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Abstract. A (hereditarily finite) set/hyperset S can be completely de-
picted by a (finite pointed) graph GS—dubbed its membership graph—
in which every node represents an element of the transitive closure of
{S} and every arc represents a membership relation holding between its
source and its target. In a membership graph di↵erent nodes must have
di↵erent sets of successors and, more generally, if the graph is cyclic no
bisimilar nodes are admitted. We call such graphs hyper-extensional.
Therefore, the elimination of even a single node in a membership graph
can cause di↵erent nodes to “collapse” (becoming representatives of the
same set/hyperset) and the graph to loose hyper-extensionality and its
original membership character.
In this note we discuss the following problem: given S is it always possible
to find a node s in GS whose deletion does not cause any collapse?
Keywords: Hereditarily Finite Sets, Hypersets, Bisimulation, Member-
ship Graphs.

Introduction

Two sets are equal if and only if they have the same elements. This principle—
the so-called axiom of Extensionality—goes at the very heart of the notion of set,
as it states that given s and s0, the condition of them having the same elements
is su�cient to guarantee that s and s0 are the same thing. As a matter of fact,
extensionality not only was among the postulates of the first axiomatisation
of Set Theory—i.e. the Zermelo-Fraenkel axiomatic set theory ZF—but is also
undisputedly present in any subsequent axiomatic presentation of sets.

Being able to establish equality by extensionality only, however, presupposes
that membership is acyclic. In fact, admitting the possibility to have a cyclic
membership relation, imagine two objects a and b satisfying the following simple
set-theoretic equation x = {x}. In this case, in order to establish wether a is equal
to b using extensionality, we must rely on our ability of establishing equality
between their elements. That is equality between ... a and b. Our argument (as
the underlying membership relation) becomes cyclic!

Since the 1980s, the elegant notion of bisimilarity has been extensively
used to sensibly extend the notion of set-theoretic equality to the case in which
we drop the assumption that the membership relation must be acyclic. The
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notion of bisimilarity was introduced (almost at the same time) in many di↵erent
fields. Aczel, in particular, set up a graph-theoretic view on sets and hypersets,
according to which the consequences of dropping acyclicity of 2 was rendered
cleanly in its anti-foundation axiom (AFA [Acz88], see also [BM96]), stated in
terms of bisimilarity.

In this note we study a simple-looking problem that can be stated on the
graph-theoretic representation of sets and hypersets. The problem can be, infor-
mally, given as follows: given a set S and its membership graph GS—a graph
representing the transitive closure of S—, does there always exist a node in GS

(i.e. a set in the transitive closure of S) whose elimination from GS will cause no
pair of nodes to become bisimilar? In other words, is it always possible to find
a way to reduce a graph-theoretic representation of a hyperset by one element,
without losing any inequality among the remaining hypersets in the transitive
closure of S?

Notice that we pose and study the question in the hereditarily finite case.
That is, not only we play with pure sets (i.e. sets whose only elements are
themselves sets), but also on an entirely finite “chessboard”.

The question has an easy and positive answer for well-founded sets using the
notion of rank. However, as the guidance for choosing which node to delete is
exactly the feature we cannot count on when dealing with hypersets (that is the
notion of rank) the case in which 2 can be cyclic becomes quickly more inter-
esting. We present here a few partial and initial observations that, incidentally,
suggest that probably the problem should be studied as a graph-theoretic one.

In the concluding remarks we briefly discuss a problem that, among others,
brought us to get interested in the above mentioned question.

1 Basics

Below we schematically recall some basic definitions. See [Jec78] and [Lev79] for
detailed definitions. For a given well-founded set x we say that x is hereditarily
finite if it is finite and all its elements are hereditarily finite as well. In formulae:
HF(x) , Def Is finite(x) ^ 8 y 2 x HF(y). Moreover, we define the rank and
the transitive closure of x as follows4 : rk(x) =Def sup{ rk(y) + 1 : y 2 x }, with
rk(;) = 0, and trCl(x) =Def x [

S

{ trCl(y) : y 2 x }.
If, as we do here, we do not assume 2 to be necessarily well-founded, a few

words are in order to reasonably extend the notion of hereditarily finite set and of
transitive closure. In fact, also the notion of rank can be redesigned for the non-
well-founded arena5. In order to state the anti-foundation axiom and capture
more clearly the notion of hyperset, we need to specify the above mentioned
extension of the principle of extensionality.

