Toward an Improved Downward Refinement
Operator for Inductive Logic Programming

S. Ferilli'2

! Dipartimento di Informatica — Universita di Bari
stefano.ferilli@uniba.it
2 Centro Interdipartimentale per la Logica e sue Applicazioni — Universita di Bari

Abstract. Inreal-world supervised Machine Learning tasks, the learned
theory can be deemed as valid only until there is evidence to the con-
trary (i.e., new observations that are wrongly classified by the theory).
In such a case, incremental approaches allow to revise the existing the-
ory to account for the new evidence, instead of learning a new theory
from scratch. In many cases, positive and negative examples are pro-
vided in a mixed and unpredictable order, which requires generalization
and specialization refinement operators to be available for revising the
hypotheses in the existing theory when it is inconsistent with the new
examples. The space of Datalog Horn clauses under the OI assumption
allows the existence of refinement operators that fulfill desirable proper-
ties. However, the versions of these operators currently available in the
literature are not able to handle some refinement tasks. The objective of
this work is paving the way for an improved version of the specialization
operator, aimed at extending its applicability.

1 Introduction

Supervised Machine Learning approaches based on First-Order Logic represen-
tations are particularly indicated in real-world tasks in which the relationships
among objects play a relevant role in the definition of the concepts of interest.
Given an initial set of examples, a theory can be learned from them by providing
a learning system with the whole ‘batch’ of examples. However, being inductive
inference only falsity preserving, the learned theory can be deemed as valid only
until there is evidence to the contrary (i.e., new observations that are wrongly
classified by the theory). In such a case, either a new theory is to be learned from
scratch using the new batch made up of both the old and the new examples, or
the existing theory must be incrementally revised to account for the new evi-
dence as well. To distinguish these two stages, we may call them ‘training’ and
‘tuning’, respectively. In extreme cases, the initial batch is not available at all,
and learning must start and proceed incrementally from scratch. In many real
cases, positive and negative examples are provided in a mixed and unpredictable
order to the tuning phase, which requires two different refinement operator to be
available for revising the hypotheses in the existing theory when it is inconsistent

99

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

with the new examples. A generalization operator is needed to refine a hypothe-
sis that does not account for a positive example, while a specialization operator
must be applied to refine a hypothesis that erroneously accounts for a negative
example. So, the kind of modifications that are applied to the theory change
its behavior non-monotonically. The research on incremental approaches is not
very wide, due to the intrinsic complexity of learning in environments where the
available information about the concepts to be learned is not completely known
in advance, especially in a First-Order Logic (FOL) setting. Thus, the literature
published some years ago still represents the state-of-the-art for several aspects
of interest.

The focus of this paper is on supervised incremental inductive learning of
logic theories from examples, and specifically on the extension of existing spe-
cialization operators. Indeed, while these operators have a satisfactory behavior
when trying to add positive literals to a concept definition, the way they handle
the addition of negative information has some shortcomings that, if solved, would
allow a broader range of concepts to be learned. Here we point out these short-
comings, and propose both improvements of the existing operator definitions,
and extensions to them. Theoretical results on the new version of the operator
are sketched, and an algorithm for it is provided and commented. The solution
has been implemented and embedded in the multistrategy incremental learning
system InTheLEx [3]. The next section lays the logic framework in which we
cast our proposal; then, Sections 3 and 4 introduce the learning framework in
general and the state-of-the-art specialization operator for it in particular. Sec-
tion 5 describes our new proposal, and finally Section 6 concludes the paper.
Due to lack of space, proofs of theoretical results will not be provided.

2 Preliminaries

The logic framework in which we build our solution exploits Datalog [1, 4] as
a representation language. Syntactically, it can be considered as a sublanguage
of Prolog in which no function symbols are allowed. L.e., a Datalog term can
only be a variable or a constant, which avoids potentially infinite nesting in
terms and hence simplifies clause handling by the operators we will define in
the following. The missing expressiveness of function symbols can be recovered
by Flattening [9], a representational change that transforms a set of clauses
containing function symbols into another, semantically equivalent to it, made up
of function-free clauses!. In a nutshell, each n-ary function symbol is associated
to a new (n+1)-ary predicate, where the added argument represents the function
result. Functions are replaced, in the literals in which they appear, by variables
or constants representing their result.

In the following, we will denote by body(C) and head(C) the set of literals
in the body and the atom in the head of a Horn clause C, respectively. Pure

! Flattening potentially generates an infinite function free program. This is not our
case, where we aim at learning from examples, and thus our universe is limited by
what we see in the examples.

