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Abstract. Dealing with uncertainty is a very important issue in description logics 

(DLs). In this paper, we present 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  a new probabilistic extension of 

𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  by supporting the belief interval in a single axiom or a set of axioms 

connected with conjunction (by ∧ ) or disjunction (by ∨ ) operators. The 

𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  semantics is based on 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙

𝑁  features which are a new alterna-

tive semantics for 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  having a finite structure and its number is always fi-

nite unlike classical models. 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  also supports terminological and asser-

tional probabilistic knowledge and the main reasoning tasks: satisfiability, deciding 

the probabilistic axiom entailment and computing tight interval for entailment are 

achieved by solving linear constraints system. A prototype is implemented using 

OWL API for knowledge base creation, Pellet for reasoning and LpSolve for solving 

the linear programs.  

Keywords: uncertainty, description logics, probabilistic reasoning, DL‐Lite, belief 

probability. 

1 Introduction 

Dealing with uncertainty in knowledge representation and reasoning is a very important 

issue and research direction. Uncertainty arises from various causes such as: automatically 

extracting and processing data, integration of information from different heterogeneous 

sources, inconsistency, incompleteness and incorrect information. Ontology merging, user 

or automatic annotations, ontology alignment and information retrieval are also important 

sources of uncertainty. An example of uncertain information is given as follows: “Roufai-

da is a postgraduate student with degree ≥  0.7”. From the main languages used to 

represent and reason about knowledge, there are description logics DLs [1] that are de-

signed for crisp and deterministic information. Thus, they are not able to deal with the 

unknown and therefore must be extended in order to comply with uncertain knowledge. 

DLs are the formal foundation of the ontology web language OWL which is a W3C stan-

dard used for knowledge modeling in the semantic web. To handle uncertainty, many 

approaches proposed DLs extensions such as, probabilistic approaches when the degree of 



 

uncertainty is interpreted as probability value. Most of them are difficult to use and based 

on classical models or use graphical models (such as: Bayesian Network) and don't sup-

porting the belief in terminological axioms. In this paper, 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  a novel proba-

bilistic extension of 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  [2] by using the belief probability is presented. An ex-

ample of probabilistic axiom is: a given professor is a PhD student with probability in 

[0.7,0.9]. We choose working with intervals instead of single values because the probabil-

ities can be extracted from different sources and different agents can compute different 

probabilities so intervals are a good choice for working under uncertainty. The 

𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  semantics is based on 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙

𝑁  features which are a new alternative 

semantics for 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁 . We use features instead of classical models because they have 

finite structure and its number is always finite unlike models. 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  supports 

terminological and assertional probabilistic knowledge. Unlike approaches with graphical 

models when the model must be fully specified, 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  needs only the belief 

interval in a single axiom or a set of axioms connected with ∧ or ∨. Using features with 

belief is a new contribution compared to the work in [13] which uses probabilistic inter-

pretation on all features but with conditional probability that are interpreted as statistical 

information and not belief. 

Section 2 presents the 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  language and the feature notion. In section 3 the 

proposed probabilistic extension is presented and the syntax and semantics of 

𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  knowledge base based on features are explained. Section 4 details the 

reasoning tasks supported by 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁 . The implementation and experimentation 

are given in section 5. The section 6 is for the related works where the conclusion and 

future works are presented in the last section. 

2 𝑫𝑳‐ 𝑳𝒊𝒕𝒆𝒃𝒐𝒐𝒍
𝑵  Language and the Feature Notion 

In this section, we start by defining 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁 , its syntax and semantics, then the notion 

of types and features are detailed. 

2.1 The 𝑫𝑳‐𝑳𝒊𝒕𝒆𝒃𝒐𝒐𝒍
𝑵  Language 

Description logics [1] abbreviated by DLs from a family of languages that are used for 

knowledge representation and reasoning. Their complexity increased with their expressiv-

ity. Therefore some researchers propose 𝐷𝐿‐ 𝐿𝑖𝑡𝑒 language [3,4] with very good computa-

tional property but less expressivity. It is behind OWL 2 QL which is OWL 2 profile. 

