resolution sufficient to reliably detect an organ and delineate its borders. This is to enforce that
a large number of organs and structures can be segmented in one data set. The data set consists
of computed tomography (CT) scans and magnetic resonance (MR) imaging with and without
contrast enhancement to evaluate the participants algorithms on several modalities, contrasts and
MR sequence directions, making sure that algorithms are not optimized for one specific machine
or protocol.

The available training set from VISCERAL Anatomy2 benchmark was used by the participants
of the ISBI VISCERAL challenge. The contents of this dataset are elaborated below.

2.1.1 CT Scans

There are 15 unenhanced whole–body CT volumes acquired from patients with bone marrow neo-
plasms, such as multiple myeloma, to detect osteolysis. The field–of–view spans from and includ-
ing the head to the knee (see Fig. 2, A). The in–plane resolution ranges between 0.977/0.977 to
1.405/1.405 mm, and the in–between plane resolution is 3 mm or higher.

15 contrast–enhanced CT scans of the trunk that have been acquired in patients with malignant
lymphoma are also included. They have a large field–of–view from the corpus mandibulae to the
lower part of the pelvis (see Fig. 2, B). They have an in–plane resolution of between 0.604/0.604
and 0.793/0.793 mm, and an in–between plane resolution of at least 3 mm or higher.

2.1.2 MR Scans

15 whole–body MR scans in two sequences (30 in total) are also part of the training set. They were
acquired in patients with multiple myeloma to detect focal and/or diffuse bone marrow infiltration.
Both a coronal T1–weighted and fat-suppressed T2–weighted or STIR (short tau inversion recovery)
sequence of the whole body are available for each of the 15 patients. The field–of–view starts and
includes the head and ends at the feet (see Fig. 2, C). The in–plane resolution is 1.250/1.250 mm,
and the in–between plane resolution is 5 mm.

Jiménez del Toro et al: ISBI VISCERAL Challenge Organization
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Figure 2: Sample data set volumes. A) Whole–body unenhanced CT; B) contrast–enhanced CT of
the trunk; C) whole–body unenhanced MR; D) contrast–enhanced MR of the abdomen

To improve the segmentation of smaller organs (such as the adrenal glands), 15 T1 contrast–
enhanced fat saturated MR scans of the abdomen are also included. They were acquired in onco-
logical patients with likely metastases within the abdomen. The field–of–view starts at the top of
the diaphragm and extends to the lower part of the pelvis (see Fig. 2, D). They have an in plane
resolution of between 0.840/0.804 to 1.302/1.302 mm, and an in–between plane resolution of 3 mm.

2.1.3 Annotated Structures and Landmarks

There are in total 60 manually annotated volumes in this ISBI challenge training set. The available
data contains segmentation and landmarks of several different anatomical structures in different
imaging modalities, e.g. CT and MRI.

The two categories of annotations and results are:

• Region segmentations: These regions correspond to anatomical structures (e.g. right lung), or
sub–parts in volume data. The 20 anatomical structures that make up the training set are:
trachea, left/right lungs, sternum, vertebra L1, left/right kidneys, left/right adrenal glands,
left/right psoas major muscles, left/right rectus abdominis, thyroid gland, liver, spleen, gall-
bladder, pancreas, urinary bladder and aorta. Not all structures are visible or within the
field–of–view in the images, therefore leading to varying numbers of annotations per structure
(see Fig. 1 for a detailed break–down).

• Landmarks: Anatomical landmarks are the locations of selected anatomical structures that
should be identifiable in the different image sequences available in the data set. There can
be up to 53 anatomical landmarks (see Fig. 1) located in the data set volumes: left/right
clavicles, left/right crista iliaca, symphysis, left/right trochanter major, left/right trochanter
minor, aortic arch, trachea bifurcation, aorta bifurcation, vertebrae C2-C7, Th1-Th12, L1-L5,
xyphoideus, aortic valve, left/right sternoclavicular, VCI bifurcation, left/right tuberculums,

Jiménez del Toro et al: ISBI VISCERAL Challenge Organization
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left/right renal pelvises, left/right bronchus, left/right eyes, left/right ventricles, left/right
ischiadicum and coronaria.

In total the 60 training set volumes containing 890 manually segmented anatomical structures and
2420 manually located anatomical landmarks make up the training set. Some of the anatomical
structures in the volumes were not segmented if the annotators considered there was insufficient
tissue contrast to perform the segmentation or to locate the landmark. Other structures are miss-
ing or not included in the training set because of anatomical variations (e.g. missing kidney) or
radiologic pathological signs (e.g. aortic aneurysm). Landmarks are easy and quick to annotate
whereas precise organ segmentation is time–consuming even when using automatic tools.

2.1.4 Test Set

The test set contains 20 manually annotated volumes. Each modality (whole–body CT, thorax
and abdomen contrast–enhanced CT, whole–body MR and abdomen contrast enhanced MR) is
represented by 5 volumes. The anatomical structures and landmarks contained in the selected
volumes were used to evaluate the participants’ algorithms.

2.2 ISBI VISCERAL Challenge Submission

The participants can select the structures and modalities in which they choose to participate.
The outputs are therefore evaluated per structure and per modality. The evaluation of the ISBI
challenge has been organized differently than the general VISCERAL evaluation framework to allow
for the evaluation results to complete in the given relatively short time–frame. For this challenge,
the test set volumes were made available in the cloud some weeks ahead of the challenge. The
participants themselves computed the annotations (segmentations and/or landmark locations) in
their VMs and stored them on their VM storage. The files could then be submitted within their
VM through an uploading script provided to the participants. The script stored their output files
in a corresponding cloud container created for the challenge individual for each participant. A list
containing the available ground truth segmentations of the test set filtered duplicates or output
files with incorrect file names. It also ensured all files were coherent with the participant ID list
from the organizers.

2.3 Evaluation Software

To evaluate the output segmentations and landmark locations against the ground truth, the VIS-
CERAL evaluation tool was used. This software was also included in the VM assigned to each
participant. This evaluation tool has different evaluation metrics implemented such as (1) distance–
based metrics, (2) spatial overlap metrics and (3) probabilistic and information theoretic metrics.
The most suitable subset of the metrics was used in the analysis of the results and all metrics
were made available to the participants. For the output segmentations of the ISBI challenge the
following evaluation metrics were selected:

• DICE coefficient [ZWB+04]

• Adjusted Rand Index [VPYM11]

• Interclass Correlation [GJC01]

• Average distance [KCAB09]

Jiménez del Toro et al: ISBI VISCERAL Challenge Organization
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Figure 3: Anatomical structure segmentation task: DICE coefficient results. Contrast–enhanced
CT scans of the Thorax and Abdomen.

Only one label is considered per image. The voxel value can be either zero (background) or one for
the voxels containing the segmentation. A threshold is set at 0.5 to create binary images in case
the output label has a fuzzy membership or a probability map.

For the landmark localization evaluation the same VISCERAL tool measures the landmark–
specific average error (Euclidean distance) error between all the results and the manually located
landmarks. The percentage of detected landmarks per volume (i.e. landmarks detected / landmarks
in the volume) is also computed.

