
META-LEARNING AND ALGORITHM

SELECTION WORKSHOP

AT ECAI 2014

MetaSel 2014
August 19, 2014

Prague, Czech Republic

Edited by

Joaquin Vanschoren, Pavel Brazdil, Carlos Soares and Lars Kotthoff

Preface

Algorithm Selection and configuration are increasingly relevant today. Researchers and practitioners from
all branches of science and technology face a large choice of parameterized machine learning algorithms,
with little guidance as to which techniques to use. Moreover, data mining challenges frequently remind us
that algorithm selection and configuration are crucial in order to achieve the best performance, and drive
industrial applications.

Meta-learning leverages knowledge of past algorithm applications to select the best techniques for
future applications, and offers effective techniques that are superior to humans both in terms of the end
result and especially in the time required to achieve it. In this workshop we will discuss different ways of
exploiting meta-learning techniques to identify the potentially best algorithm(s) for a new task, based on
meta-level information and prior experiments. We also discuss the prerequisites for effective meta-learning
systems such as recent infrastructure such as OpenML.org.

Many problems of today require that solutions be elaborated in the form of complex systems or work-
flows which include many different processes or operations. Constructing such complex systems or work-
flows requires extensive expertise, and could be greatly facilitated by leveraging planning, meta-learning
and intelligent system design. This task is inherently interdisciplinary, as it builds on expertise in various
areas of AI.

This ECAI-2014 workshop will provide a platform for researchers and research students interested to
exchange their knowledge about:

– Problems and solutions of algorithm selection and algorithm configuration
– How to use software and platforms to select algorithms in practice
– How to provide advice to end users about which algorithms to select in diverse domains, including

optimization, SAT etc. and incorporate this knowledge in new platforms.

These proceedings include 14 contributions discussing the nature of algorithm selection which arises
in many diverse domains, such as machine learning, data mining, optimization and satisfiability solving,
among many others. We thank everybody for their sincere interest and their contributions, our programme
committee for reviewing all submissions, and especially our invited speakers:

– Lars Kotthoff: Towards an Algorithm Selection Standard: Data Format and Tools.
– Frank Hutter: Bayesian Optimization for More Automatic Machine Learning.

We hope you will find it an interesting and inspiring workshop, leading to great new collaborations.

Eindhoven, July 2014
Joaquin Vanschoren

Pavel Brazdil
Carlos Soares
Lars Kotthoff

Main areas covered by the workshop

Of particular interest are methods and proposals that address the following issues:

– Algorithm Selection and Configuration
– Planning to learn and construct workflows
– Applications of workflow planning
– Meta-learning and exploitation of meta-knowledge
– Exploitation of ontologies of tasks and methods
– Exploitation of benchmarks and experimentation
– Representation of learning goals and states in learning
– Control and coordination of learning processes
– Meta-reasoning
– Experimentation and evaluation of learning processes
– Layered learning
– Multi-task and transfer learning
– Learning to learn
– Intelligent design
– Performance modeling
– Process mining

Program Committee

– Pavel Brazdil, LIAAD-INESC Porto L.A. / FEP, University of Porto, Portugal
– André C. P. Carvalho, USP, Brasil
– Claudia Diamantini, UniversitĂ Politecnica delle Marche, Italy
– Johannes Fuernkranz, TU Darmstadt, Germany
– Christophe Giraud-Carrier, Brigham Young Univ., USA
– Krzysztof Grabczewski, Nicolaus Copernicus University, Poland
– Melanie Hilario, Switzerland
– Frank Hutter, University of Freiburg, Germany
– Christopher Jefferson, University of St Andrews, UK
– Alexandros Kalousis, U Geneva, Switzerland
– Jörg-Uwe Kietz, U.Zurich, Switzerland
– Lars Kotthoff, University College Cork, Ireland
– Yuri Malitsky, University College Cork, Ireland
– Bernhard Pfahringer, U Waikato, New Zealand
– Vid Podpecan, Jozef Stefan Institute, Slovenia
– Ricardo Prudêncio, Univ. Federal de Pernambuco Recife (PE), Brasil
– Carlos Soares, FEP, University of Porto, Portugal
– Guido Tack, Monash University, Australia
– Joaquin Vanschoren, Eindhoven University of Technology
– Ricardo Vilalta, University of Houston, USA
– Filip Zelezný, CVUT, Prague, R.Checa

Table of Contents

Towards an Algorithm Selection Standard: Data Format and Tools . 1

Lars Kotthoff

Bayesian Optimization for More Automatic Machine Learning . 2

Frank Hutter

Using Meta-Learning to Initialize Bayesian Optimization of Hyperparameters 3

Matthias Feurer, Tobias Springenberg and Frank Hutter

Similarity Measures of Algorithm Performance for Cost-Sensitive Scenarios 11

Carlos Eduardo Castor de Melo and Ricardo Prudêncio

Using Metalearning to Predict When Parameter Optimization Is Likely to Improve Classification

Accuracy . 18

Parker Ridd and Christophe Giraud-Carrier

Surrogate Benchmarks for Hyperparameter Optimization . 24

Katharina Eggensperger, Frank Hutter, Holger Hoos and Kevin Leyton-Brown

A Framework To Decompose And Develop Metafeatures . 32

Fabio Pinto, Carlos Soares and João Mendes-Moreira

Towards Meta-learning over Data Streams . 37

Jan van Rijn, Geoffrey Holmes, Bernhard Pfahringer and Joaquin Vanschoren

Recommending Learning Algorithms and Their Associated Hyperparameters 39

Michael Smith, Logan Mitchell, Christophe Giraud-Carrier and Tony Martinez

An Easy to Use Repository for Comparing and Improving Machine Learning Algorithm Usage 41

Michael Smith, Andrew White, Christophe Giraud-Carrier and Tony Martinez

Measures for Combining Accuracy and Time for Meta-learning . 49

Salisu Abdulrahman and Pavel Brazdil

Determining a Proper Initial Configuration of Red-Black Planning by Machine Learning 51

Otakar Trunda and Roman Bartak

Hybrid Multi-Agent System for Metalearning in Data Mining . 53

Klara Peskova, Jakub Smid, Martin Pilat, Ondrej Kazik and Roman Neruda

Model Selection in Data Analysis Competitions . 55

David Kofoed Wind and Ole Winther

Towards an algorithm selection standard: data format
and tools

Lars Kotthoff1

The Algorithm Selection Problem is attracting increasing attention
from researchers and practitioners from a variety of different back-
grounds. After decades of fruitful applications in a number of do-
mains, a lot of data has been generated and many approaches tried,
but the community lacks a standard format or repository for this data.
Furthermore, there are no standard implementation tools. This situ-
ation makes it hard to effectively share and compare different ap-
proaches and results on different data. It also unnecessarily increases
the initial threshold for researchers new to this area.

In this talk, I will first give a brief introduction to the Algorithm
Selection Problem and approaches to solving it [4, 3]. Then, I will
present a standardized format for representing algorithm selection
scenarios and a repository that contains a growing number of data
sets from the literature, Aslib [1]. The format has been designed to be
able to express a wide variety of different scenarios. In addition to en-
coding instance features and algorithm performances, there are facili-
ties for providing feature costs, the status of algorithm execution and
feature computations, cross-validation splits and meta-information.
In addition to the data format itself, there is an R package that im-
plements parsers and basic analysis tools. I will illustrate its usage
through a series of examples.

I will further present LLAMA [2], a modular and extensible toolkit
implemented as an R package that facilitates the exploration of a
range of different portfolio techniques on any problem domain. It im-
plements the algorithm selection approaches most commonly used in
the literature and leverages the extensive library of machine learning
algorithms and techniques in R. I will provide an overview of the
architecture of LLAMA and the current implementation.

Leveraging the standard data format and the LLAMA toolkit, I
will conclude this talk by presenting a set of example experiments
that build and evaluate algorithm selection models. The models are
created and evaluated with LLAMA on the problems in the algo-
rithm selection benchmark repository. The results demonstrate the
potential of algorithm selection to achieve significant performance
improvements even through straightforward application of existing
techniques.

Together, Aslib and LLAMA provide a low-threshold starting
point for researchers wanting to apply algorithm selection to their
domain or prototype new approaches. Both are under active develop-
ment.

Joint work with Bernd Bischl, Pascal Kerschke, Marius Lindauer,
Yuri Malitsky, Alexandre Fréchette, Holger Hoos, Frank Hutter,
Kevin Leyton-Brown, Kevin Tierney, and Joaquin Vanschoren.

1 University College Cork, larsko@4c.ucc.ie

REFERENCES
[1] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri

Malitsky, Alexandre Fréchette, Holger Hoos, Frank Hutter, Kevin
Leyton-Brown, Kevin Tierney, and Joaquin Vanschoren, ‘Aslib: A
benchmark library for algorithm selection’, under review for AIJ, (2014).

[2] Lars Kotthoff, ‘LLAMA: leveraging learning to automatically manage
algorithms’, Technical Report arXiv:1306.1031, arXiv, (June 2013).

[3] Lars Kotthoff, ‘Algorithm selection for combinatorial search problems:
A survey’, AI Magazine, (2014).

[4] Lars Kotthoff, Ian P. Gent, and Ian Miguel, ‘An evaluation of machine
learning in algorithm selection for search problems’, AI Communica-
tions, 25(3), 257–270, (2012).

1

Bayesian Optimization for
More Automatic Machine Learning

(extended abstract for invited talk)

Frank Hutter1

Bayesian optimization (see, e.g., [2]) is a framework for the op-
timization of expensive blackbox functions that combines prior as-
sumptions about the shape of a function with evidence gathered by
evaluating the function at various points. In this talk, I will briefly de-
scribe the basics of Bayesian optimization and how to scale it up to
handle structured high-dimensional optimization problems in the se-
quential model-based algorithm configuration framework SMAC [6].

Then, I will discuss applications of SMAC to two structured high-
dimensional optimization problems from the growing field of auto-
matic machine learning:

• Feature selection, learning algorithm selection, and optimization
of its hyperparameters are crucial for achieving good performance
in practical applications of machine learning. We demonstrate that
a combined optimization over all of these choices can be carried
out effectively by formulating the problem of finding a good in-
stantiation of the popular WEKA framework as a 768-dimensional
optimization problem. The resulting Auto-WEKA framework [7]
allows non-experts with some available compute time to achieve
state-of-the-art learning performance on the push of a button.

• Deep learning has celebrated many recent successes, but its per-
formance is known to be very sensitive to architectural choices and
hyperparameter settings. Therefore, so far its potential could only
be unleashed by deep learning experts. We formulated the com-
bined problem of selecting the right neural network architecture
and its associated hyperparameters as a 81-dimensional optimiza-
tion problem and showed that an automated procedure could find
a network whose performance exceeded the previous state-of-the-
art achieved by human domain experts using the same building
blocks [3]. Computational time remains a challenge, but this re-
sult is a step towards deep learning for non-experts.

To stimulate discussion, I will finish by highlighting several fur-
ther opportunities for combining meta-learning and Bayesian opti-
mization:

• Prediction of learning curves [3],
• Learning the importance of hyperparameters (and of meta-

features) [4, 5], and
• Using meta-features to generalize hyperparameter performance

across datasets [1, 8], providing a prior for Bayesian optimization.

Based on joint work with Tobias Domhan, Holger Hoos, Kevin
Leyton-Brown, Jost Tobias Springenberg, and Chris Thornton.

1 University of Freiburg, Germany. Email: fh@cs.uni-freiburg.de.

REFERENCES
[1] R. Bardenet, M. Brendel, B. Kgl, and M. Sebag, ‘Collaborative hyperpa-

rameter tuning’, in Proc. of ICML, (2013).
[2] E. Brochu, V. M. Cora, and N. de Freitas, ‘A tutorial on Bayesian

optimization of expensive cost functions, with application to ac-
tive user modeling and hierarchical reinforcement learning’, CoRR,
abs/1012.2599, (2010).

[3] Tobias Domhan, Tobias Springenberg, and Frank Hutter, ‘Extrapolating
learning curves of deep neural networks’, in ICML 2014 AutoML Work-
shop, (June 2014).

[4] F. Hutter, H. Hoos, and K. Leyton-Brown, ‘Identifying key algorithm
parameters and instance features using forward selection’, in Learning
and Intelligent Optimization, pp. 364–381, (2013).

[5] F. Hutter, H. Hoos, and K. Leyton-Brown, ‘An efficient approach for
assessing hyperparameter importance’, in International Conference on
Machine Learning, (2014).

[6] F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘Sequential model-based
optimization for general algorithm configuration’, in Proc. of LION-5,
(2011).

[7] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘Auto-
WEKA: combined selection and hyperparameter optimization of clas-
sification algorithms’, in Proc. of KDD’13, (2013).

[8] D. Yogatama and G. Mann, ‘Efficient transfer learning method for auto-
matic hyperparameter tuning’, in Proc. of AISTATS, (2014).

2

Using Meta-Learning to
Initialize Bayesian Optimization of Hyperparameters

Matthias Feurer and Jost Tobias Springenberg and Frank Hutter1

Abstract. Model selection and hyperparameter optimization is cru-
cial in applying machine learning to a novel dataset. Recently, a sub-
community of machine learning has focused on solving this prob-
lem with Sequential Model-based Bayesian Optimization (SMBO),
demonstrating substantial successes in many applications. However,
for expensive algorithms the computational overhead of hyperpa-
rameter optimization can still be prohibitive. In this paper we ex-
plore the possibility of speeding up SMBO by transferring knowl-
edge from previous optimization runs on similar datasets; specifi-
cally, we propose to initialize SMBO with a small number of config-
urations suggested by a metalearning procedure. The resulting simple
MI-SMBO technique can be trivially applied to any SMBO method,
allowing us to perform experiments on two quite different SMBO
methods with complementary strengths applied to optimize two ma-
chine learning frameworks on 57 classification datasets. We find that
our initialization procedure mildly improves the state of the art in
low-dimensional hyperparameter optimization and substantially im-
proves the state of the art in the more complex problem of combined
model selection and hyperparameter optimization.

1 Introduction
Hyperparameter optimization is a crucial step in the process of ap-
plying machine learning algorithms in practice. Depending on the
training time of the algorithm at hand, finding good hyperparameter
settings manually is often a time-consuming, tedious process requir-
ing many ad-hoc choices by the practitioner. As a result, much recent
work in machine learning has focused on the development of better
hyperparameter optimization methods [14, 3, 29, 4, 26, 21, 10, 33, 5].

Recently, Sequential Model-based Bayesian Optimization
(SMBO) [16, 7, 14] has emerged as a successful hyperparameter
optimization method in machine learning. It has been conclusively
shown to yield better performance than both grid and random
search [3, 29, 33, 9]. In practical applications, it has unveiled
new state-of-the-art performance on the challenging CIFAR-10
object recognition benchmark by tuning the hyperparameters of a
deep neural network [29] and was repeatedly found to match or
outperform human practitioneers in tuning complex neural network
models [3] as well as computer vision architectures with up to
238 hyperparameters [5]. It has also enabled AutoWEKA [33],
which performs combined algorithm selection and hyperparameter
optimization in the space of algorithms defined by the WEKA
package [11]. We describe SMBO in detail in Section 2.

However, SMBO is defined as a generic function optimization
framework, and—like any other generic optimization method—it re-
quires a substantial number of function evaluations to detect high-

1 University of Freiburg, Germany, {feurerm,springj,fh}@cs.uni-freiburg.de

performance regions when started on a new optimization problem.
The resulting overhead is computationally infeasible for expensive-
to-evaluate machine learning algorithms. To combat this problem,
metalearning has been applied in two ways. Firstly, a method sim-
ilar to SMBO that reasons across datasets has been developed[19].
Secondly, metalearning was used to initialize hyperparameter op-
timization methods with hyperparameter configurations that previ-
ously yielded good performance on similar datasets [26, 21, 10]. We
follow this latter approach to yield a simple and effective initializa-
tion procedure that applies generically to all variants of SMBO; we
refer to the resulting SMBO approach with Meta-learning-based Ini-
tialization as MI-SMBO. In contrast to another recent line of work
on collaborative SMBO methods [1, 35, 32], MI-SMBO does not re-
quire any adaptation of the underlying SMBO procedure. It is hence
easy to implement and can be readily applied to several off-the-shelf
hyperparameter optimizers.

Using a comprehensive suite of 57 datasets and 46 metafeatures,
we empirically studied the impact of our meta-learning-based ini-
tialization procedure to two SMBO variants with complementary
strengths. First, we applied it to optimize the 2 hyperparameters C
and γ of a support vector machine (SVM), which control the SVM’s
learning process. Here, our MI-Spearmint variant of the Gaussian-
process-based SMBO method Spearmint [29] (a state-of-the-art ap-
proach for low-dimensional hyperparameter optimization) yielded
mild improvements: in particular, MI-Spearmint performed better
than Spearmint initially, but after 50 function evaluations the dif-
ferences levelled off. Second, we applied our method to optimize
10 hyperparameters describing a choice between three classifiers
from the prominent Scikit-Learn package [22] and their hyperpa-
rameters. Here, our MI-SMAC variant of the random-forest-based
SMBO method SMAC [14] (a state-of-the-art approach for high-
dimensional hyperparameter optimization) yielded substantial im-
provements, significantly outperforming the previous state of the art
for this problem. To enable other researchers to reproduce and build
upon our results, we will provide our software on the first author’s
github page.2

2 Foundations
Before we describe our MI-SMBO approach in detail we formally
describe hyperparameter optimization and SMBO.

2.1 Hyperparameter Optimization
Let θ1, . . . , θn denote the hyperparameters of a machine learning al-
gorithm, and let Θ1, . . . ,Θn denote their respective domains. The al-

2 https://github.com/mfeurer

3

Algorithm 1: Generic Sequential Model-based Optimization.
SMBO(fD , T , Θ, θ1:t)

Input: Target function fD; limit T ; hyperparameter space Θ;
initial design θ1:t = 〈θ1, . . . ,θt〉

Result: Best hyperparameter configuration θ∗ found
1 for i← 1 to t do yi ← Evaluate fD(θi)
2 for j ← t+ 1 to T do
3 M← fit model on performance data 〈θi, yi〉j−1

i=1

4 Select θj ∈ arg maxθ∈Θ a(θ,M)

5 yj ← Evaluate fD(θj)

6 return θ∗ ∈ arg minθj∈{θ1,...,θT } yj

gorithm’s hyperparameter space is then defined as Θ = Θ1 × · · · ×
Θn. When trained with θ ∈ Θ on data Dtrain, we denote the algo-
rithm’s validation error on dataDvalid as V(θ,Dtrain,Dvalid). Using k-
fold cross-validation, the hyperparameter optimization problem for a
given dataset D then is to minimize:

fD(θ) =
1

k

k∑

i=1

V(θ,D(i)
train,D

(i)
valid). (1)

Hyperparameters θi can be numerical (real or integer, as, e.g., the
strength of a regularizer) or categorical (unordered, with finite do-
main, as, e.g., the choice between different kernels). Furthermore,
there can be conditional hyperparameters, which are only active if
another hyperparameter takes a certain value; for example, the hy-
perparameter “number of principal components” only needs to be
instantiated when the hyperparameter “preprocessing method” is set
to PCA.

The space of hyperparameter configurations can be searched ei-
ther manually or automatically. Since manual search is tedious, time-
consuming, and often not sample-efficient, much recent work in ma-
chine learning has focused on the development of automated meth-
ods. Grid search, the most frequently used automated method, does
not scale to high-dimensional hyperparameter spaces, and has been
shown to be outperformed by random search in the presence of low
effective dimensionality [3]. Various types of direct search have been
applied to the problem as well, such as genetic algorithms [26], par-
ticle swarm optimization [21], and tabu search [10]. Most recently,
several SMBO algorithms have been presented for hyperparameter
optimization [14, 3, 29]; we discuss these in the following section.

2.2 Sequential Model-based Bayesian Optimization
Sequential Model-based Bayesian Optimization (SMBO) [16, 7, 14]
is a powerful method for the global optimization of expensive black-
box functions f . As described in Algorithm 1, SMBO starts by
querying the function f at the t values in an initial design and record-
ing the resulting 〈input, output〉 pairs 〈θi, f(θi)〉ti=1. Afterwards, it
iterates the following three phases: (1) fit a probabilistic model M
to the 〈input, output〉 pairs collected so far; (2) use the probabilistic
modelM to select a promising input θ to evaluate next by quantify-
ing the desirability of obtaining the function value at arbitrary inputs
θ ∈ Θ through a so-called acquisition function a(θ,M); (3) evalu-
ate the function at the new input θ.

The SMBO framework offers several degrees of freedom to be in-
stantiated, including the procedure’s initialization, the type of prob-
abilistic model to use, and the acquisition function. We discuss three
prominent hyperparameter optimization methods in terms of these
components: SMAC [14], Spearmint [29], and TPE [3].

The role of the acquisition function a(θ,M) is to trade off explo-
ration in hyperparameter regions where the model M is uncertain
with exploitation in regions with low predicted validation error. The
most commonly-used acquisition function is the Expected positive
improvement (EI) over the best input found so far [16]:

aEI(θ,M) =

∫ ∞

−∞
max(y∗ − y, 0)pM(y|θ)dy. (2)

Other prominent acquisition functions are Upper Confidence Bounds
[31] and Entropy Search [12]. All of SMAC, Spearmint, and TPE use
the expected improvement criterion.

Several different model types can be used inside of SMBO. The
most popular choice, used for example by Spearmint, are Gaus-
sian processes [24] because they provide good predictions in low-
dimensional numerical input spaces and allow the computation of the
posterior Gaussian process model in closed form. The other popular
model type are tree-based approaches, which are particularly well
suited to handle high-dimensional input spaces and partially cate-
gorical input spaces. In particular, SMAC uses random forests [6],
modified to yield an uncertainty estimate [15]. Random forests are
particularly well suited for SMBO in high dimensions due to their
robustness and automated feature selection. Another tree-based ap-
proach, applied by TPE, is to use the Tree Parzen Estimator [3] in
order to construct a density estimate over good and bad instantia-
tions of each hyperparameter: instead of predicting p(y | θ) directly,
TPE constructs estimates of p(θ | y ≥ q) and p(θ | y < q) for
a given quantile q. Expected improvement can then be shown to be
proportional to p(θ|y>q)

p(θ|y<q) .
The final degree of freedom in SMBO is its initialization. To date,

this component has not received much attention, and is instantiated in
a fairly ad-hoc manner: Spearmint evaluates f at two pre-defined in-
put points, SMAC evaluates it at a pre-defined ‘default’ input, and
TPE evaluates 20 points selected at random according to a user-
defined prior distribution. It is this initialization procedure that our
MI-SMBO approach aims to improve.

An empirical evaluation of Bayesian hyperparameter optimization
methods in the framework of the hyperparameter optimization library
(HPOlib [9]) has shown Spearmint to yield the best results for low-
dimensional continuous hyperparameter optimization problems, and
SMAC to perform best for high-dimensional hyperparameter opti-
mization problems and problems with categorical and/or conditional
hyperparameters.

3 Initializing SMBO With Configurations
Suggested by Meta-Learning

Building on the foundations from Section 2 we will now describe
our proposed MI-SMBO method that uses meta-learning to initialize
SMBO.

The core idea behind MI-SMBO is to follow the common practice
machine learning experts employ when applying a known machine
learning method to a new dataset Dnew: they first study Dnew, relat-
ing it to datasets they previously experienced. When manually opti-
mizing hyperparameters for Dnew, they would begin the search with
hyperparameter configurations that were optimal for the most similar
previous datasets. Our MI-SMBO method automates this approach
and uses it to initialize an SMBO method. In addition to eliminat-
ing the need for manual exploration, this can lead to better results
as more time can be spend on improving known configurations. We
note that in settings where only a few performance evaluations of the
algorithm to be optimized are feasible using additional information

4

Algorithm 2: SMBO with Meta-Learning Initialization.
MI-SMBO(Dnew, fDnew , D1:N , θ̂1:N , d, t, T , Θ)

Input: new dataset Dnew; target function fDnew ; training datasets
D1:N = (D1, . . . , DN); best configurations for training
datasets, θ̂1:N = θ̂1, . . . , θ̂N ; distance metric d; number
of configurations to include in initial design, t; limit T ;
hyperparameter space Θ

Result: Best hyperparameter configuration θ∗ found
1 Sort dataset indices π(1), . . . π(N) by increasing distance to
Dnew, i.e.: (π(i) ≤ π(j))⇔ (d(Dnew, Di) ≤ d(Dnew, Dj))

2 for i← 1 to t do θi ← θ̂π(i)

3 θ∗ ← SMBO(fD , T , Θ, θ1:t)
4 return θ∗

from other datasets might be the only possibility to achieve reason-
able performance.

Formally, MI-SMBO can be stated as follows. Let θ̂1, . . . , θ̂N

denote the best known hyperparameters for the previously encoun-
tered datasets D1, . . . , DN , respectively. These may originate from
an arbitrary source, e.g., a manual search or the application of
an SMBO method during an offline training phase. Further, let
Dnew denote a new dataset, let d denote a distance metric between
datasets, and let π denote a permutation of (1, . . . , N) sorted by
increasing distance between Dnew and Di (i.e., (π(i) ≤ π(j)) ⇔
(d(Dnew, Di) ≤ d(Dnew, Dj))). Then, MI-SMBO with an initial
design of t configurations initializes SMBO with configurations
θ̂π(1), . . . , θ̂π(t). Algorithm 2 provides pseudocode for the ap-
proach.

We would like to highlight the fact that MI-SMBO is agnostic
of the SMBO algorithm used, as long as the algorithm’s imple-
mentation accepts an initial design as input or can be warmstarted
with a given list of performance data 〈θi, yi〉ti=1. All of SMAC,
TPE, and Spearmint fulfill these criteria. We would also like to
highlight that SMBO is a particularly good match for initialization
with meta-learning: in contrast to existing approaches that initial-
ize other types of hyperparameter optimization algorithms via met-
alearning [10, 21, 26], SMBO can make effective use of all perfor-
mance data it receives as input (and does not have to adapt population
sizes or alike to the size of the initial design).

To implement MI-SMBO, we still need to define a distance metric
between datasets. This is a well studied problem which was, to our
knowledge, first discussed by Soares and Brazdil [30]. For the pur-
pose of this work we assume that each dataset Di can be described
through a set of F metafeatures mi = (mi

1, . . . ,m
i
F). We discuss

the metafeatures we used in Section 3.1. In practice, we precompute
the metafeatures for all training datasets D1, . . . , DN along with the
best configurations (θ̂1, . . . , θ̂N). We then measure the distance be-
tween a new dataset Dnew and a previous dataset Di as the norm of
the distance between their metafeatures:

d(Dnew, Dj) = ‖mnew −mj‖. (3)

3.1 Implemented Metafeatures

To evaluate our approach in a realistic setting we implemented the
46 metafeatures from the literature listed in Table 1. Based on their
types and underlying assumptions, these metafeatures can be divided
into at least five groups:

Table 1. List of implemented metafeatures

Simple metafeatures: Statistical metafeatures:
number of patterns min # categorical values
log number of patterns max # categorical values
number of classes mean # categorical values
number of features std # categorical values
log number of features total # categorical values
number of patterns with missing values kurtosis min
percentage of patterns with missing values kurtosis max
number of features with missing values kurtosis mean
percentage of features with missing values kurtosis std
number of missing values skewness min
percentage of missing values skewness max
number of numeric features skewness mean
number of categorical features skewness std
ratio numerical to categorical
ratio categorical to numerical PCA metafeatures:
dataset dimensionality pca 95%
log dataset dimensionality pca skewness first pc
inverse dataset dimensionality pca kurtosis first pc
log inverse dataset dimensionality
class probability min Landmarking metafeatures:
class probability max One Nearest Neighbor
class probability mean Linear Discriminant Analysis
class probability std Naive Bayes

Decision Tree
Information-theoretic Decision Node Learner
metafeature: Random Node Learner
class entropy

• Simple metafeatures, such as the number of features, patterns or
classes, describe the basic dataset structure [20, 17, 1, 35].

• PCA metafeatures [1] perform principal component analysis and
compute various statistics of the principal components.

• The information-theoretic metafeature measures the class entropy
in the data [20].

• Statistical metafeatures [20] attempt to characterize the data dis-
tribution via descriptive statistics such as the kurtosis or the dis-
persion of the label distribution.

• Landmarking metafeatures [23, 2] are computed by running fast
machine learning algorithms to characterize properties of the
dataset. Since they characterize which simple approaches work
well (and, in combination, also which simple approaches work
better than others) they are intuitively very relevant for deter-
mining which hyperparameter configuration of a given algorithm
would perform well.

While most of the metafeatures can be computed for a whole
dataset, some of them (e.g., skewness) are defined for each attribute
of a dataset. In this case, we compute the metafeature for each at-
tribute of the dataset and use the mean, standard deviation, minimum
and maximum of the resulting vector as proposed in [27]. Impor-
tantly, as our datasets are relatively small, the metafeatures for one
dataset can be computed within less than one minute. Furthermore,
for every dataset we use, the time needed to compute the metafea-
tures is less than the average time it takes to evaluate a hyperparam-
eter configuration.

4 Experimental Methodology

We now discuss the datasets we used in our experiments, as well as
the machine learning algorithms and their hyperparameters we opti-
mized for them.

5

Table 2. List of the 57 datasets used for the experiments; the names refer
to the names on the OpenML project website[34].

abalone anneal.ORIG arrhythmia
audiology autos balance-scale
braziltourism breast-cancer breast-w
car cmc credit-a
credit-g cylinder-bands dermatology
diabetes ecoli eucalyptus
glass haberman heart-c
heart-h heart-statlog hepatitis
ionosphere iris kr-vs-kp
labor letter liver-disorders
lymph mfeat-factors mfeat-fourier
mfeat-karhunen mfeat-morphological mfeat-pixel
mfeat-zernike mushroom nursery
optdigits page-blocks pendigits
postoperative-patient-data primary-tumor satimage
segment sonar soybean
spambase tae tic-tac-toe
vehicle vote vowel
waveform-5000 yeast zoo

Table 3. Hyperparameters of the SVM. We optimized the base-2 logarithm
of C and γ.

Hyperparameter Values Steps

log2(C) {−5,−4, . . . , 15} 21
log2(γ) {−15,−14, . . . , 3} 19

4.1 Datasets and Preprocessing

For our experiments, we obtained the 57 datasets listed in Table 2
from the OpenML project website[34]. We first shuffled each dataset
and then split it in stratified fashion into 2/3 training and 1/3 test data.
Validation performance for Bayesian optimization was then com-
puted by ten-fold crossvalidation on the training dataset.

To use the same dataset for each classification algorithm, we coded
categorical features using a one-hot (aka 1-in-k) encoding, replacing
each categorical feature f with domain {v1, . . . , vk} by k binary
variables, only the i-th of which is set to true for data points where
f is set to vi. To retain sparsity, we replaced any missing values with
zero. Finally, we scaled numerical features linearly to the range [0, 1]
by subtracting the minimum value and dividing by the maximum. 3

4.2 Machine Learning Algorithms and Their
Hyperparameters

We empirically evaluated our MI-SMBO approach to optimize two
practically relevant machine learning frameworks, one with few and
one with many hyperparameters. The first framework are Support
Vector Machines (SVMs) [28], namely the SVM implementation in
Scikit-Learn (short sklearn) [22]. We used an RBF kernel and, in
accordance with the LibSVM user guide [8] optimized two hyper-
parameters: the complexity penalty C and the kernel width of the
RBF kernel γ. We chose the range of allowed values according to the
LibSVM user guide; see Table 3 for details.

Our second machine learning framework comprises a range of
machine learning algorithms in sklearn [22]. We combined all al-
gorithms into a single hierarchical optimization problem using the

3 This is the standard practice for SVMs, as for example advised in the
LibSVM user guide: http://www.csie.ntu.edu.tw/˜cjlin/
papers/guide/guide.pdf.

Table 4. Hyperparameters for the CASH problem in sklearn. All
hyperparameters except θclassifier and preprocessing are conditional.

Hyperparameters not mentioned were set to their default value.

Component Hyperparameter Values # Values

Main θclassifier {RF, SVM, LinearSVM} 3
Main preprocessing {PCA, None} 2
SVM log2(C) {−5,−4, . . . , 15} 21
SVM log2(γ) {−15,−14, . . . , 3} 19
LinearSVM log2(C) {−15,−14, . . . , 15} 21
LinearSVM penalty {L1, L2} 2
RF min splits {1, 2, 4, 7, 10} 5
RF max features {1%, 4%, . . . , 100%} 10
RF criterion {Gini, Entropy} 2
PCA variance to keep {80%, 90%} 2

Combined Algorithm Selection and Hyperparameter optimization
(CASH) setting by Thornton et al. [33]: there was one top-level hy-
perparameter θclassifier choosing between several classification algo-
rithms and all hyperparameters of classification algorithm Ai were
conditional on θclassifier being set to Ai. This CASH problem is of
high practical relevance since it describes precisely the problem an
end user faces when given a new dataset.4 To keep the computation
bearable and the results interpretable, we only included three clas-
sification algorithms: an SVM with an RBF kernel (as in our first
experiment), a linear SVM, and random forests [6] (one of the most
robust classifiers available). Since we expected noise and redundan-
cies in the training data, we also allowed the optimization procedure
to use Principal Component Analysis (PCA) for preprocessing, with
the number of PCA components being conditional on PCA being ap-
plied. In total this lead to 10 hyperparameters, as detailed in Table
4.

4.3 Experimental Setup

For both machine learning frameworks, we precomputed the 10-fold
crossvalidation error on all 57 datasets over a grid with all possi-
ble hyperparameter combinations. For the SVM, this grid contained
all 399 combinations of the 19 values for C and 21 values for γ
listed in Table 3. For sklearn, it contained an additional 1 224 pos-
sible hyperparameter configurations, due to the additional flexibility
of preprocessing and the two other model classes (linear SVMs and
random forests, see Table 4). Therefore, in total, we evaluated 1 623
hyperparameter configurations on each dataset. Although the classi-
fication datasets were no larger than medium-sized (< 30 000 data
points), calculating the grid took up to three days per dataset on a
modern CPU. This extensive precomputation allowed us to run all
our experiments in simulation, by using a lookup table in lieu of
running an actual algorithm. We will make the gathered algorithm
performance data publicly available to facilitate both reproducibility
of our experiments and follow-up work using the same data.

We evaluated our MI-SMBO approach in a leave-one-dataset-out
fashion: to evaluate it on a dataset Dnew, we assumed knowledge of
the other 56 datasets and their best hyperparameter settings. Because
Bayesian optimization contains random factors, we repeated each op-
timization run ten times on each dataset. In total, we thus executed
each optimization procedure 570 times.

Our metalearning initialization approach has several free design
choices we had to instantiate for our experiments. Firstly, we had to

4 We note that several others have also studied variants of the CASH problem
in sklearn [13, 18].

6

0 10 20 30 40 50

Function evaluations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC
random
TPE
Spearmint(Grid)

0 10 20 30 40 50

Function evaluations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC
random
TPE
Spearmint(Grid)

0 10 20 30 40 50

Function evaluations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC
random
TPE
Spearmint(Grid)

0 10 20 30 40 50

Function evaluations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

Spearmint(Grid)
MI-Spearmint(10,L1,landmarking)
MI-Spearmint(10,L1,all)

0 10 20 30 40 50

Function evaluations

0.00

0.02

0.04

0.06

0.08

0.10

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

Spearmint(Grid)
MI-Spearmint(10,L1,landmarking)
MI-Spearmint(10,L1,all)

0 10 20 30 40 50

Function evaluations

0.01

0.02

0.03

0.04

0.05

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

Spearmint(Grid)
MI-Spearmint(10,L1,landmarking)
MI-Spearmint(10,L1,all)

dataset: heart-c dataset: arrhythmia dataset: breast-cancer

Figure 1. Difference in SVM validation error between the best found hyperparameters at evaluation t and the best value obtained via a full grid search on
three datasets. MI-Spearmint(10, L1, X) stands for MI-Spearmint with an initial design of t = 10 configurations suggested by metalearning using

metafeatures X . Note the differently scaled y-axes in the top and bottom plots.

choose a norm for the distance metric in the space of meta-features
in Equation 3; we experimented with both the L1 and L2 norms.
Next to using the full set of metafeatures, we experimented with var-
ious subsets. Since previous empirical results suggested that land-
marking metafeatures are superior to other metafeatures [23, 25, 26],
we experimented with using only the landmarking features used in
the first experiment of Pfahringer et al. [23]. We also experimented
with the subsets of metafeatures used in previous works on collab-
orative SMBO [1, 35]. Lastly, we had to decide how many hyper-
parameter configurations to evaluate as part of the warmstart phase
before switching to the SMBO algorithm. Here we tried the values
t ∈ {5, 10, 20, 25}. In total, we evaluated 40 different instantiations
of our metalearning procedure.

