
Automatically Detecting and Rating Product
Aspects from Textual Customer Reviews

Wouter Bancken, Daniele Alfarone and Jesse Davis

Department of Computer Science, KU Leuven
Celestijnenlaan 200A - box 2402, 3001 Leuven, Belgium

wouter.bancken@student.kuleuven.be
daniele.alfarone@cs.kuleuven.be

jesse.davis@cs.kuleuven.be

Abstract. This paper proposes a new approach to aspect-based sen-
timent analysis. The goal of our algorithm is to obtain a summary of
the most positive and the most negative aspects of a specific product,
given a collection of free-text customer reviews. Our approach starts by
matching handcrafted dependency paths in individual sentences to find
opinions expressed towards candidate aspects. Then, it clusters together
di↵erent mentions of the same aspect by using a WordNet-based simi-
larity measure. Finally, it computes a sentiment score for each aspect,
which represents the overall emerging opinion of a group of customers
towards a specific aspect of the product. Our approach does not require
any seed word or domain-specific knowledge, as it only employs an o↵-
the-shelf sentiment lexicon. We discuss encouraging preliminary results
in detecting and rating aspects from on-line reviews of movies and MP3
players.

Keywords: aspect-based sentiment analysis, opinion mining, syntactic
dependency paths, text mining

1 Introduction

Sentiment analysis is the task of detecting subjectivity in natural language. Ap-
proaches to this task mainly draw from the areas of natural language processing,
data mining, and machine learning. In the last decade, the exponential growth
of opinionated data on the Web fostered a strong interest in the insights that
sentiment analysis could reveal. For example, companies can analyze user re-
views on the Web to obtain a good picture of the general public opinion on their
products at very little cost.

While the first e↵orts in sentiment analysis were directed towards determin-
ing the general polarity (positive or negative) of a certain sentence or document,
the interest has recently shifted towards a more qualitative analysis, that aims
to detect the di↵erent aspects of a topic towards which an opinion is expressed.
For example, we may be interested in analyzing a movie review to capture the
opinions of the reviewer towards aspects such as the plot, the cinematography,

In: P. Cellier, T. Charnois, A. Hotho, S. Matwin, M.-F. Moens, Y. Toussaint (Eds.): Proceedings of
DMNLP, Workshop at ECML/PKDD, Nancy, France, 2014.
Copyright c� by the paper’s authors. Copying only for private and academic purposes.

or the performance of a specific actor. The most challenging part in aspect-based
sentiment analysis is that a system needs to detect the relevant aspects before
these can be associated with a polarity.

In this paper we introduce Aspectator, a new algorithm for automatically
detecting and rating product aspects from customer reviews. Aspectator can
discover candidate aspects by simply matching few syntactic dependency paths,
while other approaches [6, 14, 16, 21] require seed words in input and use syn-
tactic dependencies or some bootstrapping technique to discover new words and
the relations between them. Additionally, it does not require any domain-specific
knowledge in input, but only few handcrafted syntactic dependency paths and
an o↵-the-shelf sentiment lexicon. Consequently, the proposed system can detect
and rate aspects of products in any domain, while many existing approaches [16,
21, 18] focus on domains for which machine-readable knowledge is available. Con-
cretely, Aspectator combines a first high-recall step where candidate aspects
are extracted from individual sentences through syntactic dependency paths,
with a second and third high-precision steps, where aspect mentions are clustered
and their sentiment scores are aggregated by leveraging an external sentiment
lexicon.

In our opinion, the considered setting represents an ideal testbed for in-
vestigating interactions between natural language processing and data mining.
Indeed, our focus is not on extracting the aspects discussed in a single sentence
or document, which could be seen as a problem of deep text understanding, but
on crunching hundreds of reviews of a specific product to capture the aspects
that best summarize the opinions of a group of customers, which requires lin-
guistic knowledge to extract information from single sentences, along with data
mining expertise to make sense of large amounts of data.