100

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

Datalog does not allow the use of negation in the body of clauses. A first way to
overcome this limitation is the Closed World Assumption (CWA): if a fact does
not logically follows from a set of Datalog clauses, then we assume its negation
to be true. This allows the deduction of negative facts, but not their use to infer
other information. Conversely, real world description often needs rules containing
negative information. Datalog™ allows to use negated literals in clauses body, at
the cost of a further safety condition: each variable occurring in a negated literal
must occur in another positive literal of the body too.

Since there can be several minimal Herbrand models instead of a single a
least one, CWA cannot be used. In Stratified Datalog™ this problem is solved by
partitioning a program P in n sets P (called layers) s.t.:

1. all rules that define the same predicate in P are in the same layer;

2. P! contains only clauses without negated literals, or whose negated literals
correspond to predicates defined by facts in the knowledge base;

3. each layer P’,i > 1, contains only clauses whose negated literals are com-
pletely defined in lower level layers (i.e., layers P/ with j < i).

Such a partition is called stratification, and P is called stratified.
A stratified program P with stratification P!,..., P™ is evaluated by growing
layers, applying to each one CWA locally to the knowledge base made up by
the original knowledge base and by all literals obtained by the evaluation of the
previous layers.

There may be different stratifications for a given program, but all are equiv-
alent as regards the evaluation result. Moreover, not all programs are stratified.
The following notion allows to know if they are.

Definition 1 (Extended dependence graph) Let P be a Datalog™ program.
The extended dependence graph of P, EDG(P), is a directed graph whose nodes
represent predicates defined by rules in P, and there is an edge (p,q) if q¢ occurs
in the body of a rule defining p.

An edge (p,q) is labeled with — if there exists at least one rule having p as its
head and —q in its body.

A program P is stratified if EDG(P) contains no cycles containing edges marked
with —. The evaluation of a stratified program produces a minimal Herbrand
model, called perfect model.

A specific kind of negation is expressed by the inequality built-in predicate
#. Using only this negation in Datalog yields an extension denoted by Datalog”.

2.1 Object Identity

We deal with Datalog under the Object identity (OI) assumption, defined as
follows:

Definition 2 (Object Identity)
Within a clause, terms denoted with different symbols must be distinct.

101

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

This notion is the basis for the definition of an equational theory for Datalog
clauses that adds one rewrite rule to the set of the axioms of Clark’s Equality
Theory (CET) [6]:

t # s € body(C) for each clause C in L and
for all pairs ¢, s of distinct terms that occur in C (01)

where L denotes the language that consists of all the possible Datalog clauses
built from a finite number of predicates. The (OI) rewrite rule can be viewed as
an extension of both Reiter’s unique-names assumption [8] and axioms (7), (8)
and (9) of CET to the variables of the language.

Datalog®! is a sublanguage of Datalog? resulting from the application of OI
to Datalog. Under OI, any Datalog clause C' generates a new Datalog” clause
Co consisting of two components, called core and constraints:

— core(Cor) = C and
— constraints(Cor) = {t # s | t,s € terms(C) A t, s distinct}
are the inequalities generated by the (OI) rewrite rule.

Formally, a Datalog®! program is made up of a set of Datalog” clauses of
the form
lo L= ll,...Jn,Cl,...,CnL

where the [;’s are as in Datalog, and the ¢;’s are the inequalities generated by
the (OI) rule and n > 0. Nevertheless, Datalog®’ has the same expressive power
as Datalog, that is, for any Datalog program we can find a Datalog®! program
equivalent to it [11].

2.2 6Opr-subsumption

Applying the OI assumption to the representation language causes the classical
ordering relations among clauses to be modified, thus yielding a new structure
of the corresponding search spaces for the refinement operators.

The ordering relation defined by the notion of #-subsumption under OI upon
Datalog clauses [2, 10] is 8o -subsumption.

Definition 3 (6pr-subsumption ordering) Let C, D be Datalog clauses. D
f-subsumes C' under OI (D fp-subsumes C), written C <or D, iff o substi-
tution s.t. Dor.c C Coy. This means that D is more general than or equivalent
to C' (in a theory revision setting, D is an upward refinement of C' and C is a
downward refinement of D) under Ol. C <oy D stands for C <oy DAD £o; C.
C and D are equivalent under O (C ~o; D) when C <o;r D and D <py C.

A substitution, as usual, is a mapping from variables to terms [13]. Its domain
can be extended to terms: applying a substitution ¢ to a term ¢ means that o
is applied to all variables in ¢t. In our case, applying a substitution to a constant
leaves it unchanged.

Like #-subsumption, 6p-subsumption induces a quasi-ordering upon the
space of Datalog clauses, as stated by the following result.

