
Distributed Representations for Semantic Matching
in non-factoid Question Answering

Piero Molino
∗

University of Bari Aldo Moro
Bari, Italy

Luca Maria Aiello
Yahoo Labs

Barcelona, Spain

ABSTRACT
Users’ interactions with search engines is shifting towards more
complex information needs and the need for a deeper semantic un-
derstanding of the query intent is needed.

In this paper we propose a novel semantic matching criterion that
adopts distributed representations of words in order to address com-
plex information needs in a scalable way.

We show that combining this criterion with other well established
features it is possible to obtain over 22% improvement for MRR
and 27% in P@1 over the best performing approach for answer-
ing non-factoid questions, a specific form of complex information
need. Moreover we show that in our setting our criterion can sub-
stitute more complex linguistic feature.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.2.7 [Artificial Intelligence]: Natural Language
Processing; I.2.6 [Artificial Intelligence]: Learning

Keywords
Question Answering, Learning to Rank, Semantic Matching, Nat-
ural Language Processing

1. INTRODUCTION
Search engines address individuals’ information needs by retriev-
ing documents that are relevant to the query and that are hosted in
authoritative web pages. Documents are ranked by information re-
trieval techniques based on the query, the document and their prox-
imity, but also based on the global structure of the connections be-
tween webpages and other factors. In the last years great efforts
have been spent in integrating the capability of answering factoid
questions in commercial search engines. Asking for the date of
birth of an artist or the director of a movie results in a featured piece

∗This work was done while the first author was visiting Yahoo Labs
Barcelona

SMIR 2014 Gold Coast, Australia

of information that aims to provide a specific, concise answer to the
implicit user question. This sentence-level answers are obtained by
means of entity type recognition and textual patterns [21].

The way users are interacting with search engines is also chang-
ing. Users take search capabilities for granted, and are becoming
more demanding with respect to the ability of search engines to
satisfy complex information needs [12]. Complex search missions
are usually poorly represented by simple keyword queries; as a re-
sult, longer, more grammatically correct and syntactically struc-
tured queries are becoming increasingly frequent [4]. The trend is
increased also by the gradual shift of the type of input device from
keyboard towards speech, and on the reliance on query autocom-
plete functions.

The task of serving complex queries has been studied quite in depth
by a conspicuous line of work on non-factoid Question Answering
(QA), which have tried to address some of the main issues related to
longer queries and complex information needs mainly in the form
of why-questions [28] and manner questions [24]. The structure
and the grammatical correctness of those questions make it possi-
ble to try to get a deeper understanding of the query intent. Even
if non-factoid QA studies do not cover all the possible complex in-
formation needs, they are a good testbed for techniques that can
also be applied at webscale for general purpose applications, so we
focused on this subproblem, hoping tha the lesson learned will be
useful for addressing the more general objective of answering web-
scale complex information needs.

Unlike other information retrieval tasks, in non-factoid Question
Answering the linguistic analysis of both questions and candidate
answers (usually short passages) has proven to be helpful for rep-
resenting, matching and ranking [27].

As a result, a growing amount of linguistic features has been pro-
posed and used in a learning-to-rank setting. That has allowed to
obtain a very deep linguistic matching of questions and answers,
but at a very high computational cost and with a considerable in-
crease of the size of storage, mainly because of indexing of addi-
tional linguistic metadata annotations [3]. Also, given that answers
are not long documents but usually short passages, synonymy and
polysemy represent an additional problem that is usually not di-
rectly by linguistic features.

Continuous vector representations of words represent semantically
similar terms with vectors that are close to each other in a multidi-
mensional space, thus giving a more nuanced representation of the
meaning of words also for short fragments of text, like questions

and answers [16].

In this work we address the problem of ranking candidate answers,
proposing to use distributed representations learned with neural
networks for matching questions and passages of text based on their
semantic similarity. Our goal is twofold:

1. to deal with the shortness of the answers enriching their se-
mantic representation to deal with synonymy and polysemy;

2. to show that features belonging to the family of linguistic
analysis can be replaced, without loss of accuracy, with con-
tinuous vector representations that are smaller, faster to com-
pute and more robust to noise.