2 Related Work

Historically, sentiment analysis has been concerned with assigning a binary clas-
sification to sentences or entire documents, that represents the polarity (i.e., the
orientation) of the writer towards the discussed contents [13, 19]. Nevertheless,
the overall polarity gives no indication about which aspects the opinions refer to.
For this reason, in 2004 Hu and Liu [6] introduced the more interesting problem
of aspect-based sentiment analysis, where polarity is not assigned to sentences
or documents, but to single aspects discussed in them. In their approach, given
a large number of reviews for a specific product, they first attempt to identify
interesting product aspects by using association mining, and then attach a senti-
ment score to each aspect by exploiting a small seed set of opinion words, along
with their synonyms and antonyms present in WordNet. Next, they use newly
detected opinion words to extract additional infrequent product aspects. Instead
of using association mining, our work will detect aspects through dependency
paths, and will use an external sentiment lexicon to rate them. However, their
work remains the most similar to ours, as in both cases the goal is to summarize a

2 W. Bancken, D. Alfarone and J. Davis

collection of reviews for a specific product by detecting the most interesting and
discussed aspects, while most approaches focus on analyzing individual reviews.

Qiu et al. [14] continued to pursue the idea that opinion words can be used
to detect product aspects and vice versa, focusing on single reviews. In their
approach, a seed set of opinion words is combined with syntactic dependencies
to identify product aspects and new opinion words. To detect the polarity of
the newly identified opinion words, they consider the given polarities of the
seed words and make the assumption that opinion words expressing a sentiment
towards the same aspect in the same review share the same polarity. While Qiu
et al. use syntactic dependencies solely to capture word sequences that contain
aspects or opinion words already observed, our approach uses dependency paths
to detect new product aspects, with the potential advantage of achieving higher
coverage.

A di↵erent line of work on aspect-based sentiment analysis is based on topic
models. Brody and Elhadad [3] have tried to use Latent Dirichlet Allocation
(LDA) [2] to extract topics as product aspects. To determine the polarity to-
wards each topic/aspect, they start from a set of seed opinion words and propa-
gate their polarities to other adjectives by using a label propagation algorithm.
Instead of treating aspect detection and sentiment classification as two separate
problems, Lin and He [11] and Jo and Oh [8] directly integrate the sentiment clas-
sification in the LDA model, so that it natively captures the sentiment towards
the topic/aspect. While these LDA-based approaches provide an elegant model
of the problem, they produce topics that are often not directly interpretable as
aspects, and thus require manual labelling to achieve a readable output.

The work discussed so far proposes domain-independent solutions for aspect-
based sentiment analysis, where also our approach is positioned. However, several
works make use of domain-specific knowledge to improve their results. For in-
stance, Thet et al. [16] focus on aspect-based classification of movie reviews, and
include as input for their algorithm movie-specific terms such as the name of the
movie, the cast and the director. Additionally, they include some domain-specific
opinion words as input for their algorithm. As expected, including domain-
specific knowledge yields a more accurate sentiment classification. To make an
example, the word “unpredictable” has a negative polarity in general English, but
in the movie domain it is often used to praise the unpredictability of a storyline.
Since all relevant aspects are given as input, they exclusively focus on detecting
opinions towards the given aspects by (1) capturing new opinion words through
syntactic dependencies, and (2) rating the product aspects based on an external
sentiment lexicon and some given domain-specific opinion words.

Similarly, Zhu et al. [21] use product aspects and some aspect-related terms
as input for their algorithm, but then attempt to discover new aspect-related
terms by applying a bootstrapping algorithm based on co-occurrence between
seed terms and new candidate terms. A sentiment score is again obtained by
accessing an external sentiment lexicon. While our approach retains from these
works the usage of an external lexicon, it requires neither labelled examples nor
domain-specific knowledge, thus it has wider applicability.

Automatically Detecting Product Aspects from Customer Reviews 3

3 Aspectator: a New Approach

Aspectator takes as input a collection of textual customer reviews for one
specific product, and automatically extracts the most positive and the most
negative aspects of the product, together with all the sentences that contribute
to the sentiment polarity of each aspect. More precisely:

Given: a collection of textual reviews of one specific product

Extract:

– The n most positive product aspects, along with a list of all sentences
containing positive and negative mentions of each aspect.

– The n most negative product aspects, along with a list of all sentences
containing positive and negative mentions of each aspect.

Aspectator works in three steps, depicted in Fig. 1. First, it detects men-
tions of aspects and their associated opinion by matching handcrafted paths
in dependency trees. Second, it clusters the di↵erent mentions of an aspect ex-
tracted in the first step by means of a WordNet-based similarity measure. Third,
it attaches a sentiment score to each mention, and aggregates the scores from
all mentions belonging to the same cluster in order to obtain a final sentiment
score for each aspect.

Aspectator does not require labelled examples and it is domain-independent,
thus it can run on any collection of reviews for a specific product. The only re-
quired external knowledge is in the form of ten handcrafted dependency paths
and an English lexicon with a sentiment score for every word.