102

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

Proposition 1 Let C, D, FE be Datalog clauses. Then:

1. C<pr C (reflexivity)
2.C<orDand D<p; E=C<or FE (transitivity)

Other interesting properties of 8 -subsumption are the following:
Proposition 2 Let C, D be Datalog clauses.

— C <or D= C <y D, where <y denotes 0-subsumption

(i.e., Oor-subsumption is a weaker relation than 0-subsumption).
- C<orD=|C|>|D|.
— C ~o1 D iff C and D are renamings.

Non-injective substitutions would yield contradictions when applied to con-
straints (e.g., [z # y].-{z/a,y/a} = [a # a]). So, under OI, substitutions are
required to be injective.

Requiring that terms are distinct ‘freezes’ the number of literals of the clause
(since they cannot unify among each other), hence 6o r-subsumption maps each
literal of the subsuming clause onto a single, different literal in the subsumed
one. In particular, equivalent clauses under <p; must have the same number of
literals, hence the only way to have equivalence is through variable renaming.
Thus, a search space ordered by 8o -subsumption is made up of non-redundant
clauses, i.e. no subset of a clause can be equivalent to the clause itself under
OI. This yields smaller equivalence classes than those in a space ordered by
f-subsumption.

Proposition 3 (Decidability of 6p;-subsumption) Given two clauses C' and
D, C <o1 D is a decidable relationship.

In the worst case, i.e. when |[D| < |C|, all literals in D match with all literals
in |C|, and all such matchings are pairwise compatible, an upper bound to the

complexity of the 6 -subsumption test is (‘Ig\)

3 Incremental Inductive Synthesis

ILP aims at learning logic programs from examples. In our setting, examples are
represented as clauses, whose body describes an observation, and whose head
specifies a relationship to be learned, referred to terms in the body. Negative
examples for a relationship have a negated head. A learned program is called a
theory, and is made up of hypotheses, i.e. sets of program clauses all defining the
same predicate. A hypothesis covers an example if the body of at least one of
its clauses is satisfied by the body of the example. The search space is the set of
all clauses that can be learned, ordered by a generalization relationship.

In ILP, a standard practice to restrict the search space is imposing biases
on it [7]. In the following, we are concerned with logic theories expressed as
hierarchical (i.e., non-recursive) programs, for which it is possible to find a level

103

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

mapping [6] s.t., in every program clause, the level of every predicate symbol
occurring in the body is less than the level of the predicate in the head. This has
strict connections with stratified programs, that are needed when the language
is extended to deal with negation. Another bias on the representation language
is that, whenever we write about clauses, we mean Datalog linked clauses. A
clause is linked if, for any term appearing in its body, it also appears in the head
or it is possible to find a chain of terms such that adjacent terms appear in the
same literal and at least a term in the chain appears in the head.

The canonical inductive paradigm requires the learned theory to be com-
plete and consistent. For hierarchical theories, the following definitions are given
(where E~ and ET are the sets of all the negative and positive examples, resp.):

Definition 4 (Inconsistency)

— A clause C is inconsistent wrt N € E~ iff 3o s.t.2 body(C).c C body(N)A
—head(C).c = head(N) A constraints(Cor).o C constraints(Nor)

— A hypothesis H is inconsistent wrt N iff 3C € H: C is inconsistent wrt N.

— A theory T is inconsistent iff IH C T, AN € E~ : H is inconsistent wrt N .

Definition 5 (Incompleteness)

— A hypothesis H is incomplete wrt P iff VC € H: not(P <o; C).
— A theory T is incomplete iff 3H C T, 3P € E*: H is incomplete wrt P.

When the theory is to be learned incrementally, it becomes relevant to de-
fine operators that allow a stepwise (incremental) refinement of too weak or too
strong programs [5]. A refinement operator, applied to a clause, returns one of
its upward or downward refinements. Refinement operators are the means by
which wrong hypotheses in a logic theory are changed in order to account for
new examples with which they are incomplete or inconsistent. In the following,
we will assume that logic theories are made up of clauses that have only variables
as terms, built starting from observations described as conjunctions of ground
facts (i.e., variable-free atoms). This assumption causes no loss in expressive
power, since a reification process allows to express through predicates all the
information that may be carried out by constants. Put another way, we take to
the extreme the flattening procedure, considering even constants as 0-ary func-
tions that are replaced by 1-ary predicates having the same name and meaning.
This restriction simplifies the refinement operators for a space ordered by 6o;-
subsumption defined in [2, 10], and the associated definitions and properties.

Definition 6 (Refinement operators under OI) Let C be a Datalog clause.

