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ABSTRACT

Detecting speculative assertions is essential to distinguish seman-
tically uncertain information from the factual ones in text. This
is critical to the trustworthiness of many intelligent systems that
are based on information retrieval and natural language processing
techniques, such as question answering or information extraction.
We empirically explore three fundamental issues of uncertainty de-
tection: (1) the predictive ability of different learning methods on
this task; (2) whether using unlabeled data can lead to a more ac-
curate model; and (3) whether closed-domain training or cross-
domain training is better. For these purposes, we adopt two sta-
tistical learning approaches to this problem: the commonly used
bag-of-words model based on Naive Bayes, and the sequence la-
beling approach using a Hidden Markov Model (HMM). We em-
pirically compare between our two approaches as well as externally
compare with prior results on the CoNLL-2010 Shared Task 1.

Overall, our results are promising: (1) on Wikipedia and biomed-
ical datasets, the HMM model improves over Naive Bayes up to
17.4% and 29.0%, respectively, in terms of absolute F score; (2)
compared to CoNLL-2010 systems, our best HMM model achieves
62.9% F score with MLE parameter estimation and 64.0% with EM
parameter estimation on Wikipedia dataset, both outperforming the
best result (60.2%) of the CoNLL-2010 systems, but our results on
the biomedical dataset are less impressive; (3) when the expres-
sion ability of a model (e.g., Naive Bayes) is not strong enough,
cross-domain training is helpful, and when a model is powerful
(e.g., HMM), cross-domain training may produce biased parame-
ters; and (4) under Maximum Likelihood Estimation, combining
the unlabeled examples with the labeled helps.
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1. INTRODUCTION

Speculative language refers to expressions of uncertainty over
statements, which indicates that speakers do not back up their opin-
ions with facts. In information retrieval and natural language pro-
cessing, many applications seek to extract this kind of information
and try to distinguish them from the factual information since they
convey a different attitude that speakers hold. For example, in ques-
tion answering (QA), it is of paramount importance to ensure that
the candidate answers gathered from various sources are of high
certainty or bear sufficient supporting evidence, and those less cer-
tain should be automatically pushed downward in the answer list,
or to retain users’ trust on the QA system, it would be desirable for
the system providing the level of uncertainty associated with the
output answers [12]. In recent years, with the increasing popular-
ity of social media, the quality of information in terms of factuality
becomes a premier concern owing to the casual and word-of-mouth
peculiarity of information sources. Uncertainty detection, i.e., dis-
tinguishing uncertain statements from factual ones, is becoming
increasingly crucial for users to synthesize information to derive
reliable interpretations [26].

The problem of uncertainty detection was intensively studied in
the CoNLL-2010 shared tasks [4], with two phases: Task 1 is to
detect the propositions containing uncertainty at the sentence level,
marking the hedge cues if possible; Task 2 is to identify its linguis-
tic scope in sentence. In this paper, we are focused on investigating
the solutions for the first task (which is more fundamental). Unlike
the individual systems submitted for the shared tasks, we intend
to provide a holistic analytics about three different issues that are
commonly faced in the development of this kind of systems.

The first issue we explore is the predictive ability of different
machine learning models on this task. Typically the basic approach
is using a bag-of-words model without considering the correla-
tion among sentence words. For comparison, we formulate the
task as a sequence labeling problem to capture the dependency be-
tween neighboring words, and employ the classical Hidden Markov
Model (HMM) with a specific tag set to label the sentence at the
word level. Through the comparison of the two different models,
we try to answer whether one can produce more accurate predic-
tions by taking into account word dependencies in representation,
and how advantageous the expressiveness of the model is for un-
certainty identification.

The second issue is that the commonly employed supervised
models suffer from data sparsity problem [9], which is seen strik-
ingly in our dataset. To address this problem, for the Naive Bayes
model, we examine different smoothing factors to optimize the pa-
rameters; for the HMM we experiment with two parameter esti-
mation methods — Maximum Likelihood Estimation (MLE) and



Expectation Maximization (EM). Under MLE, we provide itera-
tive parameter estimation by incorporating unlabeled data into the
training process; under EM [8], we run it for parameter estimation
iteratively on the training examples only until convergence.