2.4 Participation

The ISBI training and test set volumes were made available through the Azure cloud framework
for all the registered participants of the VISCERAL Anatomy2 benchmark. In total 18 groups
got access to the challenge training set and the 60 training volumes of the data set. The research
groups that submitted working virtual machines had a chance to present their methods and results
at the ”VISCERAL Organ Segmentation and Landmark Detection Challenge” at the 2014 IEEE
International Symposium on Biomedical Imaging (ISBI).

A single–blind review process was applied to the initial abstract submissions. The accepted
abstracts were then invited to submit a short paper presenting their methods and results in the
challenge. There were 5 high–quality submissions accepted and included in these proceedings.

Spanier et al. [SJ14] submitted segmentations for five organs in CT contrast–enhanced volumes.
Their multi–step algorithm combines thresholding and region growing techniques to segment each
organ individually. It starts with the location of a region of interest and identification of the largest
axial cross–section slices of the selected structure. It then improves the initial segmentation with
morphological operators and a final step performs 3D region growing.

Huang et al. [HLJ14] proposed a coarse–to–fine liver segmentation using prior models for the
shape, profile appearance and contextual information of the liver. An AdaBoost voxel–based clas-
sifier creates a liver probability map that is refined in the last step with free–form deformation with
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Table 1: Anatomical structure segmentation task: DICE coefficient results table. Contrast–
enhanced and unenhanced CT scans submissions.

a gradient appearance model.
Wang et al. [WS14] segmented 10 anatomical structures in CT contrast–enhanced and unen-

hanced scans. Their multi–organ segmentation pipeline performs in a top–down approach by a
model–based level–set segmentation of the ventral cavity. After dividing the cavity in thoracic and
abdominopelvic cavity, the major structures are segmented and their location information is passed
to the lower–level structures.

Jiménez del Toro et al. [JdTM14] segmented structures in CT and contrast–enhanced CT scans
with a hierarchical multi–atlas approach. Based on the spatial anatomical correlations between the
organs, the bigger and high–contrasted organs are first segmented. These then define the initial
volume transformations for the smaller structures with less defined boundaries.

Goksel et al. [GGS14] submitted segmentations for both CT and MR anatomical structure seg-
mentation. They also submitted results for the landmark localization task. For the segmentations
they use a multi–atlas based technique that implements Markov Random Fields to guide the reg-
istrations. A multi–atlas template–based approach fuses the different estimations to detect the
landmarks.

3 Results

There were approximately 500 structure segmentations and 211 landmark locations submitted to
the VISCERAL ISBI challenge. Four participants submitted results for the segmentation tasks in
multiple organs using whole–body CT or contrast–enhanced scans with results presented in Table 1
and Fig. 3. There was one participant that contributed segmentations on both the whole–body MR
scans and the contrast–enhanced MR abdomen volumes with results presented in Table 3. Only one
participant submitted landmark localization results, with Table 4 showing their evaluation results.

4 Conclusions and Future Work

The VISCERAL project has the evaluation of algorithms on large data sets as its main objective.
The proposed VISCERAL infrastructure allows evaluations with private or restricted data, such as
electronic health records, without the participants access to the test data by using a fully cloud–
based approach. This infrastructure also avoid moving data, which is potentially hard for very
large data sets. The algorithms are brought to the data and not the data to the algorithms.

Jiménez del Toro et al: ISBI VISCERAL Challenge Organization
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Table 2: Anatomical structure segmentation task: Average Distance results table. Contrast–
enhanced and unenhanced CT scans submissions.

Table 3: Evaluation metrics for the MR scan submissions.

Both gold corpus and silver corpus will be available as a resource to the community. The ISBI
test set volumes and annotations are now available and are part of the VISCERAL Anatomy2

benchmark training set.

So far, both past VISCERAL anatomy benchmarks have addressed organ segmentation and
landmark localization tasks. There are two more benchmarks under development in the VISCERAL
project, a retrieval benchmark and a detection benchmark. The retrieval benchmark will be the
retrieval of similar cases based on both visual information and radiology reports. The detection
benchmark will focus in the detection of lesions in MR and CT images.

In the future, the automation of the evaluation process is intended to reduce the need for interven-
tion from the organizers to a minimum and to provide faster evaluation feedback to the participants.
The participants will then be able to submit their algorithms through the cloud virtual machines
and obtain the calculated metrics directly from the system. Such a system could then store the
results from all the algorithms submitted and perform an objective comparison with state-of-the
art algorithms. Through the involvement of the research community, the VISCERAL framework
could produce novel tools for the clinical work flow that has substantial impact on diagnosis quality

Jiménez del Toro et al: ISBI VISCERAL Challenge Organization
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Table 4: Landmarks results.

and treatment success. Having all tools and algorithms in the same cloud environment can also
help us to combine tools and approaches with very little additional effort, which expectedly yields
better results.
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Abstract

We describe a new method for the automatic segmentation 
of multiple organs of the ventral cavity in CT scans. The 
method is based on a set of rules that determine the order in 
which the organs are isolated and segmented, from the sim- 
plest one to the most difficult one. First, the body is isolated 
from the background. Second, the trachea and the left and 
right lungs are segmented based on their air content. Third, 
the spleen and the kidneys – the organs with high blood con- 
tent – are segmented. Finally, the kidney is segmented based 
on the surrounding organs segmentation. Each organ is indi- 
vidually segmented with a four-step procedure that consists 
of: 1) definition of an inclusive region of interest; 2) identi- 
fication of the largest axial cross-section slice; 3) removal of 
background structures by morphological operations, and; 4) 
3D region growing segmentation. Our method is unique in 
that it uses the same generic segmentation approach for all 
organs and in that it relies on the segmentation difficulty of 
organs to guide the segmentation process. Experimental re- 
sults on 15 CT scans of the VISCERAL Anatomy2 Challenge 
training datasets yield a Dice volume overlap similarity score 
of 79.1 for the trachea, 97.4 and 97.6 for the left and right 
lungs, 89.2 for the spleen, and 92.8 for the left kidney. For 
the 5 CT scans test datasets, the Dice scores are 97.9, 97.0, 
85.6, 93.4 and 90.2, respectively. Our method achieved an 
overall DICE score of 92.8 and was ranked first among the 
five methods that participated in the challenge.
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1 Introduction

The increasing amount of medical imaging data acquired in clinical practice constitutes a vast
database of untapped diagnostically relevant information. Today, only a small fraction of this
information is used during clinical routine or research due to the complexity, richness, high dimen-
sionality, and data size [1].

Content-based image retrieval (CBIR) techniques have been proposed to access this information
and to identify similar cases to assist radiologists in the clinical decision support process [2]. The
segmentation of individual ventral cavity organs in CT scans is expected to improve the diagnostic
accuracy and performance of CBIR systems. While the manual delineation of these organs is
considered the gold standard, this is a tedious and very time-consuming process which is impractical
for all but a few dozen datasets for research. Consequently, a plethora of methods for automatic
segmentation of ventral body cavity organs in CT scans have been proposed. Liver segmentation
methods are thoroughly summarized and reviewed by Mharib et al. [4]. Lungs segmentation from
CT scans has been addressed by Sluimer et al. [5]. Kidney segmentation methods are described
in Freiman et al [6]. While very different from each other, all these methods target a single organ
and do not use information about other organs’ segmentations. Thus, multi-organ segmentation
requires a specific method for each organ, which yields variable quality results and quickly becomes
unmanagable as the number of organs to be segmented grows. It is thus desirable to develop a
single, generic approach that can be customized for each organ and that uses the information about
other organs’ segmentations.