— D € por(C) (downward refinement operator) when

body(D) = body(C) U {i}, where I is an atom s.t. | & body(C).
— D € 001(C) (upward refinement operator) when

body(D) = body(C) \ {l}, where l is an atom s.t. I € body(C).

2 —head(C).c = head(N) because the relationship must be the same as for N.

104

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

Particularly important are locally finite, proper and complete (ideal) refine-
ment operators [10]. Such a kind of operators are not feasible when full Horn
clause logic is chosen as representation language and either #-subsumption or im-
plication is adopted as generalization model, because of the existence of infinite
unbound strictly ascending/descending chains. On the contrary, in the space of
Datalog clauses ordered by 6o -subsumption such a kind of chains do not exist,
since equivalence among clauses coincides with alphabetic variance. This makes
possible the existence of ideal refinement operators under the ordering induced
by 6o r-subsumption [2, 10].

By the definition of o1, any possible generalization of a clause must have as
body a subset of its body, and hence there are 2/2°#% ()| such generalizations.

Proposition 4 [10] The refinement operators in Definition 6 are ideal for Dat-
alog clauses ordered by 0or-subsumption.

Inspired to a concept given by Shapiro [12], we have a measure for the complexity
of a clause:

Definition 7 (sizeo;) The size of a clause C under OI (sizeo(C)) is the num-
ber of literals in the body of C':
sizeor(C) =| body(C) |

Under 6o -subsumption it allows to predict the exact number of steps required
to perform a refinement, based only on the syntactic structure of the clauses
involved (that could be known or bounded a priori): given two clauses C' and
D, if D <or C, then C € 65,(D), D € pk;(C), k = sizeor(D) — sizeor(C) =
|body(D)| — [body(C)]

4 Downward Refinement

When a negative example is covered, a specialization of the theory must be
performed. Starting from the current theory, the misclassified example and the
set of processed examples, the specialization algorithm outputs a revised theory.
In our framework, specializing means adding proper literals to a clause that is
inconsistent with respect to a negative example, in order to avoid its covering
that example. The possible options for choosing such a literal might be so large
that an exhaustive search is not feasible. Thus, we want the operator to focus the
search into the portion of the space of literals that contains the solution of the
diagnosed commission error, as a result of an analysis of its algebraic structure.

According to the theoretical operator in Definition 6, only positive literals
can be added. To this aim, we try to add to the clause one (or more) atom(s),
which characterize all the past positive examples and can discriminate them
from the current negative one. The search for such atoms is performed in the
space of positive literals, that contains information coming from the positive
examples used to learn the current theory, but not yet exploited by it. First
of all, the process of abstract diagnosis detects all the clauses that caused the
inconsistency. Let P = {Py,..., P,} be the positive examples 6o -subsumed by

105

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

a clause C' that is inconsistent wrt a negative example N. The set of all possible
most general downward refinements under OI of C against N is:

mgdror(C,N) ={M | M <o; C, M consistent wrt N, VD s.t. D <o; C, D
consistent wrt N : not(M <or D)}

Among these, the search process aims at finding one that is compliant with
the previous positive examples in P, i.e. one of the most general downward
refinements under OI (mgdrs;) of C' against N given Py,..., P,:

mgdror(C,N | Pi,...,P,) ={M € mgdro;(C,N) | P; <or M,j=1,...,n}

Since the downward refinements we are looking for must satisfy the property of
maximal generality, the operator tries to add as few atoms as possible. Thus, it
may happen that, even after some refinement steps, the added atoms are still
not sufficient to rule out the negative example, i.e. the specialization of C' is still
overly general. This suggests to further exploit the positive examples in order
to specialize C. Specifically, if there exists a literal that, when added to the
body of C, is able to discriminate from the negative example N that caused
the inconsistency of C, then the downward refinement operator should be able
to find it. The resulting specialization should restore the consistency of C, by
refining it into a clause C’ which still 8pr-subsumes the positive examples P;,
1=1,2,...,n.