3.1 Detecting Product Aspects

The objective of the first step is to extract from customer reviews mentions of
a product aspect and the words that express the opinion of the writer towards
that aspect. For instance, given the sentence:

“The action music used in the movie wasn’t too good.”

Aspectator extracts the following pair:

< not too good| {z }
Sentiment
modifier

; action music| {z }
Aspect
mention

>

We call this an opinion pair, as the first part is the opinion of a reviewer
towards the second part. The first part can optionally be negated, as in the
above example, causing an inversion of the polarity expressed by the sentiment
modifier.

4 W. Bancken, D. Alfarone and J. Davis

Input: a set of customer reviews for one product, e.g. the movie Batman & Robin

Step 1: detection of product aspects

cheesy film

top-notch acting

almost bad uma thurman

extremely attractive uma thurman

very cheesy acting

not bad movie

cheesy film: -0.75
not bad movie: +0.57

…

top-notch acting: +0.63
very cheesy acting: -0.77

…

extremely attractive uma thurman: +0.74
almost bad uma thurman: -0.57

…

-25.6

Positive aspects:
• Uma Thurman
 23 positive mentions, e.g.: “Batman and Robin has plenty of big name actors, Uma
 Thurman is extremely attractive as Poison Ivy and …”
 9 negative mentions, e.g.: “The great Uma Thurman (Pulp Fiction, The Avengers) who
 plays Poison Ivy, is almost as bad as Schwarzenegger.”
• […]

Negative aspects:
• Acting
 5 positive mentions, e.g.: “The acting, storyline and visual effects were top-notch.”
 22 negative mentions, e.g.: “The acting was very cheesy and predictable, but there
 is some parts that boggles my mind...george clooney as batman?!”
• […]

Step 2: clustering of product aspects

Output

Step 3: rating of product aspects

[…]

[…]

[…]

top-notch acting
very cheesy acting

…

extremely attractive uma thurman
almost bad uma thurman

…

cheesy film
not bad movie

…

-9.76 +7.03

Fig. 1. Aspectator’s full pipeline, with example extractions from reviews for the
movie Batman & Robin. Scores greater or lower than zero represent positive or negative
sentiment polarity, respectively.

Automatically Detecting Product Aspects from Customer Reviews 5

Aspectator extracts opinion pairs by using ten simple handcrafted depen-
dency paths, in three steps:

1. For each sentence, Aspectator extracts a syntactic dependency tree by
using the Stanford dependency parser [4, 10]. Fig. 2 shows the dependencies
for the example sentence above.

2. Given a dependency tree, it attempts to extract a basic opinion pair com-
posed by a single-word sentiment modifier and a single-word aspect mention
by matching one of the five dependency paths shown in Table 1. For the ex-
ample sentence, this step extracts the opinion pair < good ;music > through

the dependency path A

nsubj ���� M

cop��! ⇤.
3. Given a matched opinion pair, it attempts to extend the match to neighbour-

ing words by applying the additional dependency paths shown in Table 2.
This allows to (1) capture multi-word expressions, such as “action music”
and “too good” in the running example, and (2) capture negations, such as
“wasn’t” in the example. The final opinion pair for the running example
becomes <not too good ; action music >.

Fig. 2. Example of syntactic dependencies detected by the Stanford dependency parser.

Note that our approach leverages syntactic dependency paths for two pur-
poses: (1) detecting aspect mentions and sentiment modifiers, and (2) discover-
ing relations between them. This is a significant di↵erence with other approaches
that are based on syntactic dependencies. For example, Qiu et al. [14] only use
syntactic dependencies to identify relations between word sequences that contain
an aspect or an opinion word that has been detected before.

While our technique for extracting aspect mentions and sentiment modifiers
yields high recall, its precision is low, since several irrelevant word sequences
are captured. Nevertheless, the following steps allow our system to assign lower
confidence to incorrect extractions, thus ultimately yielding accurate top-ranked
extractions.

6 W. Bancken, D. Alfarone and J. Davis

Table 1. Main dependency paths used by Aspectator to detect an aspect (A) and a
sentiment modifier (M) that form an opinion pair <M ;A>. Asterisks (*) are wildcards
that can match any word.