Thus, we focus on 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  [2] which is an expressive superset of 𝐷𝐿‐ 𝐿𝑖𝑡𝑒 where the 

latter is extended with full Booleans and number restrictions on roles. It contains or indi-

vidual, atomic concepts and atomic roles. General concepts and roles are defined as fol-

lows: 𝑅 ← 𝑃|𝑃−,  𝐵 ← ⊤ 𝐴 ≥ 𝑛 𝑅, 𝐶 ← 𝐵 ￢𝐶 𝐶1 ⊓ 𝐶2, where 𝐴 is an atomic concept, 𝑃 

is an atomic role, 𝑅 is a general role and 𝑛 ≥ 1. 𝐵 is called basic concept and 𝐶 is a gen-



eral concept. We abbreviate￢⊤, ≥ 1 𝑅,￢(￢𝐶1 ⊓ ￢𝐶2) and￢(≥ 𝑛 + 1 𝑅) respectively 

by ⊥, ∃𝑅, 𝐶1 ⊔ 𝐶2 and ≤ 𝑛 𝑅.  

A signature is a finite set 𝑆 = 𝑆𝐶 ∪ 𝑆𝑅 ∪ 𝑆𝐼 ∪ 𝑆𝑁  where 𝑆𝐶  is the set of atomic con-

cepts, 𝑆𝑅 is the set of atomic roles, 𝑆𝐼 is the set of individual names and 𝑆𝑁  is the set of 

natural numbers used in 𝑆𝐶  (1 is always in 𝑆𝑁). A 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  𝑇𝐵𝑜𝑥 𝑇 is a finite set of 

concept inclusions on the form 𝐶1 ⊑ 𝐶2 , where 𝐶1  and 𝐶2  are general concepts. A 

𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  𝐴𝐵𝑜𝑥 𝐴 is a finite set of assertions of the form 𝐶(𝑎) (concept membership) 

or 𝑅(𝑎, 𝑏) or ￢𝑅(𝑎, 𝑏) (role membership) where 𝑎 and 𝑏 are individuals names. The pair 

(𝑇, 𝐴) forms a 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁   knowledge base. The semantics of 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙

𝑁  is given by 

an interpretation 𝐼 = (△𝐼 , .𝐼 ) where △𝐼 is a non empty set called the interpretation domain 

and .𝐼  is an interpretation function that associates every individual 𝑎  with an element 

𝑎𝐼 ∈△𝐼 such that 𝑎𝐼 ≠ 𝑏𝐼 for every pair 𝑎, 𝑏 ∈ 𝑆𝐼 , every atomic concept 𝐴 with a subset 

(unary relation) 𝐴𝐼  of △𝐼  and every atomic role 𝑃 with a subset (binary relation) 𝑃𝐼  of 

△𝐼×△𝐼. The interpretation 𝐼 is extended to general concepts and roles. Given an interpre-

tation 𝐼 , we write 𝐼  satifies 𝐶1 ⊑ 𝐶2  denoted by 𝐼 ⊨ 𝐶1 ⊑ 𝐶2  if 𝐶1
𝐼 ⊆ 𝐶2

𝐼
, 𝐼 ⊨ 𝐶(𝑎)  if 

𝑎𝐼 ∈ 𝐶𝐼, 𝐼 ⊨ 𝑅(𝑎, 𝑏) if  𝑎𝐼 , 𝑏𝐼 ∈ 𝑅𝐼 . 𝐼 satisfies a 𝑇𝐵𝑜𝑥 𝑇 if 𝐼 satisfies every inclusion in 

𝑇, 𝐼 satisfies a 𝐴𝐵𝑜𝑥 𝐴 if it satisfies each assertion in 𝐴. Given a knowledge base 𝐾 =
 𝑇, 𝐴  and an interpretation 𝐼, 𝐼 is called a model of 𝐾 if 𝐼 satisfies 𝑇 and 𝐴. A knowledge 

base 𝐾 is satisfiable if it has at least one model. For a concept 𝐶, we say that 𝐾 satisfies 𝐶 

if there is a model of 𝐾 satisfying 𝐶. For concept inclusion or assertion 𝑥, we say that 𝑥 is 

entailed by 𝐾 and we write 𝐾 ⊨ 𝑥 if 𝑥 is satisfied by every model of 𝐾. 