Using a large public dataset from Yahoo Answers1 we show that the
adoption of a distributed semantic representation that is less com-
putational expensive than linguistic analysis, balances the trade-off
between accuracy and efficiency, improving the best baseline over
22% for MRR and 27% in P@1, while being more scalable.

The rest of the paper is organized as follows. We first describe
the learning to rank framework for non-factoid Question Answer-
ing and the features adopted in Section 2. Next, in Section 3, we
present the new adopted features based on distributed representa-
tions. Then, in Section 4, we present the experiments and the re-
sults of the proposed solution and compare them against the best
solutions presented so far. Finally, we give a brief literature review
in Section 5.

2. APPROACH
Our approach to the problem consists in three main steps: 1) repre-
senting both question and answers at different linguistic levels, 2)
compute several different features that incorporate static properties
of both answers and questions, like their length or their punctuation
density, alongside with different measures of the similarity between
them, 3) a ranking algorithm that exploits those feature to rank the
answers according to a learned model.

As shown in Figure 1, during indexing time, snippets of text are
analyzed by a Natural Language Processing (NLP) pipeline and
the enriched representation is saved in an index. At search time,
the questions are analyzed with the same pipeline, in order to ob-
tain the same representation. The candidate answers are then ob-
tained from the index and a feature extractor collects the feature
from both question and answer representations. Those features are
finally passed to a previously trained ranking algorithm that sorts
the candidate answers according to its predictions.

Our NLP pipeline annotates both questions and passages with a
stemmer, a part-of-speech tagger, a lemmatizer, a dependency parser,
a named entity recognizer, a supersense tagger and a semantic role
labeler.

2.1 Ranking Model
In the learning to rank approach, question-document pairs (q,d)
are labeled with relevance judgments that indicate the degree of
relevance of the document d with respect to query q. Each pair is
represented by a set of features that are usually an indication of the
degree of similarity between q and d, but also include information
1http://webscope.sandbox.yahoo.com

PassagesQuestions

IndexSearch

Feature Extraction

Ranking

Ranked
Answers

Natural Language Pipeline

Figure 1: The overall architecture of the proposed approach.
The NLP pipeline analyzes both questions and passages; lin-
guistically annotated passages are stored in an index, wich is
accessed by the search component with a query obtained from
the linguistally annotated question; features are extracted from
both candidate answers and questions and are used by the
ranking component, that finally outputs a ranked answer list.

about q and d in isolation, such as their length or the PageRank
of web documents. Each pair is treated as a single datapoint and
a set of datapoints can be used for training purposes, in order to
learn a function to predict the best ranking of different documents
according to a query.

Several algorithm have been proposed for this goal in the litera-
ture [15]. We opted for Random Forests (RF) [9] because of its
resilience to overfitting, a problem that may affect our experimen-
tal setting due to the size of our dataset, and because of the suc-
cessful results in several use cases related to Community Question
Answering [11] and in other large scale retrieval experiments [18].

Let xi = φ(d,q), where φ is a feature extractor, and xi is a m-
dimensional vector. Let D = (x1,y1), . . . ,(xn,yn) be a set of query-
document pairs xi and their associated relevance ratings yi ∈ Y .

The RF algorithm trains a model H such that H(xi)≈ yi and so that
the ranking of all the documents d appearing in pair with a query q
according to H(xi) is similar to the ranking according to yi.

The algorithm is shown in Algorithm 1.

Algorithm 1 Random Forests
Require: D = (x1,y1), . . . ,(xn,yn),r > 0
1: for i← 1 to r do
2: Dt ← sample(D)
3: K← roandomPick(m)
4: hi← buildDecisionTree(Dt ,K)
5: end for
6: H()← 1

r ∑
r
i=1 hi()

7: return H()

The main idea of RF is to apply a decision tree regression algorithm
to M subsets of D and then average the results. A sample Dt is
extracted with replacement from D (step 2). A set K of features is
randomly picked from the feature set, so that |K| ≤ m (step 3). A
decision tree is induced from Dt using the features in K (step 4).
The whole process is repeated r times and the outputs of all the
single trees are averaged to obtain the function H (step 6). The use
of different samples of the data from the same distribution and of
different sets of features for learning the individual decision trees
prevent the overfitting.