Due to space restrictions, we only report results for a subset of
these instantiations. Concerning distance measures, in preliminary
experiments the results with the L1 and L2 norms were qualita-
tively similar, with slightly better results for the L1 norm. Thus, all
distances in the experiments reported here were calculated with the
L1-norm. Preliminary results with different subsets of metafeatures
showed that the metafeatures used by existing collaborative SMBO
methods did not match the performance of the other sets; we there-
fore restricted ourselves to only show results for all metafeatures
and for only the landmarking metafeatures. Finally, we report per-
formance only for MI-SMBO with t = 10 hyperparameter configu-
rations suggested by metalearning; however, preliminary results sug-
gest that for larger configuration spaces larger values of t improve
results.

5 Experimental Results
We now report our results for optimizing SVMs and sklearn. For
each of the two machine learning frameworks we studied, we first
assessed the state of the art and then improved it with MI-SMBO.
Specifically, we evaluated the base performance of the hyperparam-
eter optimization procedures random search, Spearmint, TPE, and
SMAC (described in Section 2; note that for TPE the prior distribu-
tions were uniform) on our 57 datasets and then added warmstarts

via MI-SMBO to the best of these.

5.1 Warmstarting Spearmint for Optimizing SVMs
For the low-dimensional problem of optimizing SVMs, the
Spearmint optimizer tended to perform best. Figure 1 (top) com-
pares its qualitative performance on three representative datasets to
that of TPE, SMAC, and random search, showing that it typically
performed best, but that there was still room for improvement. A sta-
tistical analysis using a two-sided t-test on the performances for each
of the 57 datasets shows that Spearmint indeed significantly outper-
formed TPE, SMAC, and random search in 35%, 44%, and 52% of
the datasets, respectively, and only lost in 4%, 4%, and 8% of the
cases, respectively. These findings are in line with previous results
showing Spearmint to be the best choice for hyperparameter opti-
mization benchmarks with a small number of continuous hyperpa-
rameters [9].

We thus applied our MI-SMBO approach to Spearmint, using ei-
ther all meta-features or just the landmarking features, to suggest
the first t = 10 hyperparameter settings Spearmint should evalu-
ate. Figure 1 (bottom) compares the resulting warm-start versions of
Spearmint against vanilla Spearmint on the same three representative
datasets as above. For the two datasets on the left, metalearning di-
rectly identified one of the optimal hyperparameter configurations in
the first function evaluation; this is in contrast to vanilla Spearmint,
which required 17 and 45 function evaluations, respectively, to even-
tually reach a configuration of equal performance. In contrast, for the
dataset on the right, metalearning only yielded small improvements
(a comparison to the right top plot in Figure 1 shows that neither vari-
ant of Spearmint performed better than random search in this case).

Next, we analyzed the performance of MI-Spearmint using the
same ranking-based evaluation as Bardenet et al. [1] to aggregate
over datasets. For each dataset and for each function evaluation bud-
get from 1 to 50, we computed the ranks of the four baselines (ran-
dom search, SMAC, TPE, and Spearmint) and the two MI-Spearmint
variants. More precisely, since we had available 10 runs of each of
the 6 methods for each dataset (which give rise to 106 possible com-

7

0 10 20 30 40 50
2.5

3.0

3.5

4.0

4.5

5.0

SMAC
random

TPE
Spearmint(Grid)

MI-Spearmint(10,L1,landmarking)
MI-Spearmint(10,L1,all)

Figure 2. Average rank of each optimizer, computed over all datasets, for
the SVM classification experiment. (WS10,l1,X) denotes MI-Spearmint
warm-started with 10 configurations suggested by metalearning using

metafeatures X.

binations), we drew a bootstrap sample of 1 000 joint runs of the six
optimizers and computed the average ranks across these runs. We
then further averaged these average ranks across the 57 datasets and
show the results in Figure 2. We remind the reader that the rank is
a measure of performance relative to the performance of the other
optimizers; thus, a method’s rank can increase over time (with larger
function evaluation budgets) even though its error decreases if the
other methods achieve greater error reductions. Furthermore, we note
that this plot simply ranks raw function values and does not include
information about how much the errors of the various methods dif-
fer. With this disclaimer noted, the results are as expected: random
search performed worst, followed by SMAC and TPE, which are
known to be outperformed by Spearmint for low-dimensional con-
tinuous problems [9]. The three variants of Spearmint performed
best, converging to a similar rank with larger function evaluation
budgets; meta-learning yielded dramatically better results for very
small function evaluation budgets, and after about 10 function eval-
uations Spearmint (almost) caught up. We note, however, that even
after 50 function evaluations Spearmint still had not fully caught up
to its warmstart variants, indicating that an initialization with 10 con-
figurations determined by meta learning provided not only good per-
formance with few function evaluations but also a good basis for
Spearmint to improve upon further.

To complement the above ranking analysis, Figure 3 quantifies on
how many datasets MI-Spearmint (based on the landmarking fea-
tures) performed better and worse than the other methods according
to a two-sided t-test (over the ten repetitions of runs per dataset).
The upper plot of Figure 3 shows the ratio of datasets for which
MI-Spearmint performed significantly better than the other methods,
and the lower plot shows the statistically significant losses. Both of
these quantities are plotted over time, as the function evaluation bud-
get increases. We observe that MI-Spearmint started off much better
than all other methods. Given larger function evaluation budgets, us-
ing its Spearmint part, it even increased the performance advantage
over random search, TPE, and SMAC. Compared to Spearmint, MI-
Spearmint started off significantly better in 70% of the datasets, but
these differences leveled off over time. There was very little differ-
ence between the two MI-Spearmint variants (based on landmarking
features vs. based on all features).

5.2 Warmstarting SMAC for Optimizing sklearn

We used the same approach as in the above experiment to assess
MI-SMBO’s performance on the combined algorithm selection and
hyperparapeter optimization problem in sklearn. First, we assessed
the state of the art for this problem. Due to the conditional hyperpa-
rameters in the sklearn space, we excluded Spearmint (which does
not natively support them and is known to perform poorly in their
presence [9]) and only evaluated SMAC, TPE, and random search.
Figure 4 (top) presents the qualitative performance of these optimiz-
ers on three representative datasets, showing that both SMAC and
TPE performed better than random search. Overall, in line with the
results of Eggensperger et al. [9] for large hyperparameter spaces, we
found SMAC and TPE to perform best. We applied our metalearning
initialization to SMAC, but would also expect TPE to benefit from it.

Figure 4 (bottom) shows the qualitative results of MI-SMAC com-
pared to vanilla SMAC. In the left plot, the metalearning suggestions
were reasonable and MI-SMAC’s second part could improve on these
over time. In the middle plot the second configuration suggested by
metalearning was already the best, leaving no room for improvement
by SMAC. The right plot highlights the fact that metalearning can
also fail and decrease the performance of SMAC.

Figure 5 shows the percentage of statistically significant wins of
MI-SMAC against the other optimizers. As before, we evaluated two
different versions of MI-SMAC, based on all features and based on
only the landmarking metafeatures from Pfahringer [23]; the fig-
ure shows that MI-SMAC based on the landmarking features alone
worked somewhat better than based on all features, winning statis-
tically significantly on 11% of the datasets (and loosing on 8%).
Compared to the optimizers without metalearning, MI-SMAC per-
formed much better from the start. Even after 50 iterations, it per-
formed significantly better than TPE on 14% of the datasets (in 8%
worse), better than SMAC on 25% of the datasets (in 10% worse),
and better than random search on 35% of the dataset (in 9% worse).
We would like to point out that the improvement MI-SMAC yielded
over SMAC is nearly as large as the improvement that SMAC yielded
over random search (in 29% better). This is in contrast to the (only)
slight improvements MI-Spearmint yielded over Spearmint for opti-
mizing SVMs. We attribute the success for sklearn to its much larger
search space, which not even SMAC can effectively search in as lit-
tle as 50 function evaluations. Drawing on successful optimizations
from previous datasets clearly helped SMAC in this complex search
space.

6 Conclusion

We have presented a simple, yet effective, method for improving
Sequential Model-based Bayesian Optimization (SMBO) of hyper-
parameters by transferring knowledge from previous optimization
runs. Our method combines ideas from both the metalearning and
the Bayesian optimization community by initializing SMBO with
configurations suggested by a metalearning procedure. We dub the
resulting metalearning-initialized SMBO variant MI-SMBO. Impor-
tantly, MI-SMBO is agnostic of the actual SMBO method used and
can thus be applied to the method best suited for a particular problem.

We demonstrated MI-SMBO’s efficacy by improving the initial-
ization of two quite different SMBO methods for optimizing two
machine learning frameworks on a total of 57 datasets. For opti-
mization in the low-dimensional hyperparameter space of a support
vector machine, our MI-Spearmint variant of the best-performing
SMBO method Spearmint mainly improved upon Spearmint in the

8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50

#Function evaluations

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

MI-Spearmint(10,L1,landmarking) vs SMAC
MI-Spearmint(10,L1,landmarking) vs random

MI-Spearmint(10,L1,landmarking) vs TPE
MI-Spearmint(10,L1,landmarking) vs Spearmint(Grid)

MI-Spearmint(10,L1,landmarking) vs MI-Spearmint(10,L1,all)

Figure 3. Percentage of wins of MI-Spearmint with an initial design of t = 10 configurations suggested by metalearning using the L1 distance on the
metafeature subset from Pfahringer [23]. The upper plot shows significant wins of MI-Spearmint against each other approach according to the two-sided t-test

while the lower plot shows the statistically significant losses.

0 10 20 30 40 50

Function evaluations

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC(10)
random(10)
TPE(10)

0 10 20 30 40 50

Function evaluations

0.00

0.05

0.10

0.15

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC(10)
random(10)
TPE(10)

0 10 20 30 40 50

Function evaluations

0.01

0.02

0.03

0.04

0.05

0.06

0.07

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC(10)
random(10)
TPE(10)

0 10 20 30 40 50

Function evaluations

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC(10)
MI-SMAC(10,L1,all)(10)
MI-SMAC(10,L1,landmarking)(10)

0 10 20 30 40 50

Function evaluations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC(10)
MI-SMAC(10,L1,all)(10)
MI-SMAC(10,L1,landmarking)(10)

0 10 20 30 40 50

Function evaluations

0.02

0.03

0.04

0.05

0.06

D
iff

er
en

ce
to

m
in

fu
nc

tio
n

va
lu

e

SMAC(10)
MI-SMAC(10,L1,all)(10)
MI-SMAC(10,L1,landmarking)(10)

dataset: sonar dataset: heart-h dataset: hepatitis

Figure 4. Difference in validation error between sklearn instantiated with the best found hyperparameters and the best value obtained via a full grid search,
for three datasets. (WS10,l1,X) stands for MI-SMAC with an initial design of t = 10 configurations suggested by metalearning using metafeatures X. Note the

differently scaled y-axes in the top and bottom plots.

early stages of optimization, thus helping it find good configurations
quickly. For a large configuration space describing a combined algo-
rithm selection and hyperparameter optimization problem in scikit-
learn, our MI-SMAC variant of the best-performing SMBO variant
SMAC substantially improved over SMAC (and all other optimizers
we tested) across a range of function evaluation budgets, showing the
potential of our approach especially for large scale hyperparameter
optimization.

In future work, we plan to evaluate MI-SMAC for even larger con-
figuration spaces, such as those of Auto-WEKA [33] and Hyperopt-
Sklearn[18]. We also noticed the lack of a canonical implementa-

tion of metafeatures and are aiming to provide such an implemen-
tation. Finally, we plan to integrate metalearning into the SMBO
procedure and compare the result with recent work on collaborative
SMBO [1, 35, 32].

REFERENCES

[1] R. Bardenet, M. Brendel, B. Kégl, and M. Sebag, ‘Collaborative hyper-
parameter tuning’, in Proc. of ICML, (2013).

[2] H. Bensusan and C. Giraud-Carrier, ‘Discovering task neighbourhoods
through landmark learning performances’, in Proc. of 4th PKDD.
Springer, (September 2000).

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50

Function evaluations

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

MI-SMAC(10,L1,landmarking) vs MI-SMAC(10,L1,all)
MI-SMAC(10,L1,landmarking) vs SMAC

MI-SMAC(10,L1,landmarking) vs TPE
MI-SMAC(10,L1,landmarking) vs random

Figure 5. Percentage of wins of MI-SMAC with an initial design of t = 10 configurations suggested by metalearning using the L1 distance on the
metafeature subset from Pfahringer [23]. The upper plot shows the number of significant wins of MI-SMAC over competing approaches according to the

two-sided t-test while the lower plot shows the statistically significant losses.

[3] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, ‘Algorithms for hyper-
parameter optimization’, in Proc. of NIPS, (2011).

[4] J. Bergstra and Y. Bengio, ‘Random search for hyper-parameter opti-
mization’, JMLR, 13, (February 2012).

[5] J. Bergstra, D. Yamins, and D. D. Cox, ‘Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vi-
sion architectures’, in Proc. of ICML, (2013).

[6] L. Breiman, ‘Random forests’, Machine Learning, 45, (2001).
[7] E. Brochu, V. M. Cora, and N. de Freitas, ‘A tutorial on Bayesian

optimization of expensive cost functions, with application to ac-
tive user modeling and hierarchical reinforcement learning’, CoRR,
abs/1012.2599, (2010).

[8] Chih-Chung Chang and Chih-Jen Lin, ‘LIBSVM: A library for support
vector machines’, ACM Transactions on Intelligent Systems and Tech-
nology, 2, (2011).

[9] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. H.
Hoos, and K. Leyton-Brown, ‘Towards an empirical foundation for as-
sessing bayesian optimization of hyperparameters’, in NIPS workshop
on Bayesian Optimization, (2013).

[10] T.A.F. Gomes, R.B.C. Prudêncio, C. Soares, A. Rossi, and A. Carvalho,
‘Combining meta-learning and search techniques to select parameters
for support vector machines’, Neurocomputing, 75(1), (2012).

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H.
Witten, ‘The WEKA data mining software: an update’, ACM SIGKDD
Explorations Newsletter, 11(1), 10–18, (2009).

[12] P. Hennig and C. Schuler, ‘Entropy search for information-efficient
global optimization’, JMLR, 13, (2012).

[13] M. W. Hoffman, B. Shahriari, and N. de Freitas, ‘Exploiting correlation
and budget constraints in Bayesian multi-armed bandit optimization’,
ArXiv e-prints, (March 2013).

[14] F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘Sequential model-based
optimization for general algorithm configuration’, in Proc. of LION-5,
(2011).

[15] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, ‘Algorithm runtime
prediction: Methods and evaluation’, JAIR, 206(0), 79 – 111, (2014).

[16] D.R. Jones, M. Schonlau, and W. Welch, ‘Efficient global optimization
of expensive black box functions’, Journal of Global Optimization, 13,
(1998).

[17] A. Kalousis, Algorithm Selection via Meta-Learning. University of
Geneve, Department of Computer Science, Ph.D. dissertation, Univer-
sity of Geneve, 2002.

[18] B. Komer, J. Bergstra, and C. Eliasmith, ‘Hyperopt-sklearn: Automatic
hyperparameter configuration for scikit-learn’, in ICML workshop on
AutoML, (2014).

[19] Rui Leite, Pavel Brazdil, and Joaquin Vanschoren, ‘Selecting classifi-
cation algorithms with active testing on similar datasets’, in 5th PLAN-

LEARN WORKSHOP at ECAI, (2012).
[20] Machine Learning, Neural and Statistical Classification, eds., Donald

Michie, D. J. Spiegelhalter, C. C. Taylor, and John Campbell, Ellis Hor-
wood, 1994.

[21] P.B.C. Miranda, R.B.C. Prudêncio, A. Carvalho, and C. Soares, ‘Com-
bining meta-learning with multi-objective particle swarm algorithms
for SVM parameter selection: An experimental analysis’, in Brazilian
Symposium on Neural Networks, (2012).

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, ‘Scikit-learn: Machine learning in Python’, JMLR, 12, (2011).

[23] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier, ‘Meta-learning by
landmarking various learning algorithms’, in Proc. of ICML, (2000).

[24] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Ma-
chine Learning, The MIT Press, 2006.

[25] M. Reif, F. Shafait, and A. Dengel, ‘Prediction of classifier training time
including parameter optimization’, in KI 2011: Advances in Artificial
Intelligence, (2011).

[26] M. Reif, F. Shafait, and A. Dengel, ‘Meta-learning for evolutionary pa-
rameter optimization of classifiers’, Machine Learning, 87, (2012).

[27] M. Reif, F. Shafait, and A. Dengel. Meta2-features: Providing meta-
learners more information, 2012. Poster and Demo Track of the 35th
German Conference on AI.

[28] Bernhard Scholkopf and Alexander J. Smola, Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and Beyond,
MIT Press, Cambridge, MA, USA, 2001.

[29] J. Snoek, H. Larochelle, and R.P. Adams, ‘Practical bayesian optimiza-
tion of machine learning algorithms’, in Proc. of NIPS, (2012).

[30] C. Soares and P.B. Brazdil, ‘Zoomed ranking: Selection of classifica-
tion algorithms based on relevant performance information’, in Proc. of
PKDD’00, Springer, (2000).

[31] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, ‘Gaussian process
optimization in the bandit setting: No regret and experimental design’,
in Proc. of ICML, (2010).

[32] K. Swersky, J. Snoek, and R.P. Adams, ‘Multi-task bayesian optimiza-
tion’, in Proc. of NIPS, (2013).

[33] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘Auto-
WEKA: combined selection and hyperparameter optimization of clas-
sification algorithms’, in Proc. of KDD’13, (2013).

[34] J. N. van Rijn, B. Bischl, L. Torgo, B. Gao, V. Umaashankar, S. Fischer,
P. Winter, B. Wiswedel, M. R. Berthold, and J. Vanschoren, ‘OpenML:
a collaborative science platform’, in Proc. of ECML/PKDD’13, (2013).

[35] D. Yogatama and G. Mann, ‘Efficient transfer learning method for au-
tomatic hyperparameter tuning’, in Proc. of AISTATS, (2014).

10

Similarity measures of algorithm performance for
cost-sensitive scenarios

Carlos Eduardo Castor de Melo1 and Ricardo Bastos Cavalcante Prudêncio2

Abstract.
Knowledge about algorithm similarity is an important feature of

meta-learning, where information gathered from previous learning
tasks can be used to guide the selection or combination of algo-
rithms for a new dataset. Usually this task is done by comparing
global performance measures across different datasets or, alterna-
tively, comparing the performance of algorithms at the instance-level.
These previous similarity measures do not consider misclassification
costs, and hence they neglect an important information that can be
exploited in different learning contexts. In this paper we present al-
gorithm similarity measures that deals with cost proportions and dif-
ferent threshold choice methods for building crisp classifiers from
learned models. Experiments were performed in a meta-learning
study with 50 different learning tasks. The similarity measures were
adopted to cluster algorithms according to their aggregated perfor-
mance on the learning tasks. The clustering process revealed similar-
ity between algorithms under different perspectives.

1 Introduction

Meta-learning is a framework developed in supervised machine
learning for acquiring knowledge from empirical case studies and
relating features of learning problems to algorithm performance [2].
The knowledge acquired in meta-learning has been used to support
algorithm selection and combination in different contexts [13] [11].
In meta-learning, it is assumed that similar problems present simi-
lar algorithm performance. Hence, to know how similar is the per-
formance obtained by different algorithms is important for meta-
learning. This information can be used to discover similarities be-
tween algorithms and between datasets [9] and also to support the
prediction of suitable algorithms for a given dataset based on the al-
gorithms’ performance on past datasets [11].

Deploying global metrics, such as accuracy and AUC, to compare
the performance of algorithms on a dataset has been the most com-
mon approach to deal with the above issue. Despite the popularity
of this approach, it may lose important knowledge about algorithm
similarity since it is based on average algorithm performance without
considering differences of algorithm behaviour in an instance-level.
In order to overcome this limitation, alternative measures of algo-
rithm similarity (e.g., based on error correlation [9] or classifier out-
put difference [10]) have been adopted. Here, algorithms are consid-
ered similar if they produce the same classifications, or alternatively
the same mistakes, on the same instances.

1 Centro de Informática, Universidade Federal de Pernambuco, Brasil, email:
cecm2@cin.ufpe.br

2 Centro de Informática, Universidade Federal de Pernambuco, Brasil, email:
rbcp@cin.ufpe.br

Algorithm similarity measures adopted in these previous works
are limited since they are not flexible enough to consider different
misclassification costs and different strategies to build classifiers.
Algorithms usually produce models (scoring functions) that return
scores or class probabilities for the input examples. A classifier is
then built from a model by adopting a decision threshold. The pre-
diction for a given example depends on both the score returned by
the learned model for that example and the decision threshold. The
most common approach to produce classifiers is to adopt a fixed de-
cision threshold (e.g., 0.5). Alternatively, decision thresholds can be
chosen according to the operating conditions or contexts (e.g., class
frequencies and misclassification costs) observed when the learned
model is deployed. In [7], the authors showed that different threshold
choice methods require the use of different performance measures
to evaluate a learned model. Similarly, concerning algorithm simi-
larity, specific measures have to be defined when misclassification
costs and adaptive threshold choice methods are taken into account.
Previous work on algorithm similarity measures does not consider
such aspects. The previous similarity measures are defined implic-
itly assuming fixed decision thresholds and thus are only suitable for
comparing the performance of crisp classifiers.

Based on the above motivation, in our work we developed simi-
larity measures for algorithm performance taking into account cost
proportions and different threshold choice methods. As in [13], we
adopted an instance-level strategy. For that, we initially proposed in-
stance hardness measures to indicate how difficult is an instance to be
correctly classified by a model. Specific instance hardness measures
were proposed for three threshold choice methods: the score-fixed
[7], the score-driven [6] and rate-driven methods [8]. By assuming
a threshold choice method and a learned model, we built for each
instance a corresponding cost curve, which indicates the model loss
for that instance along different misclassification costs. The instance
hardness is defined as the area under the cost curve. The dissimi-
larity3 between two algorithms for a given dataset is defined as the
average absolute difference between the hardness values over all in-
stances of the dataset.

In our work, we applied the proposed measures in a meta-learning
study in which 50 datasets and 8 learned models were adopted. Clus-
ters of models were produced by adopting the score-fixed, score-
driven and rate-driven measures. Each cluster reveals which algo-
rithms produced similar learned models on the 50 datasets under each
cost-sensitive perspective. We observed that the algorithm behaviour
among the datasets was quite distinct for each measure. By adopt-
ing the score-fixed method, two algorithms were similar if they re-
turn the same classification for a high number of instances by using

3 In this paper we treat dissimilarity as the complement of similarity, hence-
forth we will use only the latter term

11

a given threshold. By adopting the score-driven method, algorithms
were considered similar if they produced similar scores for the in-
stances. By adopting the rate-driven method in turn, algorithms were
considered similar if they produced similar rankings of instances de-
spite how calibrated are their scores.

This paper is organized as follows. Applications of algorithms
similarity measures are presented in Section 2, with a review of
related works. Section 3 introduces the notation and basic defini-
tions used through this paper. The concepts of instance hardness and
threshold choice methods are explained in Section 4 and three thresh-
old choice methods are presented: score-fixed, score-driven and rate-
driven. The proposed method for measuring the similarity of algo-
rithms performance is presented on Section 5. Section 6 presents the
experimental methodology. An analysis of the similarity measures
over a single dataset is provided in Section 7, followed by the Sec-
tion 8 which demonstrates the aggregate similarity across a group of
datasets. Finally, Section 9 concludes the paper with a discussion of
the results and insights for future works.

2 Measuring algorithm similarity

Meta-learning deals with methods to exploit knowledge gathered
from learning on different tasks [2]. Differently from base-level
learning, which focuses on acquiring experience on a single task,
meta-learning acquires knowledge from a meta-data set produced
when a pool of algorithms is applied on distinct learning tasks. Given
a learning task, a meta-example usually stores characteristics of the
task and the performance obtained by a pool of candidate algorithms.
Meta-learning can be applied: (1) in a descriptive sense aiming to dis-
cover similarities between datasets and algorithms and (2) in a pre-
dictive sense to select candidate algorithms for new datasets based
on the knowledge acquired in the meta-learning process.

Different meta-learning approaches rely on the use of similarity
measures of algorithm performance. For instance, in [9] the authors
clustered a pool of learning algorithms based on the patterns of the
errors observed in different datasets. Clustering of algorithms based
on their performance was also performed more recently in [10]. Clus-
tering algorithms may provide useful information to guide the pro-
cesses of algorithm selection and combination [9]. As another line of
research in meta-learning is the landmarking approach [11], which
uses the performance of simpler algorithms (called landmarkers) to
guide the selection of more complex ones. In this approach, datasets
are characterized based on the performance obtained by the land-
markers (which are usually simple and diverse algorithms, such as
decision stumps and linear models, or simplified versions of the can-
didate algorithms). One method to handle this approach is measur-
ing the similiarity of a new dataset with the meta-examples retrived
from the meta-data based on the similarity of performance obtained
by the landmarkers[5]. The best candidate algorithms adopted in the
retrieved problems are then suggested for the new dataset.

The most common approach for measuring algorithm similarity
is the use of global performance measures, like accuracy or AUC
measure, estimated from an empirical evaluation process (such as
cross-validation). Similarity between algorithms can be obtained by
computing the differences or ratios between the performance mea-
sures, as performed in [5]. Although this approach is widely applied,
it is strongly criticized since it may lose important information about
algorithms behaviour and may not characterize similarity properly.
For example, if a dataset has 100 instances and a given algorithm
misclassifies 20 instances and another one misclassifies 20 instances
completely different from the first ones, the accuracy of both algo-

rithms will be the same but their behaviour is quite different.
A more fine-grained approach to algorithm similarity is to con-

sider the performance at each instance of the dataset. This approach
has the advantage of showing local discrepancies of performance
among the space of instances. In [9], error correlation is adopted as
similarity measure between two algorithms, in such a way that two
algorithms are similar if they produce the same errors in the same in-
stances. In [10], the authors present the Classifier Output Difference
as an alternative measure for this approach. This metric is defined as
the probability of two distinct classifiers make different predictions
[15].

Although this approach represents a more refined view about algo-
rithm performance, the measures proposed in the literature are com-
puted from predictions generated by crisp classifiers (i.e., with fixed
decision thresholds chosen a priori). However as stated in section 1,
in the context of misclassification costs, decision thresholds can be
adaptively defined to minimize the loss of a learned model. Hence,
two instances considered equally easy by a classifier with a fixed
threshold can be rather difficult under different decision thresholds
and costs. In this work, we derived similarity measures for algo-
rithm performance in cost sensitive scenarios, by considering differ-
ent methods to choose decision thresholds of classifiers based on the
knowledge about misclassification costs.

3 Notation and Basic Definitions
The basic definitions adopted in our work are mostly based on [7].
Instances can be classified into one of the classes Y = {0, 1}, in
which 0 is the positive class and 1 is the negative class. A learned
model m is a scoring function that receives an instance x as input
and returns a score s = m(x) that indicates the chance of a negative
class prediction. A model can be transformed in a crisp classifier
assuming a decision threshold t in such a way that if s ≤ t then x is
classified as positive, and it is classified as negative if s > t.

The errors of a classifier are associated to costs related to the
classes. The cost of a false negative is represented as c0 and the cost
of a false positive in turn is represented as c1. As in [7], we normal-
ize the costs by setting c0 + c1 = b and adopt the cost proportion
c = c0/b to represent the operating condition faced by a model this
deployment. For simplicity, we adopted b = 2 and hence c ∈ [0, 1],
c0 = 2c and c1 = 2(1− c).

The loss function produced assuming a decision threshold t and a
cost proportion c is defined as:

Q(t, c) = c0π0FN(t) + c1π1FP (t)

= 2{cπ0FN(t) + (1− c)π1FP (t)} (1)

In the above equationFN(t) andFP (t) are respectively the False
Negative and False Positive rates produced by a model when a thresh-
old t is adopted. The variables π0 and π1 represent the proportion of
positive and negative examples.

The Positive Rate R(t) is the proportion of instances predicted as
positive at the decision threshold t and can be expressed as π0(1 −
FN(t)) + π1FP (t).

4 Instance Hardness and Cost Curves
In Equation 1, the loss produced by a classifier is an aggregation
of the errors observed for the positive and the negative instances. A
positive instance will be associated to a cost 2c when it is incorrectly

12

classified. An error for a negative instance in turn will be associated
to a cost 2(1− c).

In our work, we decompose the Equation 1 to derive the loss func-
tions for individual instances. The individual loss for a positive in-
stance x is defined as:

QI(x, t, c) = 2cFN(x, t) (2)

In the above equation, FN(x, t) = 1 if x is a false negative when
threshold t is adopted and FN(x, t) = 0 otherwise. A similar defi-
nition of loss function can be done for a negative instance x:

QI(x, t, c) = 2(1− c)FP (x, t) (3)

In the above equation, FP (x, t) = 1 if x is a false positive at
threshold t and FP (x, t) = 0 otherwise.

Given a threshold choice method, QI(x, t, c) produce a specific
curve for the example x along the range of operating conditions (c ∈
[0, 1]). The instance hardness measures in our work are defined as the
area under the individual cost curves and compute the total expected
loss for the range of operation conditions. In the general case, given
a threshold choice method t = T (c), the hardness of an instance is:

IHT (x) =

∫ 1

0

QI(x, T (c), c)w(c)dc (4)

In the above equation, w(c) represents the distribution of c. In
our work, we derived the instance hardness measures for different
threshold choice methods assuming uniform distribution of cost pro-
portions.

4.1 Score-Fixed Instance Hardness
In this method, the decision threshold assumes a fixed value regard-
less the operation condition:

T (c) = t (5)

Usually, t is set to 0.5. If x is an incorrectly classified positive
instance, then FN(x, t) = 1. By replacing FN(x, t) in Equation 2,
the instance cost curve is defined as:

QI(x, t, c) = 2c (6)

If x is an incorrectly classified negative instance, then FP (x, t) =
1 and its corresponding cost curve is:

QI(x, t, c) = 2(1− c) (7)

For correctly classified instances (either positive or negative), the
instance cost curve is a constant line QI(x, t, c) = 0. Figure 1 il-
lustrates the score-fixed instance cost curve considering positive and
negative instances.

By integration QI , we derive the instance hardness value for in-
correct positive instance as follows:

IHsf (x) =

∫ 1

0

2cdc =
[
c2
]1
0
= 1 (8)

Similarly, for incorrect instances the instance hardness is defined
as:

IHsf (x) =

∫ 1

0

2(1− c) dc =
[
2c− c2

]1
0
= 1 (9)

Figure 1. Example of instance cost curve for a positive and negative
instances assuming the score-fixed method.

For correctly classified instances (either positive or negative),
IHsf (x) = 0.

4.2 Score-Driven Instance Hardness
In the score-driven method [6], the decision threshold t is defined by
simply setting it equal to the operating condition c:

T (c) = c (10)

For instance, if c = 0.7, the cost of false negatives are higher than
the costs of false positives. In this case by setting t = c = 0.7 the
produced classifier tends to predict more instances as positive, thus
minimizing the relative number of false negatives. According to [6],
the score-driven method is a natural choice when the model scores
are assumed to be class probability estimators and the scores are well
calibrated.

Under the score-driven method, we can derive the loss function for
positive instances as follows:

FN(x, c) =

{
1, if s > c
0, otherwise

(11)

Replacing FN(x, c) in Equation 2 we have the following score-
driven cost curve for a positive instance:

QI(x, t, c) =

{
2c, if s > c
0, otherwise

(12)

Fig. 2(a) illustrates the score-driven cost curve for a positive in-
stance with score s = 0.32. For s ≤ c no cost is assumed; on the
other hand, the cost varies linearly. The area under the cost curve is
defined as an instance hardness measure:

13

IHsd(x) =

∫ s

0

2cdc =
[
c2
]s
0
= s2 (13)

Since y = 0 for positive instances, the above measure can be re-
placed by (y − s)2, which correspond to the squared-error obtained
by the model.

Equations 14 and 15 define the score-driven cost curve for neg-
ative instances. Figure 2(c) illustrates this curve when the negative
instance has a score s = 0.41.

FP (x, c) =

{
1, if s ≤ c
0, otherwise

(14)

QI(x, t, c) =

{
2(1− c), if s ≤ c
0, otherwise

(15)

Similar to the positive instance, instance hardness for a negative
instance is defined as the area under the cost curve:

IHsd(x) =

∫ 1

s

2(1− c) dc =
[
2c− c2

]1
s
= (1− s)2 (16)

For negative instances we have y = 1 and then the above mea-
sure corresponds to (y − s)2. Hence, for both positive and negative
instances, hardness is defined as the squared-error obtained by the
model.

Figure 2. Instance cost curves for an instance assuming the rate-driven and
score-driven methods.

4.3 Rate-Driven Instance Hardness
According to [8], the score-driven method is sensitive to the estima-
tion of the scores. For instance, if the scores are highly concentrated,

a small change in the operating condition (and consequently in the
decision threshold) may drastically affect the classifier performance.
As an alternative, in [8] the authors proposed to use the proportion
of instances predicted as positive (i.e., R(t)) to define the decision
thresholds.

In the rate-driven method, the decision threshold is set to achieve
a desired proportion of positive predictions. The threshold choice
method is defined as:

T (c) = R−1(c) (17)

For instance, if c = 0.7 the threshold t is set in such a way that
70% of the instances are classified as positive. The operating condi-
tion c is then expressed as the desired positive rate: c = R(t). The
probability of a false negative under the rate-driven choice method
can be defined as:

FN(x,R−1(c)) =

{
1, if s > R−1(c)
0, otherwise

(18)

Replacing FN(x,R−1(c)) in Equation 2 we have the following
rate-driven cost curve for a positive instance:

QI(x, t, c) =

{
2c, if s > R−1(c)
0, otherwise

(19)

Fig. 2(b) illustrates the rate-driven cost curve for a positive in-
stance with a score s = 0.6. For s ≤ R−1(c), or alternatively for
R(s) ≤ c, no cost is assumed. When R(s) > c, the cost of the
instance varies linearly. The area under the rate-driven cost can be
adopted as an instance hardness measure:

IHrd(x) =

∫ R(s)

0

2c dc =
[
c2
]R(s)

0
= R(s)2 (20)

The above measure states that the instance hardness is related
to position of the instance in the ranking produced by the learned
model. The worse is the ranking of the positive instance, the higher
is the instance hardness.

Equations 21 and 22 define the rate-driven cost curve for negative
instances with score s, illustrated in Figure 2(d).

FP (x,R−1(c)) =

{
1, if s ≤ R−1(c)
0, otherwise

(21)

QI(x, t, c) =

{
2(1− c), if s ≤ R−1(c)
0, otherwise

(22)

Similar to the positive instance, instance hardness for a negative
instance is defined as the area under the cost curve:

IHrd(x) =

∫ 1

R(s)

2(1− c) dc =
[
2c− c2

]
R(s)1

= (1−R(s))2

(23)
Notice that (1−R(s)) corresponds to the negative rate of a classi-

fier at the point s. The instance hardness for negative instances is then
related to the ranking of the most likely negative instances produced
by the learned model.

Different from the score-driven method, which measures the mag-
nitude of the errors obtained by a model, the rate-driven method is
more related to ranking performance. By adopting the score-driven
method, an instance is considered hard if its score is not well cali-
brated. On other hand, the same instance may be easy by assuming

14

the rate-driven method if it is well ranked relative to the other in-
stances. Instance hardness by adopting the score-driven method only
depends on the score of the instance. Instance hardness by adopting
the rate-driven method in turn depends not only on the instance score
but also on how the other instances are ordered.

5 Cost Sensitive Algorithm Similarity

The application of global metrics fails to properly measure algorithm
similarity since it is based on average performance, losing important
information during the evaluation process. More fine-grained mea-
sures provide a solution for this limitation by verifying the algorithm
performance at the instance level. However, the proposed measures
are not well defined when misclassification costs are involved.

In this work, we derived different measures for algorithm similar-
ity based on the concept of instance hardness. Given a pair of learned
models, they will be similar if the hardness values computed on a test
set by using the two models are similar. More specifically, in order to
relate two models, we initially collect the scores produced by them
on a test set of instances. Following, we compute the hardness value
for each test instance considering each model. Finally, the similarity
between the models is defined by aggregating the instance hardness
values as follows:

D(ma,mb, D) =
1

|D|
∑

x∈D
|IHT

ma
(x)− IHT

mb
(x)| (24)

The above equation measures the pairwise distance between mod-
els ma and mb for each instance x belonging to the test set D. In
our work, in order to deal with costs, we derived in the previous sec-
tion three distinct instance hardness by adopting different threshold
choice methods T . By adopting the score-fixed method, two models
will be similar if they return the same classification result for a high
number of instances. By adopting the score-driven method, two mod-
els will be similar with their scores are similar (the squared-errors
produced by the models are similar at instance level). By adopting
the rate-driven method in turn two models will be similar if the test
instances are similarly ranked. The three methods correspond to three
different evaluation strategies. Other instance hardness measures and
their corresponding algorithm similarity measures can be developed
in the future by considering other threshold choice methods, such as
the probabilistic ones [7].