Terminological Box 𝑇: 

1. 𝑃𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 
2. 𝐶𝑜𝑢𝑟𝑠𝑒 ⊑ ￢𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊓ ￢𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 

3. ∃𝑡𝑒𝑎𝑐 ⊑ 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 

4. ∃𝑡𝑒𝑎𝑐− ⊑ 𝐶𝑜𝑢𝑟𝑠𝑒 

Assertion Box 𝐴: 

5. 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟(FOFO) 
6. 𝐶𝑜𝑢𝑟𝑠𝑒(DESCRIPTION LOGICS) 
7. 𝑡𝑒𝑎𝑐(FOFO, DESCRIPTION LOGICS) 

Fig. 1. An example of 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  knowledge base 

Example 1. An example of 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  knowledge base 𝐾 = 〈𝑇, 𝐴〉 is presented in fig.1 

which contains the atomic concepts 𝑆𝑡𝑢𝑑𝑒𝑛𝑡, 𝑃𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡, 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 and 𝐶𝑜𝑢𝑟𝑠𝑒. It 

also contains the atomic role 𝑡𝑒𝑎𝑐. The TBox 𝑇 tells that all PhD students are students 

(1) and  a course is not a professor or a student. It also says that the atomic role 𝑡𝑒𝑎𝑐 has 

𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 as domain (3) and 𝐶𝑜𝑢𝑟𝑠𝑒 as range (4). The ABox 𝐴 defining FOFO as a pro-

fessor teaches DESCRIPTION LOGICS   (5) (6) (7). The signature of 𝐾  is 𝑆𝐶 ∪ 𝑆𝑅 ∪ 𝑆𝐼 ∪ 𝑆𝑁 

where: 𝑆𝐶 = {𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟, 𝑆𝑡𝑢𝑑𝑒𝑛𝑡, 𝑃𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡, 𝐶𝑜𝑢𝑟𝑠𝑒} , 𝑆𝑅 = {𝑡𝑒𝑎𝑐} , 𝑆𝐼 =
{FOFO, DESCRIPTION LOGICS},  𝑆𝑁 = {1}. 

2.2 𝑫𝑳‐ 𝑳𝒊𝒕𝒆𝒃𝒐𝒐𝒍
𝑵  Features 

Working with models has some difficulties. Domains have complex (possibly infinite) 

structures and DL knowledge bases may have infinitely many models. Thus an alternative 



 

semantics has been proposed called feature [15] which is prposed for the 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  

knowledge bases. In contrast to classical models the features have always finite structures 

and every knowledge base has a finite set of features. According to these motivations, we 

choose working with features instead of models. Another motivation is that we must con-

sider all possible knowledge base situations and the number of the latters must be finite. 

The feature notion is based on the type notion proposed in [8]. We begin by presenting 

types and then the feature is explained. 

Given a finite signature 𝑆, an 𝑆‐ 𝑡𝑦𝑝𝑒 𝜏 is a set of basic concepts over 𝑆, such that: 

⊤ ∈ 𝜏  and for any 𝑚, 𝑛 ∈ 𝑆𝑁  with 𝑚 < 𝑛 , 𝑅 ∈ 𝑆𝑅 ∪ {𝑃−|𝑃 ∈ 𝑆𝑅} , ≥ 𝑛 𝑅 ∈ 𝜏  implies 

≥ 𝑚 𝑅 ∈ 𝜏. In what follows, ⊤ ∈ 𝜏 is omitted for simplicity and 𝑆‐ 𝑡𝑦𝑝𝑒 will be specifies 

as 𝑡𝑦𝑝𝑒. Type 𝜏 satisfies basic concept 𝐵 if 𝐵 ∈ 𝜏, 𝜏 satisfies ￢𝐶 if 𝜏 not satisfies 𝐶, and 

𝜏 satisfies 𝐶1 ⊓ 𝐶2 if 𝜏 satisfies 𝐶1 and 𝐶2. The satisfaction relation is denoted by ⊨. We 

say that 𝜏  satisfies 𝐶1 ⊑ 𝐶2  ( 𝜏 ⊨ 𝐶1 ⊑ 𝐶2 ) if 𝜏 ⊨ ￢𝐶1  or 𝜏 ⊨ 𝐶2 . Thus 𝜏  satisfies a 

𝑇𝐵𝑜𝑥 𝑇 if 𝜏 satisfies every concept inclusion axiom in 𝑇. 