The rule-based approach to medical image segmentation calls for using each organ anatomical
context and prior knowledge about its location and its extension for enhancing, improving, and
automating the segmentation process. In this pipeline-oriented approach, the organs of interest
are successively extracted from the CT scan. Previous research has focused mainly on liver seg-
mentation [3]. In this paper, we extend and generalize the rule-based approach to the automatic
segmentation of multiple ventral cavity organs in CT scans.

2 Method

The basic premise of the rule-based paradigm is to sequentially extract different organs based on
prior information on the organs of interest and their characteristics in the CT scan. Simple and
context-free organs are segmented first, followed by more complex and context-based identfication
and delineation. Our proposed approach extends the established rule-based approach by providing
a unified, generic four-step approach that is customized for each organ and incorporates information
about other organs prior segmentations.

2.1 Generic organ segmentation framework

In our generic framework, the segmentation of each organ is performed in four successive steps
(Fig. 1):

1. Definition of the organ’s Binary Inclusive Region Of Interest (BI-ROI) based on the target
organ intensity values.

2. Identification of the organ’s Largest Axial Cross Section Slice (LACSS). This is the CT scan
slice where the organ has the largest axial area.

3. Removal of remaining background structures from the LACSS by morphological operations.

4. Organ segmentation by 3D region growing starting from the LACSS inside the BI-ROI.
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Figure 1: The four steps of the generic organ segmentation framework exemplified on the spleen.

We start with a preprocessing step that isolates the patient body from the background (air
and scan gantry) based on location and intensity values. The generic four-step framework is then
applied to the ventral body cavity organs in the following order. First, the breathing system organs
are segmented: the trachea and the left and right lungs. Next, the organs with high blood content
are segmented: the spleen, the liver, and the left and right kidneys. This organ segmentation
order prevents ambiguous assignment of the same image region to multiple organs, as previously
segmented image regions are excluded from the segmentation process. Due to space limitations, we
illustrate below each step for the breathing system only.

2.2 Breathing system segmentation

The breathing system consists of the trachea and the left and right lung.

Step 1: Definition of the BI-ROI: Binary Inclusive Region of Interest

We perform a simple thresholding with the Houndsfiel Unit (HU) of air and fat (< -500HU). This
results in a binary map consisting of air, fat, and other background structures. Then, the trachea
and the lungs are separated from the from the undesired surrounding fat by finding the the largest
connected component. The resulting structure includes the breathing system defines the trachea
and lungs BI-ROI (Fig. 2a). This BI-ROI is further refined for the trachea and the left and right
lungs.

Step 2: Identification of the LACSS: Largest Axial Cross Section Slice

The Largest Axial Cross Section Slice (LACSS) of the trachea and the lungs are identified by finding
the CT slices in the BI-ROI with the narrowest and widest perimeters, respectively (Figs. 2b and
2c). Note that the lungs slice contains two connected components, for the left and right lungs.

Step 3: Removal of background structures

No further background removal is required for the trachea and lungs, since the lungs LACSS contains
exactly two connected components corresponding to the left and right lungs and the trachea LACSS
contains exactly one connected component (Fig. 2).
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Figure 2: Illustration of the results of the first two steps of the generic organ segmentation frame-
work on the breathing system: a) Binary Inclusive Region of Interest; b) Largest Axial Cross
Section Slice plane for the trachea, and c) Largest Axial Cross Section Slice plane for the lungs.

Step 4: Segmentation by 3D region growing

The trachea and the left and right lungs are segmented by 3D region growing. The process starts
at the LACSS and proceeds to adjacent CT slices withing the volume defined by the BI-ROI.

First, the distance map between the LACSS contour (Fig 3a) and the adjacent slice (Fig 3b) is
computed, with the LACSS contour distance set to 0 (Fig 3c). Next, the adjacent slice and the
distance map are intersected to identify regions of high change (Fig 3d). In the resulting intersection,
we define a series of windows along the contour (Fig 3e) and compute the intensity histogram in each
window. Finally, windows whose histograms have a positive kurtosis are considered as segmentation
leakage, e.g. windows R1 and R2 in Fig 3e. These windows contain undesired structures whose
voxels are removed from the organ segmentation. Windows whose histograms have zero or negative
kurtosis, e.g. window R3 in Fig 3e, are considered smooth and are thus segmented as part of the
organ of interest. This process is repeated throughout the slices of the image until the number of
segmented pixels in the slice is below a predefined threshold.

The idea behind this step is that ventral cavity organs are relatively smooth, so two adjacent
slices of the same organ cannot exceed some level of variability. From a geometric point of view,
we constrain the expansion of the region growing boundary curve to have variable speed according
to the context. Our method takes into account the local geometry of the curvature: when the
magnitude of the curvature is above a predefined threshold, we stop its propagation and allow it to
continue only in low curvature regions. The rationale is once again that ventral body cavity organs
should preserve some level of smoothness constraint. The final result is the 3D segmentation of the
organ (Fig 4).

3 Experimental Results

We evaluated our method on two sets of scans of the VISCERAL Anatomy2 Challenge. The training 
and test datasets consist of 15 and 5 CT clinical scans, respectively, acquired in 2004-08. Datasets 
of patients younger than 18 years were not included following the recommendation of the local 
ethical committee (S-465/2012, approval date Feb. 21th 2013). The CT scans in-plane resolution is 
0.604-0.793/0.604-0.793mm; the in-between plane resolution is >=3mm. A VISCERAL team 
radiologist manually produced ground-truth segmentations for each scan.

Table 1 summarizes the results for each type of dataset and organ: training and test datasets,
left lung, right lung, trachea, spleen and left kidney. Note that the DICE similarity coefficients
are high or very high, with a relatively small standard deviation. Our method achieved an overall
DICE score of 92.8 and was ranked first among the five methods that participated in the challenge.
Fig. 4 shows four representative examples of the multi-organ segmentation results.
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Figure 3: Illustration of step 4, 3D region growing, on the right lung: a) initial LACSS; b) adjacent
LACSS; c) distance map; d) intersection image of the adjacent LACSS and distance map, and e)
windows along the contour.

Training dataset Left Lung Right Lung Trachea Spleen Left Kidney
97.4 97.6 79.1 89.2 92.8

Test dataset Left Lung Right Lung Trachea Spleen Left Kidney
97.9 97.0 85.6 93.4 90.2

Table 1: Results: Mean Dice similarity coeffficient and standard deviation for the training and test
datasets on each organ.

Figure 4: Multi-organ segmentation results of four representative datasets of the VISCERAL
Anatomy2 Challenge.

4 Conclusions

We have developed a generic framework for the segmentation of ventral body cavity organs in CT
scans. Our approach consists of four-step pipeline method that takes into account prior information
about the locations of the organs and their appearance in CT scans. We have shown that the method
is applicable to a variety of ventral body cavity organs including the trachea, the left and right
lungs, the spleen, and the left kidney.

Current and future research is incorporating other structures, including the right kidney and the
liver. We are also extending the 3D region growing step to include different smoothing criteria in
different regions of the organ, to eliminate and avoid leakage to neighboring organs.
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Abstract

In this paper, an automatic and robust coarse-to-fine liver im-
age segmentation method is proposed. Multiple prior knowl-
edge models are built to implement liver localization and seg-
mentation: voxel-based AdaBoost classifier is trained to lo-
calize liver position robustly, shape and appearance models
are constructed to fit liver shape and appearance models to
original CT images. Free-form deformation is incorporated
into segmentation process to improve the model’s ability of
refining liver boundary. The method was tested on IBSI 2014
VISCERAL challenge datasets and the result demonstrates
that the proposed method is robust and efficient.