Once we have the algorithm similarity measure on a single dataset,
we can compute the overall similarity over different datasets in order
to achieve a wider view about the relative performance of algorithms.
There are many strategies to do this aggregation, such as the use of
the median or the average similarity as well as other consensus sim-
ilarity methods [3] that can be taken over all datasets involved. In
this work, we adopt a simple aggregation strategy by computing the
average similarities measured over all datasets observed:

A(ma,mb) =
1

N

N∑

j=1

D(ma,mb, Dj) (25)

In the above equation, N stands for the number of datasets avail-
able for measuring algorithm similarity. As it will be seen next sec-
tion, this measure will be adopted in a case study to cluster algo-
rithms based on average similarity over a set of learning tasks.

6 Experimental Setup
In order to achieve a good diversity of problems, we computed the
instance hardness on a group of 50 datasets4 representing problems
of binary classification. Most problems were collected from the UCI
repository[1].

We compare the performance of 6 algorithms available on the
Scikit-Learn Project[14]. The scores for each instance were calcu-
lated using a 10-fold cross-validation. Usually, the classification al-
gorithms return the label predicted for an informed example but to
produce real-values scores (varying between 0 and 1)for the input
instances, we adopted specific procedures for each algorithm. For
the Nearest Neighbours (KNN), the score returned is the number of
neighbours belonging to the negative class divided by K. The pro-
cedure used for the Random Forest (RF) is similar: we count the
number of votes for the negative class and divide this by the number
of trees in the forest. For the Decision Tree (DT), Naive Bayes (NB)
and Logistic Regression (LR) the score represents the probability of
the instance being negative. For the Support Vector Machine (SVM),
we get the decision function output and normalize it between 0 and
1.

In order to have a reference point, we compare variations of algo-
rithm at the clustering process. For the KNN, we applied the algo-
rithm with 3 and 5 nearest neighbours (3NN and 5NN) and for the
SVM, we adopted the experiments with the linear and RBF kernel
functions (SVM LIN and SVM RBF, respectively).

We expect that the models learned with variations of a same al-
gorithm will be clustered together. In order to cluster the results ob-
tained by the similarity measures, we applied the agglomerative hier-
archical clustering method with the average linkage function [4]. For
the experiments with the score-fixed method, we set t = 0.5.

7 Dataset Algorithm Similarity
After computing the scores for all datasets instances as described in
the previous section, we use the results to calculate the instance hard-
ness measures for the three threshold choice methods presented in
Section 4. Then we measure the pairwise distance among the models
for each dataset using the Equation 24. In order to illustrate the use
of the proposed measures, we initially present the results obtained
by a single dataset (the Ecoli dataset). Next section will present the
clustering results obtained by considering all the collected datasets.

Table 1. Mean Instance Hardness Measures for Ecoli Dataset

Model IHrd IHsd IHsf

3NN 0,269 0,0694 0,0833
5NN 0,2583 0,0583 0,0744
DT 0,2858 0,0774 0,0774
LR 0,252 0,0671 0,1047
NB 0,2585 0,1949 0,2024
RF 0,256 0,051 0,0714

SVM LIN 0,2554 0,1828 0,244
SVM RBF 0,2553 0,1811 0,2381

Table 1 presents the average instance hardness measures for the
Ecoli dataset. The average hardness values observed suggest that the
models are better at calibrating scores than at ranking instances for
this dataset, as can be seen from the values presented by both meth-
ods based on score. In fact, the score-fixed and score-driven instance

4 The list of datasets used is available at http://www.cin.ufpe.br/∼cecm2

15

hardness measures are in general smaller than the rate-driven ones.
Also, large differences in the quality of scores produced by some al-
gorithms do not reflect in large differences in the ranking quality. For
instance, although the NB produced bad results for the score-fixed
and score-driven methods, its results for the rate-driven method are
similar to the other algorithms.

Figures 3, 4 and 5 present the dendrograms derived from the
clustering process by adopting the proposed measures for the Ecoli
dataset (respectively for the score-fixed, score-driven and rate-driven
measures). The dendrograms for the score-fixed and score-driven
methods show that the learned models produced the same clusters,
differing on the cut-points. The clustering presented by the rate-
driven method is also related to the methods based on score. The
cluster formed by the SVM models is observed in all cases. The
remaining clusters have a slight difference. In the score-fixed and
score-driven methods, the NB model is a cluster by itself, but in the
rate-driven case NB was considered similar to LR (i.e., they produced
similar rankings of instances although their scores are different). In
all cases, the KNN and the RF models were considered similar, which
can be supported in [12].

Figure 3. Clustered score-fixed performance for the models learned on the
Ecoli dataset

Figure 4. Clustered score-driven performance for the models learned on
the Ecoli dataset

8 Aggregated Algorithm Similarity
In order to have a better view about the algorithms similarities, we
applied the equation 25 to compute the average distance between al-
gorithms across the 50 datasets adopted in our experiments. Figures
6 and 7 present the dendrograms of algorithms considering the score-
fixed and score-driven measures. These dendrogram shows that the

Figure 5. Clustered rate-driven performance for the models learned on the
Ecoli dataset

models learned by KNN were the most similar, as expected. The sec-
ond most similar pair of models was produced by the RF and the
LR algorithms (with a low dissimilarity measure around 0.1 in both
cases). Depending on the cut-point (e.g., 0.3) adopted to produce
clusters from the dendrogram, the DT algorithm is clustered together
with 3NN, 5NN, RF and LR. The models obtained by NB are the
ones that present the most distinct behaviour. Finally, the SVM mod-
els are similar between them (relative to the other algorithms), but
their similarity level is not so high. The change in the kernel function
produced in many datasets very distinct models. Some of the results
derived from the dendrogram are expected (such as the similarity be-
tween 3NN and 5NN). Other results in turn, such as the similarity
between RF and LR, were not expected and hence have to be better
investigated in the future.

Figure 6. Clustered average score-fixed performance

Figure 8 displays the dendrogram of algorithms produced by
adopting the rate-driven measure. The algorithms are more similar to
each other when similarity is measured in terms of ranking quality.
As in the score-fixed and score-driven dendrograms, the 3NN, 5NN,
DT and RF are clustered together. The algorithms LR, SVM LIN and
NB formed another cluster. Different from the dendrograms for the
score-fixed and score-driven methods, we see that the SVM models
do not belong to the same group. Again, a deeper investigation has to
be done to provide further explanations on why a given pair of algo-
rithms was similar. In our work, we provide a general framework that
can be extended with new algorithms and datasets and can be used to
identify which algorithms are similar under different cost-sensitive
perspectives.

16

Figure 7. Clustered average score-driven performance

Figure 8. Clustered average rate-driven performance

9 Conclusion

In this work, we proposed similarity measures between algorithms
by considering three threshold choice methods: score-fixed, score-
driven and rate-driven. For each method, we proposed a correspond-
ing instance hardness measure that was then deployed to define the
algorithm similarity measure. The similarity between algorithms can
be quite different depending on the dataset and the cost-sensitive sce-
nario being tackled. For the score-fixed, two algorithms are similar if
they produce the same classification for a high number of instances
for a chosen threshold. For the score-driven method, two algorithms
are similar if they produce similar scores. For the rate-driven method,
in turn, two algorithms are similar if they produce similar rankings
of instances.

In order to infer overall similarity on different datasets, we com-
puted the average similarity between algorithms over 50 datasets and
performed clustering of algorithms. The results revealed some unex-
pected similarities that can serve as starting points for further inves-
tigations to discover and explain hidden relationships between algo-
rithms and learning strategies.

As future work, the ideas presented here can be applied on a pre-
dictive meta-learning strategy to select algorithms for new datasets
depending on the threshold choice method and the input costs. In
our work, we aggregate similarity across datasets using the mean
method, which is simple but possibly naive. Other consensus similar-
ity methods can be investigated. Finally, we highlight that our work
is very limited concerning the number of algorithms and datasets
adopted. Hence, more extensive meta-learning studies can be done
in the future, with stronger conclusions and insights.

ACKNOWLEDGEMENTS
This research is supported by CNPq, CAPES and FACEPE (Brazilian
agencies).

REFERENCES
[1] K. Bache and M. Lichman. UCI machine learning repository, 2013.
[2] Pavel Brazdil, Christophe Giraud-Carrier, Carlos Soares, and Ricardo

Vilalta, Metalearning: Applications to Data Mining, Springer Publish-
ing Company, Incorporated, 1 edn., 2008.

[3] Francisco de A.T. de Carvalho, Yves Lechevallier, and Filipe M.
de Melo, ‘Relational partitioning fuzzy clustering algorithms based on
multiple dissimilarity matrices’, Fuzzy Sets and Systems, 215(0), 1 –
28, (2013). Theme : Clustering.

[4] Chris Ding, Xiaofeng He, and Lawrence Berkeley, ‘Cluster merging
and splitting in hierarchical clustering algorithms’, 139–146, (2002).

[5] Johannes Fürnkranz and Johann Petrak, ‘An evaluation of landmark-
ing variants’, in Working Notes of the ECML/PKDD 2000 Workshop
on Integrating Aspects of Data Mining, Decision Support and Meta-
Learning, pp. 57–68, (2001).

[6] José Hernández-Orallo, Peter Flach, and Cèsar Ferri, ‘Brier curves: A
new cost-based visualisation of classifier performance’, in Proceedings
of the 28th International Conference on Machine Learning, (2011).

[7] José Hernández-Orallo, Peter Flach, and Cèsar Ferri, ‘A unified view of
performance metrics: Translating threshold choice into expected classi-
fication loss’, J. Mach. Learn. Res., 13(1), 2813–2869, (October 2012).

[8] José Hernández-Orallo, Peter Flach, and César Ferri, ‘ROC curves in
cost space’, Machine Learning, 93(1), 71–91, (February 2013).

[9] A Kalousis, J Gama, and M Hilario, ‘On data and algorithms: Under-
standing inductive performance’, Machine Learning, 275–312, (2004).

[10] JW Lee and C Giraud-Carrier, ‘A metric for unsupervised metalearn-
ing’, Intelligent Data Analysis, 15, 827–841, (2011).

[11] Rui Leite, Pavel Brazdil, and Joaquin Vanschoren, ‘Selecting classifi-
cation algorithms with active testing’, in Machine Learning and Data
Mining in Pattern Recognition, 117–131, Springer, (2012).

[12] Yi Lin and Yongho Jeon, ‘Random forests and adaptive nearest neigh-
bors’, Journal of the American Statistical Association, 101(474), 578–
590, (2006).

[13] Tony Martinez Michael R. Smith and Christophe Giraud-Carrier, ‘An
instance level analysis of data complexity’, Machine Learning, (2013).

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, ‘Scikit-learn: Machine learning in Python’, Journal of Machine
Learning Research, 12, 2825–2830, (2011).

[15] AH Peterson and TR Martinez, ‘Estimating the potential for combin-
ing learning models’, Proceedings of the ICML workshop on meta-
learning, (2005).

17

Using Metalearning to Predict When Parameter
Optimization Is Likely to Improve Classification

Accuracy
Parker Ridd1 and Christophe Giraud-Carrier2

Abstract. Work on metalearning for algorithm selection has often
been criticized because it mostly considers only the default param-
eter settings of the candidate base learning algorithms. Many have
indeed argued that the choice of parameter values can have a signif-
icant impact on accuracy. Yet little empirical evidence exists to pro-
vide definitive support for that argument. Recent experiments do sug-
gest that parameter optimization may indeed have an impact. How-
ever, the distribution of performance differences has a long tail, sug-
gesting that in most cases parameter optimization has little effect on
accuracy. In this paper, we revisit some of these results and use met-
alearning to characterize the situations when parameter optimization
is likely to cause a significant increase in accuracy. In so doing, we
show that 1) a relatively simple and efficient landmarker carries sig-
nificant predictive power, and 2) metalearning for algorithm selection
should be effected in two phases, the first in which one determines
whether parameter optimization is likely to increase accuracy, and
the second in which algorithm selection actually takes place.

1 Introduction
The availability of a large number of classification learning algo-
rithms together with the No Free Lunch theorem for classification
present business users with a significant challenge, namely that of de-
ciding which algorithm is likely to induce the most accurate model
for their particular classification task. This selection process is fur-
ther compounded by the fact that many classification learning algo-
rithms include parameters, and the various possible settings of these
parameters may give rise to models whose accuracy on the target
classification task varies significantly. As a result, the algorithm se-
lection problem in machine learning consists not only in choosing
an algorithm, but rather in choosing an algorithm and an associated
parameter setting. Formally, let:

• L = {L1, L2, . . . , Ln} be a finite set of n classification learn-
ing algorithms (e.g., C4.5, Naı̈ve Bayes-NB, Backpropagation-BP,
Support Vector Machine-SVM).

• PLi = P 1
Li
× P 2

Li
× . . . P ki

Li
be the set of parameter settings

associated with Li, where each P k
Li

represents one of the param-
eters of Li (e.g., P 1

C4.5 =pruning indicator, P 2
C4.5 =splitting cri-

terion, . . ., P 1
BP =number of hidden layers, P 2

BP =learning rate,
P 3
BP =momentum term, . . .).

• T = X × Y be a training set for a classification task where X is
a set of features and Y is a finite set of labels.

1 Brigham Young University, USA, email: parker.ridd@byu.net
2 Brigham Young University, USA, email: cgc@cs.byu.edu

• I(L,P, T) be the model induced by algorithm L with parameter
setting P on some classification learning task T . Hence, I maps
objects in X to labels in Y .

• A(I) be the predictive accuracy of model I (typically measured
by cross-validation).

The classification learning algorithm selection problem can be for-
mulated as follows.

Classification Learning Algorithm Selection Given a training set
T for some classification learning task, find the pair (L∗, P ∗) where
L∗ ∈ L and P ∗ ∈ PL∗ , such that

∀(L,P) ∈ L × PL A(I(L,P, T)) ≤ A(I(L∗, P ∗, T)).

The above formulation is generic in that it says nothing about the
process used to search the combined spaces of classification learning
algorithms and parameter settings to find the optimal algorithm. Met-
alearning for classification learning algorithm selection is the specific
instance of that general problem wherein the search is effected by a
learning algorithm [6]. In other words, the past performance of clas-
sification learning algorithms on a variety of tasks is used to induce a
predictive model that takes as input a classification learning task and
produces as output a classification learning algorithm and its associ-
ated parameter setting.

In practice, one has access to a set T = {T1, T2, . . . , Tm} of m
training sets (corresponding to m classification learning tasks). For
each Tj , the learning algorithms in L, together with their parameter
settings, are used one at a time to induce a model on Tj . The pair
of classification learning algorithm and parameter setting that max-
imizes A(I(L,P, Tj)) is recorded. Each Tj with its corresponding
winning pair becomes a training example for a (meta)learning algo-
rithm. Since storing complete learning tasks is unfeasible and likely
undesirable, one uses instead some characterization of learning tasks
by meta-features. Meta-features may be drawn from basic statistics
and information-theoretic measures (e.g., ratio of nominal features,
skewness, class entropy) [14, 7, 22], landmarking measures (i.e., per-
formances of simple learners that serve as signpost for more com-
plex ones) [2, 17, 8], and model-based measures (e.g., properties of
induced decision trees) [1, 3, 16]. Given a training set T for some
classification learning task, let C(T) be the characterization of T by
some set of meta-features.

One can now take a number of classification tasks, characterize
them via the function C, and record the corresponding meta-features
together with the accuracy of the best learning algorithm and asso-
ciated parameter setting. The classification learning algorithm selec-

18

tion problem, as solved by metalearning, can then be reformulated as
follows.3

Metalearning for Classification Learning Algorithm Selection
Given a set T m = {(C(T), argmaxL∈L,P∈PL

A(I(L,P, T))} of
past classification learning episodes, together with a classification
learning algorithm Lm, which may belong to L, and an associated
parameter setting PLm :

1. ConstructM = I(Lm, PLm , T m).
2. For any training set T ′, (L∗, P ∗) =M(T ′).

By convention, let P 0
Li

denote the default parameter setting of Li,
as determined by the implementation of Li under consideration (e.g.,
Weka, IBM SPSS Modeler). Most of the work in metalearning so far
has addressed the above problem with the further assumption that for
all learning algorithms the parameter setting is fixed to its default.
This, of course, creates a much restricted, yet also greatly simplified,
version of the selection problem, since the large, possibly infinite,
space of parameter settings need not be considered at all. However,
that restriction has also been the source of much criticism, and some-
times dismissal, by a part of the machine learning community, who
has maintained that:

Parameter Optimization Claim Parameter setting has a significant
impact (for the better) on the predictive accuracy of classification
learning algorithms.

It would seem that most metalearning researchers, and indeed
most machine learning researchers, have taken this claim to be well
founded, and considered ways to address it. There have been two
main approaches.

• Two-stage Metalearning. Some metalearning researchers have
adopted a two-stage approach to metalearning, wherein they
continue to use the restricted form of the Metalearning for
Classification Learning Algorithm Selection problem to choose
a learning algorithm, but then follow up with an optimization
phase to find the best set of parameter values for the selected
algorithm.4 The problem in this case, however, is that one may
reach a suboptimal solution. Indeed, let L1 and L2 be two clas-
sification learning algorithms, such that, for some classification
task T ′, M(T ′) = (L1, P

0
L1

). Then, L1 would be selected
and its parameter setting optimized to P ∗L1

. Yet, despite the
fact that A(I(L1, P

0
L1

, T ′)) > A(I(L2, P
0
L2

, T ′)) (assuming
the metalearner is accurate), it is entirely possible that there
exists some parameter setting P k

L2
of algorithm L2 such that

A(I(L1, P
∗
L1

, T ′)) < A(I(L2, P
k
L2

, T ′)). In other words, the
early greedy commitment to L1 makes it impossible to explore
other parts of the combined spaces of learning algorithms and
parameter settings.

• Unrestricted Metalearning. Other metalearning researchers have
lifted the traditional restriction, and recently begun to design solu-
tions from the unrestricted Metalearning for Classification Learn-
ing Algorithm Selection problem. Their systems seek to select

3 We recognize that it is possible to use metalearning to predict rankings of
learning algorithms (e.g., see [5, 23]), or even the actual performance of
learning algorithms via regression (e.g., see [4, 10, 20]). We restrict our
attention here to the prediction of a single best algorithm although much of
the discussion extends naturally to these settings.

4 Some have also simply picked a classification learning algorithm manually,
and used metalearning to choose the best parameter setting (e.g., see [9,
19]).

both a learning algorithm an associated parameter setting (e.g.,
see [13, 24, 21]).

Interestingly, and somewhat surprisingly, very few researchers
have bothered to check the validity of the Parameter Optimization
Claim. Yet, to the best of our knowledge —and as presented by most,
it is just that: a claim. We have been hard-pressed to find any system-
atic study in the literature that addresses the impact of parameter set-
tings over a wide variety of classification learning algorithms. What
if the Parameter Optimization Claim does not hold in general? What
if it only holds in some specific cases? Would it not be useful to
know what these cases are? And what about using metalearning to
characterize when the claim holds? We address these questions here.

2 Impact of Parameter Optimization on
Classification Learning Algorithm Performance

There is one exception to our statement that the literature contains no
systematic study of the impact of parameter optimization on the per-
formance of classification learning algorithms, found in [23]. In that
paper, the authors considered 466 datasets and for each, computed
the difference in accuracy between their default parameter setting
and the best possible parameter setting after optimization. The opti-
mization procedure is based on particle swarm optimization (PSO),
wherein the authors specify which parameters should be optimized
(e.g., kernel function and complexity constant for SVM) and the
range of values that PSO should consider. We obtained the data from
the authors and reproduced their results, with two small exceptions:
1) we found that one of the datasets in the list was redundant, so we
removed it; and 2) our dataset characterization tool (see below) did
not terminate on two of the datasets after several days so we stopped
it, and omitted the corresponding datasets from our study. Hence, the
results here are for 463 datasets. For each dataset, Figure 1 shows the
percentage of improvement of the best AUC score among 20 clas-
sification learning algorithms after parameter optimization over the
best AUC score among the same classification learning algorithms
with their default parameter setting. The data is ordered by increas-
ing value of improvement.

0 100 200 300 400

0
5

10
15

20

%
 Im

pr
ov

em
en

t

Figure 1. Impact of Parameter Optimization on 463 Datasets

Figure 1 makes it clear that the impact of parameter optimization

19

is highly variable across datasets, and seems to be rather small for
a large number of them. We are a little surprised that with such a
skewed distribution, the authors of [23] concluded that “the result
demonstrates the benefit of using the performances of optimised al-
gorithms for generating algorithm rankings”, and thus carried on
with a blanket application of their combined classification learning
algorithm / parameter setting selection approach.

To make the relationship even clearer, consider Figure 2 that shows
the cumulative distribution of the same datasets, where each succes-
sive bar represents the proportion of datasets for which the improve-
ment in AUC due to parameter optimization is less than or equal to
the value indicated on the x-axis in increments of 1%.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
20

40
60

80
10

0

Figure 2. Cumulative Distribution of the Impact of Parameter
Optimization on 463 Datasets

According to Figure 2, for 19% of the datasets considered parame-
ter optimization offers no gain in performance. The ascent is actually
very steep, as shown by the shaded portion of the distribution, reach-
ing 80% of the datasets for an improvement in performance of no
more than 5%. From 0% to 5%, the relationship is virtually linear
(r=0.999) with a slope of 12. These results seem robust as an inde-
pendent analysis of 129 datasets and 9 classification learning algo-
rithms reveals that there is no gain in performance with optimization
for about 15% of the datasets and 96% of the datasets exhibit less
than 5% improvement.5

We note that the above analysis was not performed on a per-
algorithm basis. As stated, the differences in performance are com-
puted from among the best in 20 algorithms, which means that the
best optimized version could be obtained with algorithm A, while
the best default version for the same dataset would be obtained with
algorithm B. It is possible, however, that some classification learn-
ing algorithms are more sensitive to parameter settings and may thus
be more likely to exhibit significant differences with parameter op-
timization. It may be worthwhile in a future study to consider such
algorithm-level variation. In spite of this limitation, several conclu-
sions seem inescapable from the foregoing analysis:

1. Parameter optimization does not improve performance uniformly
across datasets.

5 There may be some overlap in the datasets used in this study and those used
in [23], although the datasets were not transformed into binary classification
tasks in the former as they were in the latter.

2. For many datasets, parameter optimization yields very little im-
provement and may be viewed as computational overkill.

3. For a few datasets, parameter optimization makes a significant dif-
ference and should thus be performed.

From a practitioner’s standpoint, the last two conclusions are par-
ticularly relevant. If no improvement is to be expected from parame-
ter optimization, then one would gladly save the extra computational
time required to effect it. Conversely, if a significant improvement
can be expected and one is focused on maximizing predictive accu-
racy, then one would be willing to bear the extra cost. The question
then, for such practitioners, is: Will the predictive accuracy on the
classification learning task I am considering be improved by param-
eter optimization?

It should be obvious to machine learning researchers that if one
labels the datasets falling under conclusion 2 above as no advantage
and the datasets falling under conclusion 3 as advantage, one obtains
a training dataset for a classification learning task. We propose to
do exactly that and essentially take our own medicine, by applying
machine learning to the problem of distinguishing between datasets
that may benefit from parameter optimization and datasets that would
not. Because our data consists of information about the performance
of learning algorithms, this is an instance of metalearning.

3 Metalearning the Impact of Parameter
Optimization

As per standard metalearning practice, we build our training meta-
data by characterizing each of our 463 datasets by a set of meta-
features. However, because smaller datasets may produce unreliable
meta-features, we remove from the analysis all of the datasets con-
taining less than 100 instances. This leaves us with 326 datasets.

We use an existing R script that, for each dataset, creates a meta-
feature vector by extracting over 68 meta-features, including statis-
tical and information-theoretic meta-features, landmarkers, model-
based meta-features, and timing information [18]. Prior to our exper-
iments, we manually remove a number of meta-features that carry
little information in this context (e.g., timing data, model-based
meta-features, redundant meta-features). In each experiment, we also
use correlation-based feature subset selection (CFS) [11], as imple-
mented by the function CfsSubsetEval in Weka [12], to further
reduce the number of meta-features.

The metalearning task consists in distinguishing datasets where
parameter optimization is deemed to offer no advantage (class 0)
from datasets where parameter optimization is likely to yield a per-
formance advantage (class 1). Each meta-feature vector is labeled
appropriately based on the observed difference in performance over
its corresponding dataset. We use various threshold values to separate
class 1 from class 0, as shown below.

There are two types of error our (meta)models can make. A false
positive (FP) error is made when the model considers a class 0 dataset
but labels it as class 1. When this happens, there is wasted effort in
performing parameter optimization when no significant gain will be
achieved by such optimization. Conversely, a false negative (FN) er-
ror is made when the model considers a class 1 dataset but labels
it as class 0. When this happens, valuable parameter optimization is
omitted and there is a resulting loss in predictive accuracy in the clas-
sification task under consideration. Assuming that a practitioner’s ul-
timate goal is to get the best accuracy possible on their specific clas-
sification task, one can argue that FN errors are more costly than FP
errors, and thus should be minimized. This is, of course, is equiva-
lent to maximizing recall, R = TP

TP+FN
(where TP is the number of

20

true positive classifications). Yet, one must be careful as it is trivial
to maximize R by simply assigning all classification tasks to class 1.
Clearly, this would defeat the purpose of the model and is unaccept-
able due to the unnecessary computational burden it places on the
system. Hence, we focus on obtaining models with high recall, but
also good precision, P = TP

TP+FP
.

We are faced at the metalevel with the same challenge of select-
ing a (meta)learning algorithm adequate for the task at hand. We are
guided here by a desire for comprehensibility of the induced model
and the results of preliminary experiments. Hence, we use for our
metalearner, a decision tree learning algorithm, specifically Weka’s
J48, and implement the training and testing processes in Rapid-
Miner [15]. Interestingly, J48 also resulted in higher accuracy than
other algorithms such as SVM and Random Forest.

3.1 Threshold = 1.5
We begin by setting the threshold relatively low, assuming that there
is an advantage to parameter optimization if the performance im-
provement exceeds 1.5%.

The default accuracy in this case is 61.96%, obtained by predict-
ing class 1 uniformly. This, of course, produces maximum recall,
R=100%, but very poor precision, P=61.96%.

Applying CFS selects the following mixed set of meta-features:
attributes, kurtosis, joint entropy, NB, LDA and NN1.
Further experimentation shows that performance can be improved
still by using only joint entropy, NB and NN1. The confusion
matrix is as follows.

Predicted
0 1

Actual 0 84 40
1 28 174

This yields an accuracy of 79.17%, significantly above default,
with both high recall R=86.14% and high precision P=81.31%. The
decision tree is shown below.

nn_1 <= 0.902439
| joint_entropy <= 0.606044: 0 (14.0/2.0)
| joint_entropy > 0.606044
| | naive_bayes <= 0.952: 1 (208.0/30.0)
| | naive_bayes > 0.952
| | | nn_1 <= 0.71134
| | | | joint_entropy <= 2.08461: 0 (2.0)
| | | | joint_entropy > 2.08461: 1 (5.0)
| | | nn_1 > 0.71134: 0 (12.0/2.0)
nn_1 > 0.902439: 0 (85.0/15.0)

To further test the metamodel, we collected 42 independent
datasets with more than 100 instances each. It is possible that some
of these correspond to some of the tasks used in the training data.
However, all 463 training tasks have been binarized [23], while these
were left untouched. Hence, we are training on 2-class datasets and
testing on n-class datasets, which may be somewhat unfair, but still
interesting.

We extracted the meta-features of the 42 datasets, and ran the cor-
responding meta-feature vectors against the metamodel.6 The accu-
racy on the test datasets is 54.76%, which is rather poor given a de-
fault accuracy of 73.81%. However, the default is obtained by pre-
dicting class 0 uniformly. While the test accuracy is not very good,

6 As the results for the test datasets were obtained with a different set of
classification learning algorithms and a different parameter optimization
procedure, we are not entirely sure the comparison is fair. Yet, we feel there
is value in including these results.

recall is very high at R=90.91% (compared to R=0 for the default),
with 10 of the 11 datasets of class 1 being predicted in class 1. This
suggests that the model has picked up useful information to identify
learning tasks where parameter optimization would be advantageous
(i.e., expected improvement greater than 1.5%).

In addition to its own performance at the metalevel, we consider
how the metamodel affects performance at the base level. To do so,
we compare maxImp, the total amount of possible improvement
due to parameter optimization to predImp, the amount of improve-
ment one would obtain by using the metamodel. For each dataset d,
let ld be d’s label, pd be d’s predicted class, and Id be the improve-
ment one would experience if parameter optimization were used with
d. Then,

maxImp =
∑

d

Id

i.e., maxImp is the sum of the individual improvement values across
all of our 326 datasets. Here, maxImp = 949.26. Similarly,

predImp =
∑

d

{
Id if (pd = ld) ∧ (ld = 1)
0 otherwise

i.e., predImp is the sum of the improvement values for all datasets
where the metamodel makes the correct class 1 prediction. We do
not include correct class 0 predictions as these would artificially in-
flate the results. Here, predImp = 789.92. Hence, the metamodel
would allow us to claim 83.21% of the total performance improve-
ment available at the base level.

3.2 Threshold=2.5
We next raise the threshold, assuming that there is an advantage
to parameter optimization if the performance improvement exceeds
2.5%.

The default accuracy in this case is 50.31%, obtained by predicting
class 1 uniformly. This, again, produces maximum recall, R=100%,
but very poor precision, P=50.31%.

Applying CFS selects the following mixed set of meta-features:
kurtosis prep, normalized attribute entropy,
joint entropy, NB, LDA, stump min gain and NN1. Fur-
ther experimentation shows that performance can be improved still
by using only kurtosis prep, normalized attribute
entropy, joint entropy, NB and NN1. The confusion matrix
is as follows.

Predicted
0 1

Actual 0 105 57
1 26 138

This yields an accuracy of 74.52%, significantly above default,
with both high recall R=84.15% and high precision P=70.77%. The
decision tree is shown below.
nn_1 <= 0.857143
| joint_entropy <= 0.606044
| | joint_entropy <= 0.508598
| | | kurtosis_prep <= 26.479217: 1 (2.0)
| | | kurtosis_prep > 26.479217: 0 (2.0)
| | joint_entropy > 0.508598: 0 (8.0)
| joint_entropy > 0.606044
| | naive_bayes <= 0.969466: 1 (194.0/49.0)
| | naive_bayes > 0.969466
| | | normalized_attribute_entropy <= 0.84991
| | | | kurtosis_prep <= 45.518635: 0 (2.0)
| | | | kurtosis_prep > 45.518635: 1 (2.0)
| | | normalized_attribute_entropy > 0.84991: 0 (7.0)
nn_1 > 0.857143: 0 (109.0/15.0)

21

As with the threshold value of 1.5, using the metamodel against
the test datasets produces poor accuracy (35.71% for a default of
88.10%), but recall is significantly better with R=60% (3 of the 5
datasets in class 1 are predicted correctly) against a default of R=0.

Considering performance at the base level, we have here
predImp = 698.61, so that the metamodel would allow us to still
claim 73.60% of the total performance improvement available.

3.3 Larger Threshold Values

Based on the distribution of performance improvements, raising the
threshold will cause the majority class to shift to 0 and result in far
fewer class 1 datasets. On the other hand, while fewer, correctly iden-
tifying these datasets offers the highest benefit to the practitioner as
the expected improvement in accuracy with parameter optimization
is rather significant. However, the metalearning task is also more dif-
ficult as the class distribution of the training data is rather skewed.

Setting the threshold to 5.0% results in a default accuracy of
83.44% with a model that predicts class 0 uniformly. While it was
not possible in this case to improve on the default accuracy with
the available set of meta-features, recall rose to R=25.94% (10 of
the 54 datasets in class 1 are predicted correctly). Interestingly, CFS
selected LDA and NN1, and while the tree induced without feature
selection is a little larger than the previous ones, it also splits on NN1
at the root node. Using the metamodel against the test datasets pro-
duces reasonable accuracy (76.19%) but only because the test data is
skewed in favor of class 0. Only two datasets belong to class 1 and
neither is predicted correctly.

Setting the threshold to 10.0% results in a default accuracy of
96.93% again with a model that predicts class 0 uniformly. Only 10
datasets belong to class 1, making for a very imbalanced class dis-
tribution. Using all the meta-features, the induced decision tree has a
slightly improved accuracy (97.85%), with recall R=30%. The root
of the tree is mutual information. There are no datasets in our
test set for which the improvement with parameter optimization ex-
ceeds 10%.

4 Discussion

As mentioned previously, one of the biggest issues with parameter
optimization is the amount of time it takes to optimize the param-
eters. In [24], it took 6,000 single core CPU hours to optimize the
parameters of all their datasets, which means that it took on average
about 13 hours per dataset. For obvious reasons, a practitioner would
probably not wish to wait for that amount of time when it may result
in little or no improvement from the models baseline performance.

What this short study demonstrates is that it is possible to predict,
with good recall value, whether parameter optimization will signifi-
cantly increase a classification learning models accuracy by using the
metafeatures of any particular dataset, which are less computation-
ally intensive than the parameter optimization procedure. Of course,
as the threshold increases, or as the expected performance improve-
ment gets larger, the prediction becomes less accurate. Nevertheless,
it is better than default.

One of the unexpected findings of our study, valid across almost
all metamodels, is that the root node of the decision tree is NN1. In
other words, a dataset’s performance on NN1 is indicative of whether
parameter optimization will significantly improve the performance
of learning algorithms trained against it. There are at least two in-
teresting things about this finding. First, it confirms prior work on

metalearning that suggest that landmarking meta-features are gen-
erally better than other meta-features, especially NN1 and NB [20].
Second, and significantly more valuable, is that NN1 is a very ef-
ficient algorithm, suggesting that it would be very fast to determine
whether parameter optimization is likely to improve accuracy for any
dataset.

To further test the predictive power of NN1, we ran Weka’s linear
regression on our dataset, without CFS, and with the target set to the
actual percentage of accuracy improvement (Imp) observed for each
dataset. The resulting model is shown below.

Imp =
11.4405 * class_prob_min +
0.1626 * skewness_prep +

-0.0051 * kurtosis_prep +
-2.003 * cancor_1 +
-6.3391 * class_entropy +
-8.2398 * mutual_information +
-0.0008 * noise_signal_ratio +
-0.5321 * attribute_mean +
-5.7852 * stump_min +
-4.8382 * stump_max +
13.3081 * stump_mean +
8.4397 * stump_sd +
3.3769 * stump_min_gain +

-7.5918 * nn_1 +
6.4233

The correlation coefficient of the model is 0.40, and the relatively
large multiplicative factor associated with NN1 in the model suggests
its influence on the value of Imp. Furthermore, if we regress Imp on
NN1 alone, we obtain the following very simple model.

Imp =
-8.3476 * nn_1 +
9.3173

The correlation coefficient of this simpler model is 0.44. There is
still error in this model, and it will be interesting to see whether using
only the NN1 metafeature could in general reasonably predict the
datasets improvement if classification learning algorithm parameters
are optimized.

5 Conclusion
We have showed that the observed improvement in performance
due to parameter optimization in classification learning has a rather
skewed distribution, with most datasets seeing none or very little im-
provement. However, there remains a portion of datasets for which
parameter optimization has a significant impact. We have used met-
alearning to build a model capable of predicting whether parameter
optimization can be expected to improve classification accuracy. As
a result, it would seem that both current approaches to metalearn-
ing, the one that ignores parameter optimization and considers only
default settings, and the other that applies parameter optimization in
all cases, are misinformed. Instead, a two-phase approach where one
first determines whether parameter optimization is likely to produce
an improvement, and then if so applies it, is more appropriate.

Furthermore, one unexpected and very interesting side effect of
our metalearning study is that our results show that good recall can be
achieved at the metalevel, and that, with a very small set of efficient
meta-features. In particular, it would appear that NN1 may serve as a
great landmarker in this context.