In our experiments the queries are the questions and the docu-
ments are the candidate answers. In our experimental evaluation
we adopted the implementation provided by the RankLib library2

with the default parameters.

2.2 Features
In the following, we list a number of features that have been used in
past work and that we use in combination with the feature we pro-
pose (3). The adopted features leverage the intuition that the simi-
larity between the question and the answer and the intrinsic quality
of the answer’s text are good proxies for the quality of the answer
itself. We divide the features in two different families: text qual-
ity, linguistic similarity. The first contains features already used in
literature, the second mainly comes from non-factoid QA literature.

We also propose a completely novel semantic matching feature that

2http://sourceforge.net/p/lemur/wiki/RankLib/

exploits distributed representations of words, with a detailed de-
scription provided in section 3

2.2.1 Text Quality
Text quality features aim to estimate the intrinsic quality of an an-
swer by capturing objective properties of the text composition. A
summary follows.

Visual Properties. This group of features accounts for the visual
appearance of the text composition. It includes the count of whites-
paces and whitespace violations in the answer, the count of capital
letters and capitalization violations, punctuation density, the num-
ber of URLs in the text, the quoted parts of the answer and so on.
The number of capitalized words and the total count of punctuation
marks are also counted, for a total of 24 features that are widely
adopted in the literature [1, 11].

Readability. These features evaluate how easy is to read an answer.
They consider the average word length in terms of number of char-
acters and syllables and the ratio of complex words in the answer.
Some readability indices are also adopted, such as Kincaid, Ari,
Coleman-Liau, Flesch, Fog, Lix and Smog. These features were
already adopted in literature [1, 11]. In total we used 15 readability
features.

Informativeness. This group contains 3 simple features that count
the amount of nouns, verbs and adjectives occurring in the answer
but not in the question.

2.2.2 Linguistic Similarity
For the linguistic similarity features we followed an approach sim-
ilar to that proposed by Surdeanu et al. [24]. We decided to adopt
different levels of linguistic representation of text that can be ob-
tained using NLP algorithms in order to construct tokens to be
used by different similarity and overlap measures. For the NLP
pipeline, we adopted the Snowball Stemmer3, the ClearNLP suite4,
the SuperSense Tagger proposed by Ciaramita5 and the CoreNLP
named entity recognition6. This allows us to build representations
of text using different lexicalization degrees: words, stems, lem-
mas, lemma and pos-tag concatenations, named entities and super
senses as tokens. The representations are lists of token n-grams.
As an example, the sentence “The man plays the piano”, remov-
ing the stopwords, can be represented as word unigrams (man,
plays, piano) or as lemma+pos unigrams (man:NN, play:VBZ, pi-
ano:NN) or as supersense bigrams (noun.person-verb.competition,
verb.competition-noun.artifact).

We also tag the text with dependency parsing and semantic role
labeling, so we can extract chains from them in the same way we
extract the n-grams. For the dependency parsing the chains are
constructed in the form of “dependant-relationType-head” but we
can extract also more general chains that do not contain the rela-
tionType. For the semantic role labeling, the chain has the form of
“predicate - argumentType - argument”. Also in this case the argu-
ment type can be omitted. The length of the chain can be increased,

3http://snowball.tartarus.org
4http://clearnlp.com
5http://sourceforge.net/projects/supersensetag/
6http://nlp.stanford.edu/software/corenlp.shtml

constructing longer chains concatenating the chains of length one
that share intermediate elements. For example concatenating unla-
beled dependencies from the previous example we can obtain the
chains (“man - plays”, “piano - plays”).