Type Dependency path Example

Adjectival modifier
M

amod ��� A

Direct object
A

nsubj ���� ⇤ dobj���!M

Adjectival
complement A

nsubj ���� ⇤ acomp����!M

Complement of a
copular verb A

nsubj ����M

cop��! ⇤

Adverbial modifier
to a passive verb A

nsubjpass ������� ⇤ advmod�����!M

Table 2. Extensions to the dependency paths of Table 1 to deal with multi-word
aspects (A) and multi-word sentiment modifiers (M), and to capture negations. Note
that the fourth extension is the only one that imposes a lexical constraint, as it only
triggers if the determiner is the word “no”.

Type of extension Dependency path Example

Compound noun A

0 nn �� A

Adverbial modifier M

0 advmod �����M

Simple negation ⇤ neg ��M

Negation through
“no” determiner

“no”
det �� A

Negation through
hypothetical phrase

⇤ a

u

x ��

⇤
a

u

x

 ��
M

cop��! ⇤

Automatically Detecting Product Aspects from Customer Reviews 7

3.2 Clustering Product Aspects

The goal of this step is to cluster the previously-extracted opinion pairs by
searching for all semantically similar aspect mentions, independently from their
sentiment modifier. For example, in the context of movie reviews, we would like to
cluster together the opinion pairs < very bad ;music > and < awesome ; soundtrack >,
as they both express opinions towards the same aspect of a movie.

To identify semantically similar aspect mentions, Aspectator uses a WordNet-
based similarity metric called Jcn [7]. Zhai et al. [20] experimented with several
WordNet-based similarity metrics in the context of clustering for aspect-based
sentiment analysis, concluding that Jcn delivers the best results.

Jcn is based on the principle that two terms are similar if their least common
subsumer (LCS) in the WordNet taxonomy has high information content (IC).
For instance, the terms (car, bicycle), having LCS “vehicle”, are more similar
than (car, fork), having LCS “artifact”, because “vehicle” is a more informative
term than “artifact”. Formally, the Jcn similarity between two terms t1 and t2

is defined as:

Jcn(t1, t2) =
1

IC(t1) + IC(t2)� 2 · IC(LCS(t1, t2))
(1)

where LCS(t1, t2) is the least common subsumer of t1 and t2 in WordNet, and
the information content of a term is equivalent to:

IC(t) = �log P (t) (2)

where P (t) is the probability of observing, in a large English corpus, the term t

or any term subsumed by t in the WordNet hierarchy. The higher the probability
of observing a term t or any of its subsumed terms, the lower the information
content of t.

Concretely, in order to cluster opinion pairs, Aspectator first computes
the Jcn similarity for every possible pair of aspect mentions, by using an imple-
mentation available in the WS4J library [15]. Next, it normalizes all mentions
by stemming them, in order to increase data density. When two terms map
to the same root, for instance “act” and “acting”, a comparison with another
term is made by picking the stem that maximizes the Jcn similarity. Finally,
Aspectator uses the pairwise similarity values as input for the K-Medoids
clustering algorithm [9], which will return clusters of opinion pairs, with each
cluster representing a collection of opinions towards a single aspect. K-Medoids is
preferred over K-Means because it can compute the centroid of a cluster without
the need of defining a mean.

3.3 Rating Product Aspects

In the final stage of our approach, each cluster receives a sentiment score, which
represents the overall emerging opinion of a group of customers towards a specific
aspect of a product. Concretely, Aspectator undertakes three sub-steps for
each cluster:

8 W. Bancken, D. Alfarone and J. Davis

1. For each opinion pair in the cluster, it assigns an individual sentiment score
to each word that composes the sentiment modifier. For instance, given the
opinion pair < just plain stupid ; action music >, it attaches three individual
scores to “just”, “plain” and “stupid”.

2. It combines the scores for the individual words into a single score for the
entire sentiment modifier, e.g., “just plain stupid”.

3. It extracts a final sentiment score for the entire cluster by aggregating the
scores of all sentiment modifiers.

Step 1. In order to obtain a sentiment score for individual words, Aspectator

uses the external sentiment lexicon SentiWordNet [1]. SentiWordNet extends
WordNet by attaching three scores to each synset :1 a positive sentiment score, a
negative sentiment score and a neutrality score. These three scores always sum
to 1. For example, the word “mediocre”, in the sense of “lacking exceptional
quality or ability” has the scores 0.25, 0.125 and 0.625 as its positive, neutral
and negative score, respectively.