The CoNLL-2010 Shared Task 1 involves data from two interest-
ing domains: Wikipedia and biomedical scientific literature (both
abstracts and full articles). The third issue is that we investigate dif-
ferent kinds of annotated resources in closed-domain training and
cross-domain training to see whether we can derive a more accurate
model by cross-domain training. Here the cross-domain training is
to use the union of Wikipedia and biomedical datasets for training
and test on one domain while closed-domain training means that
training is done on the same domain as testing.

The remainder of the paper is organized as follows. Section 2
summarizes related work. Section 3 discusses the learning meth-
ods we investigated and different parameter estimation methods.
Section 4 presents our empirical results, while Section 5 gives our
discussion and lessons learned from the experiment. Section 6 con-
cludes the paper.

2. RELATED WORK

In this section, we review some popular uncertainty corpora and
methods for uncertainty detection.

Several text corpora from various domains have been annotated
over the past few years at different levels (e.g., expression, event,
relation, or sentence) with information related to uncertainty detec-
tion task. Sauri and Pustejovsky [17] presented a corpus annotated
with information about the factuality of events, namely Factbank,
which is constructed based on TimeBank' containing 3,123 anno-
tated sentences from 208 news documents with 8 different levels
of uncertainty defined. Vincze et al. [24] constructed the BioScope
corpus, which consists of medical and biological texts annotated
for negation, uncertainty, and their linguistic scope. This corpus
contains 20,924 sentences. Ganter et al. [6] generated Wikipedia
Weasels Corpus, where Weasel tags in Wikipedia articles is adopted
readily as labels for uncertainty annotation. It contains 168,923
unique sentences with 437 weasel tags in total. Although several
uncertainty corpora exist, there is not a uniform set of standard for
uncertainty annotation. Szarvas et al. [19] normalized the annota-
tion of the three corpora aforementioned and provided fine-grained
categories of uncertainty (e.g., epistemic, doxastic, investigation,
and condition).

Previous work on uncertainty detection focused on classifying
sentences into uncertain or definite categories. Existing approaches
are mainly based on supervised methods [11, 14, 13, 18] using the
annotated corpus with different types of linguistic features includ-
ing Part-Of-Speech (POS) tags, word stems, n-grams, and so on.
Light et al. [11] explore the ability of a Support Vector Machine
(SVM) classifier to perform this task on a corps of biomedical ab-
stracts using a stemming representation. Medlock and Briscoe [14]
model hedge classification as a weakly supervised machine learn-
ing task performed on articles from the functional genomic litera-
ture. Medlock [13] presents an extension of this work by experi-
menting with more features (e.g., POS, stems, and bigrams). Fol-
lowing Medlock and Briscoe [14], Szarvas [18] develops a Maxi-
mum Entropy classifier that incorporates bigrams and trigrams in
the feature representation and performs a re-ranking based features
selection procedure that allows a reduction of the number of key-
word candidates from 2,407 to 253.

Later on, classification of uncertain sentences was consolidated

1http ://www.timeml.org/site/timebank/
timebank.html

as a shared task in CoNLL-2010 on learning to detect hedge cues
and their scope in natural language text [4]. The compulsory part
is to detect the sentence containing uncertainty at sentence level,
while it is optional to mark cues for the uncertainty within the sen-
tence. The approaches on this task fall into two major categories:
one is to conduct the binary classification at the sentence level with
no cue identification; the other approach is token-level classifica-
tion to identify whether each token is a part of cue phrase, and then
predict the sentence as certainty or uncertainty by counting whether
there is any cue phrase in the sentence. The CoNLL report [4] sum-
marized the submissions. A number of models were applied by the
submissions, including SVM [7, 20], Conditional Random Fields
(CRF) [21, 27], Maximum Entropy [2], k-Nearest Neighbors [15],
Naive Bayes [22], Averaged Perceptron [10], and Logistic Regres-
sion [25]. For high performance, most of the submissions used a
cue dictionary in their system for classification and cue annotation
in sentence. Among them, most were conducted on close-domain
training, however a few of them employed cross-domain training
in their systems, such as Zhao et al. [27] on the biomedical test
dataset, and Ji et al. [10] on the Wikipedia test dataset. The best
system for Wikipedia data [7] employed SVM, and the best system
for biological data [21] adopted CRF.