Previous literature has shown how longer chains do not usually
add valuable information because of their sparsity [24], so we do
not adopt them. The tokens that compose the chain can also be
at different lexicalization degrees, but in order to minimize the
sparsity we adopted only lemmas and super senses. As for our
example, from the sentence “The man plays the piano” we ex-
tract labeled dependencies lexicalized with lemmas (“piano - dobj
- play”, “man - nsubj - play”), their unlabeled versions (“piano
- play”, “man - play”) and the versions with supersense lexical-
ization (“noun.artifact - dobj - verb.competition”, “noun.person -
nsubj - verb.competition”) and (“noun.artifact - verb.competition”,
“noun.person - verb.competition”). The same is done with the se-
mantic role labeling annotations, the possible chains are with argu-
ment labels with lemma lexicalization (“play - A0 - man”, “play
- A1 - piano”), without argument labels with lemma lexicalization
(“play - man”, “play - piano”), with argument labels and supersense
lexicalization (“verb.competition - A0 - noun.person”, “verb.competition
- A1 - noun.artifact”) and without argument labels with supersense
lexicalization (“verb.competition - noun.person”, “verb.competition
- noun.artifact”).

Overlap. The overlap features count the ratio of tokens in common
between the question and the answer as |tq∩ta|

|tq| , where tq is the set of
tokens belonging to the question and ta the set of tokens belonging
to the answer.

With this simple overlap formula we calculate the overlap of un-
igrams at all the different lexical levels, resulting in 6 features.
Other 15 features are obtained calculating the overlap of 2-grams,
3-grams and 4-grams of all the lexicalizations except the named
entities, as they are already n-grams of words in most of the cases.

We also calculate the overlap of the dependency chains and seman-
tic role labeling chains, both labeled and unlabeled and both with
lemma and supersense lexicalizations, refulting in 8 features.

For the different lexicalizations of the unigrams we also calculate
the Jaccard Index as |tq∩ta|

|tq∪ta| resulting in additional 6 features. We do
not calculate the Jaccard index for the n-grams and for the depen-
dency and semantic role labeling chains because of their sparsity.

Frequency. We use standard information retrieval techniques to
obtain a measure of similarity between question and answer that
takes into account the frequency of the tokens in the texts and in
the whole corpus. We assign scores to the question-answer pairs
according to the Tf-Idf weighting scheme, to the BM25 weighting
scheme and to the Language Modeling (with Dirichlet priors [30])
for all the different lexicalization levels except for the named enti-
ties, for a total of 15 features.

Density. We adopted a slight modification of the Minimal Span
Weighting proposed by Monz [20], calculating it for all the differ-
ent lexicalization levels. This gave us 6 features.

The original formula contains three components: a text similarity
value, a span size ratio and a matching term ratio for balancing the
local similarity value. As we have other features, like the frequency
ones, that address for the text similarity, we retained only the local
similarity part, resulting in the following formula:

(
| tq∩ ta |

1+max(mms)−min(mms)

)(
| tq∩ ta |
| q |

)

where tq and ta are the sets of tokens respectively of the question
and the answer; max(mms) and min(mms) are the initial and final
location of the shortest sequence of answer tokens containing all
matching question tokens.

Machine Translation. As we mentioned earlier, machine trans-
lation approaches have been widely used in CQA and non-factoid
Q&A. Their objective is to “bridge the lexical chasm” between the
question and the answer. We calculate the probability of the ques-
tion being a translation of the answer P(Q | A) and use it as a fea-
ture:

P(Q | A) = ∏
q∈Q

P(q | A)

P(q | A) = (1−λ)Pml(q | A)+λPml(q |C)

Pml(q | A) = ∑
a∈A

(T (q | a)Pml(q | A))

where the probability that the question term q is generated from
answer A, P(q | A), is smoothed using the prior probability that
the term q is generated from the entire collection of answers C,
Pml(q |C) and is the smoothing parameter. Pml(q |C) is computed
using the maximum likelihood estimator.

As the translation of a word to itself P(w |w) is not guaranteed to be
high, we set P(w |w) = 0.5 and re-scale P(w′|w) for all the other w′

terms in the vocabulary to sum up to 0.5, so that ∑w′∈W (w′ |w) = 1.
As already pointed out in previous work [24], this is needed for the
adoption of translation models for retrieval tasks, as the exact world
overlap of question and answer is a good predictor.

Calculating the translation models for all the lexicalization degrees
and for all the combinations of dependencies and semantic role la-
beling chains, we obtain 13 features.

Others. We consider 3 additional miscellaneous features: the length
of the exact overlap of the sequences of words in the question and
the answer normalized by the length of the question, the length ra-
tio of the question and the answer, and the inverse of the length of
the answer.