4 These definitions can be fully formally given by induction on 2, by exploiting any
sensible notion of finiteness.

5 Actually, this can be done in many di↵erent ways, but the real power of any such
extension remains rather mysterious (see [PP04,DPP04]).
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To introduce hereditarily finite hypersets we need the definition of bisimu-
lation relation. This definition is first given for graphs—as follows—and then is
used as an equality criterion to introduce the world of hypersets. This last step
is done exploiting the fact that both sets and hypersets are naturally understood
as membership graphs.

Definition 1. A bisimulation on (V, E) is a relation [ ✓ V ⇥ V that satisfies

1) to every child v0 of u0 there corresponds at least one child v1 of u1 such that
v0 [ v1 holds, and

2) to every child v1 of u1 there corresponds at least one child v0 of u0 such that
v0 [ v1 holds.

At this point we can define bisimilarity to be the relation ⌘(V,E) (or simply ⌘)
defined between nodes u, v 2 V as: u⌘(V,E)v i↵ u[v holds for some bisimulation [
on (V, E). It plainly turns out that ⌘(V,E) is a bisimulation (actually, the largest
of all bisimulations) on (V, E); moreover, it is an equivalence relation over V .
The following definitions (given following [Acz88]) establish the bridge between
graphs and sets.

Definition 2. A pointed graph G = (G, v) is a graph G = (V, E) with a dis-
tinguished node v 2 V (its point) from which every node in V is E-reachable.

Definition 3. Given a set S, its membership graph GS is the pointed graph
(GS , S), where GS = (trCl({S}), ES) with

ES = {hv, wi : v 2 trCl({S}) ^ w 2 trCl({S}) ^ w 2 v}

With a slight abuse of terminology we will say that graph G (not pointed) is
a membership graph if there exists a node s in the graph G such that (G, s) is
isomorphic to a membership graph. An acyclic membership graph corresponds
to the transitive closure of a well-founded set. Below we give two simple results
implying that bisimulation is, in fact, coherent with the extensionality principle.

Proposition 1. The membership graph of any hereditarily finite set has the
identity relation as its only bisimulation.

Any finite, acyclic, pointed graph having identity as its only bisimulation is
isomorphic to the membership graph of a hereditarily finite set.

On the basis of the above proposition, one can identify HF (i.e. the collection of
x’s such that HF(x)) with the collection of those finite, acyclic, pointed graphs
whose only bisimulation is the identity —which, in turn, is the collection of
those finite acyclic pointed graphs in which no two di↵erent nodes have the
same successor set. We can now proceed to define hypersets simply by dropping
the acyclicity requirement and using bisimulation as equality criterion.

Definition 4. A hyperset is (the isomorphism class of) a pointed graph on
which identity is the only bisimulation. Such an entity is said to be hereditar-
ily finite when it has finitely many nodes.
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Recalling that the subgraph issuing from w in a graph G is the subgraph,
pointed in w, that consists of all nodes which are reachable from w in G, we can
readily introduce the membership relation between hypersets as follows.

Definition 5. Given two hypersets h and h0 = (G, v), with G = (V, E) as usual,
we say that h 2 h0 if h is (isomorphic to) the pointed subgraph of G issuing from
a node w with hv, wi 2 E.

The class of hereditarily finite hypersets includes the class of hereditarily
finite sets. From now on we will identify any hypersets S (possibly well-founded)
with its membership graph GS—that is, with a representative of its isomorphism
class. Moreover, we will say that a graph (not necessarily a membership graph)
is hyper-extensional if its only bisimulation is the identity.

2 One-element elimination

Consider a hyperset S and recall that, by definition, GS is hyper-extensional. For
any given s 2 trCl({S}), we denote by GS � s the graph obtained from GS by
eliminating s together with all the arcs incident to s. Notice that it is possible
that GS � s is not a membership graph (e.g., the case in which s = S). As we
said in the introduction, the question we want to discuss in this note is whether,
given a hyperset S, it is always possible to find s 2 trCl({S}) such that GS �s is
hyper-extensional. Clearly, if GS is acyclic the question has a positive answer, as
GS � S is undoubtedly hyper-extensional. However, at least in the well-founded
case, it is always possible to maintain (hyper-)extensionality even eliminating a
node s 2 trCl(S) in such a way that GS � s remains a membership graph.