As a follow-up of the CoNLL shared Task, Velldal [23] proposed
to handle the hedge detection task as a simple disambiguation prob-
lem, restricted to the words that have previously been observed as
hedge cues.

Our approach has three major difference from previous work:
(1) usually the cue-based annotation applied a dictionary approach,
the key step is to locate the lexical cues, while in our work, we do
not use the dictionary and our approach is based on pure statistical
models; (2) we used HMM to model the correlation among sen-
tence words; and (3) as for the training resources, we examine both
closed-domain and cross-domain training.

3. OUR APPROACH

We approach the task in two ways. One is a bag-of-words ap-
proach based on unigrams, in which we perform Naive Bayes clas-
sification on the sentence level with no cue identification. The other
is sequence labeling, for which we use an HMM with cue annota-
tion in sentences.

3.1 Dataset

We used the standard BioScope corpus as our training and test
datasets. On the BioScope corpus, there are two domains. One is
a biomedical dataset and the other is a Wikipedia dataset. Both do-
mains are provided with labeled training examples and have hedge
cues annotation inside the sentences, plus an unlabeled test set.
CoNLL-2010 also provided a labeled test set containing labeled cue
information for evaluation. Table 1 gives some samples of annota-
tions in each domain of the corpus. Wikipedia dataset may share
some common cue words with the biomedical dataset, while the
biomedical context, due to its scientific nature, may have more rig-
orous structure for uncertain information in sentence. The datasets

are freely availableathttp://www.inf.u-szeged.hu/rgai/

conll2010st/.
3.2 Design

The aim of Task 1 is to develop automatic procedures for iden-
tifying sentences that contain unreliable or uncertain information.
This can be formalized as a problem of binary classification (i.e.,
certain versus uncertain) from the sentence level. As a bag-of-
words solution, we built a Naive Bayes classifier based on the un-
igrams from the training examples, to predict each one of test sen-



Table 1: Example training instances in the corpus from two dif-
ferent domains, where Wikipedia dataset may share some com-
mon cue words with the biomedical dataset, while the biomed-
ical context may have more rigorous structure for uncertain
information in sentence.

Wikipedia dataset

e <sentence certainty="uncertain" id="S8.2"><ccue>Relatively</ccue>
little is known about the early settlement of much of South America east
of the Andes.</sentence>

e <sentence certainty="uncertain" id="S25.2">Predatory pricing practices
<ccue>may</ccue> result in antitrust claims of monopolization or at-
tempts to monopolize.</sentence>

e <sentence certainty="uncertain" id="S39.2"><ccue>It is not yet
clear</ccue></sentence>

Biomedical dataset
Abstracts:

e <sentence certainty="uncertain" id="S76.2">Genes actively involved in
the GO/G1 switch (GOS genes) <ccue>may</ccue> be differentially ex-
pressed during the lectin-induced switch of lymphocytes from the GO to
the G1 phases of the cell cycle.</sentence>

<sentence certainty="uncertain" id="S109.1">The AP-1 site at -150 bp,
but not the NF-kappa B site, is <ccue>likely</ccue> to represent the ma-
jor target of protein kinase C in the interleukin 2 promoter.</sentence>
<sentence certainty="uncertain" id="S113.1">Modulation of normal ery-
throid differentiation by the endogenous thyroid hormone and retinoic
acid receptors: a <ccue>possible</ccue> target for verbA oncogene ac-
tion.</sentence>

Full articles:

e <sentence certainty="uncertain" id="S1.10"><ccue>Assuming</ccue>
that the 23rd amino acid is also encoded by a stop codon, we system-
atically predicted proteins that contain stop-codon-encoded amino acids
from 191 prokaryotic genomes.</sentence>

e <sentence certainty="uncertain" id="S1.129">A plus sign in a locus
<ccue>indicates that</ccue> the genomic coordinates of the iORF can
be described by a concatenation of two genes <ccue>or</ccue> re-
gions.</sentence>

e <sentence certainty="uncertain" id="S3.6">We present a novel ensemble
learning method, SCOPE, that is based on the <ccue>assumption</ccue>
that transcription factor binding sites belong to one of three broad classes
of motifs: non-degenerate, degenerate and gapped motifs.</sentence>

tences as certainty or uncertainty.