1 Introduction

Accurate and robust liver segmentation in CT images is an indispensable part in liver quantitative
diagnosis and surgery planning, while variation in liver shape, appearance and fuzzy boundary
remain challenging. Recently, prior knowledge models learned from big data play an important
role in successful clinical image segmentation. In this study, integrating of discriminative and
generative models in a hybrid scheme was presented to assist liver localization and segmentation:
machine learning based voxel classifier, active shape model (ASM) [Cootes95] including statistical
shape model (SSM) prior and local appearance model. Finally, the final fitted model was free-
form deformed to true liver boundary under appearance model guidance. The coarse-to-fine liver
image segmentation framework including liver localization, model reconstruction, model fitting and
free-form deformation is illustrated in Figure 1.
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Figure 1: The four steps of liver segmentation framework: (a) liver model location; (b) registration
with liver distance map; (c) shape fitting under appearance guidance; (d) free-form deformation.

2 Method

2.1 Liver localization

An atlas image based rigid registration with correlation coefficient histogram metric was used to
detect the region of interest (ROI) of liver. A set of image features such as region mean intensity,
variance, location, histogram and contextual features were extracted to train an AdaBoost classifier,
by which a liver probability map was generated, and the position of the liver was robustly estimated.

2.2 Model reconstruction

The SSM of liver was constructed from training CT images and corresponding binary segmenta-
tions. Firstly, pose training described in [Huang13] was applied to resample all the images. For
shape correspondence establishment, one reference mesh was obtained by marching cubes method,
all other training segmentations were elastic registered to the reference mesh, landmarks were sam-
pled equally on each training mesh. The SSM was constructed by Statismo toolkit [Luthi12] and
represented by simplex mesh.

The local appearance model of liver was established by a K Nearest Neighbor (KNN)-classifier
trained on both intensity and gradient profiles information inside, outside and at the true liver
boundary as suggested in [Heimann07]. For each landmark, profiles perpendicular to the surface
are sampled from all training volumes and stored as boundary samples. Additional non-boundary
samples were acquired by shifting the profiles towards the inside and outside of the liver.

2.3 Shape and appearance profile fitting

For the image to be segmented, a liver probability map was derived by AdaBoost classifier, and
the binary mask can be obtained at threshold 0.5. The distance map image was applied to register
to the point sets of the mean shape model, and the mesh vertexes of deformed mean shape were
fitted to liver boundary location with major shape variation constraints.

The appearance model is utilized to drive the model toward the precise liver boundary. Local
appearance features for all landmarks are extracted at different positions perpendicular to the model
surface. Previous trained KNN-classifier shifts landmarks to the optimal displacement position with
maximum boundary probability.

2.4 Free-form deformation

Once appearance profile fitting has converged, the deformed shape model were then free-form
deformed to the more accurate position. Free deformation was implemented based on deformable
simplex mesh [Montagnat97] segmentation. The internal force strives to keep the deformable mesh
close to the best fitting SSM, and the external forces tries to move all vertices to the locations
where intensity or gradient appearance model predicts the highest boundary probability. Previous
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KNN-classifier was integrated as external force to deform to conquer local specific variation of liver
shape.

3 Result

Seven CT and seven CTce IBSI VISCERAL challenge 2014 datasets were employed to train Ad-
aBoost classifier. Additional fifty manually segmented datasets were used to train the prior shape
and appearance models. There are 1252 landmarks in the liver shape model, each landmark is
sampled with 11 points in the landmark normal direction in the profile model. The experiment was
tested on 8 CT and 8 CTce datasets. The four evaluation metric scores are as follows: average dice
coefficient were 0.924 and 0.925, interclass correlation were 0.924 and 0.925, adjusted rand index
were 0.923 and 0.920 and average distance were 0.222mm and 0.261mm for CT and CTce modality
respectively.

4 Conclusion

In this paper, a robust and automatic liver segmentation method is proposed. The method exploits
different prior knowledge to represent contextual, profile appearance and shape variation of liver,
relies on different registration to construct liver model, liver localization, model fitting and refined
deformation. The method has been validated on ISBI VISCERAL challenge and showed good
performance. In future, we will adapt the method to other visceral organs segmentation.
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Abstract

An automatic multi-organ segmentation pipeline is presented.
The segmentation starts with stripping the body of skin and
subcutaneous fat using threshold-based level-set methods.
After registering the image to be processed against a stan-
dard subject picked from the training datasets, a series of
model-based level set segmentation operations is carried out
guided by hierarchical shape priors. The hierarchical shape
priors are organized according to the anatomical hierarchy
of the human body, starting with ventral cavity, and then
divided into thoracic cavity and abdominopelvic cavity. The
third level contains the individual organs such as liver, spleen
and kidneys. The segmentation is performed in a top-down
fashion, where major structures are segmented first, and their
location information is then passed down to the lower level to
initialize the segmentation, while boundary information from
higher-level structures also constrains the segmentation of the
lower-level structures. In our preliminary experiments, the
proposed method yielded a Dice coefficient around 90% for
most major thoracic and abdominal organs in both contrast-
enhanced CT and non-enhanced datasets, while the average
running time for segmenting ten organs was about 10 min-
utes.

1 Introduction

Automatic segmentation of anatomical structures has great value for both clinical and epidemiolog-
ical studies. Some common examples include using a brain segmentation tool for quantitative mea-
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surements of brain structure changes to study Alzheimer’s disease [FSB+02], using an automated
lung segmentation method to define the region of interest for computer-aided diagnosis (CAD)
methods for more efficient screening and earlier detection of tumors, and using liver segmentation
for surgery planning to achieve more precise and better cancer treatment [HVGS+09]. Besides
these single organ applications, the multi-organ segmentation methods have broader applications,
such as radiotherapy planning and semantic image segmentation and content retrieving [SKM+10].
Many automated organ segmentation methods have been proposed in the literature, such as the
active shape model (ASM) [CTCG95], atlas-based methods [ISR+09] and machine-learning-based
methods [ZBG+08]. The robustness of these single-organ approaches is usually unsatisfactory.
This is related to the fact that the boundary between two organs may be inadequately defined
due to limited resolution and intensity similarity. Even with the help of shape priors, most algo-
rithms still have difficulties in discriminating between another organ and anatomical variation of
the same organ. Recently, a number of multi-organ segmentation approaches have been proposed,
thanks to the improving performance of modern computers and the increasing recognition of the
advantages of considering multi-organ simultaneous in the image models. Okada et al. proposed
a hierarchical organization of organ ASMs [OYH+08], where the inter-organ position changing is
decoupled from the individual organs morphological variations. Promising results were obtained in
their upper-abdominal organ segmentation in contrast-enhanced CT scans. Wolz et al. proposed
a hierarchical atlas registration and weighting scheme, which sequentially picks the close-looking
atlases, best-matching organ atlases and best-fitting segmentation patches in a three-level coarse-
to-fine registration pipeline [WCM+12]. A few machine learning based methods were also reported
[MSW+11, KSZ+11]. In [WS14], we proposed an automatic multi-organ segmentation method us-
ing hierarchical-shape-prior guided level sets. The hierarchical shape priors are organized according
to the anatomical hierarchy of the human body, so that the major structures with less population
variation are at the top, and smaller structures with higher irregularities are linked at a lower level.
The segmentation is performed in a top-down fashion, where major structures are segmented first,
and their location information is then passed down to the lower level to initialize the segmentation,
while boundary information from higher-level structures also constrains the segmentation of the
lower-level structures. The proposed method delivered relatively accurate results in non-enhanced
CT datasets [WS14]. In this paper, we extend the framework to process both non-enhanced and
contrast-enhance CT datasets, by introducing an iterative organ intensity estimation step.