The process of refining a clause by means of positive literals can be described
as follows. For each P;, ¢ = 1,2,...,n, suppose that there exist n; distinct
substitutions s.t. C' 8pr-subsumes P;, and consider all the possible n-tuples of
substitutions obtained by picking one of such substitutions for every positive
example. Each of these substitutions yields a distinct residual, consisting of all
the literals in the example that are not involved in the 6p;-subsumption test,
after having properly turned their constants into variables. Formally:

Definition 8 (Residual) Let C be a clause, E an example, and o; a substitu-
tion s.t. body(C).o; C body(E) and constraints(Cor).c; C constraints(Eor).
A residual of E wrt C under the mapping o;, denoted by A;(E,C), is:

A;(E,C) = body(E).a; " — body(C)

where gj*l is the extended antisubstitution of ;. An antisubstitution is a map-
ping from terms onto variables. When a clause C 6p-subsumes an example F
through a substitution o, then it is possible to define a corresponding antisub-
stitution, o¢~!, which is the inverse function of ¢, mapping some constants in
FE to variables in C. Since not all constants in E have a corresponding variable
according to o1, we introduce the extension of ¢!, denoted with o', that is
defined on the whole set consts(F), and takes values in the set of the variables
of the language3:

1 _ JoNen) if ¢ € vars(C).o
o (en) = { otherwise

3 Variables denoted by _ are new variables, managed as in Prolog.

106

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

The residuals obtained from the positive examples P;,i = 1,...,n, can be ex-
ploited to build a space of complete positive downward refinements, denoted with
P, and formally defined as follows.

P = U ﬂ Ajk (Pk7 C)
i=1,....,n k=1,...n

Ji=1,...,n;

where the symbol A;, (Py, C) denotes one of the ny residuals of P, wrt C, and
Nk=1,...n A}, (Pr, C), when ji € {1,...,n}, is the set of the literals common to
an n-tuple of residuals (one residual for each positive example Py, k = 1,...,n).
Moreover, denoted with 6;, j = 1,...,m, all the substitutions which make C
inconsistent wrt IV, let us define a new space:

S = Uj:l,..‘,m AJ(N7 C)

which includes all the literals that cannot be used for refining C', because they
would still be present in N.

Proposition 5 Given a clause C' that Opr-subsumes the positive examples Py, . ..
and is inconsistent wrt the negative example N, then:

{C" | head(C") = head(C) A body(C") = body(C)U {l},l e P — S} C

C mgdror(C,N | P1,..., P,)

Hence, every downward refinement built by adding a literal in P — S to the
inconsistent clause C' restores the properties of consistency and completeness
of the original hypothesis. Moreover, it is one of the most general downward
refinements of C' against N.

It may happen that no (set of) positive literal(s) is able to characterize the
past positive examples and discriminate the negative example that causes incon-
sistency. In such a case, the above version of the operator would fail. However,
we don’t want to give up yet, since the addition of a negative literal to the
clause body might restore consistency®. To take this opportunity, we extend the
search space to Datalog™. These literals are interpreted according to the CWA.
Of course, suitable adaptations of the notions presented in Section 2 are used
to handle these literals®. So, in case of failure on the search for positive literals,
the algorithm autonomously performs a representation change, that allows it to
extend the search to the space of negative literals, built by taking into account
the negative example that caused the commission error. The new version of the
operator tries to add the negation of a literal, that is able to discriminate the
negative example from all the past positive ones. Revisions performed by this

4 Note that a negative literal in the body corresponds to a positive literal in the
clause. However, here we are expressing the fact that a condition must not hold in
an observation in order to infer the relationship in the head.

5 E.g., given two clauses under OI, C = CT*UC~ and D = DT U D™, where C* and
D™ include the positive literals and the Ol-constraints, and C~ and D~ are sets of
negative literals, C' <oy D iff 3o substitution s.t. DT.c C CT and Vd € D™ : Ac €
C™ st.do=c

107

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

operator are always minimal [14], since all clauses in the theory contain only vari-
ables as arguments. Moreover, this operator is ideal in the space of constant-free
clauses. The definitions and results in the rest of this section are taken from [2].

When the space P — S does not contain any solution to the problem of
specializing an inconsistent clause, a change of representation must be performed
in order to search for literals in another space, corresponding to the quotient set
of the Datalog™ linked clauses. In the following, a slightly different but equivalent
specification of the operator in this space will be provided with respect to [2].

First of all, we define the new target space, called the space of negative
downward refinements:

Sn =-S = _‘(szl,...,mAj(Nv C))

where, given a set of literals ¢ = {l1,...,l,}, n > 1: =p = {=ly,...,~l,}. Again,
we are interested in a specific subset of S,,, because of the properties satisfied
by its elements. Let us introduce the following notation:

Note that S C S. Based on S, the space of consistent negative downward refine-
ments can be defined as:

Sc = —|§ = _‘(mjzl,...,mAj(Na C))
Indeed, S., compared to S,,, fulfills the following property:

Proposition 6 Given a clause C and an example N, then:
{C" | head(C") = head(C) A body(C") = body(C) U{l},l € S.} C mygdro;(C, N)

Overall, the search for a complete and consistent hypothesis can be viewed
as a two-stage process: the former stage searches into the space P — S, the latter
into S.. It is now possible to formally define the downward refinement operator

p&T on the space L of constant-free Datalog®! linked program clauses.