For future work, it may be valuable to revisit error costs. In par-
ticular, we have argued here that FN errors were more costly than
FP errors on the basis that practitioners are likely to wish to obtain
the highest possible accuracy on their classification tasks. This is cer-
tainly also true when the computational cost of parameter optimiza-
tion is prohibitive. Were computational cost not to matter, the best
decision would be to always perform parameter optimization, and

22

there would consequently be no need for a metamodel. In practice,
however, it is well-known that parameter optimization is computa-
tionally intensive. As a result, FP errors may actually be rather costly,
and possibly even more so than FN errors. In any case, there would
seem to exist a range of operating conditions between these extremes,
or different cost-benefits between FN and FP associated with param-
eter optimization. It may be interesting to perform a cost-sensitive
analysis at the metalevel, for example, relating expected gain in per-
formance (or threshold) and incurred cost. We cannot do this with
the data available since we only have final performance improvement
(after some fixed search time). We would need to re-run experiments
to gather information about improvement over time allowed for opti-
mization.

REFERENCES
[1] Bensusan, H. (1998). Odd Bites into Bananas Don’t Make You Blind:

Learning about Simplicity and Attribute Addition. In Proceedings of
the ECML’98 Workshop on Upgrading Learning to the Meta-level:
Model Selection and Data Transformation, 30-42.

[2] Bensusan, H. and Giraud-Carrier, C. (2000). Discovering Task Neigh-
bourhoods through Landmark Learning Performances. In Proceedings
of the Fourth European Conference on Principles and Practice of
Knowledge Discovery in Databases, LNAI 1910, 325-330.

[3] Bensusan, H., Giraud-Carrier, C. and Kennedy, C. (2000). A Higher-
order Approach to Meta-learning. In Proceedings of the ECML-2000
Workshop on Meta-learning: Building Automatic Advice Strategies for
Model Selection and Method Combination, 109-118.

[4] Bensusan, H. and Kalousis, A. (2001). Estimating the Predictive Accu-
racy of a Classifier. In Proceedings of the Twelfth European Conference
on Machine Learning (LNCS 2167), 25-36.

[5] Brazdil, P., Soares, C. and Pinto da Costa, J. (2003). Ranking Learn-
ing Algorithms: Using IBL and Meta-Learning on Accuracy and Time
Results. Machine Learning, 50(3):251-277.

[6] Brazdil, P., Giraud-Carrier, C., Soares, C. and Vilalta, R. (2009). Met-
alearning: Applications to Data Mining, Springer.

[7] Engels, R. and Theusinger, C. (1998). Using a Data Metric for Offering
Preprocessing Advice in Data-mining Applications. In Proceedings of
the Thirteenth European Conference on Artificial Intelligence, 430-434.

[8] Fuernkranz, J. and Petrak, J. (2001). An Evaluation of Landmarking
Variants. In Proceedings of the ECML/PKDD-01 Workshop on Inte-
grating Aspects of Data Mining, Decision Support and Meta-learning,
57-68.

[9] Gomes, T.A.F., Prudêncio, R.B.C., Soares, C., Rossi, A.L.D. and Car-
valho, A. (2012). Combining Meta-learning and Search Techniques to
Select Parameters for Support Vector Machines. Neurocomputing, 75:3-
13.

[10] Guerra, S.B., Prudêncio, R.B.C. and Ludermir, T.B. (2008). Predicting
the Performance of Learning Algorithms Using Support Vector Ma-
chines as Meta-regressors. In Proceedings of the Eighteenth Interna-
tional Conference on Artificial Neural Networks (LNCS 5163), 523-
532.

[11] Hall, M.A. (1999). Correlation-based Feature Subset Selection for Ma-
chine Learning. PhD Thesis, Department of Computer Science, The
University of Waikato, Hamilton, New Zealand.

[12] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and
Witten, I.H. (2009). The WEKA Data Mining Software: An Update.
SIGKDD Explorations, 11(1):10-18.

[13] Leite, R., Brazdil, P. and Vanschoren, J. (2012). Selecting Classification
Algorithms with Active Testing. In Proceedings of the Eighth Interna-
tional Conference on Machine Learning and Data Mining in Pattern
Recognition (LNCS 7376), 117-131.

[14] Michie, D., Spiegelhalter, D.J. and Taylor, C.C. (1994). Machine Learn-
ing, Neural and Statistical Classification, Ellis Horwood.

[15] North, M. (2012). Data Mining for the Masses, Global Textbook
Project.

[16] Peng, Y., Flach, P.A., Brazdil, P. and Soares, C. (2002). Improved Data
Set Characterisation for Meta-learning. In Proceedings of the Fifth In-
ternational Conference on Discovery Science, 141-152.

[17] Pfahringer, B., Bensusan, H. and Giraud-Carrier, C. (2000). Meta-
learning by Landmarking Various Learning Algorithms. In Proceed-

ings of the Seventeenth International Conference on Machine Learning,
743-750.

[18] Reif, M. (2012). A Comprehensive Dataset for Evaluating Approaches
of various Meta-Learning Tasks. In Proceedings of the First Interna-
tional Conference on Pattern Recognition Applications and Methods,
273-276.

[19] Reif, M., Shafait, F. and Dengel, A. (2012). Meta-learning for Evo-
lutionary Parameter Optimization of Classifiers. Machine Learning,
87(3):357-380.

[20] Reif, M., Shafait, F., Goldstein, M., Breuel, T. and Dengel, A. (2014).
Automatic Classifier Selection for Non-experts. Pattern Analysis & Ap-
plications, 17(1):83-96.

[21] Smith, M.R., Mitchell, L., Giraud-Carrier, C. and Martinez, T. (2014).
Recommending Learning Algorithms and Their Associated Hyperpa-
rameters. Submitted.

[22] Sohn, S.Y. (1999). Meta Analysis of Classification Algorithms for Pat-
tern Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(11):1137-1144.

[23] Sun, Q. and Pfahringer, B. (2013). Pairwise Meta-rules for Better Meta-
learning-based Algorithm Ranking. Machine Learning, 93(1):141-161.

[24] Thornton, C., Hutter, F., Hoos, H.H. and Leyton-Brown, K. (2013).
Auto-WEKA: Combined Selection and Hyperparameter Optimization
of Classification Algorithms. In Proceedings of the Nineteenth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 847-855.

23

Surrogate Benchmarks
for Hyperparameter Optimization

Katharina Eggensperger1 and Frank Hutter1 and Holger H. Hoos2 and Kevin Leyton-Brown2

Abstract. Since hyperparameter optimization is crucial for achiev-
ing peak performance with many machine learning algorithms, an
active research community has formed around this problem in the
last few years. The evaluation of new hyperparameter optimization
techniques against the state of the art requires a set of benchmarks.
Because such evaluations can be very expensive, early experiments
are often performed using synthetic test functions rather than using
real-world hyperparameter optimization problems. However, there
can be a wide gap between the two kinds of problems. In this work,
we introduce another option: cheap-to-evaluate surrogates of real
hyperparameter optimization benchmarks that share the same hyper-
parameter spaces and feature similar response surfaces. Specifically,
we train regression models on data describing a machine learning
algorithm’s performance under a wide range of hyperparameter con-
figurations, and then cheaply evaluate hyperparameter optimization
methods using the model’s performance predictions in lieu of the real
algorithm. We evaluate the effectiveness for using a wide range of
regression techniques to build these surrogate benchmarks, both in
terms of how well they predict the performance of new configurations
and of how much they affect the overall performance of hyperparame-
ter optimizers. Overall, we found that surrogate benchmarks based on
random forests performed best: for benchmarks with few hyperparam-
eters they yielded almost perfect surrogates, and for benchmarks with
more complex hyperparameter spaces they still yielded surrogates
that were qualitatively similar to the real benchmarks they model.

1 Introduction
The performance of many machine learning methods depends criti-
cally on hyperparameter settings and thus on the method used to set
such hyperparameters. Recently, sequential model-based Bayesian op-
timization methods, such as SMAC[16], TPE[2], and Spearmint[29]
have been shown to outperform more traditional methods for this prob-
lem (such as grid search and random search [3]) and to rival—and in
some cases surpass—human domain experts in finding good hyperpa-
rameter settings [29, 30, 5]. One obstacle to further progress in this
nascent field is a paucity of reproducible experiments and empirical
studies. Until recently, a study introducing a new hyperparameter
optimizer would typically also introduce a new set of hyperparameter
optimization benchmarks, on which the optimizer would be demon-
strated to achieve state-of-the-art performance (as compared to, e.g.,
human domain experts). The introduction of the hyperparameter opti-
mization library (HPOlib [8]), which offers a unified interface to dif-
ferent optimizers and benchmarks, has made it easier to reuse previous
benchmarks and to systematically compare different approaches [4].

1 University of Freiburg, email:{eggenspk,fh}@cs.uni-freiburg.de
2 University of British Columbia, email: {hoos,kevinlb}@cs.ubc.ca

However, a substantial problem remains: performing a hyperpa-
rameter optimization experiment requires running the underlying
machine learning algorithm, often at least hundreds of times. This is
infeasible in many cases. The first (mundane, but often significant)
obstacle is to get someone else’s research code working on one’s own
system—including resolving dependencies and acquiring required
software licenses—and to acquire the appropriate input data. Fur-
thermore, some code requires specialized hardware; most notably,
general-purpose graphics processing units (GPGPUs) have become a
standard requirement for the effective training of modern deep learn-
ing architectures [20, 21]. Finally, the computational expense of hyper-
parameter optimization can be prohibitive for research groups lacking
access to large compute clusters. These problems represent a consid-
erable barrier to the evaluation of new hyperparameter optimization
algorithms on the most challenging and interesting hyperparameter
optimization benchmarks, such as deep belief networks [2], convo-
lutional neural networks [29, 5], and combined model selection and
hyperparameter optimization in machine learning frameworks [30].

Given this high overhead for studying complex hyperparameter
optimization benchmarks, most researchers have drawn on simple,
synthetic test functions from the global continuous optimization com-
munity [12]. While these are simple to use, they are often poorly
representative of the hyperparameter optimization problem: in con-
trast to the response surfaces of actual such problems, these synthetic
test functions are smooth and often have unrealistic shapes. Further-
more, they only involve real-valued parameters and hence do not
incorporate the categorical and conditional parameters typical of ac-
tual hyperparameter optimization benchmarks.

In the special case of small, finite hyperparameter spaces, a much
better alternative is simply to record the performance of every hyper-
parameter configuration, thereby speeding future evaluations via a
table lookup. The result is a perfect surrogate of an algorithm’s true
performance that takes time O(1) to compute (using a hash) and that
can be used in place of actually running the algorithm and evaluating
its performance. This table-based surrogate can trivially be transported
to any new system, without the complicating factors involved in run-
ning the original algorithm (setup, special hardware requirements,
licensing, computational cost, etc.). In fact, several researchers have
already applied this approach to simplifying their experiments: for
example, Bardenet et al. [1] saved the performances of a parameter
grid with 108 points of Adaboost on 29 datasets, and Snoek et al. [29]
saved the performance of parameter grids with 1400 and 288 points
for a structured SVM [31] and an online LDA [13], respectively. The
latter two benchmarks are part of HPOlib and are, in fact, HPOlib’s
most frequently used benchmarks, due to their simplicity of setup and
low computational cost.

Of course, the drawback of this table lookup idea is that it is limited

24

to small, finite hyperparameter spaces. Here, we generalize the idea
of machine learning algorithm surrogates to arbitrary, potentially
high-dimensional hyperparameter spaces (including, e.g., real-valued,
categorical, and conditional hyperparameters). As in the table-lookup
strategy, we first evaluate many hyperparameter configurations during
an expensive offline phase. We then use the resulting performance
data to train a regression model to approximate future evaluations
via model predictions. As before, we obtain a surrogate of algorithm
performance that is cheap to evaluate and trivially portable. However,
model-based surrogates offer only approximate representations of
performance. Thus, a key component of our work presented in the
following is an investigation of the quality of these approximations.

We are not the first to propose the use of learned surrogate models
that stand in for computationally complex functions. In the field of
metalearning [6], regression models have been extensively used to
predict the performance of algorithms across various datasets based
on dataset features [11, 26]. The statistics literature on the design
and analysis of computer experiments (DACE) [27, 28] uses similar
surrogate models to guide a sequential experimental design strategy
aiming to achieve either an overall strong model fit or to identify the
minimum of a function. Similarly, the SUrrogate MOdeling (SUMO)
Matlab toolkit[10] provides an environment for building regression
models to describe the outputs of expensive computer simulations
based on active learning. Such an approach for finding the minimum
of a blackbox function also underlies the sequential model-based
Bayesian optimization framework [7, 16] (SMBO, the framework
underlying all hyperparameter optimizers we study here). While all
of these lines of work incrementally construct surrogate models of a
function in order to inform an active learning criterion that determines
new inputs to evaluate, our work differs in its goals: We train surro-
gates on a set of data gathered offline (by some arbitrary process—in
our case the combination of many complete runs of several different
SMBO methods plus random search) and use the resulting surro-
gates as stand-in models for the entire hyperparameter optimization
benchmark.

The surrogate benchmarks resulting from our work can be used in
several different ways. Firstly, like synthetic test functions and table
lookups, they can be used for extensive debugging and unit testing.
Since the large computational expense of running hyperparameter
optimizers is typically dominated by the cost of evaluating algorithm
performance under different selected hyperparameters, our bench-
marks can also substantially reduce the time required for running
a hyperparameter optimizer, facilitating whitebox tests of an opti-
mizer using exactly the hyperparameter space of the machine learning
algorithm whose performance is modelled by the surrogate. This func-
tionality is gained even if the surrogate model only fits algorithm
performance quite poorly (e.g., due to a lack of sufficient training
data). Finally, a surrogate benchmark whose model fits algorithm per-
formance very well can also facilitate the evaluation of new features
inside the hyperparameter optimizer, or even the (meta-)optimization
of a hyperparameter optimizer’s own hyperparameters (which can be
useful even without the use of surrogates, but is typically extremely
expensive [17]).

The rest of this paper is laid out as follows. We first provide some
background on hyperparameter optimization (Section 2). Then, we dis-
cuss our methodology for building surrogate benchmarks (Section 3)
using several types of machine learning models. Next, we evaluate the
performance of these surrogates in practice (Section 4). We demon-
strate that random forest models tend to fit the data better than a broad
range of competing models, both in terms of raw predictive model
performance and in terms of the usefulness of the resulting surrogate

benchmark for comparing hyperparameter optimization procedures.

2 Background: Hyperparameter Optimization
The construction of machine learning models typically gives rise to
two optimization problems. The first is internal optimization, such
as selecting a neural network’s likelihood-maximizing weights; the
second is tuning the method’s hyperparameters, such as setting a
neural network’s regularization parameters or number of neurons.
The former problem is closely coupled with the machine learning
algorithm at hand and is very well studied; here, we consider the
latter. Let λ1, . . . , λn denote the hyperparameters of a given ma-
chine learning algorithm, and let Λ1, . . . ,Λn denote their respective
domains. The algorithm’s hyperparameter space is then defined as
Λ = Λ1 × · · · × Λn. When trained with hyperparameters λ ∈ Λ
on data Dtrain, the algorithm’s loss (e.g., misclassification rate) on
data Dvalid is L(λ,Dtrain,Dvalid). Using k-fold cross-validation, the
optimization problem is then to minimize:

f(λ) =
1

k

k∑

i=1

L(λ,D(i)
train,D

(i)
valid). (1)

A hyperparameter λn can have one of several types, such as contin-
uous, integer-valued or categorical. For example, the learning rate for
a neural network is continuous; the random seed given to initialize an
algorithm is integer-valued; and the choice between various prepro-
cessing methods is categorical. Furthermore, there can be conditional
hyperparameters, which are only active if another hyperparameter
takes a certain value; for example, the hyperparameter “number of
principal components” only needs to be instantiated when the hyper-
parameter “preprocessing method” is PCA.

Evaluating f(λ) for a given λ ∈ Λ is computationally costly, and
so many techniques have been developed to find good configurations
λ with few function evaluations. The methods most commonly used
in practice are manual search and grid search, but recently, it has
been shown that even simple random search can yield much better
results [3]. The state of the art in practical optimization of hyperpa-
rameters is defined by Bayesian optimization methods [16, 29, 2],
which have been successfully applied to problems ranging from deep
neural networks to combined model selection and hyperparameter
optimization [2, 29, 30, 19, 5].

Bayesian optimization methods use a probabilistic modelM to
model the relationship between a hyperparameter configuration Λ and
its performance f(λ). They fit this model using previously gathered
data and then use it to select a next point λnew to evaluate, trading off
exploitation and exploration in order to find the minimum of f . They
then evaluate f(λnew), updateM with the new data (λnew, f(λnew))
and iterate. Throughout this paper, we will use the following three
instantiations of Bayesian optimization:
SPEARMINT [29] is a prototypical Bayesian optimization method that
models pM(f | λ) with Gaussian process (GP) models. It supports
continuous and discrete parameters (by rounding), but no conditional
parameters.
Sequential Model-based Algorithm Configuration (SMAC) [16]
models pM(f | λ) with random forests. When performing cross
validation, SMAC only evaluates as many folds as necessary to show
that a configuration is worse than the best one seen so far (or to
replace it). SMAC can handle continuous, categorical, and conditional
parameters.
Tree Parzen Estimator (TPE) [2] models pM(f | λ) indirectly. It
models p(f < f∗), p(λ | f < f∗), and p(λ | f ≥ f∗), where
f∗ is defined as a fixed quantile of the function values observed so

25

far, and the latter two probabilities are defined by tree-structured
Parzen density estimators. TPE can handle continuous, categorical,
and conditional parameters.

An empirical evaluation on the three methods on the HPOlib hy-
perparameter optimization benchmarks showed that SPEARMINT per-
formed best on benchmarks with few continuous parameters and
SMAC performed best on benchmarks with many, categorical, and/or
conditional parameters, closely followed by TPE. SMAC also per-
formed best on benchmarks that relied on cross-validation [8].

3 Methodology
We now discuss our approach, including the algorithm performance
data we used, how we preprocessed the data, the types of regression
models we evaluated, and how we used them to construct surrogate
benchmarks.

3.1 Data collection
In principle, we could construct surrogate benchmarks using algorithm
performance data gathered by any means. For example, we could use
existing data from a manual exploration of the hyperparameter space,
or from an automated approach, such as grid search, random search or
one of the more sophisticated hyperparameter optimization methods
discussed in Section 2.

It is more important for surrogate benchmarks to exhibit strong
predictive quality in some parts of the hyperparameter space than in
others. Specifically, our ultimate aim is to ensure that hyperparameter
optimizers perform similarly on the surrogate benchmark as on the
real benchmark. Since most optimizers spend most of their time in
high-performance regions of the hyperparameter space, and since
relative differences between the performance of hyperparameter con-
figurations in such high-performance regions tend to impact which
hyperparameter configuration will ultimately be returned, accuracy
in this part of the space is more important than in regions of poor
performance. The training data should therefore densely sample high-
performance regions. We thus advocate collecting performance data
primarily via runs of existing hyperparameter optimization proce-
dures. As an additional advantage of this strategy, we can obtain this
costly performance data as a by-product of executing hyperparameter
optimization procedures on the original benchmark.

Of course, it is also important to accurately identify poorly per-
forming parts of the space: if we only trained on performance data
for the very best hyperparameter settings, no machine learning model
could be expected to infer that performance in the remaining parts
of the space is poor. This would typically lead to underpredictions
of performance in poor parts of the space. We thus also included
performance data gathered by a random search. (An alternative is grid
search, which can also cover the entire space. We did not adopt this
approach because it cannot deal effectively with large hyperparameter
spaces.) To gather the data for each surrogate benchmark in this paper,
we therefore executed r = 10 runs of each of the three Bayesian
optimization methods described in Section 2 (each time with a dif-
ferent seed), as well as random search, with each run gathering the
performance of a fixed number of configurations.

3.2 Data preprocessing
For each benchmark we studied for this paper, after running the
hyperparameter optimizers and random search, we preprocessed the
data as follows:

Table 1. Overview of evaluated regression algorithms. When we used ran-
dom search to optimize hyperparameters, we considered 100 samples over the
stated hyperparameters (their names refer to the SCIKIT-LEARN implementa-
tion [25]); the model was trained on 50% of the data, and the best configuration
was chosen based on the performance on the other 50% and then trained on all
data.

Model Hyperparameter optimization Impl.
Random Forest None [25]
Gradient Boosting None [25]
Extra Trees None [25]

Gaussian Process MCMC sampling over hyperparameters [29]
SVR Random search for C and gamma [25]
NuSVR Random search for C, gamma and nu [25]
Bayesian Neural Network None [24]

k-nearest-neighbours Random search for n neighbors [25]
Linear Regression None [25]
Least Angle Regression None [25]
Ridge Regression None [25]

1. We extracted all available configuration/performance pairs from
the runs. For benchmarks that used cross-validation, we encoded
the cross-validation fold of each run as an additional categorical
parameter (for benchmarks without cross validation, that parameter
was set to a constant).

2. We removed entries with invalid results caused by algorithm
crashes. Since some regression models used in preliminary experi-
ments could not handle duplicated configurations, we also deleted
these, keeping the first occurrence.

3. For data from benchmarks featuring conditional parameters, we
replaced the values of inactive conditional parameters with a default
value.

4. To code categorical parameters, we used a one-hot (aka 1-in-k)
encoding, which replaces any single categorical parameter λ with
domain Λ = {k1, . . . kn} by n binary parameters, only the i-th of
which is true for data points where λ is set to ki.

3.3 Choice of Regression Models

We considered a broad range of commonly used regression algorithms
as candidates for our surrogate benchmarks. To keep the results com-
parable, all models were trained on data encoded as detailed in the
previous section. If necessary for the algorithm, we also normalized
the data to have zero mean and unit variance (by subtracting the mean
and dividing by the standard deviation). If not stated otherwise for a
model, we used the default configuration of its implementation.

Table 1 details the regression models and implementations we
used. We evaluated three different tree-based models, because SMAC
uses a random forest (RF), and because RFs have been shown to
yield high-quality predictions of algorithm performance data [18].
As a specialist for low-dimensional hyperparameter spaces, we used
SPEARMINT’s Gaussian process (GP) implementation, which per-
forms MCMC to marginalize over hyperparameters. Since SMAC per-
forms particularly well on high-dimensional hyperparameter spaces
and SPEARMINT on low-dimensional continuous problems [8], we
expected their respective models to mirror that pattern. The remaining
prominent model types we experimented with comprised k-nearest-
neighbours (kNN), linear regression, least angle regression, ridge
regression, SVM methods (all as implemented by scikit-learn [25]),
and Bayesian neural networks (BNN) [24].

26

Table 2. Properties of our data sets. “Input dim.” is the number of features
of the training data; it is greater than the number of hyperparameters because
categorical hyperparameters and the crossvalidation fold are one-hot-encoded.
For each benchmark, before preprocessing the number of data points was
10× 4× (#evals. per run).

hyperparameter Input #evals. #data
#λ cond. cat. / cont. dim. per run

Branin 2 - - / 2 3 200 7402
Log. Reg. 5CV 4 - - / 4 9 500 18521
HP-NNET convex 14 4 7 / 7 25 200 7750
HP-DBNET mrbi 36 27 19 / 17 82 200 7466

3.4 Construction and Use of Surrogate Benchmarks
To construct surrogates for a hyperparameter optimization benchmark
X , we trained the previously mentioned models on the performance
data gathered on benchmark X . The surrogate benchmark X ′M based
on model M is identical to the original benchmark X , except that
evaluations of the machine learning algorithm to be optimized in
benchmark X are replaced by a performance prediction obtained
from model M . In particular, the surrogate’s configuration space
(including all parameter types and domains) and function evaluation
budget are identical to the original benchmark.

Importantly, the wall clock time to run an algorithm on X ′M is
much lower than that required on X , since expensive evaluations
of the machine learning algorithm underlying X are replaced by
cheap model predictions. The model M is simply saved to disk and is
queried when needed. We could implement each evaluation in X ′M
as loading M from disk and then using it for prediction, but to avoid
the repeated cost of loading M , we also allow for storing M in an
independent process and communicate with it via a local socket.

To evaluate the performance of a surrogate benchmark scenario
X ′M we ran the same optimization experiments as on X , using the
same settings and seeds. In addition to evaluating the raw predictive
performance of model M , we assessed the quality of surrogate bench-
markX ′M by measuring the similarity of hyperparameter optimization
performance on X and X ′M .

4 Experiments and Results
In this section, we experimentally evaluate the performance of our
surrogates. We describe the data upon which our surrogates are based,
evaluate the raw performance of our regression models on this data,
and then evaluate the quality of the resulting surrogate benchmarks.

4.1 Experimental Setup
We collected data for four benchmarks from the hyperparameter opti-
mization benchmark library, HPOLIB [8]. For each benchmark, we
executed 10 runs of SMAC, SPEARMINT, TPE and random search
(using the same Hyperopt implementation of random search as for
TPE), yielding the data detailed in Table 2. The four benchmarks
comprised two low-dimensional and two high-dimensional hyperpa-
rameter spaces.

The two low-dimensional benchmarks were the synthetic Branin
test function and a logistic regression [29] on the MNIST dataset [23].
Both of these have been extensively used before to benchmark hy-
perparameter optimization methods. While the 2-dimensional Branin
test function is trivial to evaluate and therefore does not require a
surrogate, we nevertheless included it to study how closely a surro-
gate can approximate the function. The logistic regression is an actual
hyperparameter optimization benchmark with 4 hyperparameters that

includes a 5-fold cross-validation. That means for each configuration
that the optimizers TPE, SPEARMINT and random search evaluated
there were 5 data points that only differ in which fold they corre-
sponded to. Since SMAC saves time by not evaluating all folds for
configurations that appear worse than the optimum, it only evaluated
a subset of folds for most of the configurations. The evaluation of
a single cross-validation fold required roughly 1 minute on a single
core of an Intel Xeon E5-2650 v2 CPU.

The high-dimensional benchmarks comprised a simple and a deep
neural network, HP-NNET and HP-DBNET (both taken from [2]) to
classify the MRBI and convex datasets, respectively [22]. Their di-
mensionalities are 14 and 36, respectively, and many categorical hy-
perparameters further increase the input dimension to the regression
model. Evaluating a single HP-NNET configuration required roughly
12 minutes using 2 cores of an Intel Xeon E5-2650 v2 with OpenBlas.
The HP-DBNET required a GPGPU to run efficiently; on a modern
Geforce GTX780 GPU, it took roughly 15 minutes to evaluate a single
configuration. In contrast, using the surrogate benchmark model we
built, one configuration can be evaluated in less than a second on a
standard CPU.

For some model types, training with all the data from Table 2
was computationally infeasible, and we had to subsample 2 000 data
points (uniformly at random3) for training. This was the case for
nuSVR, SVR, and the Bayesian neural network. For the GP model,
we had to limit the dataset even further to 1 500 data points. On this
reduced training set, the GP model required 255 minutes to train on
the most expensive data set (HP-DBNET MRBI), and the Bayesian
neural networks required 36 minutes; all other models required less
than one minute for training.

We used HPOLIB to run the experiments for all optimizers with
a single format, both for the original hyperparameter optimization
benchmarks and for our surrogates. To make our results reproducible,
we fixed the pseudo-random number seed in each function evaluation
to 1. The version of the SPEARMINT package we used crashed for
about 1% of all runs due to a numerical problem. In evaluations where
we require entire trajectories, for these crashed SPEARMINT runs,
we imputed the best function value found before the crash for all
evaluations after the crash.

4.2 Evaluation of Raw Model Performance
We first studied the raw predictive performance of the models we
considered on our preprocessed data.

4.2.1 Using all data

To evaluate the raw predictive performance of the models listed in
Table 1, we used 5-fold cross-validation performance and computed
the cross-validated root mean squared error (RMSE) and Spearman’s
rank correlation coefficient (CC) between model predictions and the
true responses in the test fold. Here, the responses correspond to
validation error rate in all benchmarks except for the Branin one
(where they correspond to the value of the Branin function).

Table 3 presents these results, showing that the GP and the SVR
approaches performed best on the smooth low-dimensional synthetic
Branin test function, but that RF-based models are better for pre-
dicting the performance of actual machine learning algorithms. This

3 For a given dataset and fold, all models based on the same number of data
points used the same subsampled data set. We note that model performance
sometimes was quite noisy with respect to the pseudorandom number seed
for this subsampling step and we thus used a fixed seed.

27

Table 3. Average RMSE and CC for a 5-fold cross validation for different
regression models. For each entry, bold face indicates the best performance on
this dataset, and underlined values are not statistically significantly different
from the best according to a paired t-test (with p = 0.05). Models marked
with an ∗ (+) are trained on only a subset of 2000 (1500) data points per fold.

Branin Log.Reg. 5CV HP-NNET convex HP-DBNET mrbi
Model RMSE CC RMSE CC RMSE CC RMSE CC

RF 1.86 1.00 0.03 0.98 0.04 0.94 0.06 0.90
Gr.Boost 7.10 0.96 0.07 0.94 0.05 0.89 0.06 0.86
Ex.Trees 1.10 1.00 0.04 0.98 0.03 0.95 0.06 0.90

GP + 0.03 1.0 0.13 0.88 0.04 0.92 0.10 0.78
SVR ∗ 0.06 1.0 0.13 0.87 0.06 0.82 0.08 0.80
nuSVR ∗ 0.02 1.0 0.18 0.84 0.06 0.85 0.08 0.82
BNN ∗ 6.84 0.91 0.10 0.91 0.05 0.84 0.10 0.72

kNN 1.78 1.00 0.14 0.88 0.06 0.85 0.08 0.78
Lin.Reg. 45.33 0.28 0.23 0.78 0.08 0.60 0.1 0.70
LeastAngleReg. 45.33 0.28 0.23 0.78 0.08 0.60 0.1 0.7
Ridge Reg. 46.01 0.30 0.26 0.77 0.09 0.61 0.10 0.67

Table 4. Average RMSE and CC of 5 regression algorithms in the leave-one-
optimizer-out setting. Bold face indicates the best value across all regression
models on this dataset.

Branin Log.Reg. 5CV HP-NNET convex HP-DBNET mrbi
Model RMSE CC RMSE CC RMSE CC RMSE CC

RF 2.04 0.95 0.10 0.93 0.04 0.82 0.07 0.85
Gr.Boost 6.96 0.85 0.12 0.84 0.05 0.81 0.07 0.83

GP 0.12 0.99 0.16 0.76 0.05 0.84 0.10 0.64
nuSVR 0.03 0.98 0.16 0.74 0.10 0.61 0.10 0.73

kNN 2.08 0.96 0.19 0.72 0.07 0.73 0.09 0.67

strong performance was to be expected for the higher-dimensional
hyperparameter space of the neural networks, since RFs perform au-
tomatic feature selection.4 The logistic regression example is rather
low-dimensional, but the categorical cross-validation fold is likely
harder to model for GPs than for RFs.5 Extra Trees predicted the
performance of the actual machine learning algorithms nearly as
good as the RF, Gradient boost was slightly worse. Bayesian neu-
ral networks, k-nearest-neighbours and our linear regression models
could not achieve comparable performance. Based on these results,
we decided to focus the remainder of our study on a diverse sub-
set of models: two tree-based approaches (RFs and gradient boost),
Gaussian processes, nuSVR, and, as an example of a popular, yet
poorly-performing model, k-nearest-neighbours. We paid special at-
tention to RFs and Gaussian processes, since these have been used
most prominently in Bayesian hyperparameter optimization methods.

4.2.2 Leave one optimizer out

In practice, we will want to use our surrogate models to predict the
performance of a machine learning algorithm with hyperparameter
configurations selected by some new optimization method. The config-
urations it evaluates might be quite different from those considered by
the optimizers whose data we trained on. Next to the standard cross-
validation setting from above, we therefore evaluated our models in
the leave-one-optimizer-out setting, which means that the regression
model learns from data drawn from all but one optimizer, and its
performance is measured on the held out data.

Table 4 reports RMSE and CC analogous to those of Table 3, but for
the leave-one-optimizer-out setting. This setting is more difficult and,

4 We note that RFs could also handle the categorical hyperparameters in
these benchmarks natively. We used the one-hot encoding for comparability
with other methods. It is remarkable that even with this encoding, they
outperformed all other methods.

5 As we will see later (Figure 2), the RF-based optimizer SMAC also per-
formed better on this benchmark than the GP-based optimizer SPEARMINT.

RF GB GP NuSVR kNN

SMAC

TPE

SPEARMINT

Random

Figure 1. True performance (x-axis) vs. regression model predictions (y-
axis) for the HP-DBNET mrbi dataset. All plots have the same axes, showing
error rates ranging from 0.4 to 1.1. Each marker represents the performance
of one configuration; green and red crosses indicate 1/3 best and worst true
performance, respectively. Configurations on the diagonal are predicted per-
fectly, error predictions above the diagonal are too high, and predictions for
configurations below the diagonal are better than the configuration’s actual
performance. The first column shows which data was left out for training and
used for testing.

consequently, the results were slightly worse, but the best-performing
models stayed the same: nuSVR and GP for low dimensional and RFs
for higher dimensional datasets.

Figure 1 studies the predictive performance in more detail for the
HP-DBNET mrbi benchmark, demonstrating that tree-based models
also performed best in a qualitative sense. The figure also shows
that the models tended to make the largest mistakes for the worst
configurations; especially the non-tree-based models predicted some
of these to be better than some of the best configurations. The same
patterns also held for the logistic regression 5CV and the HP-NNET

convex data (not shown). The models also completely failed to identify
neural network configurations which did not converge within the time
limit and therefore received an error rate of 1.0. Interestingly, the
GP failed almost entirely on the high-dimensional HP-DBNET MRBI
benchmark in two cases, predicting all data points around the data
mean.

4.3 Evaluation of Surrogate Benchmarks

We now study the performance of the surrogate benchmarks X ′M
obtained for random forest (RF) and Gaussian process (GP) models
M . We assess the quality of X ′M by comparing the performance of
various hyperparameter optimizers on X ′M and the real benchmark
X .

4.3.1 Using all data

We first analyzed the performance of surrogate benchmarks based
on models trained on the entire data we have available. We note
that in this first experiment, a surrogate that perfectly remembers the
training data would achieve perfect performance, because we used the
same hyperparameter optimizers for evaluation as we did to gather
the training data. However, after the first imperfect prediction, the
trajectories of the optimizers will diverge. Thus, since none of our
models is perfect on training data, this initial experiment serves as an

28

evaluation of surrogate benchmarks based on training data gathered
through the same mechanism as at test time.

We performed experiments for our three actual hyperparameter
optimization benchmarks, logistic regression, a simple and a deep
neural network. For each of them, we repeated the 10 runs for TPE,
SMAC and SPEARMINT we previously conducted on the real bench-
marks, but now used surrogate benchmarks based on RFs and GPs,
respectively.

Figure 2 shows that the surrogate benchmarks based on Gaussian
process models differed substantially from the true benchmarks. The
figures show the best function values found by the various optimizers
over time. Visually comparing the first column (real benchmark)
to the third (surrogate benchmark based on GP model), the most
obvious difference is that the surrogate benchmark fails completely
on HP-DBNET MRBI: since the GP model is unable to properly fit
the high-dimensional data (predicting all configurations to perform
roughly equally, around the data mean) all optimizers basically stay
at the same performance level (the data mean). Note in the plot for
the true benchmark that the GP-based optimizer SPEARMINT also
performed very poorly on this benchmark.

In the other two cases (logistic regression 5CV and HP-NNET con-
vex), the performance of the optimizers appears visually similar to the
true benchmark at first glance. However, for the logistic regression
5CV the GP model predicts some parts of the hyperparameter space
to be better than the actual best part of the space, leading to the final
optimization results on the surrogate benchmark to appear better than
optimization results on the true benchmark. Another difference is a
zig-zag pattern in the trajectories for logistic regression surrogates:
these are also (mildly) present in the real benchmark (mild enough
to only be detectable when zooming into the figure) and are due to
the slightly different performance in the 5 folds of cross validation;
the impact of the folds is very small, but the GP model predicts it to
be large, causing the zig-zag. Interestingly, for the GP model trained
on the HP-NNET convex dataset, regions with “better” performance
appear hard to find: only SMAC and TPE identified them, causing a
larger gap between SPEARMINT and SMAC/TPE than on the real
benchmark.

Conversely, the RF surrogates yielded results much closer to those
obtained on the real benchmark. Visually, the first column (true bench-
mark) and second column appear very similar, indicating that the RF
captured the overall pattern well. There are some differences in the
details. For example, on HP-NNET convex, the surrogate does not
capture that TPE finds very good configurations before SMAC and
yields the overall best performance. Nevertheless, overall, our results
for the RF surrogates qualitatively resemble those for the true bench-
marks, and for the logistic regression example, the correspondence is
almost perfect.

4.3.2 Leave one optimizer out

Next, we studied the use of a surrogate benchmark to evaluate a new
optimizer. For each optimizer o and each of the three hyperparame-
ter optimization benchmarks X , we trained RF and GP models M
on the respective leave-one-optimizer-out training data discussed in
Section 4.2.2 and compared the performance of optimizer o on X
and X ′M . Figure 3 reports the results of this experiment, showing that
surrogate benchmarks based on RF models qualitatively resembled
the real benchmarks.