For simplicity, our approach does not use three di↵erent sentiment scores,
but combines them in one score in the range [-1,1] by subtracting the negative
score from the positive score. The neutrality score is thus ignored, as “almost
neutral” opinions will have a score close to zero, and consequently will have no
significant impact in the following aggregation steps. Instead of performing word
sense disambiguation, Aspectator simply aggregates the sentiment scores of
all the synsets in which a word w appears, as follows:

score(w) =

nP
i=1

score(synset

i

)/i

nP
i=1

1/i

(3)

where i 2 N is the rank of a synset in WordNet based on the synset’s frequency
in general English, and synset

i

is the i

th synset of w in the ranking. Intuitively,
dividing a synset’s score by i allows our approach to give higher weight to synsets
that are more likely to represent the right sense of the word w in a certain context,
given their overall higher popularity in English.

Step 2. The word-level scores obtained in the previous step are then combined
into a single score for the entire sentiment modifier by adopting an approach
based on the work of Thet et al. [16]. Specifically, Aspectator takes as ini-
tial score the sentiment score of the rightmost (i.e., most specific) word in the
sentiment modifier. Then, it iteratively uses the score of each preceding word
to either intensify or attenuate the current score depending on the polarity of
the considered words, remaining in the range [-1,1]. Concretely, the score for a
sentiment modifier composed by words w

n

w

n�1 . . . w1 w0 is computed as:

1 A synset is a group of synonymous words, corresponding to a node in the WordNet
hierarchy.

Automatically Detecting Product Aspects from Customer Reviews 9

score(w
i

. . . w0) = score(w
i�1 . . . w0)� (score(w

i�1 . . . w0) · |score(w
i

)|)
if score(w

i�1 . . . w0) > 0 and score(w
i

) < 0 (4a)

score(w
i

. . . w0) = � ·
⇣
|score(w

i�1 . . . w0)| + (1� |score(w
i�1 . . . w0)|) · |score(w

i

)|
⌘

with � = sign(score(w
i�1 . . . w0))

otherwise (4b)

In case the sentiment modifier is negated, the resulting sentiment score is
multiplied by �1 to obtain the opposite polarity.

Equation (4b) models the general case, where the next word w

i

in the iterative
procedure intensifies the current score functionally to |score(w

i

)|. This follows
Thet et al.’s observation that (1) words with the same polarity tend to intensify
each other (e.g., “super nice”, “terribly stupid”), and (2) a negative current
score becomes more negative when the next word has positive score (e.g., “super
bad”). Equation (4a) is introduced to handle the particular case in which the
current score is positive and the next word to be processed is negative (e.g.,
“hardly interesting”). In this case, applying (4b) would make the final score
more positive, while a negative modifier should make the score less positive.

As a full example, we show how our iterative procedure computes a sentiment
score for the opinion pair < just plain stupid ; action music >:

Example opinion pair : < just plain stupid ; action music >

w2 w1 w0

Individual scores: 0.07 0.12 �0.51

score(plain stupid) = (�1) ·
⇣
0.51 + (1� 0.51) · 0.12

⌘
= �0.57

score(just plain stupid) = (�1) ·
⇣
0.57 + (1� 0.57) · 0.07

⌘
= �0.60

Thus, the resulting sentiment score for the aspect mention “action music” in
this example is �0.60.

Step 3. Lastly, Aspectator computes a final sentiment score for each aspect,
by summing the scores computed in the previous step for all sentiment modifiers
belonging to the aspect’s cluster. A simple algebraic summation supports the
intuition that few strongly positive/negative opinions should result in a senti-
ment score comparable to the one of many weakly positive/negative opinions.
We refer back to Fig. 1 for a complete example.

In order to produce the final output, Aspectator ranks the aspects by their
sentiment score, and returns only the n most positive and the n most negative
aspects, where n is specified by the user. This ranking places at the top the most
interesting aspects, i.e., the ones that (1) are frequently mentioned in the reviews,
and (2) are subjected to strong positive or negative opinions of the reviewers.

10 W. Bancken, D. Alfarone and J. Davis

This has also the advantage that many incorrect opinion pairs extracted in the
first step of the pipeline (Sect. 3.1) will be excluded from the final output, as they
typically have very few mentions and are not associated with strong opinions.

4 Experiments

In this section, we present a preliminary evaluation of Aspectator. The objec-
tive of our experiments is to address the following questions:

1. Can our approach detect interesting and relevant product aspects?

2. Can our approach provide meaningful evidence that supports the sentiment
score assigned to each aspect?

Additionally, we discuss the main sources of error of our approach.