As a generative model, Naive Bayes simply relaxes the depen-
dency (conditioned on the predicted category) of words amongst
one another. The only calculation is to count the words in the train-
ing data to estimate the probability that each word associates with
the two classes being predicted as certainty or uncertainty plus the
prior probability of each class. This assumption saves a lot of mem-
ory space and time for building the classifier.

In our preprocessing, we did not conduct stemming or lemma-
tization on words since we believed that word details (e.g., lower
case versus upper-case, plurality, tense, etc.) can be important or-
thographic features. The Naive Bayes model conducts a sentence-
level classification: its output is a class type (i.e., certainty or uncer-
tainty), with no cue phrase identified. We empirically ask whether
the bag-of-words approach is complex enough to capture the corre-
lation between word and class on this task.

We also construct another model from sequence-labeling approach,

recognizing the hedge-cue information in the sentence can be for-
malized as a sequence-labeling problem with a specific tag set. For
sequence labeling, there is variety of methods such as HMM, CRFs,
Averaged Perceptron, etc. [16]. Our second solution is to use an
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Figure 1: Our HMM topology with a tag set of {O, B, I, E}

HMM with a tag set of {O, B, I, E} for segmentation, where B
stands for the beginning of a cue phrase, I the inside of cue phrase,
E the end of a cue phrase, and O the outside of a cue phrase. The
topology of our HMM is shown in Figure 1, where we consider
the first-order dependency between the words. To the best of our
knowledge, an HMM has not been applied to the CoNLL 2010
shared task, and most methods of sequence labeling are CRFs.
Another goal we have is that we are trying to see whether a less
strongly expressive model like HMMs (as compared to CRFs) can
represent the dependency for this task effectively.

3.2.1 Model definition

Suppose X (1. is the observed word sequence, 0 is the param-
eters (i.e., transition matrix and emission matrix) in HMM model,
the notation Z(1.n) is a state sequence aligned with the observa-
tion word sequence X(1. ), the problem can be formalized to find
the most likely state sequence to the corresponding observation,
that is, MAXZ(LN)Z?(Z(LN)|X<1;N), ). In our setting, the aver-
age length of sentence is 35 words and the maximal is 110 words.
We use the Viterbi Algorithm [5] to find the state sequence that
maximizes the probability of aligning the tags with the observation
based on the parameters. But we need good parameters 6 for the
model first.

3.2.2 Parameter estimation

Data sparsity and high dimensionality are two problems for sta-
tistical language processing. In many supervised-style NLP sys-
tems, the feature space includes words, while the vocabularies can
be extremely large, which leads to a high number of parameters.
To make matters worse, many words will appear only a few times,
and a large number of words do not appear in the training set. Per-
formance can be degraded on such “out of vocabulary” words. An-
other phenomenon that degrades performance occurs when the do-
main of the test set differs from the domain of the training set, in
part because the test set includes more words that do not appear or
only appear few times in the training set. Thus, good parameter
estimation is critical to derive an accurate model.

In our setting, we need to estimate the transition and emission
probabilities for the HMM. We tested two strategies in our experi-
ments. One is Maximum Likelihood Estimation (MLE), to find the
parameters ¢ by maximizing the likelihood of the observed data;
we combine MLE and the Viterbi algorithm, to form an iterative
MLE that co-trains on the labeled data and unlabeled data. Ini-
tially, we get the parameters from labeled training examples, and
use the model to predict the labels for the unlabeled test set, then
we use the whole dataset (including training examples and these
predicted test examples) to re-estimate the parameters. In this fash-
ion we obtain an iterative maximum likelihood estimation. Note
that we use the test examples in the subsequent iterative runs, but
we did not disclose the actual labels of test examples to the training
process (which is called transductive training), and we use the pre-
dicted labels for these test examples from the former iteration. The



Table 2: Results of baseline for sentence-level classification us-
ing Naive Bayes classifier (Genre: Wiki — Wikipedia, Bio —
biomedical; Type: C — Closed-Domain, X — Cross-Domain).

Genre P R F Type
Wiki | 32.70 | 80.75 | 46.56 C
Wiki | 33.05 | 77.57 | 46.35 X
Bio | 31.33 | 87.85 | 46.19 C
Bio | 41.74 | 51.20 | 51.20 X

risk is that there might bring some cumulative errors from previous
iterations, so we need to choose a good point to stop the iteration
that is done by fitting a development (i.e., “tuning”) dataset.