3. DISTRIBUTED REPRESENTATIONS OF
WORDS

Continuous representations of words have been used to improve
significantly many NLP applications [5, 10, 25]. In literature, sev-
eral different models have been proposed for building these repre-
sentations, among those the most widely used are Latent Dirichlet
Allocation (LDA) and Latent Semantic Analysis (LSA).

w(t)

w(t-r)

…

w(t-1)

w(t+1)

…

w(t+r)

INPUT PROJECTION OUTPUT

Figure 2: The architecture of the Continous Skip-gram Model.

In this paper, we adopt distributed representations of words learned
by neural networks, because they have better performances than
LSA in preserving linear regularities among words [17] and the
latest models are computationally less expensive than LDA, so they
scale better on large data sets. In [16], Mikolov et al. construct
a very scalable log-linear classification network, using a simpler
architecture than previous work, where neural networks are usually
constructed with several non-linear hidden layers (e.g., [6]).

Two such simpler networks are proposed: the Continuous Bag-
of-Words Model and Continuous Skip-gram Model. While both
are shown to be effective in semantic-syntactic word relationship
learning and sentence completion tasks, the former is faster to train,
while the latter has better performances at the cost of slightly longer
training time. Although both are really scalable, in our experiments
we decided to adopt the latter one for its accuracy.

The Continuous Skip-gram Model builds on a Feedforward Neural
Network described in [6], but it consists only of input, projection
and output layers, so removing the hidden layer. As most of the
complexity is caused by the non-linear hidden layer, this improves
the learning efficiency at the expenses of a representation that might
be less precise, but enables to learn models with bigger amounts of
data. The model, shown in Figure 2, iterates over the words in the
dataset and uses each word w(t) as an input to a log-linear classifier
with a continuous projection layer. What it outputs is a prediction
of the words within a certain range before and after the input word.

As the words that are more distant from the input word are less
related to it, the model adopts a randomization policy: if c is the
fixed range before and after a word, a value r is obtained picking

randomly a value between [1,c]. Then r words before the current
and r words after the current are used as correct labels, from w(t−
r) to w(t−1) and from w(t +1) to w(t + r).

At the end of the training phase, the weights associated with the
projection layer are used as vector representations for each word.
The resulting encoding captures meaningful word representations,
where words of similar meaning have nearby representations.

In our case, we use word vector representations for building sen-
tence level vector representation simply summing the vectors of
the words that appear in the sentence. This way we obtain vec-
tor representations for questions and answers and we can compute
their cosine similarity to obtain a semantic matching measure. We
use this measure as one feature in the learning-to-rank setting.

The obtained vector represetation could be helpful for assessing
synonymy problems, as words with similar meaning will occur in
similar contexts resulting in similar vector representations. For in-
stance the vectors for the word “cake” and for the word “pie” will
be more close to each other than to the vector for the word “basket-
ball”. Consequently, vectors for sentences containing those words
will be more similar, e.g. “John likes cakes” and “John likes pies”
are more similar to each other thank to “John likes basketball”.

4. EXPERIMENTS
In our experiment we aim to asses how the new proposed feature
based on distributed representations perform in ranking answers in
a Q&A portal. Given a question asked by a user the task cosists
in predicting the best answer to that question ranking it the highest
possible in the ranking of the candidate answers. This is a specific
kind of complex information need and, even if is only a subproblem
of webscale complex information needs, we believe that the lesson
learned on this task by means of ranking algorithms and features
can be useful also for the greater problem.

We compare the new proposed feature to more computationally ex-
pensive linguistic features and to text quality features. We also
combine them in a single model, to see if the information they bring
is sufficiently orthogonal to further improve the performances.

We measure the results by means of Precision at 1 (P@1), and
Mean Reciprocal Rank (MRR), an average sum of the inverse of the
rank at which the correct answer is found, because we are interested
both in finding the best answer in the first position and returning a
ranking where the best answer is in the highest position possible.

When considering the answers to a single question, these are for-
mally defined as follows:

MRR =
1

rank(BA)
P@1 = rel1

where rank(BA) is the rank of the best answer for that question, and
reli is an indicator function of relevance that returns 1 if the answer
in the ith position in the ranking is the best answer.