Definition 9 (pFrs) p&rs 1 L — 280 € L: pns(C) =
{C" | head(C") = head(C') A body(C") = body(C)U{l}, l € (P —S)US.}

Proposition 7 The downward refinement operator p&® is ideal.

The ideality of p&7** is owed to the peculiar structure of the search space

when ordered by the relation <gj.

5 Discussion and Extension of the Specialization
Operator

The existing definition of pg;** aims at identifying a set of literals each of which,

when added to a clause C, yields a new clause that is both consistent with the
given negative example and complete with respect to all the previous positive
examples. Now, this is true if the added literal belongs to the space of complete

108

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

positive downward refinements P—S. Conversely, the space of consistent negative
downward refinements does not ensure completeness wrt the previous positive
examples, since it is computed considering only all possible residuals of the
negative example. This can be easily shown in the following example®.

Ezxample 1. Consider the following situation.

Two positive examples: P, = h: —p,q,t,u. and P, = h : —p, q,v.

produce as a least general generalization the clause C7 = h : —p, q.

Then, the negative example N1 = h : —p, q, t, u, v. arrives.

The residuals of P; and P, wrt Cy are {t,u} and {v}, respectively.

The residual of Ny is {t,u,v}. So, P — S = ({t,u} N {v}) — {t,u,v} = 0 —
{t,u,v} = 0, hence no specialization by means of positive literals can be obtained
(as expected, since C' was a least general generalization). Switching to the space
of negative literals, we have that S. = —=({¢t, u,v}) = {—t, ~u, ~v}. However, none
of these literals generates a clause that is complete with all previous positive

examples:
Ch=h:—p,q,~t. where P; o5 C}
C3 =h: —p,q,~u. where P Zor Cy

CYl'=h:—p,q,—v. where P, £o1 C}’

So, what we need to consider is not S.. Intuitively, we want to select a literal
that is present in all residuals of the negative example and that is not present
in any residual of any positive example. Let us define:

P= U Aji(Pivc)
1=1,...,n

Ji=1,...n4
Now, what we need to consider is S, = —(S — P).

Ezample 2. In the previous example, we would have S/, = ({t,u,v}) — ({¢t,u} U
{v}) = {t,u,v} — {t,u,v} = @ which shows, as expected, that no complete
refinement can be obtained for the given case.

Consider now another set of positive examples: P, = h: —p,q,t,u., P, =h:
—p,q,r.and Ps =h: —p,q,s,t.
whose least general generalization is, again, the clause C; = h: —p, q.
Then, the negative example N1 = h : —p, q,t, u, v, w. arrives.
The residuals of the positive examples are: A(Cy, Py) = {t,u}, A(C1, P) = {r}
and A(Cl, P3) = {S,t}.
The residual of Ny is {¢t,u,v,w} = S. So, P — S = ({t,u} N {r} n{s,t}) —
{t,u,v,w} = 0 — {t,u,v,w} = 0, hence again no specialization by means of
positive literals can be obtained. Switching to the space of negative literals, we
have that S/, = =(S—P) = —~({t, u, v, w}—({t, u}U{r}u{s,t})) = ~({t,u, v, w}—

6 For the sake of readability, in the following we will often switch to a propositional

representation. This means that the residual is unique for each example, so the
subscript in A;(+,-) is no more necessary.

109

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

{r,s,t,u}) = =({v,w}) = {-w, ~w} and indeed, adding any of these literals to
C generates a clause that is complete with all previous positive examples:
Cl=h:—p,q,—w. where P, <oy C}, P, <por C% and P; <oy C};
Cl =h:—p,q,—~w. where P| <po; CY, P, <o; CY, P3s <o CY.

This is captured by the following result:

Proposition 8 Given a clause C = h :—body(C) that 0o 1-subsumes the positive
examples Py, ..., P, and is inconsistent wrt the negative example N, then:

{C" | head(C") = head(C) A body(C") = body(C) U{i},l € SL} C

C mgdro;(C,N | Py,...,P,)

Now, an additional problem arises. Indeed, in some cases a single negative
literal is not enough to ensure that the correctness of the theory is restored. The
situation may be clarified by the following example.

FEzample 3. Consider again the situation described in Example 1.