Our other approach is to use the Expectation Maximization for-
malism by EM [3], or Baum-Welch algorithm [1], or Forward-
Backward algorithm to get good parameters for the HMM, because
the limited training examples and the sparsity in the language might
yield a biased transition matrix and emission matrix (e.g., by under-
fitting or overfitting). To estimate the parameters by EM, we start
from some initial parameters, which can be drawn from those train-
ing labeled data only, then iteratively execute the E-step and M-step
until convergence. Since EM is not guaranteed to find the global
optimal, we used the strategy of multiple restarts by changing the
initial parameters for EM algorithm to get a set of local optimal,
and chosen the maximal one.

4. EXPERIMENTS AND ANALYSIS

In our experiments, we evaluate the performance of the system
under several different configurations. One is whether models are
allowed to exploit different kinds of annotated resources: closed-
domain versus cross-domain training. Closed-domain training is
where the training set and test set are from the same domain, e.g.,
Wikipedia training data for a Wikipedia test set. Cross-domain
training means that the data provided for the task comes from both
domains, e.g., a union of Wikipedia and biomedical training data
for either Wikipedia or biomedical test dataset”.

We ran the evaluation with the standard evaluation scripts pro-
vided by CoNLL-2010’s Shared Task 1, which used the metrics
of precision, recall and F-measure. For this task, not only did the
dataset creators provide evaluation on sentence level, but also they
provided in-sentence cue annotation evaluation. In both evalua-
tions, we employed the F-measure (i.e., the harmonic mean of pre-
cision and recall) as the chief measure metric.

In the bag-of-words solution using the Naive Bayes classifier, we
just evaluate its sentence-level classification performance; with no
cue annotation that cannot be easily done by using a bag-of-words
model to tag the cue phrase at token level. Also, cue annotation is
optional in the shared task 1. For the HMM, we evaluate both its
sentence-level performance and in-sentence cue annotation.

4.1 Results

4.1.1 Baseline Results using Naive Bayes Classifier

Table 2 gives the best performance results of the baseline for
both closed-domain and cross-domain training on the two datasets.

“There are two scenarios in CoNLL 2010 shared task 1 for cross-
domain training. One uses the union of the two datasets as the
training set and tests on one domain, and the other uses the dataset
from one domain as training set and test on a different domain.
Here we consider the first case

Table 3: Smoothing for sparsity in parameter estimation based
on closed-domain training using Naive Bayes classifier.

Genre P R F Smooth factor
Wiki | 38.71 | 34.83 | 36.66 1,1
Wiki | 34.13 | 53.27 | 41.60 (10, 1)
Wiki | 31.85 | 83.44 | 46.10 (10, 6)
Wiki | 32.70 | 80.75 | 46.56 (11, 5)
Wiki | 33.43 | 76.14 | 46.46 (11, 4)
Wiki | 33.67 | 70.90 | 45.66 (12, 3)
Bio 31.33 | 87.85 | 46.19 1, 1)
Bio 27.94 | 90.89 | 42.74 (1,2)
Bio 30.58 | 89.11 | 45.54 2,1
Bio 30.04 | 90.38 | 45.09 3,1

Table 4: Smoothing for sparsity in parameter estimation based
on cross-domain training using Naive Bayes classifier.

Genre P R F Smooth factor
Wiki | 34.30 | 70.90 | 46.23 (1, 1)
Wiki | 31.29 | 78.25 | 44.71 (1,2)
Wiki | 33.64 | 73.50 | 46.16 2,1
Wiki | 33.17 | 75.74 | 46.09 3,1
Wiki | 33.05 | 77.57 | 46.35 “,1)
Wiki | 32.60 | 78.29 | 46.03 G,
Bio 41.74 | 66.20 | 51.20 1, 1)
Bio 36.65 | 70.38 | 48.20 (1,2)
Bio 40.24 | 67.85 | 50.52 2, 1)
Bio 38.71 | 68.99 | 49.59 3,1

Some interesting findings are as follows:

e For the Naive Bayes model, cross-domain training is help-
ful on the biomedical dataset. On the Wikipedia dataset,
cross-domain training reached comparable performance with
that of closed-domain training. Naive Bayes ignores the de-
pendency between words, while cross-domain training intro-
duces the correlation between different domains. In our case,
we used both Wikipedia and biomedical training sets as the
total training set, the increased volume of training data might
contribute to the performance for classification, especially on
biomedical dataset.