Types are sufficient to capture the semantics of the 𝑇𝐵𝑜𝑥, they are not able to capture 

the semantics of the 𝐴𝐵𝑜𝑥 because they are not suited for individual, thus they must be 

extended with additional set. The latter is dedicated to the concept and role memberships 

and is called a 𝑆‐𝐻𝑒𝑟𝑏𝑟𝑎𝑛𝑑 set for the 𝐴𝐵𝑜𝑥, defined in [15] as: 

Definition 1. An 𝑆‐𝐻𝑒𝑟𝑏𝑟𝑎𝑛𝑑 set 𝐻 (or 𝐻𝑒𝑟𝑏𝑟𝑎𝑛𝑑) is finite set of assertions of the form 

𝐵(𝑎) or 𝑃(𝑎, 𝑏), where 𝑎, 𝑏 ∈ 𝑆𝐼, 𝑃 ∈ 𝑆𝑅  and 𝐵 is a basic concept over 𝑆, satisfying the 

following conditions:  

 For each 𝑎 ∈ 𝑆𝐼 , ⊤(𝑎) ∈ 𝐻 , and ≥ 𝑛 𝑅(𝑎) ∈ 𝐻  implies ≥ 𝑚 𝑅(𝑎) ∈ 𝐻  for 𝑚, 𝑛 ∈ 𝑆𝑁 

with 𝑚 < 𝑛. 

 For each 𝑃 ∈ 𝑆𝑅 , 𝑃(𝑎, 𝑏𝑖) ∈ 𝐻  (𝑖 = 1, … , 𝑛)  implies ≥ 𝑚 𝑃(𝑎) ∈ 𝐻  for any 𝑚 ∈ 𝑆𝑁 

such that 𝑚 ≤ 𝑛. 

 For each 𝑃 ∈ 𝑆𝑅 , 𝑃(𝑏𝑖 , 𝑎) ∈ 𝐻 (𝑖 = 1, … , 𝑛) implies ≥ 𝑚 𝑃−(𝑎) ∈ 𝐻  for any 𝑚 ∈ 𝑆𝑁 

such that 𝑚 ≤ 𝑛. 

For a given individual 𝑎, the type 𝜏 =  𝐵1, …𝐵𝑗   (𝑗 ≥ 1) is called the type of 𝑎 in 𝐻, 

where 𝐵1(𝑎), …𝐵𝑗 (𝑎)  are all basic concept assertions associated with 𝑎  in 𝐻 . A 

𝐻𝑒𝑟𝑏𝑟𝑎𝑛𝑑  set 𝐻  satisfies 𝐶(𝑎)  if the type of 𝑎  in 𝐻  satisfies 𝐶 , 𝐻  satisfies 𝑃(𝑎, 𝑏)  or 

𝑃−(𝑏, 𝑎)  if 𝑃(𝑎, 𝑏) ∈ 𝐻  (the same is with ￢𝑃 𝑎, 𝑏  and ￢𝑃−(𝑏, 𝑎) ). 𝐻  satisfies an 

𝐴𝐵𝑜𝑥 𝐴 if 𝐻 satisfies every assertions in 𝐴. The pair 〈𝜏, 𝐻〉 can be used to provide a se-

mantics characterization but it is proved in [15] that using this pair is not sufficient to 

capture the connection between the 𝑇𝐵𝑜𝑥 and the 𝐴𝐵𝑜𝑥. Thus feature which is a set of 

types can provide a complete semantics of 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  knowledge bases. The notion of 

feature is defined in [15] as follows: 

Definition 2. Given a signature 𝑆 , an 𝑆‐ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒  (or simply 𝑓𝑒𝑎𝑡𝑢𝑟𝑒) is a pair 𝐹 =
〈Ξ, 𝐻〉, where Ξ is a non empty set of 𝑆‐ 𝑡𝑦𝑝𝑒𝑠 and 𝐻 an 𝑆‐𝐻𝑒𝑟𝑏𝑟𝑎𝑛𝑑 set, satisfying the 

following conditions: 

 ∃𝑃 ∈  ⋃Ξ if ∃𝑃− ∈  ⋃Ξ for each 𝑃 ∈ 𝑆𝑅 . 