2 Methods

Figure 1 summarizes the processing pipeline of the proposed segmentation framework, which can
be roughly divided into three phases: preprocessing, hierarchical shape model guided multi-organ
segmentation and iterative organ intensity estimation. Detailed descriptions of these phases are
given in the following sections.

2.1 Preprocessing

A skin and subcutaneous fat stripping step is first carried out to remove the large variation of the
subcutaneous fat distribution among the population. This is done with a two-step threshold-based
level set segmentation combined with mathematical morphology operations. First, the surface of
the human body is segmented with a threshold of 300 HU and an initial seed region set to cover the
whole volume. The resulting mask is then processed with an erosion operator to remove the skin.
Finally a second round threshold-based level set segmentation is carried out with the threshold
set to 0 HU. After subcutaneous fat stripping, the musculoskeletal figure of a patient tends to
vary less from patient to patient. A straightforward rigid registration is carried out between the
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Figure 1: The processing pipeline of the proposed multi-organ segmentation framework.

unseen patient and a selected standard subject. This standard subject (common-looking subject)
was manually selected by visually comparing the appearance among the sample group. The air-
filled lung areas in both datasets are set to the fat tissue intensity to reduce their influence on the
registration, so the skeletons are better aligned. The transformation matrix from the registration
step is used to initialize the position of the hierarchical shape model. For non-enhanced CT datasets,
a cropping step is introduced to limit the remaining processing to the torso. The largest torso cross-
section area is estimated by finding the largest connected region (2D) within the musculoskeletal
figure among all axial slices. The starting and ending slice of the torso is then defined as the
first slice, on either side of the largest torso cross-section slice, in which the width of the largest
connected region (2D) is below half the width of the largest torso cross-section area.

2.2 Hierarchical shape model guided multi-organ segmentation

The hierarchical shape model used in this study is shown in Figure 2. To generate statistical shape
priors for individual structures, all segmentation masks of the corresponding organ are registered
to the common-looking subject. To link a statistical shape prior to its parent structures space, the
statistical mean shape is registered against a trust zone created by thresholding the probability
atlas of that anatomical structure in the upper-level structures space. More detailed description of
building the hierarchical shape priors can be found in [WS14].

The segmentation is performed in a top-down fashion, i.e. ventral cavity is first segmented, and
then divided into thoracic cavity and abdominopelvic cavity. The third level contains the individual
organs such liver, spleen and kidneys. The location information of a higher level structure is
passed down to the lower level to initialize the segmentation. Within the same level, structures are
segmented sequentially from left to right as the order listed in Figure 2. Segmented regions are set
to different empirically defined likelihood values to guide the following segmentation.

2.3 Iterative organ intensity estimation

In the proposed hierarchical-shape-prior guided level set framework, the external speed function is
an intensity mapping function, which is similar to the threshold function in the threshold-based
level set method proposed by Lefohn et al. [LCW03]. In [WS14], the upper and lower thresholds
are empirically defined beforehand for different structures. Since the intensity of some organs in
contrast-enhanced CT scans can vary depending on the circulation rate and acquisition timing,
we introduced an iterative approach to estimate the intensity range of heart, liver, kidney and
spleen. An organs upper and lower threshold are estimated to be M + 1.5σ and M − 1.5σ, where
M and σ is the mean and standard deviation of the voxel intensity within the current segmented
area. All voxels with intensity lower than 30HU are excluded from the calculation of M and σ.
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Figure 2: The hierarchical shape model used in this study

The intensity estimation is repeated every 15 iterations of the model fitting process. The iterative
intensity estimation stops when the changing rates of M and σ are both lower than a threshold (5
HU). The fixed thresholds reported in [WS14] are used as the initial setting for these organs in the
beginning of organ segmentation.

2.4 Model-guided level set using coherent propagation

In this study, the model-based level set method proposed by Leventon et al. [LGF02](Leventon,
Grimson, and Faugeras 2002) is adapted for individual structure segmentation at different levels.
Making this method efficient and accurate is essential for the usability and robustness of the whole
framework. In our earlier papers [WFS11, WFS14]), we proposed a fast level set method using
coherent propagation, which achieved 10100 times speed-up in various segmentation tasks when
compared with the sparse field level set algorithm. In [WS14], we extended the coherent propagation
method to model-based level sets, which can not only speed up the level set propagation, but also
reduce the frequency of shape-prior registration by taking advantage of the convergence detection
of the coherent propagation. In this new framework, the model fitting operation is only repeated
if the contour has moved a certain distance from the previously estimated model.

3 Results

.The proposed method was trained on 7 training CT datasets and tested on 5 non-enhanced CT
datasets and 5 contrast-enhanced CT datasets. These CT images are down-sampled to 333 mm
resolution, whereas the segmentation results are up-sampled to the original resolution for evalua-
tion. All these datasets were obtained from the Visceral Benchmark 1 site (visceral.eu) [HML+12].
Overall, the proposed method yielded a Dice coefficient around 90% for most major organs. De-
tailed results are listed in Table 1. The average processing time for segmenting all ten major organs
is about 10 minutes (excluding the resampling steps) on an 8-core Mac Pro (2.26GHz). Figure 3
shows an example of the segmentation results at different stages from one testing dataset.
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Table 1: SEGMENTATION RESULTS
Organ
Name

Non-enhanced CT Contrast-enhanced CT
Dice

coefficient
(%)

Average
Hausdorff
distance

Dice
coefficient

(%)

Average
Hausdorff
distance

Liver 0.904 0.46 0.887 0.65
Spleen 0.887 0.45 0.842 0.87
Left lung 0.971 0.07 0.956 0.15
Right lung 0.972 0.06 0.942 0.20
Left kidney 0.729 3.63 0.896 0.27
Right kidney 0.777 1.21 0.890 0.28
Bladder 0.806 0.78 0.738 1.59

Figure 3: Segmentation results at different stages. A, segmentation result after skin and subcu-
taneous fat stripping; B, segmentation result of the ventral cavity; C, segmentation result of the
second level structures; D, segmentation results of the third level structures.