As we observed, sparsity is a tricky issue to deal with, and smooth-
ing is a relatively easy-to-use method to alleviate sparsity in param-
eter estimation. In our approach, the smoothing factor is specified
by the initial starting (pseudo) count for words and the (pseudo)
count for unseen words. Table 3 and 4 contain the results of Naive
Bayes under various smoothing factors. From the result of this ex-
periment, we have the following findings:

e Wikipedia data is sensitive to the smoothing technology. It
reaches its maximum at a smoothing factor of (11, 5) in
closed-domain training; and (4, 1) in cross-domain training.

e Biomedical data is insensitive to the smoothing technology.
The best performance for both cross-domain and close-domain
training is from default (1, 1).



Table 5: Results of HMM (with iterative MLE) on sentence- Table 6: Results of HMM (with EM) for sentence-level classifi-

level classification (Types: C - Closed-Domain; X — Cross- cation based on closed-domain training.
Domain).
Genre P R F
Genre P R F Iteration | Type Wiki | 6691 | 61.28 | 63.97
Wiki | 69.44 | 51.25 | 58.98 1 C Bio | 73.32 | 88.35 | 80.15
Wiki | 66.80 | 58.82 | 62.56 2 C
Wiki | 62.11 | 63.70 | 62.90 3 C
Wiki | 58.54 | 66.74 | 62.37 4 C
Wiki 1 6372 | 53.94 | 53.42 1 X we demonstrated that sequence labeling could achieve bet-
— ter performance on the Wikipedia dataset than that on the
Wiki | 60.59 | 60.97 | 60.78 2 X . . . .
— biomedical dataset, which reflects that the cue words can still
Wiki | 58.06 | 66.07 | 6181 3 X be useful. This is further demonstrated by using the HMM
Wiki | 56.84 | 69.96 | 62.72 4 X .
- with EM.
Wiki | 55.26 | 72.16 | 62.59 5 X
Bio | 75.06 | 80.76 | 77.81 1 C o The performance of the HMM (with MLE) on the biomedical
Bio | 72.80 | 83.67 | 77.86 D) C dataset is at a state-of-the-art level, though not a top perfor-
Bio | 6320 | 87.98 | 76.84 3 C mance in the submissions of CoNLL-2010 Shared Task 1.
Bio 1 6421 1 66.08 | 65.13 1 X One possible reason is the parameters derived by MLE are
still not optimal to generalize on the biomedical test dataset.
Another reason might be that our HMM might not be ac-
curate enough to capture the dependency in the biomedical
e One interpretation of such difference is that the biomedical context for this task; the biomedical context has a more com-
context has a relatively more concentrated vocabulary while plex nature than that of Wikipedia articles.

the Wikipedia text has a more diversified thus more sparse
vocabulary. Smoothing in machine learning is a prior to en-
code some background domain knowledge. Therefore, if our
training set is quite large or more concentrated, the variation
from smoothing will affect little to the result.

e We observed that for the HMM (with MLE) the performance
of cross-domain training is not better than that of the cor-
responding closed-domain training. In contrast, for Naive
Bayes the results of cross-domain training are better than
closed-domain training. This implies that the task calls for a
sophisticated model to express the dependency among words,

4.1.2 Results of HMM-Based Sentence-level Classi- even though the cross-domain training can provide more train-
ﬁcation ing examples for weak model (e.g., Naive Bayes).

Table 5 contains the results for sentence-level classification based

on HMM under iterative MLE. We obtained the following findings: Table 6 contains our results for sentence-level classification based

on the HMM with EM. In this setting, the initial starting parame-

e This HMM (with MLE) on Wikipedia dataset using closed- ters of transition ma.trix and ffmi_ssion matrix affect the result. In
domain training achieves superior performance of 62.90% F tl}e c.urre.nt EM algorithm, the.lqltlal parameters are d.rawn frgm the
score, while the highest performance on CoNLL-2010 sub- dlStI‘lbut.IOI’l of the labeled training examples. For this experiment,
missions from closed-domain training is 60.2%, which is our findings are as follows:
achieved by a SVM classifier using unigrams. HMM is basi-
cally a sequence-labeling approach that considers the relation
between words, their orders, etc., while the SVM based on
bag-of-words does not capture such relations. This implies
the HMM algorithm is effective by capturing word depen-
dencies.