The distributed representations have been trained with text extracted
from the Wikipedia dump of 3 march 2014, containing 3.5 million
documents and 1.8 billion words. We decided to keep only words
appearning in more than 5 documents, and trained the model with
a window c of lenght 5, learning vector of 400 dimensions.

4.1 Dataset

Feature Set P@1 MRR
baseline 0.5091 0.6465

d 0.6022 +18% 0.7652 +18%
l 0.618 +21% 0.7717 +19%
tq 0.6245 +22% 0.7857 +21%

d+l 0.618 +21% 0.7719 +19%
d+tq 0.6476 +27% 0.7907 +22%
l+tq 0.6401 +25% 0.7855 +21%

d+l+tq 0.6476 +27% 0.7909 +22%

Table 1: Experimental results. d distributed, l linguistic, tq text
quality

The dataset we decided to use is Yahoo Webscope Manner Ques-
tions, an extraction of manner questions from U.S. Yahoo Answers
data. The manner questions are extracted following two simple
heuristics that aim at preserving only high quality questions and
answers:

1. only questions that match the regular expression

how (to|do|did|does|can|would|could|should)

and have a correct answer selected by the asker or by the
community are kept,

2. questions and answer with less than four words, out of which
at least one is a noun and at least one is a verb, are filtered
out.

This process produces 142,627 questions and 771,938 answers,
with an average of 5.41 answers for each question. For each ques-
tion there is a best answer selected by the asker or, if the asker did
not select it, by the community of users by majority vote.

4.2 Performance Analysis
The features are split in the groups described in Section 2.2, where
l refers to linguistic features and tq refers to text quality features.
The group labeled with d contains only the feature based on the
semantic matching of distributed representation.

A Random Forest model is learned for each feature set and the per-
formances reported in Table 1 are the average of a 5-fold cross
validation. In each fold 12.5% of the training set was used as a
validation set.

The adopted baseline is, to the best of our knowledge, the best per-
formance reported in literature on the same dataset [24]. It was
obtained adopting a learning-to-rank setting similar to our, with a
wide range of different features, including a subset of our linguistic
features and web correlation based ones as well.

All the three groups improve over the baseline significantly both
in P@1 and MRR, with tq being the most effective. It is worth
noticing that the distributed-representation based feature alone can
compete with the other two groups of features, which are composed
of 42 features for tq and 72 for l.

Taking into account the combinations of features we observe that
the best performing one is the composition of d and tq. The com-
binations of d and l does not improve at all for P@1 and improves

baseline

d

l

tq

d+l

d+tq

l+tq

d+l+tq

0 0,2 0,4 0,6 0,8

0,791

0,786

0,791

0,772

0,786

0,772

0,765

0,647

0,648

0,64

0,648

0,618

0,625

0,618

0,602

0,509

P@1 MRR

�1

just of 0.002 for MRR over the l group alone, a non statistically
significant improvement. This is expected as both groups try to
intercept the topical similarity between question and answer.

The most interesting result that can be observed is that adding the l
group to the previous best scoring group d+tq does not improve the
performances at all for P@1 and improves just of 0.002 for MRR,
again a non statistically significant improvement. This finding sug-
gests that in this setting the linguistic features, that requires a really
expensive preprocessing time to be computed, can be substituted
with a single features based on distributed representations of words
without any loss of accuracy.

Finally, the best P@1 scores obtained with the d+tq and d+tq+l
feature groups are a 27% improvement over the baseline, while the
best MRR scores obtained with the d+tq+l features group are an
improvement of 22% over the baseline.

5. RELATED WORK
The approach we presented in this paper borrows insights from
many different sources.

The question-to-answer transformation features based on transla-
tion models have been successfully applied in Question Answer-
ing before [7, 13, 22]. Recently, Matrix Factorization algorithms
have been adopted for the same goal [31]. In out work, we include
translation-based models in out feature set.

Linguistic representations of questions and answers have shown to
be effective in matching questions to their best answers [26, 28].
We adopt the linguistic representation for computing some of the
features, but we combine them with text quality features.