4.1 Methodology

Aspectator’s output was manually evaluated on a portion of two public datasets
from di↵erent domains by two annotators, out of which only one was a co-author.

The first dataset is a collection of movie reviews taken from Amazon,2 pub-
lished by McAuley and Leskovec [12]. Since manual evaluation is required, we
sampled ten movies to create a validation set and a test set, in the following way.
First, we considered only the 50 movies with the highest number of reviews, as
we want to the test the ability of our algorithm to summarize a large amount of
data for a single movie. Since most of these movies have a majority of positive
reviews, in order to obtain a more balanced dataset we first took the five movies
with the highest number of negative reviews, and then randomly sampled five
other movies from the remaining set. This resulted in a collection of 700 to 850
reviews for each movie.

The second dataset consists of reviews of MP3 players taken from Amazon,3

published by Wang, Lu and Zhai [17]. From this dataset we selected the five
products with the highest number of reviews in the dataset, obtaining a collection
of 500 to 770 reviews for each MP3 player.

From these samples, we used eight movies and three MP3 players as our
validation set, and the remaining two movies and two MP3 players as our test
set. We used the validation set to determine the optimal k for the K-Medoids
clustering applied in Sect. 3.2, which should ideally be equal to the total number
of unique aspects appearing in a set of reviews. We found that the optimal k is
0.9 times the number of aspect mentions to be clustered. For instance, if 1700
aspect mentions have been identified for a certain product, we set k = 1530.

We used the test set consisting of two movies and two MP3 players to manu-
ally evaluate our algorithm. For each product, two annotators were given a form
with the ten most positive and the ten most negative product aspects, along

2 http://snap.stanford.edu/data/web-Movies.html
3 http://sifaka.cs.uiuc.edu/~wang296/Data/LARA/Amazon/mp3/

Automatically Detecting Product Aspects from Customer Reviews 11

with the six sentences containing the three most positive and three most nega-
tive mentions of each aspect. The annotators were asked to mark each product
aspect and each sentence mentioning the aspect as either correct or incorrect. For
simplicity, in the form given to the annotators each aspect was only represented
by the aspect mention appearing most frequently in the reviews. An aspect is
considered correct if it is an interesting and relevant aspect for the considered
product, such as “battery life” and “display” for an MP3 player, or “storyline”
and the name of an actor for a movie. A sentence listed by our algorithm for a
certain aspect is considered correct only if (1) the sentence mentions the consid-
ered aspect, and (2) the sentence expresses an opinion towards the considered
aspect that matches the polarity extracted by our algorithm for that specific
opinion pair.

4.2 Results

The accuracy of the top-n aspects is shown in Fig. 3. On average, the 10 most
positive and the 10 most negative aspects were considered to be correct in 72.5%
of the cases. The sentences mentioning an aspect were only considered correct in
59.8% of the cases. However, this last result can be studied more closely. Table 3
shows the accuracy of these sentences in function of the polarity of both aspects
and sentences. Clearly, the detected sentences are generally more accurate when
the aspect and the corresponding sentence have the same polarity. This is due
to the fact that for an aspect there are typically many more sentences with a
matching polarity than sentences with the opposite polarity, so when the top-3
sentences are drawn from a larger number of sentences, these tend to have higher
accuracy.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10

%
 co

rr
ec

t a
sp

ec
ts

top-n aspects

Annotator #1

Annotator #2

Fig. 3. Percentage of top-1, top-3, top-5, top-10 aspects marked as correct by two
annotators.

12 W. Bancken, D. Alfarone and J. Davis

Table 3. Percentages of correct sentences split accordingly to the polarity of the sen-
tence and the product aspect.

Pos. sentence
pos. aspect

Neg. sentence
pos. aspect

Neg. sentence
neg. aspect

Pos. sentence
neg. aspect

Annotator #1 86.9% 47.8% 66.7% 39.1%

Annotator #2 85.0% 53.0% 58.3% 41.3%

Average 85.9% 50.4% 62.5% 40.2%

Table 4. Positive and negative aspects for the movie Batman & Robin. Each aspect
is represented as a cluster of its di↵erent mentions. Aspects shown in italics were
marked as incorrect by the two annotators, while † indicates a disagreement between
annotators.

Batman & Robin
Positive aspects Negative aspects

1 book movie, film, . . .
2 Uma Thurman dialogue, dialog
3 job, occupation, . . . † line
4 actor, thespian acting, act, . . .
5 Alicium Silverstone † review, reviewer
6 performance, perform, . . . plot
7 Bruce Wayne guy
8 e↵ect, consequence, . . . script
9 costume thing
10 way character, depict, . . .