The results for the logistic regression 5CV benchmark (top row
of Figure 3) show that surrogate benchmarks based on RF models
mirrored the performance of each optimizer o on the real benchmark

well, even when the training data did not include data gathered with
optimizer o. In contrast, surrogates based on Gaussian process models
performed poorly: the Gaussian process again underestimated the
error, predicting better performance in some regions than possible on
the real benchmark.6 Again, these regions with “better” performance
appear hard to find: only SMAC and SPEARMINT found them, caus-
ing their performances on the GP-based surrogate benchmark to differ
substantially from their performance on the true benchmark.

Results for HP-NNET convex were also better for the surrogate
benchmark based on RFs (especially for SPEARMINT), but not as
much better as for the logistic regression 5CV case. As was already
the case when the surrogate was based on all training data, the RF-
based surrogate benchmarks only approximately captured the strong
performance TPE showed on the real benchmark.

Results on HP-DBNET MRBI show a fairly close correspondence
between the real benchmark and the RF-based surrogate benchmarks.
In contrast, the GP-based surrogate was dismal, once again due to the
GP’s near-constant predictions (close to the data mean).

After this qualitative evaluation of the surrogate benchmarks, Ta-
ble 5 offers a quantitative evaluation. We judge the quality of a surro-
gate benchmark X ′M by how closely it resembles the real benchmark
X it was derived from, in terms of the absolute error between the best
found values for our four optimizers (SMAC, TPE, SPEARMINT,
and random search) after evaluating i configurations. For logistic
regression 5CV, in line with our qualitative results we obtained a very
small error for the RF-based surrogate. The GP-based surrogate un-
derestimated the achievable error rates, resulting in larger differences
between performances on the true and the surrogate runs. After 50
evaluations the GP-based surrogate trained on all data yielded a quite
high error because it underestimated the performance for configura-
tions selected by the optimizer SMAC. Training the GP-surrogate on
the leave-one-optimizer-out dataset causes worse performance for the
optimizer SPEARMINT and too much variation for SMAC resulting
in a higher error as well. This misprediction decreases with more
evaluated configurations.

The results for the HP-NNET convex look quite similar, with a some-
what smaller difference between RF-based and GP-based surrogates.
Indeed, SMAC and TPE behaved similarly on both RF-based and
GP-based surrogates as on the real benchmark; only SPEARMINT be-
haved very differently on the GP-based surrogate, causing an overall
higher error than for the RF-based surrogates.

On the high dimensional HP-NNET mrbi the surrogates performed
differently. Whereas the RF-based surrogate could still reproduce sim-
ilar optimizer behavior as on the real benchmark, the GP completely
failed to do so. Remarkably, overall quantitative performance was
similar for surrogate benchmarks trained on all data and those trained
on leave-one-optimizer-out datasets.

Overall, these results confirmed our expectation from previous
findings in Section 3.3 and the raw regression model performance
results in Table 3: good regression models facilitate good surrogate
benchmarks. In our case, RFs performed best for both tasks. We note
that using the surrogate benchmarks reduced the time requirements
substantially; for example, evaluating a surrogate 100 times instead
of the HP-NNET convex or HP-DBNET MRBI took less than 1 minute
on a single CPU, compared to roughly 10 hours on two CPUs (HP-
NNET convex) and over a day on a modern GPU (HP-DBNET MRBI).7

6 We noticed similar behavior for the nuSVR, which even returned negative
values for configurations and caused the optimizer to search completely
different areas of the configuration space (data not shown here).

7 Of course, the overhead due to the used hyperparameter optimizer comes on
top of this; e.g., SPEARMINT’s overhead for a run with 200 evaluations was
roughly one hour, whereas SMAC’s overhead was less than one minute.

29

Results on True Benchmark Results on RF Surrogate Benchmark Results on GP Surrogate Benchmark

Log.Reg. 5CV

100 101 102

#Function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d SMAC_REAL
SPEARMINT_REAL
TPE_REAL

100 101 102

#Function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d SMAC_rf
SPEARMINT_rf
TPE_rf

100 101 102

#Function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d SMAC_gp
SPEARMINT_gp
TPE_gp

HP-NNET convex

100 101 102

#Function evaluations

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d SMAC_REAL
SPEARMINT_REAL
TPE_REAL

100 101 102

#Function evaluations

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d SMAC_rf
SPEARMINT_rf
TPE_rf

100 101 102

#Function evaluations

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d SMAC_gp
SPEARMINT_gp
TPE_gp

HP-DBNET MRBI

100 101 102

#Function evaluations

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d SMAC_REAL
SPEARMINT_REAL
TPE_REAL

100 101 102

#Function evaluations

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d SMAC_rf
SPEARMINT_rf
TPE_rf

100 101 102

#Function evaluations

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d SMAC_gp
SPEARMINT_gp
TPE_gp

Figure 2. Median and quartile of best performance over time on the real benchmark (left column) and on surrogates (middle: based on RF models; right: based
on GP models). Both types of surrogate benchmarks were trained on all available data. For logistic regression 5CV each fold is plotted as a separate function
evaluation.

Table 5. Quantitative evaluation of surrogate benchmarks at three different
time steps each. We show the mean difference between the best found values
for corresponding runs (having the same seed) of the four optimizers (SMAC,
TPE, SPEARMINT, and random search) after i function evaluations on the real
and surrogate benchmark. For each experiment and optimizer we conducted 10
runs and report the mean error averaged over 4× 10 = 40 comparisons. We
evaluated RF-based and GP-based surrogates. For each problem we measured
the error for surrogates trained on all and the leave-one-optimizer-out (leave-
ooo) data; e.g., the TPE trajectories are from optimizing on a surrogate that is
trained on all training data except that gathered using TPE. Bold face indicates
the best performance for this dataset and i function evaluations. Results are
underlined when the one-sigma confidence intervals of the best and this result
overlaps.

#Function evaluations 50 200 500
Surrogate RF GP RF GP RF GP

Log.Reg. 5CV all 0.02 0.06 0.00 0.04 0.00 0.05
Log.Reg. 5CV leave-ooo 0.02 0.07 0.01 0.03 0.00 0.03

#Function evaluations 50 100 200
Surrogate RF GP RF GP RF GP

HP-NNET convex all 0.01 0.03 0.01 0.03 0.01 0.02
HP-NNET convex leave-ooo 0.02 0.03 0.02 0.04 0.02 0.03

HP-DBNET MRBI all 0.05 0.13 0.05 0.16 0.05 0.17
HP-DBNET MRBI leave-ooo 0.04 0.13 0.04 0.16 0.05 0.17

5 Conclusion and Future Work

To tackle the high computational cost and overhead of performing
hyperparameter optimization benchmarking, we proposed surrogate

benchmarks that behave similarly to the actual benchmarks they are
derived from, but are far cheaper and simpler to use. The key idea is
to collect (configuration, performance) pairs from the actual bench-
mark and to learn a regression model that can predict the performance
of a new configuration and therefore stand in for the expensive-to-
evaluate algorithm. These surrogates reduce the algorithm overhead
to a minimum, which allows extensive runs and analyses of new hy-
perparameter optimization techniques. We empirically demonstrated
that we can obtain surrogate benchmarks that closely resemble the
real benchmarks they were derived from.

In future work, we intend to study the use of surrogates for general
algorithm configuration. In particular, we plan to support optimization
across a set of problem instances, each of which can be described
by a fixed-length vector of characteristics, and to assess the result-
ing surrogates for several problems that algorithm configuration has
tackled successfully, such as propositional satisfiability [14], mixed
integer programming [15], and AI planning [9]. Finally, good surro-
gate benchmarks should enable us to explore the configuration options
of the optimizers themselves, and we plan to use surrogate bench-
marks to enable efficient meta-optimization of the hyperparameter
optimization and algorithm configuration methods themselves.

REFERENCES

[1] R. Bardenet, M. Brendel, B. Kégl, and M. Sebag, ‘Collaborative hyper-
parameter tuning’, in Proc. of ICML’13, (2013).

[2] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, ‘Algorithms for hyper-
parameter optimization’, in Proc. of NIPS’11, (2011).

[3] J. Bergstra and Y. Bengio, ‘Random search for hyper-parameter opti-
mization’, JMLR, 13, 281–305, (2012).

[4] J. Bergstra, B. Komer, C. Eliasmith, and D. Warde-Farley, ‘Preliminary
evaluation of hyperopt algorithms on HPOLib’, in ICML workshop on
AutoML, (2014).

30

SMAC SPEARMINT TPE

Log.Reg. 5CV

100 101 102

#Function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d SMAC_REAL
SMAC_gp
SMAC_rf

100 101 102

#Function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d SPEARMINT_REAL
SPEARMINT_gp
SPEARMINT_rf

100 101 102

#Function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d TPE_REAL
TPE_gp
TPE_rf

HP-NNET convex

100 101 102

#Function evaluations

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d SMAC_REAL
SMAC_gp
SMAC_rf

100 101 102

#Function evaluations

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d SPEARMINT_REAL
SPEARMINT_gp
SPEARMINT_rf

100 101 102

#Function evaluations

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d TPE_REAL
TPE_gp
TPE_rf

HP-DBNET MRBI

100 101 102

#Function evaluations

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d SMAC_REAL
SMAC_gp
SMAC_rf

100 101 102

#Function evaluations

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d SPEARMINT_REAL
SPEARMINT_gp
SPEARMINT_rf

100 101 102

#Function evaluations

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Be
st

 v
al

id
at

io
n

er
ro

r a
ch

ie
ve

d TPE_REAL
TPE_gp
TPE_rf

Figure 3. Median and quartile of optimization trajectories for surrogates trained in the leave-one-optimizer-out setting. Black trajectories correspond to true
benchmarks, coloured trajectories to optimization runs on a surrogate. The first row names the optimizer used to obtain the trajectories; their data was left out for
training the regression models.

[5] J. Bergstra, D. Yamins, and D. D. Cox, ‘Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures’, in Proc. of ICML’13, (2013).

[6] P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta, Metalearning:
Applications to Data Mining, Springer, 2008.

[7] E. Brochu, V. M. Cora, and N. de Freitas, ‘A tutorial on Bayesian opti-
mization of expensive cost functions, with application to active user mod-
eling and hierarchical reinforcement learning’, CoRR, abs/1012.2599,
(2010).

[8] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. H.
Hoos, and K. Leyton-Brown, ‘Towards an empirical foundation for
assessing bayesian optimization of hyperparameters’, in NIPS workshop
on Bayesian Optimization, (2013).

[9] C. Fawcett, M. Helmert, H. H. Hoos, E. Karpas, G. Röger, and J. Seipp,
‘FD-Autotune: Domain-specific configuration using fast-downward’, in
Proc. of ICAPS-PAL, (2011).

[10] D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, ‘A
surrogate modeling and adaptive sampling toolbox for computer based
design’, JMLR, 11, 2051–2055, (2010).

[11] S. B. Guerra, R. B. C. Prudêncio, and T. B. Ludermir, ‘Predicting the
performance of learning algorithms using support vector machines as
meta-regressors’, in Proc. of ICANN’08, volume 5163, pp. 523–532,
(2008).

[12] N. Hansen, A. Auger, S. Finck, R. Ros, et al. Real-parameter black-box
optimization benchmarking 2010: Experimental setup, 2010.

[13] M. D. Hoffman, D. M. Blei, and F. R. Bach, ‘Online learning for latent
dirichlet allocation.’, in Proc. of NIPS’10, (2010).

[14] F. Hutter, D. Babić, H.H. Hoos, and A.J. Hu, ‘Boosting Verification by
Automatic Tuning of Decision Procedures’, in Proc. of FMCAD’07, pp.
27–34, Washington, DC, USA, (2007). IEEE Computer Society.

[15] F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘Automated configuration
of mixed integer programming solvers’, in Proc. of CPAIOR-10, pp.
186–202, (2010).

[16] F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘Sequential model-based
optimization for general algorithm configuration’, in Proc. of LION-5,
(2011).

[17] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, ‘ParamILS: an
automatic algorithm configuration framework’, JAIR, 36(1), 267–306,
(2009).

[18] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown, ‘Algorithm runtime
prediction: Methods and evaluation’, JAIR, 206(0), 79 – 111, (2014).

[19] B. Komer, J. Bergstra, and C. Eliasmith, ‘Hyperopt-sklearn: Automatic
hyperparameter configuration for scikit-learn’, in ICML workshop on
AutoML, (2014).

[20] A. Krizhevsky, ‘Learning multiple layers of features from tiny images’,
Technical report, University of Toronto, (2009).

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘Imagenet classification
with deep convolutional neural networks’, in Proc. of NIPS’12, pp. 1097–
1105, (2012).

[22] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, ‘An
empirical evaluation of deep architectures on problems with many factors
of variation’, in Proc. of ICML’07, (2007).

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘Gradient-based learning
applied to document recognition’, Proc. of the IEEE, 86(11), 2278–2324,
(1998).

[24] R. M. Neal, Bayesian learning for neural networks, Ph.D. dissertation,
University of Toronto, 1995.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, ‘Scikit-learn: Machine learning in Python’, JMLR, 12, 2825–2830,
(2011).

[26] M. Reif, F. Shafait, M. Goldstein, T. Breuel, and A. Dengel, ‘Automatic
classifier selection for non-experts’, PAA, 17(1), 83–96, (2014).

[27] J. Sacks, W. J. Welch, T. J. Welch, and H. P. Wynn, ‘Design and analysis
of computer experiments’, Statistical Science, 4(4), 409–423, (November
1989).

[28] T. J. Santner, B. J. Williams, and W. I. Notz, The design and analysis of
computer experiments, Springer, 2003.

[29] J. Snoek, H. Larochelle, and R.P. Adams, ‘Practical Bayesian optimiza-
tion of machine learning algorithms’, in Proc. of NIPS’12, (2012).

[30] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘Auto-WEKA:
Combined selection and hyperparameter optimization of classification
algorithms’, in Proc. of KDD’13, (2013).

[31] C. N. J. Yu and T. Joachims, ‘Learning structural svms with latent
variables’, in Proc. of ICML’09, pp. 1169–1176, (2009).

31

A Framework To Decompose And Develop Metafeatures
Fábio Pinto1 and Carlos Soares2 and João Mendes-Moreira3

Abstract.
This paper proposes a framework to decompose and develop

metafeatures for Metalearning (MtL) problems. Several metafeatures
(also known as data characteristics) are proposed in the literature for
a wide range of problems. Since MtL applicability is very general
but problem dependent, researchers focus on generating specific and
yet informative metafeatures for each problem. This process is car-
ried without any sort of conceptual framework. We believe that such
framework would open new horizons on the development of metafea-
tures and also aid the process of understanding the metafeatures al-
ready proposed in the state-of-the-art. We propose a framework with
the aim of fill that gap and we show its applicability in a scenario of
algorithm recommendation for regression problems.

1 Introduction

Researchers have been using MtL to overcome innumerous
challenges faced by several data mining practitioners, such as
algorithm selection [3][23], time series forecasting [9], data
streams [19][20][5], parameter tuning [22] or understanding of learn-
ing behavior [6].

As the study of principled methods that exploit metaknowledge
to obtain efficient models and solutions by adapting machine learn-
ing and data mining processes [2], MtL is used to extrapolate knowl-
edge gained in previous experiments to better manage new problems.
That knowledge is stored as metadata, particularly, metafeatures and
metatarget, as outlined in Figure 1. The metafeatures (extracted from
A to B and stored in F) consist in data characteristics that describe
the correlation between the learning algorithms and the data under
analysis, i.e., correlation between numeric attributes of a dataset. The
metatarget (extracted through C-D-E and stored in F) represents the
meta-variable that one wishes to understand or predict, i.e., the algo-
rithm with best performance for a given dataset.

Independently of the problem at hands, the main issue in MtL con-
cerns defining the metafeatures. If the user is able to generate in-
formative metafeatures, it is very likely that his application of MtL
is going to be successful. The state-of-the-art shows that there is
three types of metafeatures: 1) simple, statistical and information-
theoretic. In this group we can found the number of examples of
the dataset, correlation between numeric attributes or class entropy,
to name a few. Application of these kind of metafeatures provides
not only informative metafeatures but also interpretable knowledge
about the problems [3] 2) model-based ones [13]. These capture

1 LIAAD-INESC TEC, Universidade do Porto, Portugal, e-mail: fh-
pinto@inesctec.pt

2 CESE-INESC TEC, Universidade do Porto, Portugal, e-mail:
csoares@fe.up.pt

3 LIAAD-INESC TEC, Universidade do Porto, Portugal, e-mail: jmor-
eira@fe.up.pt

Dataset

Dataset MetadataMetafeatures

Learning
Techniques

Choose
Learning
Strategy

Performance
Evaluation

A

B

C D E

F

Figure 1. Metalearning: knowledge acquisition. Adapted from [2]

some characteristic of a model generated by applying a learning al-
gorithm to a dataset, i.e., the number of leaf nodes of decision tree.
Finally, a metafeature can also be a 3) landmarker [14]. These are
generated by making a quick performance estimate of a learning al-
gorithm in a particular dataset.

Although the state-of-the-art proposes several metafeatures of all
types for a wide range of problems, we state that the literature lacks
an unifying framework to categorize and develop new metafeatures.
Such framework could help MtL users by systematizing the process
of generating new metafeatures. Furthermore, the framework could
be very useful to compare different metafeatures and assess if there
is no overlap of the information that they capture. In this paper, we
propose a framework with that purpose and we use it in the analysis
of the metafeatures used in several MtL applications. We also show
its applicability to generate metafeatures in a scenario of algorithm
recommendation for regression problems.

The paper is organized as follows. In Section 2 we present a brief
overview of MtL applications and respective metafeatures. Section 3
details the proposed framework to decompose and develop metafea-
tures. In Section 4 we use the framework to decompose and under-
stand how our framework would characterize metafeatures already
proposed in the literature. Section 5 exemplifies how the framework
could be used to develop new metafeatures in a scenario of algorithm
recommendation for regression problems. Finally, we conclude the
paper with some final remarks and future work.

2 Metalearning

MtL emerges as the most promising solution from machine learn-
ing researchers to the need for an intelligent assistant for data analy-
sis [21]. Since the majority of data mining processes include several
non-trivial decisions, it would be useful to have a system that could
guide the users to analyze their data.

32

The main focus of MtL research has been the problem of algo-
rithm recommendation. Several works proposed systems in which
data characteristics were related with the performance of learning
algorithms in different datasets. Brazdil et al. [3] system provides
recommendations in the form of rankings of learning algorithms. Be-
sides the MtL system, they also proposed an evaluation methodology
for ranking problems that is useful for the problem of algorithm rank-
ing. Sun and Pfahringer [23] extended the work of Brazdil et al. with
two main contributions: the pairwise meta-rules, generated by com-
paring the performance of individual base learners in a one-against-
one manner; and a new meta-learner for ranking algorithms.

Another problem addressed by MtL has been the selection of the
best method for time series forecasting. The first attempt was carried
by Prudêncio and Ludermir [16] with two different systems: one that
was able to select among two models to forecast stationary time se-
ries and another to rank three models used to forecast time series.
Results of both systems were satisfactory. Wang et al. [26] addressed
the same problem but with a descriptive MtL approach. Their goal
was to extract useful rules with metaknowledge that could aid the
users in selecting the best forecasting method for a given time series
and develop a strategy to combine the forecasts. Lemke and Bog-
dan [9] published a similar but with more emphasis on improving
forecasts through model selection and combination.

MtL has also been used to tune parameters of learning algorithms.
Soares et al. [22] proposed a method that by using mainly simple,
statistical and information-theoretic metafeatures was able to pre-
dict successfully the width of the Gaussian kernel in Support Vector
Regression. Results show that the methodology can select settings
with low error while providing significant savings in time. Ali and
Miles [1] published a MtL method to automatically select the kernel
of a Support Vector Machine in a classification context, reporting re-
sults with high accuracy ratings. Reif et al. [17] used a MtL system
to provide good starting points to a genetic algorithm that optimizes
the parameters of a Support Vector Machine and a Random Forests
classifier. Results state the effectiveness of the approach.

Data stream mining can also benefit from MtL, especially in a con-
text where the distribution underlying the observations may change
over time. Gama and Kosina [5] proposed a metalearning frame-
work that is able to detect recurrence of contexts and use previ-
ously learned models. Their approach differs from the typical MtL
approach in the sense that uses the base-level features to train the
metamodel. On the other hand, Rossi et al. [19] reported a system for
periodic algorithm selection that uses data characteristics to induce
the metamodel (all the metafeatures are of the simple, statistical and
information-theoretic type).

Another interesting application of MtL is to use it as a methodol-
ogy to investigate the reasons behind the success or failure of a learn-
ing algorithm [25]. In this approach, instead of the typical predictive
methodology, MtL is used to study the relation between the gener-
ated metafeatures and a metatarget that represents the base-level phe-
nomenon that one wishes to understand. Kalousis et al. [6] published
a paper on this matter. They adress the problem of discovering sim-
ilarities among classification algorithms and among datasets using
simple, statistical and information-theoretic metafeatures.

All the MtL applications that we mentioned previously use differ-
ents sets of metafeatures. It is mandatory to adapt the set of metafea-
tures to the problem domain. However, as stated previously, we be-
lieve that would be useful to decompose all these metafeatures into
a common framework. Furthermore, such framework must also help
the MtL user in the development of new metafeatures.

3 Metafeatures Development Framework
In this section, we propose a framework in order to allow a more
systematized and standardized development of metafeatures for MtL
problems. This framework splits the conception of a metafeature into
four components: object, role, data domain and aggregation function.
Within each component, the metafeature can be generated by using
different subcomponents. Figure 2 illustrates the framework.

The object component concerns which information is going to be
used to compute the metafeature. It can be an instance(s), dataset(s),
model(s) or a prediction(s). The metafeature can extract information
from one subcomponent (i.e., class entropy of a dataset), several units
of a subcomponent (i.e., mean class entropy of a subset of datasets)
and for some problems it might be useful to select multiple subcom-
ponents (i.e., for dynamic selection of models, one could relate in-
stances with models [11]).

The role component details the function of the object component
that is going to be used to generate the metafeature. The focus can
be in the target variable, predicted or observed, in a feature or in
the structure of the object component (i.e., decision tree model or
the representation of a dataset into a graph). Several elements can be
selected, i.e., the metafeature can relate the target variable with one
or more features.

The third component defines the data domain of the metafeature
and it is decomposed into four subcomponents: quantitative, qualita-
tive, mixed or complex. This component is highly dependent of the
previous ones and influences the metric used for computation (i.e.,
if the data domain is qualitative, the user can not use correlation to
capture the information). A metric can be quantitative (if the object
component is numerical), qualitative (if the object component is cat-
egorical), mixed (if the object component has both numerical and
categorical data) or complex (in special situations in which the ob-
ject is a graph or a model).

Finally, the aggregation function component. Typically, this is ac-
complished by some descriptive statistic, i.e., mean, standard devia-
tion, mode, etc. However, for some MtL problems it might be useful
to not aggregate the information computed with the metric compo-
nent. This is particularly frequent in MtL applications such as time
series or data streams [20] were the data has the same morphology.
For example, instead of computing the mean of the correlation be-
tween pairs of numerical attributes, one could use the correlation be-
tween all pairs of numerical attributes.

4 Decomposing Metafeatures
We used the framework to decompose metafeatures proposed in sev-
eral applications to assess its applicability and consistence. We show
examples from the three types of state-of-the-art metafeatures: sim-
ple, statistical and information-theoretic; model-based and landmark-
ers.

Figure 3 illustrates the decomposition of six simple, statistical and
information-theoretic metafeatures. The first three (number of ex-
amples, class entropy and absolute mean correlation between nu-
meric attributes) are common metafeatures used in several published
papers [3][6][22]. The framework allows to detail the computation
of the metafeature. Furthermore, it allows to compare two or more
metafeatures. For example, the absolute mean correlation between
numeric attributes is very similar to correlation between numeric at-
tributes (used in data streams applications [20]) except for the aggre-
gation function. In this case, the application domain makes it feasible
and potentially more informative to not aggregate the correlation val-
ues.

33

 OBJECT DATA DOMAIN AGGREGATON FUNCTION

Dataset

Predictions

Model

#

1

2

n

#

1

2

n

 ROLE

Quantitative

Qualitative

Mixed

Non-
aggregated

Descriptive
Statistic

Instance Target
Observed

Feature

Structure Complex

Target
Predicted

Figure 2. Metafeatures Development Framework.

Figure 3. Simple, statistical and information-theoretic metafeatures
decomposed using our framework.

Still regarding Figure 3, the decomposition of the two last metafea-
tures shows that is possible to use the framework for more com-
plex data characteristics. Morais and Prati [12] published a paper in
which they use measures from complex network theory to charac-
terize a dataset. Their approach consists in transforming the dataset
into a graph by means of similarity between instances. Then, they

compute typical measures such as number of nodes or average de-
gree. Another example would be the Jensen-Shannon distance be-
tween dataset and bootstrap [15]. In this example, the authors used
the Jensen-Shannon distance to measure the differences caused by
the bootstrapping process in the distribution of the variables (features
and target).

In Figure 4, we show an example of a model-based metafeature de-
composed using our framework. For computing the number of nodes
of a decision tree, the object component is the model, with particular
focus on its structure (as role component). Peng et al.[13] published
a paper in which several model-based metafeatures are proposed (for
decision trees models).

Figure 4. Model-based metafeatures decomposed using our framework.

Finally, in Figure 5, we show the framework applied to landmark-
ers. The first example, the decision stump landmarker [4], uses as ob-
ject a set of predictions, both the predicted and the observed. Assum-
ing a 0-1 loss function for classification problems, the data domain
of a decision stump landmarker is always quantitative. Last but not
least, the aggregation function in this case is a descriptive statistic,
usually a mean. The second example concerns the metafeatures used
in the meta decision trees proposed by Todorovski and Džeroski [24].
The authors used the class probabilities of the base-level classifiers as
metafeature, particularly, the highest class probability of a classifier
for a single instance.

34

Figure 5. Landmarkers metafeatures decomposed using our framework.

5 Developing Metafeatures

In this Section we present a case study of the proposed framework
with a metric widely used in MtL problems [2]: correlation be-
tween numeric variables. We show that it is possible to generate new
metafeatures by combining elements of different components of the
framework. Furthermore, using such framework allows a systematic
reasoning in the process of developing metafeatures for a given prob-
lem. It becomes easier to detect gaps of non measured information in
a set of metafeatures, if it is available a theoretical framework that
can guide the user by pointing new research directions.

OBJECT ROLE DATA
DOMAIN

AGGREGATION
FUNCTIONMETAFEATURE

Dataset
Descriptive

StatisticQuantitative

Distribution of
correlation

between numeric
features and

target

Target
Observed

Feature

Dataset
Non-

aggregatedQuantitative

Correlation
between numeric

features and
target

Target
Observed

Feature

Non-
aggregatedQuantitative

Correlation
between

predictions and
target

Target
Observed

Target
Predicted

Predictions

Descriptive
StatisticQuantitative

Distribution of
correlation

between numeric
features and

target of
instances

Instance
Target

Observed

Feature

Figure 6. Examples of correlation metafeatures developed using the
proposed framework.

As mentioned previously, we use correlation between numeric
variables as example in the context of a MtL application for regres-
sion algorithm selection [7]. This a problem addressed in a relatively
small number of papers in comparison with the classification sce-
nario.

Figure 6 shows an illustration of four metafeatures that use corre-
lation between numeric variables. The first metafeature, distribution
of correlation between numeric features and target, although present
in the literature [2], differs from absolute mean correlation between
numeric features presented in Figure 3 by adding the element target
to the role component. This simple change transforms completely the
nature of the metafeature in the sense that instead of being a metric

of redundancy is a metric of information. The greater the correla-
tion between a numeric feature and target, the more informative that
feature can be. Furthermore, it can be more useful to use a specific
descriptive statistic (maximum, minimum, etc) instead of the typical
mean.

Similarly, the correlation between numeric features and target has
the same purpose of distribution of correlation between numeric fea-
tures and target but it is indicated for MtL in which the base-level
data has the same morphology (as in the data streams scenario [20]).
The output of the metafeature is the correlation between the target
and each numeric feature.

The two last metafeatures presented in Figure 6, (correlation be-
tween predictions and target and absolute mean correlation between
numeric features and target of two instances) were developed us-
ing our framework by changing elements of specific components.
Correlation between numeric predictions and target is another form
of landmarker in which instead of using a typical error measure as
RMSE, one uses correlation to assess the similarity between the real
values and the predicted ones. In terms of the framework decomposi-
tion, this metafeature differs from the typical landmarkers in the ag-
gregation function component. Although we did not yet executed ex-
periments on the usefulness of metafeature, it is here proposed to ex-
emplify the applicability of the framework to uncover new metafea-
tures for a given problem.

Finally, the distribution of correlation between numeric features
and target of instances can be particularly useful for dynamic se-
lection of algorithms/models in a regression scenario [18][10]. If the
MtL problem concerns the selection of an algorithm for each instance
of the test set (instead of an algorithm for a dataset) it could be useful
to collect information that relates instances. This metafeature would
allow to measure the correlation between the numeric variables of
the instances. Once again, to the best of our knowledge, there are
no reported experiments on the dynamic selection of algorithms us-
ing MtL. This metafeature is here proposed as another example of
metafeatures that can be developed using correlation as metric.

6 Final Remarks and Future Work
This paper proposes a framework to decompose and develop new
metafeatures for MtL problems. We believe that such framework
can assist MtL researchers and users by standardizing the concept
of metafeature.

We presented the framework and we used it to analyze several
metafeatures proposed in the literature for a wide range of MtL sce-
narios. This process allowed to validate the usefulness of the frame-
work by distinguishing several state-of-the-art metafeatures. We also
provide insights on how the framework can be used to develop new
metafeatures for a algorithm recommendation in a regression sce-
nario. We use correlation between numeric variables to exemplify
the applicability of the framework.

As for future work, we plan to use this framework to generate
new metafeatures for algorithm recommendation in a classification
scenario and empirically validate the framework. Furthermore, we
also plan to use the framework in MtL problems that we have been
working on, particularly, MtL for pruning of bagging ensembles and
dynamic integration of models.

Acknowledgements
This work is partially funded by FCT/MEC through PIDDAC
and ERDF/ON2 within project NORTE-07-0124-FEDER-000059, a

35

project financed by the North Portugal Regional Operational Pro-
gramme (ON.2 O Novo Norte), under the National Strategic Refer-
ence Framework (NSRF), through the European Regional Develop-
ment Fund (ERDF), and by national funds, through the Portuguese
funding agency, Fundação para a Ciência e a Tecnologia (FCT).

REFERENCES

[1] Shawkat Ali and Kate A Smith-Miles, ‘A meta-learning approach to
automatic kernel selection for support vector machines’, Neurocomput-
ing, 70(1), 173–186, (2006).

[2] Pavel Brazdil, Christophe Giraud Carrier, Carlos Soares, and Ricardo
Vilalta, Metalearning: applications to data mining, Springer, 2008.

[3] Pavel B Brazdil, Carlos Soares, and Joaquim Pinto Da Costa, ‘Ranking
learning algorithms: Using ibl and meta-learning on accuracy and time
results’, Machine Learning, 50(3), 251–277, (2003).

[4] Johannes Fürnkranz and Johann Petrak, ‘An evaluation of landmark-
ing variants’, in Working Notes of the ECML/PKDD 2000 Workshop
on Integrating Aspects of Data Mining, Decision Support and Meta-
Learning, pp. 57–68, (2001).

[5] João Gama and Petr Kosina, ‘Recurrent concepts in data streams clas-
sification’, Knowledge and Information Systems, 1–19, (2013).

[6] Alexandros Kalousis, João Gama, and Melanie Hilario, ‘On data and
algorithms: Understanding inductive performance’, Machine Learning,
54(3), 275–312, (2004).

[7] Christian Köpf, Charles Taylor, and Jörg Keller, ‘Meta-analysis: from
data characterisation for meta-learning to meta-regression’, in Proceed-
ings of the PKDD-00 workshop on data mining, decision support, meta-
learning and ILP. Citeseer, (2000).

[8] Petr Kuba, Pavel Brazdil, Carlos Soares, and Adam Woznica, ‘Exploit-
ing sampling and meta-learning for parameter setting for support vector
machines’, in Proc. of Workshop Learning and Data Mining associated
with Iberamia 2002, VIII Iberoamerican Conference on Artificial Intel-
lignce, pp. 209–216, Sevilla (Spain), (2002). University of Sevilla.

[9] Christiane Lemke and Bogdan Gabrys, ‘Meta-learning for time series
forecasting and forecast combination’, Neurocomputing, 73(10), 2006–
2016, (2010).

[10] João Mendes-Moreira, Alipio Mario Jorge, Carlos Soares, and
Jorge Freire de Sousa, ‘Ensemble learning: A study on different vari-
ants of the dynamic selection approach’, in Machine Learning and Data
Mining in Pattern Recognition, 191–205, Springer, (2009).

[11] João Mendes-Moreira, Carlos Soares, Alı́pio Mário Jorge, and Jorge
Freire De Sousa, ‘Ensemble approaches for regression: A survey’, ACM
Computing Surveys (CSUR), 45(1), 10, (2012).

[12] Gleison Morais and Ronaldo C Prati, ‘Complex network measures for
data set characterization’, in Intelligent Systems (BRACIS), 2013 Brazil-
ian Conference on, pp. 12–18. IEEE, (2013).

[13] Yonghong Peng, Peter A Flach, Carlos Soares, and Pavel Brazdil, ‘Im-
proved dataset characterisation for meta-learning’, in Discovery Sci-
ence, pp. 141–152. Springer, (2002).

[14] Bernhard Pfahringer, Hilan Bensusan, and Christophe Giraud-Carrier,
‘Tell me who can learn you and i can tell you who you are: Landmark-
ing various learning algorithms’, in Proceedings of the 17th interna-
tional conference on machine learning, pp. 743–750, (2000).

[15] Fábio Pinto, Carlos Soares, and João Mendes-Moreira, ‘An empirical
methodology to analyze the behavior of bagging’, in Submitted for pub-
lication, (2014).

[16] Ricardo BC Prudêncio and Teresa B Ludermir, ‘Meta-learning ap-
proaches to selecting time series models’, Neurocomputing, 61, 121–
137, (2004).

[17] Matthias Reif, Faisal Shafait, and Andreas Dengel, ‘Meta-learning for
evolutionary parameter optimization of classifiers’, Machine learning,
87(3), 357–380, (2012).

[18] Niall Rooney, David Patterson, Sarab Anand, and Alexey Tsymbal,
‘Dynamic integration of regression models’, in Multiple Classifier Sys-
tems, 164–173, Springer, (2004).

[19] André Luis Debiaso Rossi, ACPLF Carvalho, and Carlos Soares,
‘Meta-learning for periodic algorithm selection in time-changing data’,
in Neural Networks (SBRN), 2012 Brazilian Symposium on, pp. 7–12.
IEEE, (2012).

[20] André Luis Debiaso Rossi, André Carlos Ponce De Leon Ferreira
De Carvalho, Carlos Soares, and Bruno Feres De Souza, ‘Metastream:

A meta-learning based method for periodic algorithm selection in time-
changing data’, Neurocomputing, 127, 52–64, (2014).

[21] Floarea Serban, Joaquin Vanschoren, Jörg-Uwe Kietz, and Abraham
Bernstein, ‘A survey of intelligent assistants for data analysis’, ACM
Computing Surveys (CSUR), 45(3), 31, (2013).

[22] Carlos Soares, Pavel B Brazdil, and Petr Kuba, ‘A meta-learning
method to select the kernel width in support vector regression’, Ma-
chine Learning, 54(3), 195–209, (2004).

[23] Quan Sun and Bernhard Pfahringer, ‘Pairwise meta-rules for bet-
ter meta-learning-based algorithm ranking’, Machine learning, 93(1),
141–161, (2013).

[24] Ljupčo Todorovski and Sašo Džeroski, ‘Combining classifiers with
meta decision trees’, Machine learning, 50(3), 223–249, (2003).

[25] Joaquin Vanschoren and Hendrik Blockeel, ‘Towards understanding
learning behavior’, in Proceedings of the Annual Machine Learning
Conference of Belgium and the Netherlands, pp. 89–96, (2006).

[26] Xiaozhe Wang, Kate Smith-Miles, and Rob Hyndman, ‘Rule induction
for forecasting method selection: Meta-learning the characteristics of
univariate time series’, Neurocomputing, 72(10), 2581–2594, (2009).