Severyn et al. [23] use a family of syntactic kernels to compute
similarity between question and answers and rank answers accord-

ingly. The syntactic dependency features we use are a simplified
version of those kernels taking into account only substructures of
the whole kernel.

Bilotti et al. [8] label the semantic roles of the questions and match
predicate-argument structures with the expected answer types, re-
sulting in an improvement of the ranking. In our work, the predicate-
argument features mimic this approach.

Learning translation models for different lexico-syntactic represen-
tations of text was proposed first by Surdeanu et al. [24]. In their
work, they also use a learning framework for combining differ-
ent families of features, focusing on linguistic ones, and adopt the
supersenses for abstracting the lexical representation. We follow
a similar approach, but we show that comparable results can be
achieved with simpler features that rely on distributed representa-
tions.

Distributional semantics features have also been used for ranking
in non-factoid Question Answering [19]. The adoption of Latent
Semantic Indexing and Random Indexing in order to obtain vector
representations of words and texts is shown to be valuable for rank-
ing. In this paper, we follow the same approach, but we exploit a
different algorithm that better preserves linguistic regularities [16]
for learning the vector representations. Other lexical semantics so-
lutions leverage Wikipedia entities [31], showing potential in ad-
dressing the retrieval of synonyms and hyperonyms. Last, Recur-
rent Neural Network Language Models [29] have been successfully
explored in this context, confirming that lexical semantics is suit-
able to tackle the problem.

The task of best answer prediction on data extracted from social and
collaborative Question Answering websites has been approached
also through the assessment of the answer quality [1] and of the
expertise of the answerer through network approaches [14, 2]. In
general, exploiting both textual content and metadata have been
considered [11]. We borrowed the idea that the intrinsic quality of
the answer is a valuable indicator for ranking, but we were not able
to use any metadata information, in particular about users, as that
is not available in the Yahoo Webscope Manner Questions dataset,
for privacy reasons.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presentad a semantic matching feature based on
distributed representations of words. We have shown that combin-
ing this feature with text quality based ones in a learning to rank
setting, it is possible to a chieve a 22% improvement for MRR
and 27% in P@1 over the best approach for answering non-factoid
questions.

The feature based on distributed representations is more scalable
that other linguistic features as it requires less preprocessing and
a faster learning time, but in our settings in can substitute them
without any loss in accuracy.

We still need to further investigate the role of the parameters of
the neural network model for building the distributed representa-
tions (the window size and the number of dimensions) as optimiz-
ing them can lead to better representations and consequently better
matching. At the same time more complex functions for the com-
position of the vector representations should be investigated.

7. REFERENCES

[1] E. Agichtein, C. Castillo, D. Donato, A. Gionis, and
G. Mishne. Finding high-quality content in social media. In
Proceedings of the international conference on Web search
and web data mining, WSDM’08, pages 183–194, New
York, NY, USA, 2008. ACM.

[2] C. Aslay, N. O’Hare, L. M. Aiello, and A. Jaimes.
Competition-based networks for expert finding. In
Proceedings of the 36th International ACM SIGIR
Conference on Research and Development in Information
Retrieval, SIGIR’13, pages 1033–1036, New York, NY,
USA, 2013. ACM.

[3] G. Attardi, L. Atzori, and M. Simi. Index expansion for
machine reading and question answering. In CLEF (Online
Working Notes/Labs/Workshop), 2012.

[4] C. Barr, R. Jones, and M. Regelson. The linguistic structure
of english web-search queries. In EMNLP, pages 1021–1030,
2008.

[5] P. Basile. Super-sense tagging using support vector machines
and distributional features. In EVALITA, pages 176–185,
2011.

[6] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural
probabilistic language model. Journal of Machine Learning
Research, 3:1137–1155, 2003.

[7] A. L. Berger, R. Caruana, D. Cohn, D. Freitag, and V. O.
Mittal. Bridging the lexical chasm: statistical approaches to
answer-finding. In SIGIR, pages 192–199, 2000.

[8] M. W. Bilotti, J. L. Elsas, J. G. Carbonell, and E. Nyberg.
Rank learning for factoid question answering with linguistic
and semantic constraints. In CIKM, pages 459–468, 2010.