4 Discussion and Conclusion

The proposed segmentation method has a number of limitations. First, the statistical shape priors
for different structures were trained on 7 subjects, which can over-constrain the segmented area (cf.
liver segmentation in Figure 3D). Second, as the top-down strategy suffers from the accumulated
error being passed down along the hierarchy tree, a bottom-up feedback path should be added
to allow the lower structure to recover the higher level errors. Future work also includes improv-
ing segmentation accuracy by using more edge-based image terms and extending the framework
to handle MRI images. In conclusion, a multi-organ segmentation framework using hierarchical
shape priors is presented. This method gradually improves the estimation of the organ location by
first segmenting out large and regular-shaped structures. The appearance of organs is iteratively
estimated based on statistical analysis of preliminary segmentation results. Preliminary results on
non-enhanced and contrast-enhance CT datasets are encouraging.
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Abstract

Many medical image analysis techniques require an initial
localization and segmentation of anatomical structures. As
part of the VISCERAL benchmarks on Anatomy segmenta-
tion, a hierarchical multi–atlas multi–structure segmentation
approach guided by anatomical correlations is proposed. The
method begins with a global alignment of the volumes and re-
fines the alignenment of the structures locally. The alignment
of the bigger structures is used as reference for the smaller
and harder to segment structures. The method is evaluated
in the ISBI VISCERAL testset on ten anatomical structures
in both contrast–enhanced and non–enhanced computed to-
mography scans. The proposed method obtained the highest
DICE overlap score in the entire competition for some struc-
tures such as kidneys and gallbladder. Similar segmentation
accuracies compared to the highest results of the other meth-
ods proposed in the challenge are obtained for most of the
other structures segmented with the method.

1 Introduction

Anatomical structure segmentation in medical imaging is a fundamental step for further image
analysis and computer–aided diagnosis [Doi05]. With the ongoing increase in medical image data,
it is necessary to develop fast and automatic algorithms that can process a large quantity of images
with high accuracy and sufficient speed for clinical daily use. Although many different methods have
already been proposed [LSL+10, CRK+13], it is uncommon to test multiple approaches on the same
available dataset. The Visual Concept Extraction Challenge in Radiology (VISCERAL1) bench-
marks have been organized with the objective to evaluate the available state-of-the-art segmenting
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approaches on a large public dataset. Twenty anatomical structures in four imaging modalities,
enhanced and non–enhanced magnetic resonance (MR) and computed tomography volumes, are
included in both the training and testing sets provided to the participants. The benchmarks are
handled in a novel cloud environment that allows to distribute large quantities of volumes and im-
plement algorithms of the research groups under the same conditions (regarding computing power
etc.) inside the cloud [LMMH13].

Multi–atlas based segmentation is an approach that requires little or no interaction from the user.
It has been evaluated showing high accuracy and consistent reproducibility in different anatomical
structures [LSL+10, RBMMJ04]. In this method, an atlas includes a patient volume and a label
volume, created by manual annotation, that identifies the location of one or more structures in
the patient volume. The target is the query volume where the location of the structures is un-
known. Using image registration, the spatial relationship between the target and atlas volume is
estimated. The label volumes are transformed taking the coordinate transformation obtained from
the registration. Afterwards the labels are fused resulting in a single label volume that provides
an estimated location of the label in the target volume. When multiple atlases are used, the local
errors of the registration will be removed by a per–voxel classification.

The proposed method was tested on computed tomography scans with ten different anatomical
structures. The method can be extended and applied to the other modalities and any of the
anatomical structures in the VISCERAL dataset.

2 Method

All volumes are resampled to obtain isotropic 1mm voxels. Afterwards they are down–sampled to
half their size in all three dimensions to speed up the registrations and resampled to their original
size for the label fusion.

2.1 Image registration

The atlas patient volume, considered as moving volume VA(x), is registered to the fixed query
volume VQ(x) using the image registration implementation of Elastix software2 [KSM+10]. The
registration is evaluated in every iterative optimization by a cost function C of the parameterized
coordinate transformation Tµ from the moving atlas volume VA to the query volume VQ. The
adaptive stochastic gradient descent optimizer proposed in [KPSV09] is applied. A coordinate
transformation is obtained by minimizing the value of C with respect to the transformation:

µ̂ = arg min C(Tµ;VQ, VA),
µ

(1)

the subscript µ indicates that the transformation was parameterized with a vector µ that contains
the transformation parameters. Normalized Cross–Correlation (NCC) is selected as the similarity
metric for cost function C .

2.2 Hierarchical anatomical structure alignment

The anatomy can differ considerably from patient to patient, particularly the spatial relations be-
tween the different structures in the same patient volume [JdTM13]. Since multiple structures
are segmentation targets in the VISCERAL benchmark, a hierarchical selection of the registra-
tions improves the segmentations of all the structures. A global affine registration is followed by
individual affine registrations using local binary masks to enforce the spatial correlation of each

2Elastix: http://elastix.isi.uu.nl, 2014.[Online; accesed 27–April–2014].
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anatomical structure separately. These masks are obtained from the morphological dilation of the
output labels of the different atlases registered in the previous step. The registrations of the bigger
structures are used as a starting point for the closely related smaller structures, which are harder
to segment. Most of the registrations of the initial bigger structures (liver, lungs, urinary bladder)
will be reused in the method which makes it faster than segmenting each structure individually
from the start. The method is repeated for the non-rigid registrations of all the target structures.
Also the creation of regions-of-interest with the local masks speeds up the image registrations and
improves the output estimations.

Figure 1: Method Pipeline.

2.3 Non-rigid registration

After each anatomical structure has its own independent ROI mask, the volumes are registered
again but using a non–rigid B–spline transformation model. This non–rigid registration allows local
deformations obtaining a higher spatial similarity between the volumes. The B–spline registration
was also performed in a multi–resolution approach with an adaptive stochastic gradient descent
optimizer. This final registration step has a higher computational cost than the affine registration.
The transformed labels are updated using the coordinate transformation parameters from the B–
spline registration. The new transformed label volumes for each structure constitute the individual
votes that will be used for the label fusion step.
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2.4 Label fusion

A different label volume is obtained for every atlas registered to the target volume. In order to
combine the information obtained from the multiple atlases registered, the output labels are fused
in a single label for the target volume. Defining a majority voting threshold is a commonly used
label fusion method. An optimal threshold is found for each of the different structures on a per–
voxel basis with this approach. Majority voting has also the advantage of providing more than one
output segmentation varying the threshold parameter with no additional computations required.

3 Experimental Setup

Ten CT volumes were used to evaluate the performance of the algorithm for the International
Symposium on Biomedical Imaging (ISBI) 2014 VISCERAL challenge. Five of them are contrast–
enhanced (ceCT) with a field–of–view from below the skull base to the pelvis. The other five are
non–enhanced whole body CT scans (wbCT). For the ten CT volumes, ten structures were included
in the proposed segmentation method: liver, 2 kidneys, 2 lungs, urinary bladder, spleen, trachea,
first lumbar vertebra and gallbladder.

An initial global affine registration is followed by individual affine registrations of the indepen-
dent structures using local masks as described in the method. The liver, both lungs, 1st lumbar
vertebra and urinary bladder were segmented with individual affine and non–rigid registrations.
The gallbladder and right kidney have the affine alignment of the volume after the liver registra-
tions as a starting point. The left lung affine alignment is used for the spleen and the left kidney.
The right lung affine alignment is refined for the trachea segmentation. All structures are refined
with non–rigid b–spline registration for the final estimation.

According to the results of the VISCERAL Benchmark 1, an individual majority vote threshold
was selected in each structure for the label fusion.

4 Results

The method obtained a total average DICE of 0.789 for ten structures in ceCT and 0.694 for
the same ten structures in wbCT (Table 1). All the overlap scores were higher in ceCT and in
close relation to the results from the other participants in the challenge for the same anatomical
structures. The method obtained the best DICE score of the ISBI Visceral challenge for the left
kidney, right kidney and the gallbladder in ceCT. For wbCT the method had the best DICE in the
1st lumbar vertebra, gallbladder and trachea.