Proposition 2. Given a hereditarily finite set S there exists an s 2 trCl(S) such
that (GS � s, S) is (isomorphic to) a membership graph.

Proof. (Sketch) We can determine s as follows: if there exist two elements of the
same rank in the transitive closure of S, let r be the maximum such rank and
take s to be any element in the transitive closure of S of rank r. Otherwise take
s as the empty set.

The general case in which GS is cyclic is more challenging. First of all, we
observe that we can produce a scenario in which the only possible eliminable s
is in fact the point S.

Example 1. Consider the hyperset satisfying the following system of set-theoretic equa-
tions: S = {T}, T = {U, S}, U = {T, ;}. In the above case the only eliminable element
in GS is its point S.

The above example marks a di↵erence between the well-founded and the
non well-founded case, as it tells us that the generalisation of Proposition 2 to
the cyclic case does not hold. However, it leaves the question open as whether,
possibly by permitting the elimination of the point, it is always possible to delete
a node from GS having the remaining graph hyper-extensional.
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Definition 6. Let Gscc
S be the graph having scc’s of GS as nodes, and an arc

between A and B if and only if there exist an arc in GS having source in A and
target in B.

Proposition 3. For any membership graph GS, the graph Gscc
S is acyclic and

has at most two sinks.

Even though—as we said—it is not easy to chose a notion of rank for non well-
founded sets, let the rank of A of GS to be the length of the longest simple
path in GS from A. We do not know if, given a membership graph GS , a node
whose elimination does not disrupt hyper-extensionality always exists. However,
if this is the case, one such node is not necessarily of maximal rank and it is not
necessarily of maximal rank in the highest strongly connected component. See
the following two examples.

Example 2. The following is an example of hyperset in which the element of maxi-
mum rank (defined as the element source of the longest simple path and indicated in
parenthesis) cannot be eliminated without causing a collapse.

a(3)

v(2) w(2)
u(4)

b(3)

c(1)

;

Example 3. The following is an example of hyperset in which the element of maximum
rank in the highest strongly connected component cannot be eliminated without causing
a collapse.

v(4) w(4) a(5)

b(1)

;

On the one hand, a reasonable point of view could be that a choice for an
eliminable node should be strictly tied with a definition of some notion of rank
compatible with cyclic structures. On the other hand, one could argue that on
cyclic graphs an eliminable node must be characterised by two di↵erent features:
a maximal rank—captured by the maximality of the strongly connected com-
ponent where the node must be chosen—, and a di↵erent—unknown—feature,
related with the cyclic character of the graph and guiding in the choice within
the strongly connected component.
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Concluding remarks

We consider that the problem presented here is simple and elegant enough to de-
serve a (computationally well characterised) answer without any further consid-
eration. However, let us conclude by mentioning a context in which the question
tackled here was raised, and for which a (positive) answer would be beneficial.

In [PT13] the problem of generating uniformly and at random a set with a
given number of elements in its transitive closure was studied. The proposed so-
lution was based on generating extensional acyclic digraphs with a given number
of labeled vertices (since all of the n! labelings of the vertices of an extensional
acyclic digraph, or of a hyper-extensional digraph on n vertices, lead to non-
isomorphic labelled digraphs). The results in [PT13] are based on a Markov
chain Monte Carlo-based algorithm, initially proposed for generating acyclic di-
graphs [MDBM01,MP04]. The key fact needed in order to show that the Markov
chain converges to the uniform distribution were the irreducibility, aperiodicity,
and symmetry of the chain. The idea exploited in the construction of the Markov
chain was to show that a pair of elementary operations on graphs (implemented
as basic transition rules of the Markov chain, akin to the elimination of a node)
could be used to transform any graph G into another graph G0 within the same
family. Even though this problem was later solved in [RT13] by a deterministic
algorithm based on a combinatorial decomposition (and a resulting counting re-
currence), as mentioned above, we are far from having such a counter-part for
hyper-extensional digraphs. However, a positive answer to the question posed in
this note would allow one to extend the Markov chain Monte Carlo technique to
the realm of hypersets, which would be the first result of its kind.
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