[9] L. Breiman. Random forests. Machine Learning, 45(1):5–32,
2001.

[10] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. Natural language processing
(almost) from scratch. Journal of Machine Learning
Research, 12:2493–2537, 2011.

[11] D. H. Dalip, M. A. Gonçalves, M. Cristo, and P. Calado.
Exploiting user feedback to learn to rank answers in q&a
forums: a case study with stack overflow. In SIGIR, pages
543–552, 2013.

[12] D. Donato, F. Bonchi, T. Chi, and Y. Maarek. Do you want to
take notes?: Identifying research missions in yahoo! search
pad. In Proceedings of the 19th International Conference on
World Wide Web, WWW’10, pages 321–330, New York, NY,
USA, 2010. ACM.

[13] A. Echihabi and D. Marcu. A noisy-channel approach to
question answering. In ACL, pages 16–23, 2003.

[14] P. Jurczyk and E. Agichtein. Discovering authorities in
question answer communities by using link analysis. In
CIKM, pages 919–922. ACM, 2007.

[15] T. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In NIPS, pages 3111–3119, 2013.

[17] T. Mikolov, W. tau Yih, and G. Zweig. Linguistic regularities
in continuous space word representations. In HLT-NAACL,
pages 746–751, 2013.

[18] A. Mohan, Z. Chen, and K. Q. Weinberger. Web-search
ranking with initialized gradient boosted regression trees. In
Yahoo! Learning to Rank Challenge, pages 77–89, 2011.

[19] P. Molino, P. Basile, A. Caputo, P. Lops, and G. Semeraro.
Exploiting distributional semantic models in question
answering. In ICSC, pages 146–153, 2012.

[20] C. Monz. Minimal span weighting retrieval for question
answering. In R. Gaizauskas, M. Greenwood, and
M. Hepple, editors, Proceedings of the SIGIR Workshop on
Information Retrieval for Question Answering, pages 23–30,
2004.

[21] D. Ravichandran and E. Hovy. Learning surface text patterns
for a question answering system. In Proceedings of the 40th
Annual Meeting on Association for Computational
Linguistics, ACL ’02, pages 41–47, Stroudsburg, PA, USA,
2002. Association for Computational Linguistics.

[22] S. Riezler, A. Vasserman, I. Tsochantaridis, V. O. Mittal, and
Y. Liu. Statistical machine translation for query expansion in
answer retrieval. In ACL, 2007.

[23] A. Severyn and A. Moschitti. Structural relationships for
large-scale learning of answer re-ranking. In SIGIR, pages
741–750, 2012.

[24] M. Surdeanu, M. Ciaramita, and H. Zaragoza. Learning to
rank answers to non-factoid questions from web collections.
Comput. Linguist., 37(2):351–383, June 2011.

[25] J. Turian, L. Ratinov, and Y. Bengio. Word representations:
A simple and general method for semi-supervised learning.

In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, ACL ’10, pages
384–394, Stroudsburg, PA, USA, 2010. Association for
Computational Linguistics.

[26] S. Verberne, L. Boves, N. Oostdijk, and P.-A. Coppen. Using
syntactic information for improving why-question
answering. In COLING, pages 953–960, 2008.

[27] S. Verberne, L. Boves, N. Oostdijk, and P.-A. Coppen. What
is not in the bag of words for why-qa? Computational
Linguistics, 36(2):229–245, 2010.

[28] S. Verberne, H. van Halteren, D. Theijssen, S. Raaijmakers,
and L. Boves. Learning to rank for why-question answering.
Inf. Retr., 14(2):107–132, 2011.

[29] W.-t. Yih, M.-W. Chang, C. Meek, and A. Pastusiak.
Question answering using enhanced lexical semantic models.
In ACL, pages 1744–1753, 2013.

[30] C. Zhai and J. D. Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In
W. B. Croft, D. J. Harper, D. H. Kraft, and J. Zobel, editors,
SIGIR, pages 334–342. ACM, 2001.

[31] G. Zhou, Y. Liu, F. Liu, D. Zeng, and J. Zhao. Improving
question retrieval in community question answering using
world knowledge. In IJCAI, 2013.