36

Towards Meta-learning over Data Streams (Abstract)
Jan N. van Rijn1 and Geoffrey Holmes2 and Bernhard Pfahringer3 and Joaquin Vanschoren4

Modern society produces vast streams of data. Many stream min-
ing algorithms have been developed to capture general trends in these
streams, and make predictions for future observations, but relatively
little is known about which algorithms perform particularly well on
which kinds of data. Moreover, it is possible that the characteris-
tics of the data change over time, and thus that a different algorithm
should be recommended at various points in time. Figure 1 illustrates
this. As such, we are dealing with the Algorithm Selection Prob-
lem [9] in a data stream setting. Based on measurable meta-features
from a window of observations from a data stream, a meta-algorithm
is built that predicts the best classifier for the next window. Our re-
sults show that this meta-algorithm is competitive with state-of-the-
art data streaming ensembles, such as OzaBag [6], OzaBoost [6]
and Leveraged Bagging [3].

We first construct a meta-dataset consisting of 49 data streams,
generated using various data stream generators from the MOA work-
bench [2], including the Rotating Hyperplane Generator and Random
RBF Generator. In addition, we use a newly created Bayesian Net-
work Generator, which takes a dataset as input, preferably consisting
of real-world data and a reasonable amount of features, and builds
a Bayesian Network using this dataset as input [12]. The Bayesian
Network is then used to generate a data stream, determining each
feature of each instance using the probability tables. These streams
all contain 1,000,000 instances. We also include commonly used
large datasets, such as Covertype, Pokerhand and the 20 Newsgroups
dataset.

We run three types of classifiers over these datasets [8]. These are
instance incremental classifiers, which learn from each example as
it arrives, batch incremental classifiers, which learn from batches of
examples, and ensembles of classifiers. The score of these classi-
fiers is recorded at each window of 1,000 instances. Furthermore,
we calculate various meta-features for all of these intervals, most
of which are described in [10]. These meta-features are typically
categorised as one of the following: simple (number of instances,
number of attributes, number of classes), statistical (mean standard
deviation of attributes, mean kurtosis of attributes, mean skewness
of attributes), information theoretic (class entropy, mean entropy of
attributes, noise-signal ratio) or landmarkers [7] (performance of
a simple classifier on the data). We also introduce stream-specific
meta-features based on change detection, which count the number of
changes detected by the ADWIN [1] and DDM [4] change detectors.

The results of all experiments, as well as the generated datasets,
classifiers used, and the meta-dataset itself, are available on
OpenML [11].

1 Leiden University, Leiden, Netherlands, j.n.van.rijn@liacs.leidenuniv.nl
2 University of Waikato, Hamilton, New Zealand, geoff@cs.waikato.ac.nz
3 University of Waikato, Hamilton, New Zealand,bernhard@cs.waikato.ac.nz
4 Eindhoven University of Technology, Eindhoven, Netherlands,

j.vanschoren@tue.nl

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20 25 30 35 40

a
c
c
u
ra

c
y

interval

Hoeffding Tree
Naive Bayes

SPegasos
k-NN

Figure 1: Performance of four instance incremental classifiers on in-
tervals of the electricity dataset. Each interval contains 1,000 in-
stances.

We now aim to determine whether this meta-knowledge can im-
prove the predictive performance of data stream algorithms. We run a
sliding window of 1,000 examples over each of the base data streams,
and train a meta-algorithm using the meta-features and classifier
scores for that window to predict which classifier should be used in
the next window. The meta-algorithm is a Random Forest using
100 trees and 10 attributes, as implemented in Weka [5]. We distin-
guish between meta-level accuracy and base-level accuracy. Meta-
level accuracy indicates how the meta-algorithm performs on the
meta-learning task of predicting the best algorithm for a given win-
dow; base-level accuracy indicates how an ensemble of these base
classifiers would actually perform on the base data stream, using the
meta-algorithm to decide which base classifier to use for each win-
dow. The choice of meta-algorithm and the window size were deter-
mined experimentally.

Table 1 shows the results obtained from this experiment. We evalu-
ate how well the meta-learning selects between 13 base stream clas-
sifiers, listed in Table 2. All classifiers are run with the default pa-
rameter settings as selected in MOA [2]. As described above, we
can distinguish between three different types of stream mining algo-
rithms, and we evaluate how the meta-learning approach performs
within these subgroups as well.

Column A indicates the number of classifiers of each type,
also indicated in Table 2. Column “Majority” denotes which
classifier is the overall best in each group; here HT is short
for Hoeffding Trees, SMO stands for a Support Vector
Machine with a Polynomial Kernel and LB-HT means
Leveraged Bagging Hoeffding Trees. The column “Per-
centage” shows the percentage of 1,000-example windows where
this overall best algorithm wins. Since the meta-learner has to predict
which base classifier to use in each window, this value represents the
default accuracy of the meta-learning task.

Next, RFmeta shows the accuracy of the Random Forestmeta-

37

Table 1: Results of algorithm selection in the stream setting.

Task A Majority Percentage RFmeta ZeroRbase RFbase MAXbase

Instance incremental 5 HT 59.75 80.78 80.98 84.07 84.59
Batch incremental 4 SMO 65.56 68.17 74.38 75.33 76.02
Ensembles 4 LB-HT 57.78 56.20 84.27 85.15 86.12
All classifiers 13 LB-HT 50.97 50.92 84.27 85.31 86.30

Table 2: Algorithms used in the experiments.

Key Classifier Type Parameters
NB NaiveBayes Instance incremental
SGD Stochastic Gradient Descent Instance incremental
SPeg SPegasus Instance incremental
k-NN k Nearest Neighbour Instance incremental k = 10, w = 1000
HT Hoeffding Tree Instance incremental
SMO Support Vector Machine / Polynomial Kernel Batch incremental w = 1000
J48 C4.5 Decision Tree Batch incremental w = 1000
REP Reduced-Error Pruning Decision Tree Batch incremental w = 1000
OneR One Rule Batch incremental w = 1000
LB-kNN Leveraging Bagging / k-NN Ensemble k = 10, n = 10, w = 1000
LB-HT Leveraging Bagging / Hoeffding Tree Ensemble n = 10
Bag-HT OzaBag / Hoeffding Tree Ensemble n = 10
Boost-HT OzaBoost / Hoeffding Tree Ensemble n = 10

classifier in predicting the best classifier for a given window. The
last three columns show the accuracy that can be obtained on the
base data stream using three different strategies. Column ZeroRbase

shows the accuracy obtained by always selecting the best overall base
classifier. For instance, the value in the “Ensembles” row shows the
accuracy of an ensemble of Leveraged Bagged Hoeffding
Trees, averaged over all data streams. RFbase shows the accuracy
obtained when the Random Forest meta-classifier predicts the
base classifier to be used in each window, again averaged over all
data streams. Finally, column MAXbase shows the accuracy obtained
if the meta-classifier always correctly predicted the best classifier for
each window. Intuitively, RFbase shows the performance of the meta-
classifier, ZeroRbase can be used as a baseline, and MAXbase shows
the maximum score that the meta-classifier could have obtained.

Determining the best instance incremental classifier yields good
results. In more than 80% of the cases, the correct classifier is
predicted. This also translates into good base-level performance.
An ensemble of our meta-classifier and only the 5 instance in-
cremental classifiers, which is markedly cheaper to train, yields
a score of 84.07%, which not only outperforms the best over-
all instance incremental classifier, a Hoeffding Tree with
80.98% accuracy, but is also comparable to the best overall base
classifier, a Leveraged Bagged Hoeffding Trees ensem-
ble (with 10 base-classifiers), which scores 84.27%. Moreover,
it also outperforms the other ensembles, OzaBag (82.58%) and
OzaBoost (80.55%). The Random Forest meta-learner has
more difficulty selecting among all 13 base-classifiers, which shows
room for progress, but even then it performs slightly better than the
overall best base classifier. Furthermore, the RFbase performances
are in many cases close to the maximal possible value, MAXbase. This
indicates that the main challenge is to find ways to improve this limit.
Better results are likely to be obtained using parameter optimisation,
and by using a larger set of algorithms.

REFERENCES
[1] A. Bifet and R. Gavalda. Learning from Time-Changing Data with

Adaptive Windowing. In SDM, volume 7, pages 139–148. SIAM, 2007.
[2] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. MOA: Massive

Online Analysis. J. Mach. Learn. Res., 11:1601–1604, 2010.
[3] A. Bifet, G. Holmes, and B. Pfahringer. Leveraging Bagging for Evolv-

ing Data Streams. In Machine Learning and Knowledge Discovery in
Databases, volume 6321 of Lecture Notes in Computer Science, pages
135–150. Springer, 2010.

[4] J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with Drift
Detection. In SBIA Brazilian Symposium on Artificial Intelligence,
volume 3171 of Lecture Notes in Computer Science, pages 286–295.
Springer, 2004.

[5] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The WEKA Data Mining Software: An Update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

[6] Nikunj C Oza. Online Bagging and Boosting. In Systems, man and
cybernetics, 2005 IEEE international conference on, volume 3, pages
2340–2345. IEEE, 2005.

[7] Bernhard Pfahringer, Hilan Bensusan, and Christophe Giraud-Carrier.
Tell me who can learn you and I can tell you who you are: Landmarking
various learning algorithms. In Proceedings of the 17th international
conference on machine learning, pages 743–750, 2000.

[8] J. Read, A. Bifet, B. Pfahringer, and G. Holmes. Batch-Incremental
versus Instance-Incremental Learning in Dynamic and Evolving Data.
In Advances in Intelligent Data Analysis XI, pages 313–323. Springer,
2012.

[9] J. R. Rice. The Algorithm Selection Problem. Advances in Computers,
15:65118, 1976.

[10] Q. Sun and B. Pfahringer. Pairwise meta-rules for better meta-learning-
based algorithm ranking. Machine learning, 93(1):141–161, 2013.

[11] J. N. van Rijn, B. Bischl, L. Torgo, B. Gao, V. Umaashankar, S. Fischer,
P. Winter, B. Wiswedel, M. R. Berthold, and J. Vanschoren. OpenML:
A Collaborative Science Platform. In Machine Learning and Knowl-
edge Discovery in Databases, pages 645–649. Springer, 2013.

[12] J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. The
Bayesian Network Generator: A data stream generator. Technical Re-
port 03/2014, Computer Science Department, University of Waikato,
2014.

38

Recommending Learning Algorithms and
Their Associated Hyperparameters

Michael R. Smith1 and Logan Mitchell2 and Christophe Giraud-Carrier3 and Tony Martinez4

Abstract. The success of machine learning on a given task depends
on, among other things, which learning algorithm is selected and its
associated hyperparameters. Selecting an appropriate learning algo-
rithm and setting its hyperparameters for a given data set can be a
challenging task, especially for users who are not experts in machine
learning. Previous work has examined using meta-features to predict
which learning algorithm and hyperparameters should be used. How-
ever, choosing a set of meta-features that are predictive ofalgorithm
performance is difficult. Here, we propose to apply collaborative fil-
tering techniques to learning algorithm and hyperparameter selec-
tion, and find that doing so avoids determining which meta-features
to use and outperforms traditional meta-learning approaches in many
cases.

1 Introduction

Most previous meta-learning work has focused on selecting alearn-
ing algorithm or a set of hyperparameters based on meta-features
used to characterize datasets [5]. As such, it can be viewed as a
form of content-based filtering, a technique commonly-usedin rec-
ommender systems that captures a set of measured characteristics
of an item and/or user to recommend items with similar character-
istics. On the other hand, collaborative filtering (CF), also used by
some recommender systems, predicts the rating or preference that a
user would give to an item, based on the past behavior of a set of
users, characterized by ratings assigned by users to a set ofitems [9].
The underlying assumption of CF is that if usersA andB agree on
some issues, then userA is more likely to have the same opinion
on a new issueX as userB than another randomly chosen user. A
key advantage of CF is that it does not rely on directly measurable
characteristics of the items. Thus, it is capable of modeling complex
items without actually understanding the items themselves.

Here, we proposemeta-CF (MCF) a novel approach to meta-
learning that applies CF in the context of algorithm and/or hyper-
parameter selection. MCF differs from most previous meta-learning
techniques in that it does not rely on meta-features. Instead, MCF
considers the similarity of the performance of the learningalgorithms
with their associated hyperparameter settings from previous experi-
ments. In this sense, the approach is more similar to landmarking [12]
and active testing [10] since both also use the performance results
from previous experiments to determine similarity among data sets.

While algorithm selection and hyperparameter optimization have
been mostly studied in isolation (e.g., see [12, 4, 1, 2, 3, 15]), recent

1 Brigham Young University, USA, email: msmith@axon.cs.byu.edu
2 Brigham Young University, USA, email: mitchlam711@gmail.com
3 Brigham Young University, USA, email: cgc@cs.byu.edu
4 Brigham Young University, USA, email: martinez@cs.byu.edu

work has begun to consider them in tandem. For example, Auto-
WEKA simultaneously chooses a learning algorithm and sets its
hyperparameters using Bayesian optimization over a tree-structured
representation of the combined space of learning algorithms and their
hyperparameters [16]. All of these approaches face the difficult chal-
lenge of determining a set of meta-features that capture relevant and
predictive characteristics of datasets. By contrast, MCF does con-
sider both algorithm selection and hyperparameter settingat once,
but alleviates the problem of meta-feature selection by leveraging in-
formation from previous experiments through collaborative filtering.

Our results suggest that using MCF for learning algo-
rithm/hyperparameter setting recommendation is a promising direc-
tion. Using MCF for algorithm recommendation has some differ-
ences from the traditional CF used for human ratings. For example,
CF for humans may have to deal with concept drift, where a user’s
taste may change over time; working with learning algorithms and
hyperparameter settings is deterministic.

2 Empirical Evaluation

For MCF, we examine several CF techniques implemented in the
Waffles toolkit [6]: baseline (predict the mean of the previously seen
results), Fuzzy K-Means (FKM) [11], Matrix Factorization (MF) [9],
Nonlinear PCA (NLPCA) [13], and Unsupervised Backpropagation
(UBP) [7].

To establish a baseline, we first calculate the accuracy on a set
of 125 data sets and 9 diverse learning algorithms (see [14] for a
discussion on diversity) with default parameters as set in Weka [8].
The set of learning algorithms is composed of backpropagation (BP),
C4.5,kNN, locally weight learning (LWL), naı̈ve Bayes (NB), near-
est neighbor with generalization (NNge), random forest (RF), ridor
(Rid), and RIPPER (RIP). We select the accuracy from the learning
algorithm that produces the highest classification accuracy. This rep-
resents algorithm selection with perfect recall. We also estimate the
hyperparameter optimized accuracies for each learning algorithm us-
ing random hyperparameter optimization [3]. The results are shown
in Table 1, where the accuracy from each learning algorithm is the
average hyperparameter optimized accuracy for each data set, “De-
fault” refers to the best accuracy from the learning algorithm with its
default parameters, “ALL” refers to the accuracy from the best learn-
ing algorithm and hyperparameter setting, and “AW” refers to the
results from running Auto-WEKA. For Auto-WEKA, each dataset
was allowed to run as long as the longest algorithm took to runon
the dataset when doing the random hyperparameter optimization. As
Auto-WEKA is a random algorithm, we ran 4 runs each time with a
different seed and chose the seed with highest accuracy. This can be
seen as equivalent to allowing a user to run on average 16 learning

39

algorithm and hyperparameter combinations on a data set.

Table 1. Average accuracy for the best hyperparameter setting for each
learning algorithm, algorithm selection (Default), both algorithm selection

and hyperparameter optimization (ALL), and Auto-WEKA (AW).
BP C4.5 kNN LWL NB NNge

79.89 79.22 78.05 77.48 76.04 76.80

RF Rid RIP Default ALL AW

79.58 71.48 77.31 81.93 83.00 82.00

For MCF, we compiled the results from hyperparameter optimiza-
tion. We randomly removed 10% to 90% of the results by increments
of 10% and then used MCF to fill in the missing values. The top
4 learning algorithm/hyperparameter configurations are returned by
the CF technique and the accuracy from the configuration thatreturns
the highest classification accuracy is used. This process was repeated
10 times. A summary of the average results for MCF are provided in
Table 2. The columns “Best”, “Median”, and “Average” refer to the
accuracies averaged across all of the sparsity levels for the hyperpa-
rameter setting for the CF technique that provided the results. The
columns 0.1 to 0.9 refer to the percentage of the results usedfor CF
averaged over the hyperparameter settings. The row “Content” refers
to meta-learning where a learning algorithm recommends a learning
algorithm based on a set of meta-features.

Table 2. Average accuracy from the best of the top 4 recommended
learning algorithm and hyperparameter settings from MCF.

Best Med Ave 0.1 0.3 0.5 0.7 0.9

Baseline 81.11 81.11 81.11 80.49 80.91 81.12 81.33 81.54
FKM 81.52 81.04 81.29 80.13 80.65 81.07 81.45 81.88
MF 82.12 82.06 81.95 80.49 81.63 82.12 82.44 82.65
NLPCA 81.73 81.33 81.33 79.98 80.58 81.43 82.08 82.61
UBP 81.73 81.27 81.31 80.05 80.51 81.34 82.05 82.61

Content 81.35 80.47 78.91 - - - - -

Overall, MF achieves the highest accuracy values. The effective-
ness of MCF increases as the percentage of the results increases.
MCF significantly increases the classification accuracy compared
with both hyperparameter optimization for a given learningalgo-
rithm and model selection with their default parameters as well as us-
ing the meta-features to predict which learning algorithm and hyper-
parameters to use. On average, MCF and Auto-WEKA achieve sim-
ilar accuracy, which highlights the importance of considering both
algorithm selection and hyperparameter optimization. However, pro-
vided one has access to a database of experiments, such as theEx-
perimentDB [17], MCF only requires the time to run a number of
algorithms (often ran in parallel), and retraining the collaborative fil-
ter. In the current implementation, retraining takes less than 10 sec-
onds. Thus, MCF presents an efficient method for recommending a
learning algorithm and its associated hyperparameters.

While our results show that MCF is a viable technique for rec-
ommending learning algorithmsand hyperparameters, some work
remains to be done. Future work for MCF includes addressing the
cold-start problem which occurs when a data set is presentedand no
learning algorithm has been ran on it. MCF is adept at exploiting the
space that has already been explored, but (like active testing) it does
not explore unknown spaces at all. One way to overcome this limita-
tion would be to use a hybrid recommendation system that combines
content-based filtering and MCF.

REFERENCES
[1] S. Ali and K.A. Smith, ‘On Learning Algorithm Selection for Classifi-

cation’, Applied Soft Computing, 62, 119–138, (2006).
[2] S. Ali and K.A. Smith-Miles, ‘A Meta-learning Approach to Automatic

Kernel Selection for Support Vector Machines’,Neurocomputing, 70,
173–186, (2006).

[3] J. Bergstra and Y. Bengio, ‘Random search for hyper-parameter op-
timization’, Journal of Machine Learning Research, 13, 281–305,
(2012).

[4] P. B. Brazdil, C. Soares, and J. Pinto Da Costa, ‘Ranking learning al-
gorithms: Using IBL and meta-learning on accuracy and time results’,
Machine Learning, 50(3), 251–277, (2003).

[5] P. Brazdil and C. Giraud-Carrier and C. Soares and R. Vilalta, ‘Met-
alearning: Applications to Data Mining’, Springer, (2009).

[6] M. S. Gashler, ‘Waffles: A machine learning toolkit’,Journal of Ma-
chine Learning Research, MLOSS 12, 2383–2387, (July 2011).

[7] M. S. Gashler, M. R. Smith, R. Morris, and T. Martinez, ‘Missing value
imputation with unsupervised backpropagation’,Computational Intel-
ligence, Accepted, (2014).

[8] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, ‘The weka data mining software: an update’,SIGKDD Explo-
rations Newsletter, 11(1), 10–18, (2009).

[9] Y. Koren, R. Bell, and C. Volinsky, ‘Matrix factorization techniques for
recommender systems’,Computer, 42(8), 30–37, (2009).

[10] R. Leite, P. Brazdil, and J. Vanschoren, ‘Selecting classification algo-
rithms with active testing’, inMachine Learning and Data Mining in
Pattern Recognition, ed., Petra Perner, volume 7376 ofLecture Notes
in Computer Science, 117–131, Springer Berlin / Heidelberg, (2012).

[11] D. Li, J. Deogun, W. Spaulding, and B. Shuart, ‘Towards missing data
imputation: A study of fuzzy k-means clustering method’, inRough
Sets and Current Trends in Computing, volume 3066 ofLecture Notes
in Computer Science, 573–579, Springer Berlin / Heidelberg, (2004).

[12] B. Pfahringer, H. Bensusan, and C. G. Giraud-Carrier, ‘Meta-learning
by landmarking various learning algorithms’, inProceedings of the
17th International Conference on Machine Learning, pp. 743–750, San
Francisco, CA, USA, (2000). Morgan Kaufmann Publishers Inc.

[13] M. Scholz, F. Kaplan, C. L. Guy, J. Kopka, and J. Selbig, ‘Non-linear
pca: a missing data approach’,Bioinformatics, 21(20), 3887–3895,
(2005).

[14] M. R. Smith, T. Martinez, and C. Giraud-Carrier, ‘An instance level
analysis of data complexity’,Machine Learning, 95(2), 225–256,
(2014).

[15] J. Snoek, H. Larochelle, and R. Adams, ‘Practical bayesian optimiza-
tion of machine learning algorithms’, inAdvances in Neural Informa-
tion Processing Systems 25, eds., F. Pereira, C.J.C. Burges, L. Bottou,
and K.Q. Weinberger, 2951–2959, (2012).

[16] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown,‘Auto-weka:
combined selection and hyperparameter optimization of classification
algorithms’, in proceedings of the 19th International Conference on
Knowledge Discovery and Data Mining, pp. 847–855, (2013).

[17] J. Vanschoren, H. Blockeel, B. Pfahringer, and G. Holmes, ‘Experiment
databases - a new way to share, organize and learn from experiments’,
Machine Learning, 87(2), 127–158, (2012).

40

An Easy to Use Repository for Comparing and Improving
Machine Learning Algorithm Usage

Michael R. Smith1 and Andrew White2 and Christophe Giraud-Carrier 3 and Tony Martinez4

Abstract. The results from most machine learning experiments
are used for a specific purpose and then discarded. This causes sig-
nificant loss of information and requires rerunning experiments to
compare learning algorithms. Often, this also requires a researcher
or practitioner to implement another algorithm for comparison, that
may not always be correctly implemented. By storing the results
from previous experiments, machine learning algorithms can be
compared easily and the knowledge gained from them can be used
to improve the performance of future machine learning experiments.
The purpose of this work is to provide easy access to previousex-
perimental results for learning and comparison. These stored results
are comprehensive – storing the prediction for each test instance as
well as the learning algorithm, hyperparameters, and training set that
were used in the experiment. Previous experimental resultsare par-
ticularly important for meta-learning, which, in a broad sense, is the
process of learning from previous machine learning resultssuch that
the learning process is improved. While other experiment databases
do exist, one of our focuses is on easy access to the data, eliminat-
ing any learning curve required to acquire the desired information.
We provide meta-learning data sets that are ready to be downloaded
for meta-learning experiments. Easy access to previous experimental
results aids other researchers looking to do meta-learningand helps
in comparing meta-learning algorithms. In addition, simple queries
to the underlying database can be made if specific information is de-
sired. We also differ from previous experiment databases inthat our
database is designed at the instance level, where an instance is an ex-
ample in a data set. We store the predictions of a learning algorithm
trained on a specific training set for each instance in the test set. Data
set level information can then be obtained by aggregating the results
from the instances. The instance level information can be used for
many tasks such as determining the diversity of a classifier or algo-
rithmically determining the optimal subset of training instances for a
learning algorithm.

1 Introduction

The quality of an induced model is dependent on, among other as-
pects, the learning algorithm that is chosen, the hyper-parameter set-
tings for the chosen learning algorithm, and the quality of the training
set. Choosing a learning algorithm for a given task, settingits hyper-
parameters, and selecting which instances to train on, however, is
non-trivial. Meta-learning deals with the problem of how toselect a
learning algorithm and set its hyper-parameters based on previous ex-

1 Brigham Young University, USA, email: msmith@axon.cs.byu.edu
2 Brigham Young University, USA, email: andrewkvavlewhite@gmail.com
3 Brigham Young University, USA, email: cgc@cs.byu.edu
4 Brigham Young University, USA, email: martinez@cs.byu.edu

perience (results from previous machine learning experiments). Al-
though some research from the machine learning community has fo-
cused on meta-learning (e.g., see [17, 5, 2, 3, 8]), much of the focus
of machine learning research has been on developing more learning
algorithms and/or applying machine learning in specific domains.

Part of the difficulty of meta-learning is due to the lack of ac-
cessible results. As meta-learning requires running several learning
algorithms and hyperparameter settings over many data sets, gath-
ering results requires large amounts of computational resources. In
addition to the computational requirements, results from the learning
algorithms may differ due to slight differences in their implementa-
tions. Thus, comparing results among meta-learning studies becomes
difficult.

To aid in further research in meta-learning, we have developed the
machine learning results repository(MLRR) that provides data sets
ready for download for meta-learning problems, akin to the UCI data
repository for machine learning problems. We refer to the data sets
for meta-learning asmeta-data setsto distinguish them from the data
sets that are used in the machine learning experiments. The meta-data
sets provide a snapshot of an underlying database that stores the re-
sults of machine learning experiments. Users can update thedatabase
with new results from machine learning experiments and thenupdate
the meta-data sets for meta-learning. A revision history iskept so
that comparisons among meta-learning algorithms is facilitated. As
a starting point, meta-data sets are provided by MLRR for typical
meta-learning tasks, such as, given a set of meta-features,predict
which learning algorithm and/or hyperparameter setting touse.

The MLRR stores instance level meta-features and the predictions
made on each instance by the learning algorithms. Providinginfor-
mation at the instance level allows studies to be performed on the
instances themselves. Studying the effects of machine learning on a
single instance and/or the effects of a single instance on the perfor-
mance of an algorithm has generally been overlooked. Instance-level
information is important in several areas of machine learning, how-
ever. In ensembles, computing the classifier diversity of the ensem-
bled classifiers using the predictions for each instance is important in
determining the effectiveness of the ensembling technique[12, 6, 1].
In curriculum learning, the training set is incrementally augmented
such that “easier” instances are presented to the learning algorithm
first, thus creating a need to understand and identify the easier in-
stances [4]. Smith et al. used instance-level predictions to identify
and characterize instances that are likely to be misclassified [23] and
used this information to create a curriculum [22]. Other work has
also used the instance-level predictions for meta-learning. The clas-
sifier output difference (COD) measures the distance between two
learning algorithms as the probability that the learning algorithms
make different predictions on test instances [16]. Unsupervised meta-

41

learning (UML) clusters learning algorithms based on theirCOD
scores (rather than accuracy) to examine the behavior of thelearn-
ing algorithms [13]. Meta-learning for algorithm selection can then
be done over the clusters rather than a larger set of learningalgo-
rithms to recommend a cluster of learning algorithms that all behave
similarly [14]. Additionally, several techniques treat instances indi-
vidually during the training process, such as filtering instances from
the training set based on their instance-level meta-features [21] or
weighting the instances [18].

Other attempts have been made at creating a repository for
machine learning experiments from which learning can be con-
ducted [20, 24]. However, we feel that they lack simplicity and/or
extensibility. In addition to providing instance-level information, we
hope to bridge this gap with the MLRR. Probably the most promi-
nent and well-developed data repository is ExpDB, an experiment
database that provides a framework for reporting experimental re-
sults and their associated workflow [24]. The purpose of ExpDB is
to comprehensively store the workflow process of all experiments for
reproducibility. One of the results of storing the experiments is that
the results can be used for meta-learning. Unfortunately, there is a
relatively steep learning curve to access the data due to theinherent
complexity involved in storing all of the details about exact repro-
ducibility. Because of this complexity and formality, it isdifficult
to directly access the information that would be most beneficial for
meta-learning, which may deter some potential users. Additionally,
ExpDB does not currently support storage and manipulation of any
instance level features.

We acknowledge that maintaining a database of previous experi-
ments is not a trivial problem. We do, however, add our voice to sup-
port the importance of maintaining a repository of machine learning
results and offer an effective solution for storing resultsfrom pre-
vious experiments. Our primary goal is to maintain simplicity and
provide easily accessible data for meta-learning to 1) helppromote
more research in meta-learning, 2) provide a standard set ofdata sets
for meta-learning algorithm comparison, and 3) continue tostimulate
research at the instance level.

We next describe our approach for providing a repository forma-
chine learning meta-data that emphasizes ease of access to the meta-
data. MLRR currently has the results from 72 data sets, 9 learning
algorithms and 10 hyperparameter settings for each learning algo-
rithm. The database description is provided in Section 3. How to add
new experimental results to the database is detailed in Section 4. We
then give a more detailed description of the data set level and in-
stance level meta-features that are used in the MLRR. Conclusions
and directions for future work are provided in Section 6.

2 Meta-data Set Descriptions

The purpose of themachine learning results repository(MLRR) is
to provide easy access to the results of previous machine learning ex-
periments for meta-learning at the data set and instance levels. This,
in turn, would allow other researchers interested in meta-learning and
in better understanding machine learning algorithms direct access to
prior results without having to re-run all of the algorithmsor learn
how to navigate a more complex experiment database. The quality of
an induced model for a task is dependent on at least three things:

1. the learning algorithm chosen to induce the model,
2. the hyperparameter settings for the chosen learning algorithm, and
3. the instances used for training.

When we refer to an experiment, we mean the results from training a
learning algorithml with hyperparamter settingsλ on a training sett.
We first describe how we manage experiment information, and then
describe the provided meta-data sets.

2.1 Experiment Information

The information about each experiment is provided in three tables
in MLRR. Which learning algorithm and hyperparameters wereused
is provided in a file structured as shown in Table 1. It provides the
toolkit including the version number that was ran, the learning algo-
rithm, and the hyperparameters that were used. This allows for mul-
tiple learning algorithms, hyperparameters, and toolkitsto be com-
pared. In the examples in Table 1, the class names from the Weka ma-
chine learning toolkit [9] and the Waffles machine learning toolkit [7]
are shown. LAseed corresponds to the learning algorithm that was
used (LA) and to a seed that represents which hyperparametersetting
was used (seed). The LAseed will be used in other tables as a foreign
key to map back to this table. A seed of -1 represents the default hy-
perparameter settings as many studies examine the default behavior
as given in a toolkit and the default parameters are commonlyused
in practice.

Table 1. The structure of the meta-data set that describes the
hyperparameter settings for the learning algorithms stored in the database.

LA S Toolkit Version Hyperparameters

BP 1 weka 3.6.11 weka.classifiers.functions.MultilayerPerceptron\
– -L 0.261703 -M 0.161703 -H 12 -D

BP 2 weka 3.6.11 weka.classifiers.functions.MultilayerPerceptron\
– -L 0.25807 -M 0.15807 -H 4

BP 3 waffles 13-12-09neuralnet -addlayer 8 -learningrate 0.1\
-momentum 0 -windowsepochs 50

...
...

...
...

C4.5 1 weka 3.6.11 weka.classifiers.trees.J48 – -C 0.443973 -M 1
...

...
...

...

As the parameter values differ between toolkits, there is a mapping
provided to distinguish hyperparameter settings. For example, Weka
uses the “-L” parameter to set the learning rate in backpropagation
while the Waffles toolkit uses “-learningrate”. Also, some toolkits
have hyperparameters that other implementations of the same learn-
ing algorithm do not include. In such cases, an unknown valuewill be
provided in the meta-data set. This mapping is shown in Table2 for
the backpropagation learning algorithm. The first row contains the
values used by MLRR. The following rows contain the command-
line parameter supplied to a specific toolkit to set that hyperparame-
ter.

Table 2. The structure of the table for mapping learning algorithm
hyperparameters between different toolkits for the backpropagation learning

algorithm.

Command line parameters
toolkit LR Mo HN DC WE

weka -L -M -H -D ?
waffles -learningrate -momentum -addlayer ? -windowsepochs
...

...
...

...
...

...

A mapping of which instances are used for training is also pro-
vided in a separate file. The structure of this table is shown in Table

42

3. Each row represents an experiment as toolkitseednumFoldsfold.
The toolkit represents which toolkit was used, the seed represents the
random seed that was provided to the toolkit, numFolds represents
how many folds were ran, and fold represents in which fold an in-
stance was included for testing. The values in the followingcolumns
represent if an instance was used for training or testing. There is one
column for each instance in the data set. They are stored as real val-
ues. This allows for the situations when training instanceshave as-
sociated weights. In the file, an unknown value of “?” represents a
testing instance, otherwise a real value represents a training instance.
A value of 0 represents a filtered instance, a value of 1 represents an
unweighted training instance and any value between 0 and 1 repre-
sents the weight for that training instance. In the cases where there
are specific training and testing sets, then the row will be labeled
as toolkit 0 0 1 and information for the training set can be entered
as before. A random test/training split of the data is represented as
toolkit seedpercentSplit1 where “percentSplit” represents the per-
centage of the data set that was used for testing as generatedby the
toolkit.

Table 3. The structure of the meta-data set that indicates which instances
were used for training given a random seed.

toolkit seed# folds fold 1 2 3 . . .

weka 1 10 1 1 1 1 . . .
weka 1 10 2 1 0 1 . . .

...
...

...
...

weka 1 10 10 0.74 1 ? . . .
weka 2 1 10 ? 1 1 . . .

...
...

...
...

2.2 Meta-data sets

One of the features of MLRR is its focus on storing and present-
ing instance level information, namely, instance level characteristics
and associated predictions from previous experiments. Indeed, the
MLRR is designed intentionally from the instance level perspective,
from which data set level information can be computed (e.g.,accu-
racy or precision).

As one of the purposes of the MLRR is ease of access, the MLRR
stores several data sets in attribute-relation file format (ARFF) which
is supported by many machine learning toolkits. In essence,ARFF is
a comma or space separated file with attribute information and pos-
sible comments. The precomputed meta-data sets include instance
level meta-data sets and data set level meta-data sets.

At the instance level, MLRR provides for each data set a meta-
data set that stores the instance level meta-features and the predic-
tion from each experiment. This allows for analyses to be done ex-
ploring the effects of hyperparameters and learning algorithms at the
instance-level, which is currently mostly overlooked. Foreach data
set, a meta-data set is provided that gives the values for theinstance
level meta-features, the actual class value (stored as a numeric value),
and the predicted class value for each experiment. The training set
and learning algorithm/hyperparameter information is stored in the
column heading as “LAseed/hyperparameter” where LA is a learn-
ing algorithm and hyperparameter is the hyperparameter setting for
the learning algorithm. Together, they map to the entries inTable 1.
The seed represents the seed that was used to partition the data (see
Table 3). The structure of the instance level meta-data set is shown in

Table 4. In the given example, instance 77 is shown. The “instmeta”
section provides the instance level meta-features for thatinstance.
The actual class label is 2. The predictions from the experiments on
this data set are provided in the following columns (i.e., experiment
BP 1/1 predicted class 3, BPN/1 predicted class 2, etc.).

Table 4. The structure of the meta-data set at the instance level.

inst meta predictions
kAN MV . . . act BP 1/1 . . . BPN/1 . . . BPN/M C4.5 1/1 . . .

77 0.92 0 . . . 2 3 . . . 2 . . . 2 3 . . .
...

...
...

...
...

...
...

...

At the data set level, several meta-data sets are provided:

• a general meta-data set that stores the data set meta-features and
the averageN by 10-fold cross-validation accuracy for all of the
data sets from a learning algorithm with a given hyperparameter
setting.

• for each learning algorithm a meta-data set that stores the data
set meta-features, the learning algorithm hyperparametersettings,
and the averageN by 10-fold cross-validation accuracy for all of
the data sets for the given hyperparameter setting.

The structure for the general meta-data set is provided in Table 5.
The structure and information of this meta-data set is typical of that
used in previous meta-learning studies that provides a mapping from
data set meta-features to accuracies obtained by a set of learning al-
gorithms. Most previous studies have been limited to only using the
default hyperparameters, however. The MLRR includes the accura-
cies from multiple hyperparameter settings. The hyperparameter set-
tings from each learning algorithm are denoted by a “LA#” where
LA refers to a learning algorithm and # refers to which hyperparam-
eter setting was used for that learning algorithm.

Table 5. The structure of the meta-data set at the data set level.

data set meta-features LA accuracies
data setnumInst numAttr . . . BP 1 BP 2 . . . BPN C4.5 1 . . .

iris 150 4 . . . 96.80 95.07 . . . 93.47 95.60 . . .
abalone 4177 8 . . . 20.27 29.84 . . . 21.91 23.24 . . .
...

...
...

...
...

...
...

...