e The performance of the HMM (with EM) on Wikipedia (64.0%)
outperforms the best one of HMM (with iterative MLE, 62.9%)
since the EM can derive more optimal parameters than the
MLE in general, and also exceeds all the submissions in
CoNLL-2010 Shared Task 1 on Wikipedia dataset.

e The performance of the HMM (with EM) on biomedical dataset
(80.15%) outperforms the best one of HMM (with iterative
MLE, 77.86%). However, this result ranks in the middle of
the submissions of CONLL-2010 Shared Task 1 on biomedi-
cal dataset whose results range from 30.3% to 86.4%, and the
best performance was achieved by CRF. One possible inter-
pretation is that this HMM with a tag set of {O, B, I, E} is
not expressive enough to capture the dependency of words in
the biomedical context even though the sophisticated param-
eter estimation (e.g., MLE or EM) can boost the performance
to a decent level. So the complex structure and distant de-
pendency in biomedical text calls for a more complex model

e In our cross-domain training on Wikipedia dataset, we achieve
a high F score of 62.72%, which is better than any of the sub-
missions in CoNLL-2010. The best performance on cross-
domain evaluation is obtained by an Averaged Perceptron
with 58.7% F score. We also note that an CRFs model [21]
can achieve 55.0% F score, which is much lower than ours on
Task 1, but its in-sentence cue annotation (36.5%) is higher
ours (18.13%) (see Table 8). One interpretation is that it used
the dictionary for cue detection, and in CoNLL 2010 shared
tasks, it demonstrated that dictionary vocabulary helps a lot
in cue detection and shared task 2.

e We disagree with one statement made by CoNLL-2010 shared (e.g., CRFs).
task report [4], which summarized that Wikipedia articles .
have a diverse nature based on the observation that a bag- 4.1.3  Results of HMM-based Cue Annotation
of-words model achieved the best result among their submis- Cue annotation is optional in Shared Task 1 of CONLL-2010. Ta-

sions on the Task 1 Wikipedia dataset. In our experiment, ble 7 and 8 contain the results for hedge-cue annotation based on



Table 7: Results of HMM (with iterative MLE) for in-sentence
cue annotation based on closed-domain training.

Genre P R F Iteration
Wiki | 22.22 | 11.58 | 15.23 1
Wiki | 17.97 | 12.76 | 14.92 2
Wiki | 15.88 | 13.55 | 14.62 3
Bio 39.17 | 38.68 | 38.92 1
Bio 25.25 | 27.03 | 26.11 2

Table 8: Results of HMM (with EM) for in-sentence cue anno-
tation based on closed domain training

Genre P R F
Wiki | 20.85 | 16.04 | 18.13
Bio 23.01 | 25.60 | 24.23

HMM (with MLE or EM). The Naive Bayes model is on sentence
level, which cannot annotate the hedge cues. The HMM performs
token level classification, which associates a class label to each to-
ken, and we aggregate the hedge cues from these individual token
labels for getting the sentence-level uncertainty labels. Some of our
findings are summarized as follows:

e The performance of token-level hedge-cue annotation is not
as good as sentence-level classification. This might be caused
by the current parameter estimation, which is Expectation
Maximization based on using labeled training examples only.
The dictionary-based approach was demonstrated good per-
formance for cue annotation in CoNLL-2010 summary re-
port [4]. We did not apply the dictionary approach for de-
tecting cues in sentences. This might be a reason for the
poor performance of cue annotation. Actually, most of the
systems in CoNLL 2010 shared task used the dictionary for
cue detection. In our work, we are using a pure statistical
approach. While the cue annotation is hard, it does not affect
too much on sentence level detection (see Section 5 for more
discussions).

Table 7 shows that iteration negated the performance of the
in-sentence cue annotation in both Wikipedia and biomed-
ical datasets. One possible interpretation is that the errors
(i.e., false positives and false negatives) from former itera-
tions will be accumulated into next iteration, which will hurt
the performance for future iteration in cue annotation (see
Section 5 for more discussions).