While no single (positive or negative) literal can restore completeness and
consistency of the theory, either C} = h : —p, ¢, (¢, v). or C§ = h : —p, q, = (u, v).
would be correct refinements of Cy wrt { Py, Py, Ny }. These solutions are not per-
mitted in the representation language, since only literals may appear in the body
of clauses. However, any of the two above clauses corresponds to the conjunction
of two clauses, e.g. C} is equivalent to {h : —p, q, —t., h : —p, ¢, —v.}. This solution
would introduce some redundancy in the theory, since the body of the original
clause C7 would appear in both specialized clauses. This might be undesirable,
in which case we may leverage Datalog implication and solve the problem by
inventing a new predicate s as follows: {h : —p, ¢, =(s)., s : —t,v.}. The intuition
behind this choice is that the need to place together the literals in the negation
might be a hint of a more general relationship among them. This relationship
might be captured by a so far unknown concept, that is explicitly added. A
useful side effect of this setting is that when the same combination will occur
in future observations, it will be recognized and explicitly added by saturation,
this way obtaining higher level descriptions.

So, the extension comes into play when no single literal is sufficient to restore
correctness of the theory. Indeed, when a single literal is to be negated there is
no need for inventing any predicate. More formally, we are not looking anymore
for a single [€ S, to be added to C, but we need a S C S/ s.t. Vi : I € §
s.t. [€ P;. In particular, we would like to find a minimal such set. Minimality

may be in terms of set inclusion or of number of elements: S = argming(|S]).
To formally express our operator, let us define:

— Vre A(N,C):
o P.={P, € Plr e A(P;,C)}
o P, ={P: € Plr ¢ AP, O)}
- VS CA(N,C):
e Ps=NresPr
i PfS:UTES,Pir

110

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

P, is the set of positive examples that are no more covered when adding —r to C;
P, is the set of positive examples that are still covered when adding —r to C. Pg
is the set of positive examples that are no more covered when adding neg(S) to
C; Pgs is the set of positive examples that are still covered when adding neg(S)
to C. This helps us to define what we are looking for. Specifically, we need a
S C A(N,C) s.t. Ps =) A'Ps = P, as shown by the following example:

Ezample 4. Consider the set of positive examples P = { Py, P2, P3} where:
Pr=h:—p,qst. Po=h:—pqt,u. Py=h:—p,qu,r.

Given their least general generalization C' = h : —p, q., the corresponding resid-
uals are:

A(P,C) ={s,t} A(P,C)={t,u} A(P;,C)={u,r}

Now, given the negative example N = h : —p,q,s,t,u,r covered by C, with
residual A(N,C) = {s,t,u,r}, we have:

Pisuy = PsNPu = {PL}N{ P2, Ps} = 0; Pys.uy = PsNPu = { P2, Ps}U{P1} = P:
SOLUTION!

P{t,r} =P.NP, = {Pl,PQ}ﬂ{P;g} = (Z); P{t,r} =P:NP, = {Pg}U{Pl,PQ} =P:
SOLUTION!

Py = PeN Py = {P1, P} N{P2,P3} = {P} # 0; Ppuy = Pe NPy =
...and so on.

Of course, a trial-and-error approach would solve the problem, but there is an
exponential number of subsets to be tried. In order to devise a more efficient
algorithm, let us analyze the sets P,, P,, Ps and Pg to better understand them
and their behavior. First of all, the P,’s and P,’s are complementary:

Proposition 9 Given a clause C and a negative example N covered by C':

1. Vr € A(N,C) : {P,,P,} is a partition of P;
2. VS C A(N,C) : {Ps,Ps} is a partition of P.

This ensures, in particular, that Ps =) APg =P < Pg =0 & Pg = P. We
also note that positive example (un-)coverage is monotonic:

Proposition 10 VS’ € §” C A(N,C) : Ps» C Ps: A Ps: C Pgnr

Finally, let us note that any element of the residual of the negative example,
added to C, causes some positive example to become uncovered (which will be
used in the first iteration of our algorithm):

Proposition 11 If p&7® fails, then Vr € A(N,C) : P, # 0.

We propose a sequential covering-like strategy to find such an S, according
to Algorithm 1. Note that, at the beginning of the algorithm, S = (§ = Ps =
0 = |Ps| =0and S = 0 = Ps = P = |Ps| = n. However, as soon as
the loop is entered, the selection and addition of the first 7 makes P # () by
Proposition 11; so, the condition of the IF statement is true, hence S is updated
and a second round of the loop is guaranteed to take place. At each round, a new

111

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

Algorithm 1 Backtracking specialization strategy
S=0; R=A(N,C)
repeat
r < select from R OR backtrack
R+ R\ {r}; &+ Su{r}
if Ps/ # Ps (& Psi # Ps) (& Ps: C Ps < Ps: O Ps) then
S8
end if
until Ps = §) (& Ps = P) OR no more backtracking available
if Ps =0 (& Ps = P) then
return &
else
return failure
end if

r is removed from R and added to S only if the coverage improves, otherwise it
is discarded. If the last r does not satisfy the loop condition, the overall solution
is not complete and backtracking is applied. Note that, in the worst case, adding
the whole residual to C' would be a solution, which ensures termination of the
algorithm (unless there is a positive example that includes the whole residual,
which can be checked before starting the algorithm). If different solutions are
requested, backtracking can be applied to non-discarded items.