The meta-data sets for each learning algorithm are designedto
aid in algorithmic hyperparameter estimation, i.e., givena data set,
can we predict which hyperparameter setting will give the highest
classification accuracy. For each learning algorithm, a meta-data set
is provided that contains the data set meta-features, the toolkit that
was used, the hyperparameter setting and the average accuracy for
each unique tool kit/hyperparameter combination. The structure of
the meta-data set for each learning algorithm is provided inTable 6.
The accuracy (“acc”) represents the average accuracy for all k-fold
validation runs (i.e., multiple runs of the same learning algorithm
with different random seeds to partition the folds). The toolkit is also
provided to allow a user to compare toolkits or only do hyperparam-
eter estimation for a single toolkit.

MLRR provides easy access for researchers and practitioners to a
large and varying set of meta-data information as shown in the tables
above. The provided meta-data sets are a snapshot of an underlying

43

Table 6. The structure of the table for mapping learning algorithm
hyperparameters among toolkits.

DS meta features toolkit hyperparameters
data set numInst numAttr . . . weka LR Mo . . . acc

iris 150 4 . . . weka 0.71 0.61 . . . 96.80
iris 150 4 . . . weka 0.11 0.25 . . . 97.04
...

...
...

...
...

...
...

database that stores all of the previous experimental results that can
be updated as more results are obtained. A revision history of the data
sets is provided so that results can be compared even if the meta-data
set has been updated.

3 Database Description

MLRR uses MongoDB as the database to store the results from ma-
chine learning experiments. MongoDB is a NoSQL database that
allows for adding new features (such as new learning algorithms
and/hyperparameters), thus, escaping the rigidity of the more tradi-
tional SQL databases. This allows for easily expanding the database
with new learning algorithms and/or hyperparameters. Of course, this
is theoretically also possible in a relational database, provided the
database has been designed adequately. For example, one could cer-
tainly have, and that would indeed be following good design princi-
ples, one table for the algorithms and one table for the hyperparam-
eters with appropriate foreign keys. However, such design requires
some amount of foresight. In traditional relational databases, the in-
formation that needs to be stored (and how) has to be planned for in
advance. Otherwise, when new features are desired, a new schema
needs to be created and then the database has to be migrated over
to the new schema. With a NoSQL database, new learning algo-
rithms/hyperparameters and other pieces of information can easily
be added into the MLRR.

The data is stored as a document database as collections of
key-value pairs. Each collection represents the experimental re-
sults on a particular data set. In each collection, the keys are
LA hyperparameterSetting. The value then is a JSON text document
that stores the results of an experiment (e.g., the results of 10-fold
cross-validation on the iris data set using C4.5). These documents
also contain pointers to other documents that hold information about
training/testing sets for each experiment. The data set/instance level
meta-features are stored in separate documents in their respective
data set collection. A separate collection stores information about
the learning algorithms and their hyperparameters.

The best way to visualize the database is as a hierarchy of key-
value pairs as shown in Figure 1. At the top-level, there are collec-
tions - these are the individual data sets in the database. Each of
them holds a collection of documents that represent an output file,
or experiment, named by its learning algorithm with two numbers
that correspond to the random seed used to partition the dataand
the hyperparameter setting. In these documents, the predictions for
each instance is stored. Collections for which instances were used
for training hyperparameter settings are also included.

4 Extending the Database

The data provided by MLRR only contains a snapshot of current
machine learning results. To allow more machine learning results to
be added and to allow the MLRR to evolve as the state of machine
learning evolves, MLRR provides a method to upload new machine

learning results. The MLRR also stores the original data sets to al-
low a user to add results from additional experiments on the current
set of data sets. The results from experimentation on a new data set
require that the new data set be uploaded as well as the experimen-
tal results. Scripts are provided to calculate the meta-features for the
new data set. In the case where a data set is proprietary or hasother
privacy/licensing issues that prevent it from being posted, the meta-
features can be calculated on the data set without storing the actual
data set.

Currently, scripts are provided to upload the output from running
Weka. This provides a simple way to upload experimental results
from a commonly used toolkit. The file is slightly modified such that
the first line provides which learning algorithm and hyperparameters
were used. The database will have the ability to upload files gener-
ated by other toolkits in the future.

Of course, there are issues of data reliability. Currently,all of the
results stored in the MLRR are from our experiments. To help with
data reliability, we require that the script(s) and executable(s) re-
quired to reproduce the results are uploaded along with the results.
This allows the results to be verified if their validity is questioned. If
the results from an experiment are thought to be invalid, they can can
be flagged, and inspected for possible removal from the MLRR.

5 Included Meta-features

In this section, we detail the meta-features that are included in the
machine learning results repository (MLRR). We store a set of data
set meta-features that have been commonly used in previous meta-
learning studies. Specifically, we used the meta-features from Brazdil
et al. [5], Ho and Basu [10], Pfahringer et al. [17], and Smithet
al. [23]. As the underlying database is a NoSQL database, additional
meta-features can be easily added in the future. We now describe the
meta-features from each study.

The study by Brazdil et al. [5] examined ranking learning algo-
rithms using instance-based learning. The meta-features are designed
to be quickly calculated and to represent properties that affect algo-
rithm performance.

• Number of examples. This feature helps identify how scalable an
algorithm is based on the size of its input.

• Proportion of symbolic attributes. This feature can be used to con-
sider how well an algorithm deals with symbolic or numeric at-
tributes.

• Proportion of missing values. This features can be used to consider
how robust an algorithm is to incomplete data.

• Proportion of attributes with outliers. An attribute is considered to
have an outlier if the ratio of variances of the mean value andthe
α-trimmed mean is smaller than 0.7 whereα = 0.05. This feature
can be used to consider how robust an algorithm is to outlying
numeric values.

• Entropy of classes. This feature measures one aspect of problem
difficulty in the form of whether one class outnumbers another.

Ho and Basu [10] sought to measure the complexity of a data setto
identify areas of the data set that contribute to its complexity focusing
on the geometrical complexity of the class boundary.

• Measures of overlap of individual feature values:

– The maximum Fisher’s Discriminant ratio. This is the Fisher’s
discriminant ratio for an attribute:

f =
(µ1 − µ2)

2

σ2
1 + σ2

2

,

44

whereµi andσ2
i represent the mean and variance for a class.

The maximum Fisher’s discriminant value over the attributes
is used for this measure. For multiple classes, this measureis
expanded to:

f =

∑C

i=1

∑C

j=i+1
pipj(µi − µj)

2

∑C

i=1
piσ2

i

whereC is the number of classes andpi is the proportion of
instances that belong to theith class.

– The overlap of the per-class bounding boxes. This feature mea-
sures the overlap of the tails of the two class-conditional dis-
tributions. For data sets with more than 2 classes, the overlap
of the per-class bounding boxes is computed for each pair of
classes and the sum over all pairs of classes is returned.

– The maximum (individual) feature efficiency. This feature mea-
sures how discriminative a single feature is. For each attribute,
the ratio of instances with differing classes that are not inthe
overlapping region is returned. The attribute that produces the
largest ratio of instances is returned.

– The collective feature efficiency. This measure builds off of
the previous one. The maximum ratio is first calculated as be-
fore. Then, the instances that can be discriminated are removed
and the maximum (individual) feature efficiency is recalculated
with the remaining instances. This process is repeated until no
more instances can be removed. The ratio of instances that can
be discriminated is returned.

• Measures of class separability:

– The minimized sum of the error distance of a linear classifier.
This feature measures to what extent training data is linearly
separable and returns the difference between a linear classifier
and the actual class value.

– The training error of a linear classifier. This feature also mea-
sures to what extent the training data is linearly separable.

– The fraction of points on the class boundary. This feature esti-
mates the length of the class boundary by constructing a min-
imum spanning tree over the entire data set and returning the
ratio of the number of nodes in the spanning tree that are con-
nected and belong to different classes to the number of in-
stances in the data set.

– The ratio of average intra/inter class nearest neighbor dis-
tance. This measure compares the within class spread with the
distances to the nearest neighbors of the other classes. Foreach
instance, the distance to its nearest neighbor with the sameclass
(intraDist(x)) and to its nearest neighbor with a different
class (interDist(x)) is calculated. Then the measure returns:

∑N

i
intraDist(xi)∑N

i
interDist(xi)

whereN is the number of instances in the data set.

– The leave-one-out error rate of the one-nearest neighbor classi-
fier. This feature measures how close the examples of different
classes are.

• Measures of geometry, topology, and density of manifolds

– The nonlinearity of a linear classifier. Following Hoekstra and
Duin [11], given a training set, a test set is created by linear in-
terpolation with random coefficients between pairs of randomly

selected instances of the same class. The error rate of a linear
classifier trained with the original training set on the generated
test set is returned.

– The nonlinearity of the one-nearest neighbor classifier. A test
set is created as with the previous feature, but the error rate of
a 1-nearest neighbor classifier is returned.

– The fraction of maximum covering spheres. A covering sphere
is created by centering on an instance and growing as much
as possible before touching an instance from another class.
Only the largest spheres are considered. The measure returns
the number of spheres divided by the number of instances in
the data set and provides an indication of how much the in-
stances are clustered in hyperspheres or distributed in thinner
structures.

– The average number of points per dimension. This measure is
the ratio of instances to attributes and roughly indicates how
sparse a data set is.

Multi-class modifications are made according to the implementation
of the data complexity library (DCoL) [15].

Pfahringer et al. [17] introduced the notion of using performance
values (i.e., accuracy) of simple and fast classification algorithms as
meta-features. The landmarkers that are included in the MLRR are
listed below.

• Linear discriminant learner. Creates a linear classifier that finds a
linear combination of the features to separate the classes.

• One nearest neighbor learner. Redundant with the leave-one-
out error rate of the one-nearest neighbor classifier from Hoand
Basu [10].

• Decision node learning. A decision stump that splits on the at-
tribute that has the highest information gain. A decision stump is
a decision tree with only one node.

• Randomly chosen node learner. A decision stump that splits on a
randomly chosen attribute.

• Worst node learner. A decision stump that splits on the attribute
that has the lowest information gain.

• Average node learner. A decision stump is created for each at-
tribute and the average accuracy is returned.

The use of landmarkers has been shown to be competitive with the
best performing meta-features with a significant decrease in compu-
tational effort [19].

Smith et al. [23] sought to identify and characterize instances that
are difficult to classify correctly. The difficulty of an instance was
determined based on how frequently it was misclassified. To char-
acterize why some instances are more difficult than others toclas-
sify correctly, the authors used different hardness measures. They
include:

• k-Disagreeing Neighbors. The percentage ofk nearest neighbors
that do not share the target class of an instance. This measures the
local overlap of an instance in the original space of the task.

• Disjunct size. This feature indicates how tightly a learning algo-
rithm has to divide the task space to correctly classify an instance.
It is measured as the size of a disjunct that covers an instance
divided by the largest disjunct produced, where the disjuncts are
formed using the C4.5 learning algorithm.

• Disjunct class percentage. This features measure the overlap of
an instance on a subset of the features. Using a pruned C4.5 tree,
the disjunct class percentage is the number of instances in adis-

45

junct that belong to the same class divided by the total number of
instances in the disjunct.

• Tree depth (pruned and unpruned). Tree depth provides a way to
estimate the description length, or Kolmogorov complexity, of an
instance. It is the depth of the leaf node that classifies an instance
in an induced tree.

• Class likelihood. This features provides a global measure of over-
lap and the likelihood of an instance belonging to the targetclass.
It is calculated as:

|x|∏

i

p(xi|t(x))

where|x| represents the number of attributes for the instancex
andt(x) is the target class ofx.

• Minority value. This feature measures the skewness of the class
that an instance belongs to. It is measured as the ratio of instances
sharing the target class of an instance to the number of instances
in the majority class.

• Class balance. This feature also measures the class skew. First,
the ratio of the number of instances belonging the target class to
the total number of instances is calculated. The differenceof this
ratio with the ratio of one over the number of possible classes is
returned. If the class were completely balanced (i.e. all class had
the same number of instances), a value of 0 would be returned for
each instance.

The hardness measures are designed to capture the characteristics of
why instances are hard to classify correctly. Data set measures can
be generated by averaging the hardness measures over the instances
in a data set.

6 Conclusions and Future Work

In this paper, we presented themachine learning results reposi-
tory (MLRR) an easily accessible and extensible database for meta-
learning. MLRR was designed with the main goals of providingan
easily accessible data repository to facilitate meta-learning and pro-
viding benchmark meta-data sets to compare meta-learning experi-
ments. To this end, the MLRR provides ready to download meta-data
sets of previous experimental results. One of the importantfeatures of
MLRR is that it provides meta-data at the instance level. Of course,
the results could also be used as a means of comparing one’s work
with prior work as they are stored in the MLRR. The MLRR can be
accessed athttp://axon.cs.byu.edu/mlrr.

The MLRR allows for reproducible results as the data sets are
stored on the server and as the class names and toolkits are provided.
The ExpDB tends to be a lot more rigid in its design as it is based
on relational databases and PMML (predictive model markup lan-
guage), thus exhibiting a relatively steep learning curve to import
and extract data. The MLRR is less rigid in its design allowing for
easier access to the data and more extensibility, with the trade-off of
less formality.

One direction for future work is to integrate the API provided at
OpenML5 (an implementation of an experiment database) to incor-
porate their results with those that are in the MLRR. This will help
provide easy access to the results that are already stored inOpenML
without having to incur the learning cost associated with understand-
ing the database schema.

Another open problem is how to store information about how a
data set is preprocessed. Currently, the MLRR can store the instance

5 www.openml.org

level information resulting from preprocessing, but it lacks a mecha-
nism to store the preprocessing process. Integrating this information
in an efficient way is a direction of current research.

REFERENCES

[1] M. Aksela and J. Laaksonen, ‘Using diversity of errors for selecting
members of a committee classifier’,Pattern Recognition, 39(4), 608–
623, (2006).

[2] S. Ali and K.A. Smith, ‘On Learning Algorithm Selection for Classifi-
cation’, Applied Soft Computing, 62, 119–138, (2006).

[3] S. Ali and K.A. Smith-Miles, ‘A Meta-learning Approach to Automatic
Kernel Selection for Support Vector Machines’,Neurocomputing, 70,
173–186, (2006).

[4] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, ‘Curriculum
learning’, inProceedings of the 26th International Conference on Ma-
chine Learning, pp. 41–48. ACM, (2009).

[5] P. B. Brazdil, C. Soares, and J. Pinto Da Costa, ‘Ranking learning al-
gorithms: Using ibl and meta-learning on accuracy and time results’,
Machine Learning, 50(3), 251–277, (2003).

[6] G. Brown, J. L. Wyatt, and P. Tino, ‘Managing diversity inregression
ensembles.’,Journal of Machine Learning Research, 6, 1621–1650,
(2005)

[7] M. S. Gashler, ‘Waffles: A machine learning toolkit’,Journal of Ma-
chine Learning Research, MLOSS 12, 2383–2387, (July 2011).

[8] T.A.F. Gomes and R.B.C. Prudêncio and C. Soares and A.L.D. Rossi
and A. Cravalho, ‘Combining Meta-learning and Search Techniques to
Select Parameters for Support Vector Machines’,Neurocomputing, 75,
3–13, (2012).

[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, ‘The weka data mining software: an update’,SIGKDD Explo-
rations Newsletter, 11(1), 10–18, (2009).

[10] T. K. Ho and M. Basu, ‘Complexity measures of supervisedclassifi-
cation problems’,IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24, 289–300, (March 2002).

[11] A. Hoekstra and R. P.W. Duin, ‘On the nonlinearity of pattern classi-
fiers’, in Proceedings of the 13th International Conference on Pattern
Recognition, pp. 271–275, (1996).

[12] L. I. Kuncheva and C. J. Whitaker, ‘Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy.’, Machine
Learning, 51(2), 181–207, (2003).

[13] J. Lee and C. Giraud-Carrier, ‘A metric for unsupervised metalearning’,
Intelligent Data Analysis, 15(6), 827–841, (2011).

[14] J. Lee and C. Giraud-Carrier, ‘Automatic selection of classification
learning algorithms for data mining practitioners’,Intelligent Data
Analysis, 17(4), 665–678, (2013).

[15] A. Orriols-Puig, N. Macià, E. Bernadó-Mansilla, andT. K. Ho, ‘Doc-
umentation for the data complexity library in c++’, Technical Report
2009001, La Salle - Universitat Ramon Llull, (April 2009).

[16] A. H. Peterson and T. R. Martinez, ‘Estimating the potential for com-
bining learning models’, inProceedings of the ICML Workshop on
Meta-Learning, pp. 68–75, (2005).

[17] B. Pfahringer, H. Bensusan, and C. G. Giraud-Carrier, ‘Meta-learning
by landmarking various learning algorithms’, inProceedings of the
17th International Conference on Machine Learning, pp. 743–750, San
Francisco, CA, USA, (2000). Morgan Kaufmann Publishers Inc.

[18] U. Rebbapragada and C. E. Brodley, ‘Class noise mitigation through
instance weighting’, inProceedings of the 18th European Conference
on Machine Learning, pp. 708–715, (2007).

[19] M. Reif, F. Shafait, M. Goldstein, T. Breuel, and A. Dengel, ‘Automatic
classifier selection for non-experts’,Pattern Analysis & Applications,
17(1), 83–96, (2014).

[20] M. Reif, ‘A Comprehensive Dataset for Evaluating Approaches of Var-
ious Meta-learning Tasks’, inProceedings of the 1st International Con-
ference on Pattern Recognition Applications and Methods, pp. 273–
276, (2012).

[21] M. R. Smith and T. Martinez, ‘Improving classification accuracy by
identifying and removing instances that should be misclassified’, in
Proceedings of the IEEE International Joint Conference on Neural Net-
works, pp. 2690–2697, (2011).

[22] M. R. Smith and T. Martinez, ‘A comparative evaluation of curriculum
learning with filtering and boosting in supervised classification prob-
lems’,Computational Intelligence, accepted, (2014).

46

[23] M. R. Smith, T. Martinez, and C. Giraud-Carrier, ‘An instance level
analysis of data complexity’,Machine Learning, 95(2), 225–256,
(2014).

[24] J. Vanschoren, H. Blockeel, Bernhard Pfahringer, and Geoffrey
Holmes, ‘Experiment databases - a new way to share, organizeand
learn from experiments’,Machine Learning, 87(2), 127–158, (2012).

47

Root

iris

fold:{#:Pred}

1{1:1, 57:2, . . .}

2{2:1, 107:3, . . .}
. . .

BP
1

fold:{#:Pred}

1{15:1, 147:3, . . .}

2{26:1, 67:2, . . .}
. . .

B
P

2

. . .

MF:val

kAN:0.97

DS:0.84

. . .
m

eta
features

abalone

fold:{#:Pred}

1{1035:9, 7:2, . . .}

2{9:1, 237:3, . . .}
. . .

B
P

1

fold:{#:Pred}

1{15:1, 147:3, . . .}

2{26:1, 67:2, . . .}
. . .

B
P

2

. . .

MF:val

kAN:0.24

DS:0.14

. . .

m
eta

features
. . . training

sets

seednumFolds fold

1 10 1{1:1, 2:?, . . .}

1 10 2{1:1, 2:1, . . .}
. . .

w
ek

a

seednumFolds fold

1 10 1{1:1, 2:?, . . .}

1 10 2{1:1, 2:1, . . .}
. . .

w
af

fle
s

. . .

hyperparameters

#:HP setting

1{Co:0.25,Pr:1,. . .}

2{Co:0.1,Pr:0,. . .}
. . .

C
4.

5

#:HP setting

1{LR:0.26,Mo:0.16}

2{LR:0.26,Mo:0.15}
. . .

B
P

. . .

Figure 1. Hierarchical representation of how the results from machine learning experiments are stored in the NoSQL database for the MLRR. Each data set has a collection containing the predictions for each
instance from a learning algorithm as well as its meta-features. A separate collection stores all of the information forthe learning algorithms and which hyperparameters were used. Another collection stores the

information for which instances were used for training.

48

Measures for Combining Accuracy and Time for Meta-
learning

Salisu Mamman Abdulrahman
1
 and Pavel Brazdil

1,2

Abstract.1 The vast majority of studies in meta-learning uses only

few performance measures when characterizing different machine

learning algorithms. The measure Adjusted Ratios of Ratio (ARR)

addresses the problem of how to evaluate the quality of a model

based on the accuracy and training time. Unfortunately, this measure

suffers from a shortcoming that is described in this paper. A new

solution is proposed and it is shown that the proposed function

satisfies the criterion of monotonicity, unlike ARR.

1 INTRODUCTION

The major reason why data mining has attracted a great deal of

attention in the information industry and in society as a whole in

recent years is due to the wide availability of huge amounts of data

and the imminent need for turning such data into useful information

and knowledge. The information and knowledge gained can be used

for applications ranging from market analysis, fraud detection,

customer retention to production control and science exploration.

 Data mining tools such as Weka, Knime, and RapidMiner contain

hundreds of operators covering a wide range of data analysis tasks,

but unfortunately provide only limited advice on how to select the

right method according to the nature of the problem under analysis.

 To alleviate these problems, different systems have been developed

that “intelligently” help users to analyze their data. The goal of Meta-

learning systems is to help the user by providing some guidance [1,

2, 3]. This is done by suggesting a particular algorithm or

operation(s) (e.g. application of particular preprocessing operation or

classification algorithm) to the user that would lead to good

performance.
 The vast majority of studies in meta-learning uses only few

performance measures when characterizing different machine

learning algorithms. Regards classification, for instance, one

common measure is predictive accuracy. Other researchers have

used also AUC, area under the ROC curve, or else precision, recall

and F1. What is common to all these measures is the higher the

value, the better. Costs of operations, and in particular training time,

are different though, as the lower the value, the better.

 An aggregate metric that combine both accuracy and time as metric

was presented in [4], ARR, the adjusted ratio of ratios, which allows

the user to add more emphasis either on the predictive accuracy or on

the training time. This measure suffers however, from a shortcoming,

which is described in the next section.

2 RANKING BASED ON ACCURACY AND
TIME

The Adjusted Ratio of Ratios (ARR) measure aggregates information

concerning accuracy and time. It can be seen as an extension of the

success rate ratios (SRR) method. This method was presented in [4]

together with two other basic measures, average ranks (AR) and

1
 LIAAD Inesc Tec, Porto, sma@inescporto.pt,

pbrazdil@inescporto.pt
2
 FEP, University of Porto.

significant wins (SW). This multicriteria evaluation measure

combines the information about the accuracy and total

training/execution time of learning algorithms and is defined as:

 (1)

where

 and

 represent the success rate and time of algorithm

 on dataset , respectively. The term

 is the ratio of

success rates which can be seen as a measure of the advantage of

algorithm over algorithm (i.e., a benefit). The equivalent ratio

for time,

 , can be seen as a measure of the disadvantage of

algorithm over algorithm (i.e., a cost). Thus, the authors have

taken the ratio of the benefit and the cost, obtaining thus a measure

of the overall quality of algorithm .

 However, we note that time ratios have, in general, a much wider

range of possible values than success rate ratios. If a simple time

ratio were used it would dominate the ratio of ratios. This effect can

be controlled by re-scaling using

 which provide a

measure of the order of magnitude of the ratio. The relative

importance between accuracy and time is taken into account by

multiplying this expression by the AccD parameter. This parameter is

provided by the user and represents the amount of accuracy he/she is

willing to trade for a 10 times speedup or slowdown. For example,

AccD = 10% means that the user is willing to trade 10% of accuracy

for 10 times speedup/slowdown. Finally, the value of 1 is added to

 to yield values that vary around 1, as happens with the

success rate ratio.

 The ARR should ideally be monotonically increasing. Higher

success rate ratios should lead to higher values of ARR. Higher time

ratios should lead to lower values of ARR. The overall effect of

combining the two should again be monotonic.

 We have decided to verify whether this property can be verified on

data. We have fixed the value of SRR to 1 and varied the time ratio

from very small values (2-20) to very high values (220) and calculated

the ARR for three different values of AccD (0.2, 0.3 and 0.7). The

result can be seen in the plot in Fig. 1. The horizontal axis shows the

log of the time ratio (logRT). The vertical axis shows the ARR value.

 As can be seen, the resulting ARR function is not monotonic and

even approaching infinity at some point. Obviously, this can lead to

incorrect rankings provided by the meta-learner. However, what is

even more worrying is that this can affect the evaluation results. In

the next section, we propose a solution to this problem.

3 OUR PROPOSED SOLUTION

When devising a new solution we did not wish to change the

overall philosophy underlying ARR. We believe that it is indeed a

good idea to work with ratios, as absolute numbers do not carry

much meaning.

49

Figure 1. ARR with three different values for AccD (0.2, 0.3 and 0.7)

The accuracy of 90% can be considered good in one situation, but

very bad in another. After some reflection, we have realized that the

problem lies in the way how the time ratio has been re-scaled. So, we

considered another way of re-scaling, which does not use log, but n-

th root instead, where n is a parameter. The proposed function is

referred to as A3R and is defined as follows:

As Fig. 2 shows, this function is monotonic. The higher the A3R, the

better.

 Figure 2. A3R for three different settings for the n-th root (4, 8,

and 16)

Taking n-th root in the denominator of eq.(2) enables to rescale the

ratio of times. The higher the value of n, the greater the rescaling. So,

for instance, if one algorithm is 10 slower than another, the ratio is

10. Taking for 8-th (2nd) root of this will decrease it to 1.33 (3.16). If

the ratio were 0.1 this would result in 0.74 (0.31). All numbers get

closer to 1 after rescaling.

 The change from ARR to A3R is important, as we wish to

recalculate many meta-learning experiments and consider both

accuracy ratios (and possibly AUC ratios) together with time ratios,

suitably rescaled.
 To understand the relationship between the success rate ratios

(SRR) and time ratios (RT), we have constructed iso-A3R curves

(Fig.3). The horizontal axis plots logRT in an increasing order of

time rate ratios. Thus negative values on the left characterize fast

algorithms, while the positive values on the right characterize slow

ones. The vertical axis shows the success rate ratios (SRR). Each

curve shows the values of A3R where the values are constant. The

blue (red, green) curve represents situations where A3R is 0.9 (1.0,

1.1). As the ratio of times decreases (i.e. the algorithm is faster), it is

sufficient to have lower values of the success rate ratio (SRR) to

obtain the same value of A3R.

Figure 3. Iso-curves with three different values of A3R (0.9, 1.0 and

1.1). Here n=8 was used to calculate the root.

4 FUTURE PLANS

We intend to improve the methods presented in [5] which rely on

relatively pairwise comparison involving two algorithms. We plan to

upgrade this work by considering the information concerning both

accuracy (or AUC) ratios and time ratios. Hence, the new function

proposed will be very useful.

 Besides, another challenge is that the new set-up would use many

more algorithms (in the order of 100’s) than in previous studies. We

will exploit the OpenML [6] database in this process and

collaboration is underway with U.Leiden on running some of the

experiments and re-using the results. Considering that the number of

algorithms is high, we need to re-think the method based on pairwise

comparisons.

 Furthermore, we plan to use the method based on sampling

landmarks, as in [5]. To simplify the whole procedure, we will

probably use a fixed set of samples, rather than using some dynamic

sampling strategy, as proposed in [5]. Still, we need to evaluate what

the best number of samples is from the benefit-cost perspective.

1
2 5 CONCLUSION

We have presented a new measure A3R for evaluating the

performance of algorithms that considers both accuracy and time

ratios suitably re-scaled. We have shown that this measure satisfies

the criterion of monotonicity, unlike the previous version ARR. We

have discussed the usage of A3R in further experiments on meta-

learning.

This work is funded (or part-funded) by the ERDF – European

Regional Development Fund through the COMPETE Programme

(operational programme for competitiveness) and by National Funds

through the FCT – Fundação para a Ciência e a Tecnologia

(Portuguese Foundation for Science and Technology) within project

«FCOMP - 01-0124-FEDER-022701»

REFERENCES

[1] P. Brazdil, C. Giraud-Carrier, C.Soares, and R. Vilalta, Metalearning:

Applications to Data Mining, Springer, 2009.

[2] Kalousis, A. (2002). Algorithm selection via meta-learning. PhD Thesis.

University of Geneva.

[3] Gama, J. and P. Brazdil (1995). Characterization of classification

algorithms. Lecture Notes in Computer Science 990, 189–200.

[4] Brazdil, P. B., C. Soares, and Joaquin Pinto Da Costa. "Ranking learning

algorithms: Using IBL and meta-learning on accuracy and time

results." Machine Learning 50.3 (2003): 251-277.

[5] Leite, R., and P. Brazdil. "Active Testing Strategy to Predict the Best

Classification Algorithm via Sampling and Metalearning." ECAI. 2010.

[6] Vanschoren, J.. "The experiment database for machine learning." 5th

Planning to Learn Workshop, WS28 at ECAI-2012. 2012.
50

Determining a proper initial configuration
of Red-Black planning by machine learning

Otakar Trunda and Roman Barták 1

1 INTRODUCTION

Planning deals with finding a sequence of actions that transforms
the world from a given initial state to a state that satisfies a certain
goal condition [8]. For the purposes of this paper we can define a
planning problem simply as a state-transition system where states are
the world states and transitions correspond to application of actions.
States are defined by values of state variables. Let X be the set of
state variables, each variable xi has a finite domain Di of its possible
values. Then state s is a mapping from X to

⋃
i
Di. s : X 7→

⋃
i
Di,

where ∀i, s(xi) ∈ Di.
The state space has a form of the Cartesian product of variables’

domains. Space =
∏

Di Every state s ∈ Space has assigned a
(possibly empty) set of its successor states designed succ(s), ev-
ery t ∈ succ(s) is labeled by the action that transforms s to t (i.e.
performing actions changes values of state variables). The task is to
find a path p in this state-transition system that leads from a given
initial state to some state satisfying a goal condition (a goal state).
p = {s0, s1, . . . , sn}, where s0 is the initial state, sn is some goal
state and ∀0 ≤ i < n : si+1 ∈ succ(si). Such a path is called a
solution plan. The goal is to reach a state where some variables have
specified values.

One of the most promising approaches to solve the planning prob-
lem (based on the results of several International Planning Compe-
titions [2]) is heuristic-guided forward search. (Mostly in a form of
A∗ or a hill-climbing). These approaches make use of a heuristic es-
timation during search and the accuracy of the heuristic estimator has
a great impact on the performance. Hence designing a powerful and
easy-to-compute heuristic is of paramount importance.

Heuristics are usually based on relaxations of the problem. When
estimating the quality of the best solution, we relax the problem by
ignoring some constraints (making the problem easier), then solve
the relaxed problem and use the quality of that solution as a lower
bound on the quality of the best solution to the original problem. In
planning, this principle is represented by the well known delete re-
laxation heuristic and its variants [8, 3, 4]. Heuristics based on this
principle often work well, but in some situations they greatly under-
estimate the real value making them inaccurate (see [6] for example).

Delete relaxation allows the state variables to hold several values
simultaneously, so the relaxed state subsumes several ordinary states.
Furthermore, performing actions (i.e. making transitions) only adds
new elements to the set of values that each variable currently holds
(never removes any value). Hence the set of ordinary states that the
relaxed state subsumes monotonically increases on every path. A
path is a relaxed solution plan if it leads to a relaxed state which

1 Charles University in Prague, Faculty of Mathematics and Physics,
email: otakar.trunda@mff.cuni.cz, roman.bartak@mff.cuni.cz

subsumes some goal state. The length of relaxed plan is then used to
estimate the length of the real plan.

2 RED-BLACK PLANNING
Red-Black planning is a new approach to heuristics design which
generalizes the delete relaxation and compensates for many of its
shortcomings with a reasonable computational effort [7, 6, 5]. It di-
vides the set of state variables into two disjoint subsets - Red and
Black, which are treated differently during the planning. The Red
variables are treated as in the delete relaxation while the Black vari-
ables are not relaxed. If all variables are Red then the heuristic works
same as the delete relaxation.

The authors showed that by the proper selection of Red variables,
we can reduce the underestimation (in most cases) and still keep the
method polynomial. They also observed that the selection of Red
variables has a great impact on the overall performance. While proper
selection leads to good performance, with poor selection the perfor-
mance degrades. Selecting the proper variables, however, appears to
be a hard problem.

The authors performed several tests with intuitive and counter-
intuitive variable selection methods (where intuitive relaxes the least
important variables, while the counter-intuitive method relaxes the
most important variables). It turned out that the counter-intuitive
method often beats the intuitive one (with respect to the time re-
quired for solving the problem) which makes the problem quite un-
predictable. This led the authors to hypothesize that no simple and
efficient method for selecting the variables can be found.

3 OUR METHOD
We believe that different domains require different ways of selecting
the variables. We propose a method based on machine learning that
works as follows: first it creates a set of small sub-problems of the
original problem and then it determines the proper variable selection
for these sub-problems (by enumerating all possibilities). Finally, it
uses the solutions of sub-problems to derive the solution to the orig-
inal problem.

3.1 Creating samples
We create the sub-problems by selecting small subsets of variables
and restricting the original problem to these variables only. The re-
striction has a form of projection which preserves the paths - i.e. if
there is a path from s to t in the original state-transition system, then
there is a path from restriction(s) to restriction(t) in the new
system. Of course, new paths may emerge during the restriction that
were not present before.

51

Formally, let A be a planning problem as defined earlier, X its
state variables, and Space =

∏
Di its state space. Then for every

P ⊆ X called pattern and every state s ∈ Space we define a restric-
tion of s to P as sP : P 7→

⋃
Di, where ∀xi ∈ P, sP (xi) = s(xi).

A restriction of A to a pattern P is a planning problem AP with
state variables P , state space SpaceP =

∏
{i|xi∈P}Di, and for

s, t ∈ SpaceP : s ∈ succ(t) if and only if there exist u, v ∈ Space
such that s = uP , t = vP and u ∈ succ(v). The initial state and
goal states of the restricted problem are restrictions of the originals.

In each sub-problem induced by a pattern, we create samples by
enumerating all ways of selecting the Red variables. A sample then
consists of a pair (pattern, selected Red variables).

3.2 Evaluating samples
Let X be the set of state variables of the original planning problem. A
sample q is given in a form q = (Pq, Rq), where Pq is the pattern and
Rq is the set of selected red variables, Rq ⊆ Pq ⊆ X . To evaluate
the sample q, we chose the following procedure:

1. Restrict the original problem to the pattern Pq

2. Solve the restricted problem by A∗ with the Red-Black heuristic
using Rq as a set of red variables.

3. Measure the time required to perform step 2 in seconds and use it
to evaluate the sample. (V al(q) denotes the value of a sample q.)

We decided to use the run-time to evaluate the sample rather than
other characteristics like heuristic calls or expanded nodes. We be-
lieve that using such characteristics would bias the selection in favor
of large patterns and small Red sets, since such combination would
lead to a very accurate heuristic. However, such heuristic might take
a long time to compute and probably wouldn’t be the best alternative.

Since run-time of the whole process is the criterion we want to
optimize, it seems appropriate to use it to evaluate samples.

3.3 Learning from samples
After evaluating enough samples, we have to select the red variables
for the original problem. In our preliminary experiments, we used the
following simple procedure, but we believe that this phase can yet be
perfected by using more sophisticated approach.

1. Given the set of samples Q, a sample q = (Pq, Rq), divide the
samples to groups by the pattern they use. QP = {q ∈ Q | Pq =
P}

2. Select the best sample in each group QP (one with the lowest
evaluation), and denote its Red set as BestP .

3. For each state variable count how many times it appears in some
Best set. val(xi) =

∣∣{BestP | xi ∈ BestP }
∣∣

4. Select variables with the highest evaluation.

In step four, the number of variables to select can be a fixed con-
stant or a fixed ratio, but we chose a different approach. Suppose
there are n state variables. We sort the variables nonincreasingly by
their evaluation: {x1, x2, . . . , xn}, where val(xi) ≥ val(xi+1). We
add the first variable and then keep adding more until val(xi) −
val(xi+1) > val(x1)−val(xn)

n
. This stopping criterion should find

the gap between the good variables and the bad variables. We intend
to test other selection policies as well.

Step three can be generalized by introducing weights to the
Best sets. Currently, each Best set has a weight of 1, but larger
patterns give us more information since they are closer to the

original problem. Step three can be modified to val(xi) =∑
{Best|xi∈Best} w(Best), where w is a weight function. We used

w(Best) = |Best|, but different functions are also possible.
Finally, step two can be modified to work with more samples than

just the best one. Imagine that there might be a variable which is
rarely in the best sample, but often in the second best one. This would
still be a good candidate to pick. In step three we would then average
the evaluation of all samples that contain the variable xi, possibly
weighted according to the size of the pattern they use. This modifi-
cation should lead to more accurate results, but it takes more time to
compute. Therefore it is not yet clear whether or not it will improve
the overall performance.