S. DISCUSSION

In our bag-of-words solution, cross-domain training can deliver
comparable or even better performance than that of closed-domain
training. This can reflect that the different testbeds share some cor-
relation or simple patterns. In such a simple model, this kind of
correlation might be able to boost the classification to a certain de-
gree. However, in a more sophisticated model (e.g. HMM), the
cross-domain training may bring noisy data to bias the parameter
estimation. Under this circumstance, the closed-domain training
can yield a more accurate model.

In our results, the HMM model outperforms Naive Bayes model
by 17.4 percentage points on the Wikipedia dataset and by 29.0

percentage points on the biomedical dataset. This suggests that the
Shared Task 1 of CoNLL-2010 calls for more expressive model to
count the dependency between words.

Furthermore, we achieved the best performance with a HMM on
the Wikipedia dataset, outperforming all of the submissions to the
CoNLL-2010 Shared Task 1, including some CRF-based models.
However, it is still not confident to conclude that HMM is better
than CRFs on Task 1 since it just reflects that the hedge detection
at the cue level is not analogous to the sentence-level classification.
Our HMM model achieved the best performance on sentence-level,
but it was worse on the cue level. Additionally, by the comparison
of the same model on the biomedical dataset, the results only rank
in the middle in all the submissions of CoONLL-2010. This indicates
that there exists some significant difference between the biomedi-
cal and Wikipedia contexts. Biomedical scientific contexts (includ-
ing abstracts and full articles) might have more complex structure
and distant dependency among words in sentence, which requires a
more expressive model (e.g., CRFs) to capture such relations while
HMM only captures the dependency between neighboring words.

Together with Table 7 and 8, we explore more causes regarding
why hedge detection at the cue level is not analogous to sentence-
level classification. Some reasons might be: sentences with more
than one cues are tagged as uncertainty even if only one hedge cue
has been identified, which will lead to a lower recall at cue-level an-
notation evaluation, but can also yield the correct result at sentence-
level classification. False positives at cue level can also lead to the
correct classification result at the sentence level. This might ac-
count for why the F score of cue annotation is lower while sentence-
level classification is quite good. To some extent, this also makes
sense that iterative re-estimation together with unlabeled data can
lead to a better performance (in terms of higher recall and lower
precision) in sentence-level classification, but undermine the per-
formance (with a much lower precision) of cue level annotation.

In our HMM model (with iterative MLE), we demonstrated that
by combining the unlabeled data with labeled training instances,
we can obtain an accurate model on both datasets on sentence-level
classification. But in cue annotation level, it is harmful to accu-
rately label the cue token. We are not sure why this is the case at
this moment.

In the Naive Bayes model, we observed that data sparsity is a
severe problem. We varied the smoothing factor to boost the per-
formance from 36.7% to 46.6% on the Wikipedia dataset. In the
experiment, we did not commit much effort on solving the sparsity
in language model. But we believe it should be a good direction
to continue to estimate the distribution in language since sparsity
connects well to the parameter estimation for the model.

6. CONCLUSION AND FUTURE WORK

We addressed detecting sentences containing uncertainty and la-
beling the cue information in the sentence. Firstly, we provided
a bag-of-words model — Naive Bayes — and experimented with a
smoothing technique to improve parameter estimation. Secondly,
we investigated a sequence labeling model —an HMM — and experi-
mented with different parameter estimation strategies for the model
using Maximum Likelihood Estimation and Expectation Maximiza-
tion. In our experiments, the HMM with EM is the best approach
on both the Wikipedia and biomedical datasets.

Compared to the benchmark submissions of CoONLL-2010 Shared
Task 1, both our HMM with MLE and EM outperform all the sub-
missions on the Wikipedia dataset, while the same model ranks in
the middle of all the submissions on the biomedical dataset. We
conclude that capturing the dependency between words yields a
more accurate model (e.g. HMM in our experiment), which sug-



gests the use of a more expressive model (e.g., CRFs) that can cap-
ture the distant dependency and complex structure in the biomedi-
cal text. Further, we experimented with closed-domain and cross-
domain trainings. For the Naive Bayes model, cross-domain train-
ing worked better, while in a more expressive HMM approach, the
best result is obtained from closed-domain training.

For the future, we will apply the uncertainty detection approaches
for applications such as information extraction, knowledge-base
construction, biomedical literature mining and question answering.
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