6 Conclusions and Future Work

Incremental supervised Machine Learning approaches using First-Order Logic
representations are mandatory when tackling complex real-world tasks, in which
relationships among objects play a fundamental role. A noteworthy framework
for these approaches is based on the space of Datalog Horn clauses under the Ob-
ject Identity assumption, which ensures the existence of (upward and downward)
refinement operators fulfilling desirable requirements. The refinement operators
for this framework proposed in the current literature have some limitations that
this paper aims at overcoming. So, after recalling the most important elements of
the framework and of the current operators, this paper points out these deficien-
cies and proposes solutions that result in improved operators. Specifically, the
downward refinement operator is considered. A preliminary prototype of the op-
erator has been implemented, and is currently being integrated in the InTheLEx
learning system.

Future work includes a study of the possible connections of the extended
operator with related fields of the logic-based learning, such as deduction, ab-
straction and predicate invention. Experiments aimed at assessing the efficiency
and effectiveness of the operator in real-world domains are also planned.

112

S. Ferilli. Toward an Improved Downward Refinement Operator for Inductive Logic Programming

Acknowledgments

This work was partially funded by the Italian PON 2007-2013 project
PON02_00563_3489339 ‘Puglia@Service’.

References

(1]
2]

S. Ceri, G. Gottléb, and L. Tanca. Logic Programming and Databases. Springer-
Verlag, Heidelberg, Germany, 1990.

F. Esposito, A. Laterza, D. Malerba, and G. Semeraro. Locally finite, proper
and complete operators for refining datalog programs. In Z. W. Ras and
M. Michalewicz, editors, Foundations of Intelligent Systems, number 1079 in Lec-
ture Notes in Artificial Intelligence, pages 468-478. Springer, 1996.

F. Esposito, G. Semeraro, N. Fanizzi, and S. Ferilli. Multistrategy Theory Re-
vision: Induction and abduction in INTHELEX. Machine Learning Journal,
38(1/2):133-156, 2000.

P. C. Kanellakis. Elements of relational database theory. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B — Formal Models
and Semantics, pages 1073-1156. Elsevier Science Publishers, 1990.

H. J. Komorowski and S. Trcek. Towards refinement of definite logic programs.
In Z. W. Ras$ and M. Zemankova, editors, Methodologies for Intelligent Systems,
number 869 in Lecture Notes in Artificial Intelligence, pages 315-325, Berlin, 1994.
Springer-Verlag.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, second
edition, 1987.

C. Nédellec, C. Rouveirol, H. Adé, F. Bergadano, and B. Tausend. Declarative
bias in ILP. In L. de Raedt, editor, Advances in Inductive Logic Programming,
pages 82-103. IOS Press, Amsterdam, NL, 1996.

R. Reiter. Equality and domain closure in first order databases. Journal of the
ACM, 27:235-249, 1980.

C. Rouveirol. Extensions of inversion of resolution applied to theory completion.
In Inductive Logic Programming, pages 64—90. Academic Press, 1992.

G. Semeraro, F. Esposito, and D. Malerba. Ideal refinement of datalog programs.
In M. Proietti, editor, Logic Program Synthesis and Transformation, number 1048
in Lecture Notes in Computer Science, pages 120—136. Springer-Verlag, 1996.

G. Semeraro, F. Esposito, D. Malerba, N. Fanizzi, and S. Ferilli. A logic framework
for the incremental inductive synthesis of datalog theories. In N. E. Fuchs, editor,
Logic Program Synthesis and Transformation, number 1463 in Lecture Notes in
Computer Science, pages 300-321. Springer-Verlag, 1998.

E.Y. Shapiro. Inductive inference of theories from facts. Technical Report Re-
search Report 192, Yale University, 1981.

J. H. Siekmann. An introduction to unification theory. In R. B. Banerji, edi-
tor, Formal Techniques in Artificial Intelligence - A Sourcebook, pages 460—464.
Elsevier Science Publisher, 1990.

S. Wrobel. Concept Formation and Knowledge Revision. Kluwer Academic Pub-
lishers, Dordrecht Boston London, 1994.

113