Table 1: Average Segmentation Accuracy

Structure Reference structure DICE CTwb DICE ceCT

Liver none 0.823 0.908
Right lung none 0.967 0.963
Left lung none 0.969 0.952
Urinary bladder none 0.616 0.68
1st Lumbar vertebra none 0.44 0.472
Right kidney liver 0.649 0.905
Gallbladder liver 0.271 0.4
trachea right lung 0.855 0.83
Spleen left lung 0.677 0.859
Left kidney left lung 0.678 0.923
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5 Conclusions

The proposed method showed robustness in the segmentation of multiple structures from two
different modalities of the challenge using a relatively small dataset. The overlap accuracies are
consistent for most of the evaluated anatomical structures and obtained some of the best structure
overlap of the challenge when compared to the other proposed methods in the same testset.

Due to the flexibility of the method for adding more structures, for future work the method will
be extended to include all of the anatomical structures in the VISCERAL dataset. An evaluation
of the method for the other modalities (MR and contrast–enhanced MR) is also foreseen for the
VISCERAL benchmark 2 Anatomy with a much bigger testset.
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Abstract

In this work, we present multi-atlas based techniques for both
segmentation and landmark detection. We focus on modality
and anatomy independent techniques to be applied to a wide
range of input images, in contrast to methods customized to
a specific anatomy or image modality. For segmentation, we
use label propagation from several atlases to a target image
via a Markov random field (MRF) based registration method,
followed by label fusion by majority voting weighted by lo-
cal cross-correlations. For landmark localization, we use a
consensus based fusion of location estimates from several at-
lases identified by a template-matching approach. Results in
IEEE ISBI 2014 VISCERAL challenge as well as VISCERAL
Anatomy1 challenge are presented herein.

1 Introduction

Segmentation and landmark detection are two very common problems in medical image analysis,
as they both pertain to several clinical applications. Although there exist methods customized
for specific anatomy and modality, generic methods are valuable as they are applicable in a wide
range of applications without much effort for customization. Regarding the two tasks above, in this
work we use modality and anatomy independent techniques to treat the diverse dataset from the
Anatomy challenge series of the VISCERAL (Visual Concept Extraction Challenge in Radiology)
Consortium. The methods are detailed below, also presenting our results from the said challenges.

2 Segmentation

For segmentation, a multi-atlas based technique is used by registering several atlases individually
to a target image using our implementation of the MRF-based deformable registration method
in [GKT+08]. These registrations are then used to propagate the anatomical labels (ground-truth
annotations) from each atlas image into the target coordinate frame. At voxel level, a majority
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voting is held to decide the winning label where each label votes based on the locally-normalized
cross-correlation (LNCC) [CBD+03] of the registered atlas to the given target at that location.

2.1 Atlas-based segmentation using registration via MRF

Finding an optimal displacement vector field T̂ can be defined as the minimization of a functional:

T̂ = argmin
T
E (T,X,An) (1)

where X is a target image and An is an atlas image and E is the registration energy. MRFs provide
an efficient means for the minimization of such energy, with the main advantage being that it does
not rely on the gradient of the criterion and therefore is less prone to poor local optima. In order
to use MRFs for solving the minimization problem, this energy is decomposed into unary (ψ) and
pairwise (Ψ) potentials over discrete labels as follows:

E (T,X,An) =
∑

p∈Ω



ψp (lp) +
∑

q∈N (p)

λΨpq (lp, lq)



 , (2)

where Ω is the discretized image space. The continuous displacement space is sampled discretely,
so that each registration label lp and lq in the set of all registration labels LR maps to a unique

displacement vector ~dp. The unary potentials are then a local similarity metric, measuring the fit
between the deformed atlas image and the target image at a location i. The pairwise potentials
correspond to prior assumptions over the displacement, which is often implemented as a smoothing
over the neighborhood N as justified by a first-order Markov assumption. λ is the pairwise weight.

For robust and smooth solution of (2), an efficient method was proposed in [GKT+08] that seeks
the displacements ~d of control points in a multi-resolution cubic B-spline framework. We use our
implementation of this method with four levels of detail, where the coarsest grid resolution has
three nodes along the shortest edge of an input image and a spacing as isotropic as possible given
that a control-point is required on each corner of the image. Each following level of the resolution
hierarchy has twice the resolution compared to the previous step. At each level of detail, we sample
four displacements in each cardinal direction, yielding 25 displacement samples in total. Within
each direction, samples are equidistant, with the largest displacement set to 0.4 times the control
grid spacing. This was shown to guarantee diffeomorphic deformations [RAH+06]. For each level
of detail, we re-run the MRF registration with the displacements being re-scaled by the golden
ratio 0.618. The resulting displacements are then composed onto the previous deformation. This
guarantees that the result is still diffeomorphic and sub-pixel accuracy can be achieved. For the
unary potentials we use normalized cross correlation (NCC) of patches centered around each control
point with their radius equivalent to control grid spacing. Euclidean distance between displacements
of neighboring control grids is used to penalize non-smooth deformations. Tree-reweighted message
passing (TRW-S) [Kol06] is employed to find a solution to each energy minimization instance.

A segmentation candidate of the target image X based on the atlas An is then obtained by
applying the resulting displacement field T̂ to the known segmentation SAn

as follows:

SX,n = SAn
(T̂ ). (3)

2.2 Label fusion via weighted majority voting

Although MRF-based registration is a relatively robust method, it can only guarantee a locally op-
timal solution and is therefore susceptible to poor initialization. Furthermore, for a grossly different
atlas, correspondences for registration may not be guaranteed. Accordingly, the segmentation from
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a single atlas may not be satisfactory. It was shown in different research fields that combination
of multiple weak information sources can surpass average accuracy. Multiple segmentations from
different atlases were combined in [HHA+06].

Assume that N segmentation candidates of a target image X are computed from N atlases via
(3). Let final target segmentation SX be an image of the same size as X, where pixels take on values
from the set LS={1, . . . , NS} such that each discrete value corresponds to an organ or anatomical
structure. An intuitive and straight-forward method to combine multiple segmentation estimates
is then to choose the most frequent segmentation label (majority voting, MV) at each location p:

SMV
X (p) = arg max

lS∈LS

∑

n

δ (lS , SX,n(p)) . (4)

Such majority voting does not take into account the individual quality of each registration and
therefore the resulting segmentation. We assume that post-registration image similarity between
the deformed atlas and the target image is an indicator of segmentation reliabilty and can be used
to locally assign weights w to each individual segmentation. The resulting weighted majority vote
(wMV) can then be formalized as follows:

SwMV
X (p) = arg max

lS∈LS

∑

n

wn(p) δ (lS , SX,n(p)) . (5)

To obtain the weights w, we use local normalized cross correlation (LNCC,[CBD+03]) between
image X and deformed atlas An(Tn). The advantages of LNCC are its smoothness and fast com-
putation time due to convolution with Gaussian kernels:

LNCC(X,Y, p) =
〈X,Y 〉(p)

σX(p)σY (p)
〈X,Y 〉(p) = X · Y (p)−X(p) · Y (p)

X = GσG
∗X σ2X(p) = X2(p)−X

2
(p), (6)

where ∗ is the convolution operator and GσG
is a Gaussian kernel with standard deviation σG . From

the LNCC metric, we compute the weights:

wn(p) =

(

1− LNCCσ(X,An(Tn), p)

2

)γ

, (7)

which normalizes LNCC to the range [0, 1]. γ is used to scale the similarity such that contributions
from individual segmentations are well spread [IK09].