4 CONCLUSIONS AND FUTURE WORK
We present the parameter learning method in a very simple form,
many issues remain unresolved. Preliminary experiments show
promising results, but the method still needs to be adjusted and prop-
erly tested on a larger set of planning domains.

One part we didn’t address yet is the selection of patterns dur-
ing the creation of samples. Unlike typical machine learning appli-
cations, here we can decide what samples we use for the learning.
Patterns should be selected iteratively and the selection should be
based on previous results and should support both exploration and
exploitation. We intend to make use of some Monte-Carlo technique,
possibly Monte-Carlo Tree Search [1]. The method is guaranteed to
converge to optimal solution if patterns are chosen incrementally (as
the size of the pattern grows, the sub-problem converges to the orig-
inal problem). The speed of convergence, however, needs yet to be
determined for various domains.

The proposed method of learning from pattern-induced sub-
problems is not bound to the Red-Black planning heuristic only, but
can be used to gain information about other features of the planning
problem as well. Such information might then help to improve vari-
ous search methods.

ACKNOWLEDGEMENTS
The research is supported by the Grant Agency of Charles University
under contract no. 390214 and it is also supported by SVV project
number 260 104.

REFERENCES
[1] C.B. Browne et al., ‘A survey of monte carlo tree search methods’, Com-

putational Intelligence and AI in Games, IEEE Transactions on, 4(1),
1–43, (March 2012).

[2] ICAPS Competitions. http://ipc.icaps-conference.org, June 2014.
[3] Jörg Hoffmann, ‘Where ”ignoring delete lists” works: Local search

topology in planning benchmarks’, J. Artif. Int. Res., 24(1), 685–758,
(November 2005).

[4] Jörg Hoffmann, ‘Where Ignoring Delete Lists Works, Part II: Causal
Graphs’, in 21st International Conference on Automated Planning and
Scheduling, Freiburg, Allemagne, (2011).

[5] Michael Katz and Jörg Hoffmann, ‘Red-black relaxed plan heuristics
reloaded.’, in SOCS, eds., Malte Helmert and Gabriele Rger. AAAI
Press, (2013).

[6] Michael Katz, Jörg Hoffmann, and Carmel Domshlak, ‘Red-black re-
laxed plan heuristics’, in AAAI’13, (2013).

[7] Michael Katz, Jörg Hoffmann, and Carmel Domshlak. Who said we need
to relax all variables?, 2013.

[8] Dana Nau, Malik Ghallab, and Paolo Traverso, Automated Planning:
Theory & Practice, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2004.

52

Hybrid Multi-Agent System for Metalearning in
Data Mining

Kl ára Pěsková and Jakub Šḿıd and Martin Pil át and Ondřej Kaz ı́k 1 and Roman Neruda2

Abstract. In this paper, a multi-agent system for metalearning in
the data mining domain is presented. The system provides a user
with intelligent features, such as recommendation of suitable data
mining techniques for a new dataset, parameter tuning of such tech-
niques, and building up a metaknowledge base. The architecture of
the system, together with different user scenarios, and theway they
are handled by the system, are described.

1 Introduction

Lately,data mining— an automated process of gaining information
from datasets — has become an issue of interest in the artificial intel-
ligence. This interest have been whetted by the progress in the com-
putational technology, such as high performance machine clusters or
large storage devices, but most importantly by the possibility of an
access to enormous amount of data that are collected on dailybasis.
The datasets vary in many factors as they origin in differentareas of
human or nature activities. It is hard even for a data mining expert
to choose from the wide range of machine learning methods that are
used in data mining and to set its parameters to the values that would
produce a reasonable results for the specific dataset. Toolsthat ease
up the parameter set up can significantly boost up the productivity of
data mining process. Moreover, the automation of the whole process
would help those researchers, who are not data mining experts, to en-
joy the benefits of this research line. This is where themetalearning
[3] comes into play.

Metalearning over data mining methods and datasets is a veryde-
manding task, especially with respect to computational performance
as it uses results of data mining methods applied on various datasets
as its training/testing data. The software that is capable of both data
mining and metalearning is by definition a large and complex sys-
tem. To design the architecture of our system, we have chosenthe
agent-based approach as it brings many advantages to this complex
task. The main one being its distributed and parallel nature— the
system can spread over computer networks and be accessed by many
users who only by using the system and running their experiments
provide the data needed for metalearning algorithms. It also supplies
a fast parallel execution of performance demanding tasks. The inter-
connection of different parts of the system (i.e. thecommunication
among agents) is done only by sending messages which results in
an easy extensibility and re-usability of the parts of the system —
agents. It enables researchers to easily add their own components

1 Charles University in Prague, Faculty of Mathematics and Physics,
emails: klara@pisecko.cz, jakub.smid@ktiml.mff.cuni.cz, mar-
tin.pilat@gmail.com, kazik.ondrej@gmail.com

2 Institute of Computer Science, Academy of Sciences of the Czech Republic,
email: roman@cs.cas.cz

(e.g. custom data mining methods) and to re-use the implemented
components in different situations.

We have designed and implemented a multi-agent system (MAS)
which is capable of executing simple data mining tasks as well as
complex metalearning problems (involving not only recommending
of data mining methods but also setting their parameters), and it pro-
vides all the mechanisms necessary for experimenting with different
metalearning approaches. The system is hybrid — it employs com-
bination of different artificial intelligence methods [4].

We use JADE [2] — the multi-agent framework, as a base for our
agents; most of the computational agents in our system use Weka [6]
data mining methods. The extensibility of our system is assured by
the use of the structured ontology language and following the FIPA
[1] international standards of agents’ communication.

2 Scenarios

To propose an appropriate architecture of our computational MAS,
we have considered the following basic scenarios for processing a
dataset. In the most simple case the user knows which method and
what parameters of this method she would like to use. In the other
two basic scenarios, the system uses its intelligent meta-learning fea-
tures: If the user knows what method to use but does not know how to
set its parameters, the system is able to search the parameter space of
the method and find a setting that provides good results. In the third
case, the user does not even know what method to use and lets the
system decide by itself. In this case the system recommends the best
possible method or provides a ranking of the methods based onpre-
dicted errors and duration. These simple scenarios can be extended
into more complex ones — e.g. it is also possible to combine the rec-
ommendation of the best method the with parameter space search,
when the recommender chosen by the user recommends an interval
of the parameter’s values.

As a positive side effect, themetaknowledge basefor metalearning
purposes is being build up by each experiment.

3 Role-based Architecture

In order to effectively design our system, we have chosen the
organization-centered formalismAGR(Agent-Group-Role). Therole
is a set of capabilities and responsibilities that the agentaccepts by
handling the role.Group — the building block of a MAS — is a
set of agents with allowed roles and interactions, defined bya group
structure. The multi-agent system then consists of multiple groups
which can overlap by agents belonging to more than one group.In
this formalism, we abstract from the algorithmic details and inner
logic of the agents in the MAS. In our previous work [7], we have

53

used the ontological formalism of OWL-DL to describe the organi-
zational model.

The following group structures were defined according to the
aforementioned scenarios:administrative group structure, compu-
tational group structure, search group structure, recommendation
group structure, data group structureand data-management group
structure.

Our MAS is composed of groups that are instances of these group
structures. The architecture is depicted in the Figure 1.

USER
INTERFACE

USER
INTERFACE

MANAGERMANAGER RECOMMENDERRECOMMENDERDATA
MANAGER

DATA
MANAGER

OPTIONS
MANAGER

OPTIONS
MANAGER

SEARCH
AGENT

SEARCH
AGENT

COMPUTING
AGENT

COMPUTING
AGENT

DATA
SOURCE

DATA
SOURCE

Administrative
Group

Recommendation
Group

Search
Group

Data-management
Group

Computational
Group

Data
Group

Figure 1. Architecture of our MAS: Group structures

4 Metalearning

The key parts of our system are those providing intelligent metalearn-
ing behavior, i.e. agents that provide parameter space search methods
and recommender agents. These agents are intended to (at least par-
tially) replace a human expert. They make use of the previousexpe-
rience gathered by the system, which is captured in the metaknowl-
edge base. It contains results of machine learning experiments and
metadata— general features of the datasets.

The MAS-based solution allows a flexibility in choice of the pa-
rameter space search algorithms, each of these is encapsulated in a
search agent. General tabulation, random search, simulated anneal-
ing [9], or parallel methods, such as evolutionary algorithms [5], are
implemented in our system. Another great benefit of the agent-based
approach is the natural capability of parallel execution ofcomputa-
tions with various parameters which significantly decreases the time
needed for the execution of the parameter space search process.

One of essential features of our MAS is its capability of recom-
mending a suitable computational method for a new dataset, accord-
ing to datasets similarity and previously gathered experience. The
choice of the similar dataset(s) is based on various previously pro-
posed metrics [8], which measure the similarity of their metadata.
Our database contains over two million records, that are used to sug-
gest the proper method (including its parameters) and estimate its
performance on a new dataset.

The latest version of our MAS contains the following types ofrec-
ommenders, which differ in the metric used and in the number of
recommended methods they provide:

• Basic recommenderchooses a method based on the single closest
dataset using the unweighted metadata metric.

• Clustering Based Classification[8] chooses the whole cluster of
similar datasets and the corresponding methods, using different
sets of metadata features.

• Evolutionary Optimized Recommendersare similar to the two
above described recommender types, using different weighted
metrics, optimized by an evolutionary algorithm.

• Interval Recommenderrecommends intervals of suitable param-
eter values and leaves their fine-tuning to the parameter space
search methods.

Another functionality of our system is a multi-objective optimiza-
tion of data mining configurations. The search algorithm is employed
in order to find beneficial combinations of pre-processings and ma-
chine learning methods to the presented data. The minimization is
performed in error-rate as well as run-time criteria.

5 Conclusions

In this paper, we presented a multi-agent system for metalearning
in data mining, which includes solving of the most importantand
challenging metalearning tasks – the recommendation of a suitable
method for a new dataset, and the tuning of parameters of suchmeth-
ods. We have proposed the systems architecture and proved its us-
ability by an implementation that is used by our research team on a
regular basis to conduct metalearning and data mining experiments.
The role-based multi-agent approach brings in many advantages into
a complex task of metalearning, the main benefit being its easy ex-
tensibility. The multi-agent parallel nature of the systemspeeds up
the time consuming tasks significantly.

6 Acknowledgements

JakubŠmı́d and Klára Pešková have been supported by the Charles
University Grant Agency project no. 610214, R. Neruda has been
supported by the Ministry of Education of the Czech Republic
project COST LD 13002.

REFERENCES
[1] The Foundation for Intelligent Physical Agents (FIPA).

http://www.fipa.org/.
[2] Java Agent DEvelopment framework. http://jade.tilab.com/.
[3] Pavel Brazdil, Christophe G. Giraud-Carrier, Carlos Soares, and Ricardo

Vilalta, Metalearning - Applications to Data Mining., Cognitive Tech-
nologies, Springer, 2009.

[4] Oscar Castillo, Patricia Melin, Janusz Kacprzyk, and Witold Pedrycz,
Hybrid Intelligent Systems, Springer, 2007.

[5] Agoston E. Eiben and J. E. Smith,Introduction to Evolutionary Comput-
ing, SpringerVerlag, 2003.

[6] M. Hall et al., ‘The weka data mining software: An update.’, SIGKDD
Explorations, 11, (2009).

[7] Ondřej Kazı́k and Roman Neruda, ‘Ontological modelingof meta learn-
ing multi-agent systems in OWL-DL’,IAENG International Journal of
Computer Science, 39(4), 357–362, (Dec 2012).

[8] Ondrej Kazı́k, Klára Pešková, JakubŠmı́d, and Roman Neruda, ‘Clus-
tering based classification in data mining method recommendation’, in
ICMLA ’13: Proceedings of the 2013 12th International Conference
on Machine Learning and Applications, pp. 356–361, Washington, DC,
USA, (2013). IEEE Computer Society.

[9] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, ‘Optimization by sim-
ulated annealing’,Science, 220, 671–680, (1983).

54

Model Selection in Data Analysis Competitions
David Kofoed Wind1 and Ole Winther2

Abstract. The use of data analysis competitions for selecting the
most appropriate model for a problem is a recent innovation in the
field of predictive machine learning. Two of the most well-known
examples of this trend was the Netflix Competition and recently the
competitions hosted on the online platform Kaggle.

In this paper, we will state and try to verify a set of qualitative
hypotheses about predictive modelling, both in general and in the
scope of data analysis competitions. To verify our hypotheses we
will look at previous competitions and their outcomes, use qualitative
interviews with top performers from Kaggle and use previous
personal experiences from competing in Kaggle competitions.

The stated hypotheses about feature engineering, ensembling,
overfitting, model complexity and evaluation metrics give indications
and guidelines on how to select a proper model for performing well
in a competition on Kaggle.

1 Introduction

In recent years, the amount of available data has increased
exponentially and “Big Data Analysis” is expected to be at the core
of most future innovations [2, 4, 5]. A new and very promising trend
in the field of predictive machine learning is the use of data analysis
competitions for model selection. Due to the rapid development
in the field of competitive data analysis, there is still a lack of
consensus and literature on how one should approach predictive
modelling competitions.

In his well-known paper “Statistical Modeling : The Two
Cultures” [1], Leo Breiman divides statistical modelling into two
cultures, the data modelling culture and the algorithmic modelling
culture. The arguments put forward in [1] justifies an approach
to predictive modelling where the focus is purely on predictive
accuracy. That this is the right way of looking at statistical modelling
is the underlying assumption in statistical prediction competitions,
and consequently also in this paper.

The concept of machine learning competitions was made popular
with the Netflix Prize, a massive open competition with the aim
of constructing the best algorithm for predicting user ratings of
movies. The competition featured a prize of 1,000,000 dollars for
the first team to improve Netflix’s own results by 10% and multiple
teams achieved this goal. After the success with the Netflix Prize,
the website Kaggle was born, providing a platform for predictive
modelling. Kaggle hosts numerous data prediction competitions and
has more than 170,000 users worldwide.

1 Technical University of Denmark, Denmark, email: dawi@dtu.dk
2 Technical University of Denmark, Denmark, email: olwi@dtu.dk

The basic structure of a predictive modelling competition – as
seen for example on Kaggle and in the Netflix competition – is the
following: A predictive problem is described, and the participants
are given a dataset with a number of samples and the true target
values (the values to predict) for each sample given, this is called the
training set. The participants are also given another dataset like the
training set, but where the target values are not known, this is called
the test set. The task of the participants is to predict the correct target
values for the test set, using the training set to build their models.
When participants have a set of proposed predictions for the test
set, they can submit these to a website, which will then evaluate
the submission on a part of the test set known as the quiz set, the
validation set or simply as the public part of the test set. The result
of this evaluation on the quiz set is shown in a leaderboard giving
the participants an idea of how they are progressing.

Using a competitive approach to predictive modelling is being
praised by some as the modern way to do science:

Kaggle recently hosted a bioinformatics contest, which
required participants to pick markers in a series of HIV genetic
sequences that correlate with a change in viral load (a measure
of the severity of infection). Within a week and a half, the
best submission had already outdone the best methods in the
scientific literature. [3]

(Anthony Goldbloom, Founder and CEO at Kaggle)

These prediction contests are changing the landscape for
researchers in my area an area that focuses on making good
predictions from finite (albeit sometimes large) amount of data.
In my personal opinion, they are creating a new paradigm
with distinctive advantages over how research is traditionally
conducted in our field. [6]

(Mu Zhu, Associate Professor, University of Waterloo)

This competitive approach is interesting and seems fruitful –
one can even see it as an extension of the aggregation ideas put
forward in [1] in the sense that the winning model is simply the
model with the best accuracy, not taking computational efficiency
or interpretability into account. Still one could ask if the framework
provided by for example Kaggle gives a trustworthy resemblance of
real-world predictive modelling problems where problems do not
come with a quiz set and a leaderboard.

In this paper we state five hypotheses about building and selecting
models for competitive data analysis. To verify these hypotheses we
will look at previous competitions and their outcomes, use qualitative
interviews with top performers from Kaggle and use previous
personal experiences from competing in Kaggle competitions.

55

2 Interviews and Previous Competitions
In this section we will shortly describe the data we are using. We will
list the people whom we interviewed and name the previous Kaggle
competition we are using for empirical data.

2.1 Interviews
To help answer the questions we are stating, we have asked a series
of questions to some of the best Kaggle participants throughout time.
We have talked (by e-mail) with the following participants (name,
Kaggle username, current rank on Kaggle):

• Steve Donoho (BreakfastPirate #2)
• Lucas Eustaquio (Leustagos #6)
• Josef Feigl (Josef Feigl #7)
• Zhao Xing (xing zhao #10)
• Anil Thomas (Anil Thomas #11)
• Luca Massaron (Luca Massaron #13)
• Gábor Takács (Gábor Takács #20)
• Tim Salimans (Tim Salimans #48)

Answers and parts of answers to our questions are included in this
paper as quotes when relevant.

2.2 Previous competitions
Besides the qualitative interviews with Kaggle masters, we also
looked at 10 previous Kaggle competitions, namely the following:

• Facebook Recruiting III - Keyword Extraction
• Partly Sunny with a Chance of Hashtags
• See Click Predict Fix
• Multi-label Bird Species Classification - NIPS 2013
• Accelerometer Biometric Competition
• AMS 2013-2014 Solar Energy Prediction Contest
• StumbleUpon Evergreen Classification Challenge
• Belkin Energy Disaggregation Competition
• The Big Data Combine Engineered by BattleFin
• Cause-effect pairs

These competitions were selected as 10 consecutive competitions,
where we excluded a few competitions which did not fit the standard
framework of statistical data analysis (for example challenges in
optimization and operations research).

Throughout this paper, these competitions are referenced with
the following abbreviated names: FACEBOOK, SUNNYHASHTAGS,
SEECLICKPREDICT, BIRD, ACCELEROMETER, SOLARENERGY,
STUMBLEUPON, BELKIN, BIGDATA and CAUSEEFFECT.

3 Hypotheses
In this section we state 5 hypotheses about predictive modelling
in a competitive framework. We will try to verify the validity of
each hypothesis using a combination of mathematical arguments,
empirical evidence from previous competitions and qualitative
interviews we did with some of the top participants at Kaggle. The
five hypotheses to be investigated are:

1. Feature engineering is the most important part of predictive
machine learning

2. Overfitting to the leaderboard is a real issue

3. Simple models can get you very far
4. Ensembling is a winning strategy
5. Predicting the right thing is important

3.1 Feature engineering is the most important part
With the extensive amount of free tools and libraries available
for data analysis, everybody has the possibility of trying advanced
statistical models in a competition. As a consequence of this, what
gives you most “bang for the buck” is rarely the statistical method
you apply, but rather the features you apply it to. By feature
engineering, we mean using domain specific knowledge or automatic
methods for generating, extracting, removing or altering features in
the data set.

For most Kaggle competitions the most important part is
feature engineering, which is pretty easy to learn how to do.

(Tim Salimans)

The features you use influence more than everything
else the result. No algorithm alone, to my knowledge, can
supplement the information gain given by correct feature
engineering. (Luca Massaron)

Feature engineering is certainly one of the most important
aspects in Kaggle competitions and it is the part where one
should spend the most time on. There are often some hidden
features in the data which can improve your performance by a
lot and if you want to get a good place on the leaderboard you
have to find them. If you screw up here you mostly can’t win
anymore; there is always one guy who finds all the secrets.

However, there are also other important parts, like how you
formulate the problem. Will you use a regression model or
classification model or even combine both or is some kind of
ranking needed. This, and feature engineering, are crucial to
achieve a good result in those competitions.

There are also some competitions were (manual) feature
engineering is not needed anymore; like in image processing
competitions. Current state of the art deep learning algorithms
can do that for you. (Josef Feigl)

There are some specific types of data which have previously
required a larger amount of feature engineering, namely text data
and image data. In many of the previous competitions with text
and image data, feature engineering was a huge part of the winning
solutions (examples of this are for example SUNNYHASHTAGS,
FACEBOOK, SEECLICKPREDICT and BIRD). At the same time
(perhaps due to the amount of work needed to do good feature
engineering here) deep learning approaches to automatic feature
extraction have gained popularity.

In the competition SUNNYHASHTAGS which featured text data
taken from Twitter, feature engineering was a major part of the
winning solution. The winning solution used a simple regularized
regression model, but generated a lot of features from the text:

My set of features included the basic tfidf of 1,2,3-grams
and 3,5,6,7 ngrams. I used a CMU Ark Twitter dedicated
tokenizer which is especially robust for processing tweets + it
tags the words with part-of-speech tags which can be useful
to derive additional features. Additionally, my base feature set
included features derived from sentiment dictionaries that map

2

56

each word to a positive/neutral/negative sentiment. I found this
helped to predict S categories by quite a bit. Finally, with Ridge
model I found that doing any feature selection was only hurting
the performance, so I ended up keeping all of the features ⇠ 1.9
mil. The training time for a single model was still reasonable.

(aseveryn - 1st place winner)

In the competitions which did not have text or image data, feature
engineering sometimes still played an important role in the winning
entries. An example of this is the CAUSEEFFECT competition,
where the winning entry created thousands of features, and then
used genetic algorithms to remove non-useful features again. On
the contrary, sometimes the winning solutions are those which go a
non-intuitive way and simply use a black-box approach. An example
of this is the SOLARENERGY competition where the Top-3 entries
almost did not use any feature engineering (even though this seemed
like the most intuitive approach for many) – and simply combined
the entire dataset into one big table and used a complex black-box
model.

Having too many features (making the feature set overcomplete),
is not advisable either, since redundant or useless features tend to
reduce the model accuracy.

3.1.1 Mathematical justification for feature engineering

When using simple models, it is often necessary to engineer new
features to capture the right trends in the data. The most common
example of this, is attempting to use a linear method to model
non-linear behaviour.

To give a simple example of this, assume we want to predict the
price of a house H given the dimensions (length lH and width wH

of the floor plan) of the house. Assume also that the price p(H) can
be described as a linear function p(H) = ↵aH + �, where aH =
lH ·wH is the area. By fitting a linear regression model to the original
parameters lH , wH , we will not capture the quadratic trend in the
data. If we instead construct a new feature aH = lH · wH (the area),
for each data sample (house), and fit a linear regression model using
this new feature, then we will be able to capture the trend we are
looking for.

3.2 Simple models can get you very far
When looking through descriptions of people’s solutions after a
competition has ended, there is often a surprising number of very
simple solutions obtaining good results. What is also (initially)
surprising, is that the simplest approaches are often described by
some of the most prominent competitors.

I think beginners sometimes just start to “throw” algorithms
at a problem without first getting to know the data. I also think
that beginners sometimes also go too-complex-too-soon. There
is a view among some people that you are smarter if you create
something really complex. I prefer to try out simpler. I “try” to
follow Albert Einsteins advice when he said, “Any intelligent
fool can make things bigger and more complex. It takes a touch
of genius – and a lot of courage – to move in the opposite
direction”. (Steve Donoho)

My first few submissions are usually just “baseline”
submissions of extremely simple models – like “guess the

average” or “guess the average segmented by variable X”.
These are simply to establish what is possible with very simple
models. You’d be surprised that you can sometimes come very
close to the score of someone doing something very complex
by just using a simple model. (Steve Donoho)

I think a simple model can make you top 10 in a Kaggle
competition. In order to get a money prize, you have to go to
ensembles most of time. (Zhao Xing)

You can go very far [with simple models], if you use them
well, but likely you cannot win a competition by a simple model
alone. Simple models are easy to train and to understand and
they can provide you with more insight than more complex
black boxes. They are also easy to be modified and adapted
to different situations. They also force you to work more on
the data itself (feature engineering, data cleaning, missing data
estimation). On the other hand, being simple, they suffer from
high bias, so they likely cannot catch a complex mapping of
your unknown function. (Luca Massaron)

Simplicity can come in multiple forms, both regarding the
complexity of the model, but also regarding the pre-processing of the
data. In some competitions, regularized linear regression can be the
winning model in spite of its simplicity. In other cases, the winning
solutions are those who do almost no pre-processing of the data (as
seen in for example the SOLARENERGY competition).

3.3 Ensembling is a winning strategy
As described in [1], complex models and in particular models which
are combinations of many models should perform better when
measured on predictive accuracy. This hypothesis can be backed up
by looking at the winning solutions for the latest competitions on
Kaggle.

If one considers the 10 Kaggle competitions mentioned in
Section 2.2 and look at which models the top participants used,
one finds that in 8 of the 10 competitions, model combination
and ensemble-models was a key part of the final submission. The
only two competitions where no ensembling was used by the top
participants were FACEBOOK and BELKIN, where a possible usage
of model combination was non-trivial and where the data sets were
of a size that favored simple models.

No matter how faithful and well tuned your individual
models are, you are likely to improve the accuracy with
ensembling. Ensembling works best when the individual
models are less correlated. Throwing a multitude of mediocre
models into a blender can be counterproductive. Combining a
few well constructed models is likely to work better. Having
said that, it is also possible to overtune an individual model to
the detriment of the overall result. The tricky part is finding the
right balance. (Anil Thomas)

[The fact that most winning entries use ensembling] is
natural from a competitors perspective, but potentially very
hurtful for Kaggle/its clients: a solution consisting of an
ensemble of 1000 black box models does not give any insight
and will be extremely difficult to reproduce. This will not
translate to real business value for the comp organizers.

(Tim Salimans)

3

57

I am a big believer in ensembles. They do improve
accuracy. BUT I usually do that as a very last step. I usually
try to squeeze all that I can out of creating derived variables
and using individual algorithms. After I feel like I have done
all that I can on that front, I try out ensembles.

(Steve Donoho)

Ensembling is a no-brainer. You should do it in every
competition since it usually improves your score. However, for
me it is usually the last thing I do in a competition and I don’t
spend too much time on it. (Josef Feigl)

Besides the intuitive appeal of averaging models, one can justify
ensembling mathematically.

3.3.1 Mathematical justification for ensembling

To justify ensembling mathematically, we refer to the approach of
[7]. They look at a one-of-K classification problem and model the
probability of input x belonging to class i as

fi(x) = p(ci|x) + �i + ⌘i(x),

where p(ci|x) is an a posteriori probability distribution of the i-th
class given input x, where �i is a bias for the i-th class (which is
independent of x) and where ⌘i(x) is the error of the output for class
i.

They then derive the following expression for how the added error
(the part of the error due to our model fit being wrong) changes when
averaging over the different models in the ensemble:

Eave
add = Eadd

✓
1 + �(N � 1)

N

◆
,

where � is the average correlation between the models (weighted by
the prior probabilities of the different classes) and N is the number
of models trained.

The important take-away from this result is that ensembling works
best if the models we combine have a low correlation. A key thing
to note though, is that low correlation between models in itself is not
enough to guarantee a lowering of the overall error. Ensembling as
described above is effective in lowering the variance of a model but
not in lowering the bias.

3.4 Overfitting to the leaderboard is an issue

During a competition on Kaggle, the participants have the possibility
of submitting their solutions (predictions on the public and private
test set) to a public leaderboard. By submitting a solution to the
leaderboard you get back an evaluation of your model on the
public-part of the test set. It is clear that obtaining evaluations from
the leaderboard gives you additional information/data, but it also
introduces the possibility of overfitting to the leaderboard-scores:

The leaderboard definitely contains information. Especially
when the leaderboard has data from a different time period
than the training data (such as with the heritage health prize).
You can use this information to do model selection and
hyperparameter tuning. (Tim Salimans)

The public leaderboard is some help, [...] but one needs to
be careful to not overfit to it especially on small datasets. Some
masters I have talked to pick their final submission based on a
weighted average of their leaderboard score and their CV score
(weighted by data size). Kaggle makes the dangers of overfit
painfully real. There is nothing quite like moving from a good
rank on the public leaderboard to a bad rank on the private
leaderboard to teach a person to be extra, extra careful to not
overfit. (Steve Donoho)

Having a good cross validation system by and large makes it
unnecessary to use feedback from the leaderboard. It also helps
to avoid the trap of overfitting to the public leaderboard.

(Anil Thomas)

Overfitting to the leaderboard is always a major problem.
The best way to avoid it is to completely ignore the leaderboard
score and trust only your cross-validation score. The main
problem here is that your cross-validation has to be correct and
that there is a clear correlation between your cv-score and the
leaderboard score (e.g. improvement in your cv-score lead to
improvement on the leaderboard). If that’s the case for a given
competition, then it’s easy to avoid overfitting. This works
usually well if the test set is large enough.

If the testset is only small in size and if there is no clear
correlation, then it’s very difficult to only trust your cv-score.
This can be the case if the test set is taken from another
distribution than the train set. (Josef Feigl)

In the 10 last competitions on Kaggle, two of them showed
extreme cases of overfitting and four showed mild cases
of overfitting. The two extreme cases were BIGDATA and
STUMBLEUPON. In Table 1 the Top-10 submissions on the public
test set from BIGDATA is shown, together with the results of the same
participants on the private test set.

Name # Public # Private Public score Private score
Konstantin Sofiyuk 1 378 0.40368 0.43624
Ambakhof 2 290 0.40389 0.42748
SY 3 2 0.40820 0.42331
Giovanni 4 330 0.40861 0.42893
asdf 5 369 0.41078 0.43364
dynamic24 6 304 0.41085 0.42782
Zoey 7 205 0.41220 0.42605
GKHI 8 288 0.41225 0.42746
Jason Sumpter 9 380 0.41262 0.44014
Vikas 10 382 0.41264 0.44276

Table 1. Results of the Top-10 participants on the leaderboard for the
competition: “Big Data Combine”

In BIGDATA, the task was to predict the value of stocks multiple
hours into the future, which is generally thought to be extremely
difficult 3. The extreme jumps on the leaderboard is most likely due
to the sheer difficulty of predicting stocks combined with overfitting.

In the cases where there were small differences between the public
leaderboard and the private leaderboard, the discrepancy can also
sometimes be explained by the scores for the top competitors being
so close that random noise affected the positions.

3 This is similar to what is known as the Efficient Market Hypothesis.

4

58

3.5 Predicting the right thing is important
One task that is sometimes trivial, and other times not, is that of
“predicting the right thing”. It seems quite trivial to state that it is
important to predict the right thing, but it is not always a simple
matter in practice.

A next step is to ask, “What should I actually be
predicting?”. This is an important step that is often missed by
many – they just throw the raw dependent variable into their
favorite algorithm and hope for the best. But sometimes you
want to create a derived dependent variable. I’ll use the GE
Flightquest as an example you dont want to predict the actual
time the airplane will land; you want to predict the length of the
flight; and maybe the best way to do that is to use that ratio of
how long the flight actually was to how long it was originally
estimate to be and then multiply that times the original estimate.

(Steve Donoho)

There are two ways to address the problem of predicting the right
thing: The first way is the one addressed in the quote from Steve
Donoho, about predicting the correct derived variable. The other is
to train the statistical models using the appropriate loss function.

Just moving from RMSE to MAE can drastically change
the coefficients of a simple model such as a linear regression.
Optimizing for the correct metric can really allow you to
rank higher in the LB, especially if there is variable selection
involved. (Luca Massaron)

Usually it makes sense to optimize the correct metric
(especially in your cv-score). [...] However, you don’t have
to do that. For example one year ago, I’ve won the Event
Recommendation Engine Challenge which metric was MAP.
I never used this metric and evaluated all my models using
LogLoss. It worked well there. (Josef Feigl)

As an example of why using the wrong loss function might give
rise to issues, look at the following simple example: Say you want to
fit the simplest possible regression model, namely just an intercept a
to the data:

x = (0.1, 0.2, 0.4, 0.2, 0.2, 0.1, 0.3, 0.2, 0.3, 0.1, 100)

If we let aMSE denote the a minimizing the mean squared error,
and let aMAE denote the a minimizing the mean absolute error, we
get the following

aMSE ⇡ 9.2818, aMAE ⇡ 0.2000

If we now compute the MSE and MAE using both estimates of a,
we get the following results:

1

11

X

i

|xi � aMAE| ⇡ 9
1

11

X

i

|xi � aMSE| ⇡ 16

1

11

X

i

(xi � aMAE)
2 ⇡ 905

1

11

X

i

(xi � aMSE)
2 ⇡ 822

We see (as expected) that for each loss function (MAE and
MSE), the parameter which was fitted to minimize that loss function
achieves a lower error. This should come as no surprise, but when
the loss functions and statistical methods become complicated (such
as Normalized Discounted Cumulative Gain used for some ranking
competitions), it is not always as trivial to see if one is actually
optimizing the correct thing.

4 Additional advice

In addition to the quotes related to the five hypotheses, the top
Kaggle-participants also revealed helpful comments for performing
well in a machine learning competition. Some of their statements are
given in this section.

The best tip for a newcomer is the read the forums. You can
find a lot of good advices there and nowaday also some code
to get you started. Also, one shouldn’t spend too much time
on optimizing the parameters of the model at the beginning of
the competition. There is enough time for that at the end of a
competition. (Josef Feigl)

In each competiton I learn a bit more from the winners.
A competiton is not won by one insight, usually it is won
by several careful steps towards a good modelling approach.
Everything play its role, so there is no secret formula here, just
several lessons learned applied together. I think new kagglers
would benefit more of carefully reading the forums and the
past competitions winning posts. Kaggle masters aren’t cheap
on advice! (Lucas Eustaquio)

My most surprising experience was to see the consistently
good results of Friedman’s gradient boosting machine. It does
not turn out from the literature that this method shines in
practice. (Gabor Takacs)

The more tools you have in your toolbox, the better
prepared you are to solve a problem. If I only have a hammer
in my toolbox, and you have a toolbox full of tools, you are
probably going to build a better house than I am. Having said
that, some people have a lot of tools in their toolbox, but they
don’t know *when* to use *which* tool. I think knowing when
to use which tool is very important. Some people get a bunch of
tools in their toolbox, but then they just start randomly throwing
a bunch of tools at their problem without asking, “Which tool
is best suited for this problem?” (Steve Donoho)

5 Conclusion

This paper looks at the recent trend of using data analysis
competitions for selecting the most appropriate model for a specific
problem. When participating in data analysis competitions, models
get evaluated solely based on their predictive accuracy. Because
the submitted models are not evaluated on their computational
efficiency, novelty or interpretability, the model construction differs
slightly from the way models are normally constructed for academic
purposes and in industry.

We stated a set of five different hypotheses about the way to
select and construct models for competitive purposes. We then
used a combination of mathematical theory, experience from past
competitions and qualitative interviews with top participants from
Kaggle to try and verify these hypotheses.

Although there is no secret formula for winning a data analysis
competition, the stated hypotheses together with additional good
advice from top performing Kaggle competitors, give indications and
guidelines on how to select a proper model for performing well in a
competition on Kaggle.

5

59

REFERENCES
[1] Leo Breiman, ‘Statistical modeling: The two cultures’, Statistical

Science, (2001).
[2] World Economic Forum. Big data, big impact: New possibilities

for international development. http://bit.ly/1fbP4aj, January
2012. [Online].

[3] A. Goldbloom, ‘Data prediction competitions – far more than just a bit
of fun’, in Data Mining Workshops (ICDMW), 2010 IEEE International
Conference on, pp. 1385–1386, (Dec 2010).

[4] Steve Lohr. The age of big data. http://www.
nytimes.com/2012/02/12/sunday-review/
big-datas-impact-in-the-world.html, February 2012.
[Online; posted 11-February-2012].

[5] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard
Dobbs, Charles Roxburgh, and Angela Hung Byers. Big data: The
next frontier for innovation, competition and productivity. http:
//www.mckinsey.com/insights/business_technology/
big_data_the_next_frontier_for_innovation, May
2011. [Online; posted May-2011].

[6] Zhum Mu. The impact of prediction contests, 2011.
[7] K. Tumer and J. Ghosh, ‘Error correlation and error reduction in

ensemble classifiers’, Connection Science, 8(3-4), 385–403, (1996).

6

60

Author Index

Abdulrahman, S., 49

Bartak, R., 51
Brazdil, P., 49

de Melo, C.E.C., 11

Eggensperger, K., 24

Feurer, M., 3

Giraud-Carrier, C., 18, 39, 41

Holmes, G., 37
Hoos, H., 24
Hutter, F., 2, 3, 24

Kazik, O., 53
Kotthoff, L., 1

Leyton-Brown, K., 24

Martinez, T., 39, 41
Mendes-Moreira, J., 32
Mitchell, L., 39

Neruda, R., 53

Peskova, K., 53
Pfahringer, B., 37
Pilat, M., 53
Pinto, F., 32
Prudêncio, R., 11

Ridd, P., 18

Smid, J., 53
Smith, M., 39, 41
Soares, C., 32
Springenberg, T., 3

Trunda, O., 51

van Rijn, J., 37
Vanschoren, J., 37

White, A., 41
Wind, D.K., 55
Winther, O, 55