When evaluating the product aspects, the annotators agreed in 88% of the
cases, with an inter-annotator agreement of  = 0.69 according to Cohen’s kappa
score. When evaluating the sentences containing mentions, the annotators agreed
in 89% of the cases, with  = 0.785. Table 4 shows an example of the aspects
manually evaluated for the movie “Batman & Robin”. A sentence marked as
correct positive mention for the aspect “performance” in the same movie is:

“Though not classic villains, Arnold Schwarzenegger as Mr. Freeze and Uma
Thurman as Poison Ivy give engaging performances.”

while for the same aspect a negative mention is:

“The performances were horrendous, roll call: George Clooney, Chris O’Donnel,
Alicia Silverstone and Arnold.”

Automatically Detecting Product Aspects from Customer Reviews 13

4.3 Error Analysis

We conclude the experimental section by reporting the main sources of errors
for our approach.

Ambiguity of word polarity. The polarity of an opinion word can vary according
to its context. In some cases, SentiWordNet does not cover all possible senses of
a word. For instance, SentiWordNet only contains positive sentiment scores for
the word “laughable”, while in a sentence such as “The acting is laughable.” the
intended sentiment is clearly negative.

In some other cases, even though SentiWordNet covers also the correct sense
of a word, Aspectator picks the wrong polarity. This is due to the fact that,
for simplicity, our algorithm does not perform word sense disambiguation, but
instead computes a sentiment score for a term as a weighted sum of the scores
of all possible senses of the term. For example, SentiWordNet contains several
positive sentiment scores for di↵erent senses of the word “joke”, and only one
negative score. By using a weighted sum, the overall sentiment score is positive,
while in a sentence such as “The dialogue was just a joke.” the word is used with
a negative connotation.

Inclusion of objective statements. The presence of opinion words in a review does
not necessarily imply that the reviewer is expressing an opinion. For instance,
when describing the antagonist of a movie, reviewers often use words with a
negative connotation without the intention of expressing any judgement. This
is the case in sentences like “Javier Bardem is an extremely creepy bad guy.”,
where Aspectator incorrectly concludes that a strongly negative opinion is
expressed towards Javier Bardem.

Limitations of dependency paths. The ten handcrafted dependency paths some-
times fail to capture the full sentiment of a sentence. To make a concrete exam-
ple, consider the sentence “Uma Thurman was really sexy as Poison Ivy. . . and
that’s about it.”. If the first part of the sentence was considered in isolation,
a human reader would interpret it as a positive opinion about Uma Thurman,
and Aspectator does the same. Nevertheless, the second part of the sentence
reveals a negative attitude of the reviewer, which our simple dependency paths
cannot capture.

Incorrect dependency parsing. A last major source of error is introduced by the
Stanford dependency parser. Some of the errors are caused by the inability of the
Stanford parser to deal with the imprecise, colloquial language typically adopted
in on-line product reviews. To make an example, from the sentence “Man, this
film is bad.” the parser indicates that the opinion word “bad” refers to “man”,
and not “film”.

Additionally, the Stanford parser is not always able to detect compound
nouns, as terms like “hard drive” are considered to be adjective-noun pairs. This
makes Aspectator interpret the adjective as an opinion expressed towards the

14 W. Bancken, D. Alfarone and J. Davis

noun, while the compound noun simply represents an aspect mention with no
associated opinion.

5 Conclusions

We presented Aspectator, a novel algorithm for aspect-based sentiment anal-
ysis that takes in input a collection of customer reviews for a specific product,
and automatically extracts the most positive and the most negative aspects, to-
gether with evidence that supports the extractions. Aspectator first harvests
candidate aspects and the associated opinions by matching ten simple hand-
crafted dependency paths, then clusters together mentions of the same aspect,
and finally computes a sentiment score that expresses the overall orientation
towards each aspect. Our approach is domain-independent and does not require
any labelled example, thus it can be adopted to analyze customer reviews for
products in unseen domains.

In a preliminary evaluation, we show that on average the 72.5% of the ex-
tracted aspects are relevant, and that sentences that adhere to the overall po-
larity of each aspect are correct in 74.2% of the cases. This percentage drops
to 45.3% when the sentence polarity does not match the overall aspect polar-
ity. Furthermore, we found that most errors in our pipeline are caused by the
ambiguity and the complexity of the colloquial language adopted in the reviews.