3 Landmark Detection

For anatomical landmark detection, we use a template based approach from multiple atlases, the
location estimates from which are fused based on their consensus. We localize each landmark ℓ

separately from the others using the two stages below. To localize the unknown voxel coordinates
pℓ of landmark ℓ in the target image X, we perform the following template matching procedure
from each atlas An where n represents the atlas index.

3.1 Determining template and search regions

The template is set as a box-shaped image region Aℓ
n in the current atlas. Similarly, a box-shaped

search region Xℓ is defined in the target image. Both such regions are chosen targeting a physically
isotropic region of interest (ROI) in corresponding image, while limiting the maximum number of
ROI voxels to ensure efficient computation. Specifics of ROI selection are given in Table 1.
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Table 1: Specifics of template and search ROI, where | · | represents image dimensions (per axis).

ROI box (cropped image) Centered at Targeted half-width (dHW) Max size (nmax)

Template image Aℓ
n pℓAn

20mm 413 voxels

Search region Xℓ pℓAn
· |X|
|An|

– 2413 voxels

When setting the template size, the trade-off between it containing sufficient image features and
final localization precision was considered. Template half-width was set to 20mm empirically via
cross-validation in multiple modalities using different template sizes (e.g., 10, 20, 30, ...). The
search region is centered around a gross estimate of the landmark location, which is the normalized
voxel coordinates of the landmark from the atlas; using the fact that both the atlas and the target
have similar fields of view (ie. both abdomen, thorax, or whole body). Note that our large search
region covers most or all of the image in many modalities (e.g. in MRce) or at least a quadrant
thereof (e.g. in CT), such that the searched landmark can be guaranteed to exist therein.

3.2 Similarity metric

For template matching, the template is convolved over the search region by computing two in-
dependent similarity metrics, sum of squared differences (SSD) and normalized cross-correlation

(NCC), at each template location i with respect to search image. Both values are then normalized
linearly to [0, 1] such that they are both 1 at the best match location. A combined similarity metric
SSDa·CORb is then computed, where the parameters a=2 and b=3 were determined empirically via
cross-validation with several powers. The maximum of this combined metric gives the best match
location estimate pℓn for landmark ℓ considered atlas An.

3.3 Statistical fusion of estimate location from atlases

From cross-validation trials with different techniques such as the mean and weighted average of
location estimates, the median operator was determined to be the best method for fusing location
estimates. Accordingly, each axis coordinate of the the target landmark location is found as the
median value of those axes from atlas estimates. The entire process can be summarized as:

• Repeat for each atlas An :

→ Crop landmark template Aℓ
n centered at given landmark location pℓAn

in atlas image An

→ Crop a large search region Xℓ centered around a grossly approximated location in X
→ Compute SSD

(

Aℓ
n, X

ℓ
)

and COR
(

Aℓ
n, X

ℓ
)

→ pℓn = argmax
i

(

SSD[i]2 · COR[i]3
)

• pℓ = median
{

pℓn | ∀n
}

4 Results and Discussion

Throughout the results, the following abbreviations are used for the image modalities: whole-body
CT images (CT), thorax+abdomen contrast-agent CT images (CTce), abdominal T1-weighted
contrast-agent MR images (MRce), and whole-body T1-weighted MR images (MR).

We treated each modality separately. We used the training images from Anatomy1 benchmark as
atlases, ie. depending on the modality of the test image, six atlases for CTce and seven for CT, MR,
MRce. For convenience, we combined all organ segmentations for each atlas into a single multi-label
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segmentation image, which was then deformed using the atlas-to-target registration T̂ described in
Sec. 2.1. In Tab. 2, Dice overlap metric results regarding our segmentation approach reported by
VISCERAL for the test images can be seen both for the VISCERAL Anatomy1 benchmark and
the ISBI challenge.

In order to compare our technique to other participants’ in the ISBI challenge, we computed an
average rank per organ per participant. For given test image, we assigned a rank to each method,
ie. {1,2,...,P} where P is the number of participants submitted a (non-blank) output for that test
image. In Fig. 1 the average of such ranks for all given test images is seen per anatomy. Our
submission was the only entrant that aimed to segment all images in all modalities and it achieved
competitive results for many organs as seen in the given figure. We did not plot ranks for the MR
modalities, since we were the only participant to submit such results.

It is notable that the multi-atlas fusion has significantly lower segmentation accuracy for organs
which has low volume, e.g. urinary, gall bladder, and the adrenal glands. One possible explanation
is that such small structures are difficult to register using full-body images. Due to such misalign-
ments, overlap between multiple deformed atlas segmentations for such label can be small, resulting
in the weighted majority voting not selecting that label.

Table 2: Our segmentation overlap (Dice) results in VISCERAL Anatomy1 and ISBI challenges.

Anatomy1 ISBI challenge

Modality Ctce MR CT MRce Ctce MR CT MRce

Kidney (L) 0.903 0.730 0.805 0.782 0.885 0.548 0.756 0.888
Kidney (R) 0.877 0.733 0.754 0.787 0.827 0.589 0.679 0.732
Spleen 0.802 0.668 0.688 0.689 0.803 0.646 0.684 0.785
Liver 0.899 0.822 0.830 0.847 0.882 0.817 0.798 0.861
Lung (L) 0.961 0.533 0.952 0.650 0.960 0.486 0.955
Lung (R) 0.968 0.900 0.960 0.664 0.966 0.909 0.965
Urinary bladder 0.676 0.656 0.640 0.280 0.657 0.577 0.636 0.334
Lumbar Vertebra 1 0.604 0.396 0.350 0.060 0.548 0.623 0.333 0.084
Thyroid 0.252 0.367 0.469 0.315 0.488 0.439
Pancreas 0.465 0.438 0.356 0.442 0.466 0.356
Psoas major (L) 0.811 0.801 0.772 0.644 0.797 0.765 0.773 0.654
Psoas major (R) 0.787 0.780
Gallblader 0.334 0.023 0.102 0.035 0.212 0.044 0.078 0.000
Sternum 0.595 0.358 0.648 0.612 0.359 0.630
Aorta 0.785 0.744 0.723 0.616 0.787 0.783 0.724
Trachea 0.847 0.736 0.822 0.839 0.747 0.837
Adrenal gland (L) 0.204 0.109 0.165 0.000 0.099 0.144 0.282
Adrenal gland (R) 0.164 0.215 0.138 0.107 0.019 0.268 0.133

5 Conclusions

In the Anatomy1 and ISBI challenges organized by VISCERAL project, our landmark localization
achieved in whole-body CT images an impressive 11 and 13 voxel average error, respectively in
these challenges. No comparison to alternatives was possible since ours was the only entrant in
landmark localization in both challenges. For segmentation, our multi-atlas based method that
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Figure 1: Average segmentation rank (by Dice coefficient) for each participant and organ for the
CT (top) and CTce (bottom) modalities.

does not require any customisation to a specific modality or organ competed in all categories and
ranked satisfactorily compared to the results of other participants.
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