For future work, we are interested in verifying whether, starting from few
example opinion pairs, we can learn the dependency paths that we now hand-
craft, and discover additional ones that generalize well across multiple domains.
Additionally, an extended (and comparative) evaluation is required.

Acknowledgements

Daniele Alfarone and Jesse Davis acknowledge the generous support of the Re-
search Fund K.U. Leuven (CREA/11/015 and OT/11/051), EU FP7 Marie Curie
Career Integration Grant (#294068), and FWO-Vlaanderen (G.0356.12).

References

1. Baccianella S., Esuli A., Sebastiani F., Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining. In Proceedings of LREC,
volume 10, pages 2200–2204, 2010.

2. Blei D. M., Ng A. Y., Jordan M. I., Latent dirichlet allocation. Journal of Machine
Learning research, 3:993–1022, 2003.

3. Brody S., Elhadad N., An unsupervised aspect-sentiment model for online re-
views. In Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pages
804–812. Association for Computational Linguistics, 2010.

4. De Marne↵e M.-C., MacCartney B., Manning C. D., Generating typed dependency
parses from phrase structure parses. In Proceedings of LREC, volume 6, pages 449–
454, 2006.

Automatically Detecting Product Aspects from Customer Reviews 15

5. Ganu G., Elhadad N., Marian A., Beyond the stars: Improving rating predictions
using review text content. In Proceedings of the 12th International Workshop on
the Web and Databases, 2009.

6. Hu M., Liu B., Mining and summarizing customer reviews. In Proceedings of the
tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 168–177. ACM, 2004.

7. Jiang J. J., Conrath D. W., Semantic similarity based on corpus statistics and
lexical taxonomy. In Proceedings of ROCLING X, 1997.

8. Jo Y., Oh A. H., Aspect and sentiment unification model for online review analysis.
In Proceedings of the fourth ACM international conference on Web search and data
mining, pages 815–824. ACM, 2011.

9. Kaufman L., Rousseeuw P. J., Finding groups in data: an introduction to cluster
analysis. John Wiley & Sons, 2009.

10. Klein D., Manning C. D., Accurate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computational Linguistics, pages 423–430,
2003.

11. Lin C., He Y., Joint sentiment/topic model for sentiment analysis. In Proceedings
of the 18th ACM Conference on Information and Knowledge Management, pages
375–384, 2009.

12. McAuley J. J., Leskovec J., From amateurs to connoisseurs: modeling the evolution
of user expertise through online reviews. In Proceedings of the 22nd International
Conference on World Wide Web, pages 897–908, 2013.

13. Paltoglou G., Thelwall M., A study of information retrieval weighting schemes for
sentiment analysis. In Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 1386–1395, 2010.

14. Qiu G., Liu B., Bu J., Chen C., Expanding domain sentiment lexicon through dou-
ble propagation. In Proceedings of the Twenty-First International Joint Conference
on Artificial Intelligence, volume 9, pages 1199–1204, 2009.

15. Shima H., WS4J WordNet Similarity for Java. https://code.google.com/p/
ws4j/, 2014.

16. Thet T. T., Na J.-C., Khoo C. S., Aspect-based sentiment analysis of movie reviews
on discussion boards. Journal of Information Science, 36(6):823–848, 2010.

17. Wang H., Lu Y., Zhai C., Latent aspect rating analysis without aspect keyword
supervision. In Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 618–626. ACM, 2011.

18. Wang H., Lu Y., Zhai C., Latent aspect rating analysis on review text data: a
rating regression approach. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, 2010.

19. Yessenalina A., Yue Y., Cardie C., Multi-level structured models for document-
level sentiment classification. In Proceedings of the 2010 conference on Empirical
Methods in Natural Language Processing, pages 1046–1056, 2010.

20. Zhai Z., Liu B., Xu H., Jia P., Clustering product features for opinion mining. In
Proceedings of the fourth ACM international conference on Web search and data
mining, pages 347–354. ACM, 2011.

21. Zhu J., Wang H., Zhu M., Tsou B. K., Ma M., Aspect-based opinion polling from
customer reviews. IEEE Transactions on A↵ective Computing, 2(1):37–49, 2011.

22. Zhu X., Ghahramani Z., Learning from labeled and unlabeled data with label
propagation. Technical report, Technical Report CMU-CALD-02-107, Carnegie
Mellon University, 2002.

16 W. Bancken, D. Alfarone and J. Davis