 For each 𝑎 ∈ 𝑆𝐼 we have 𝜏 ∈ Ξ, where 𝜏 is the type of 𝑎 in 𝐻. 

Given a feature 𝐹 = 〈Ξ, 𝐻〉, 𝐹 satisfies 𝐶1 ⊑ 𝐶2 if every type in Ξ satisfies 𝐶1 ⊑ 𝐶2, 𝐹 

satisfies an assertion 𝐶(𝑎) or 𝑃(𝑎, 𝑏) if 𝐻 satisfies this assertion, 𝐹 satisfies a 𝑇𝐵𝑜𝑥 𝑇 if 𝐹 

satisfies every inclusion in 𝑇, 𝐹 satisfies an 𝐴𝐵𝑜𝑥 𝐴 if 𝐹 satisfies every assertion in 𝐴. 

Given a 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  knowledge base 𝐾 = 〈𝑇, 𝐴〉 and a feature 𝐹, 𝐹 is a model feature of 

𝐾 if 𝐹 satisfies 𝑇 and 𝐴. The set of all model features of 𝐾 is denoted by 𝑀𝑓(𝐾). For a 

concept inclusion or assertion 𝑥, 𝐾 ⊨𝑓 𝑥 if all model features of 𝐾 satisfies 𝑥 [15]. For 

further reading, the readers are referred to [8] and [15].  

Example 2. Given a feature 𝐹 = 〈Ξ, 𝐻〉  defined over the signature of 𝐾  such that: 

Ξ = {𝜏1, 𝜏2}  where: 𝜏1 =  𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟, ∃𝑡𝑒𝑎𝑐  and 𝜏2 = {∃𝑡𝑒𝑎𝑐−, 𝐶𝑜𝑢𝑟𝑠𝑒} , 𝐻 =
{𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 FOFO , 𝐶𝑜𝑢𝑟𝑠𝑒(DESCRIPTION LOGICS), 𝑡𝑒𝑎𝑐(FOFO, DESCRIPTION LOGICS)}.  

The feature 𝐹 = 〈Ξ, 𝐻〉 respects the conditions in definition 2 and the 𝐻𝑒𝑟𝑏𝑟𝑎𝑛𝑑 set 

respects the definition 1. Every individual 𝑎 in 𝑆𝐼 has a type in 𝐻, 𝜏1 is for FOFO and 𝜏2 is 

for DESCRIPTION LOGICS. 𝐹 is model feature of 𝐾 since every type satisfies every inclusion 

in 𝑇 and 𝐻 satisfies every assertion in 𝐴. Thus 𝐹 = 〈Ξ, 𝐻〉 ∈ 𝑀𝑓(𝐾).  

3 Probabilistic Extension based on Features Using Belief 

A novel probabilistic extension of 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  based on features is here presented. The 

𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  is extended to specify belief interval about its axioms. The extension is 

called 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁 . In this section, the syntax and semantics of 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙

𝑁  proba-

bilistic knowledge bases using 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  features are given. 

3.1 Syntax of 𝑷𝒓𝑫𝑳‐ 𝑳𝒊𝒕𝒆𝒃𝒐𝒐𝒍
𝑵  Probabilistic Knowledge Bases 

The Axioms in 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  knowledge bases can be annotated by belief degree interval. 

The following types of probabilistic axioms are supported:  

1. Probabilistic terminological axioms (𝑇𝐵𝑜𝑥 axioms): probabilistic concept inclusions 

(PCI for short) about relationship between concepts. Each one has the form (𝐶 ⊑
𝐷)[𝛼 ,𝛽 ] which signifies that we have a belief degree in [𝛼, 𝛽] that the concept 𝐷 is sub-

sumed by 𝐶 or 𝐶 is sub class of 𝐷. 

2. Probabilistic 𝐴𝐵𝑜𝑥 axioms: probabilistic assertions about concepts and roles instances: 

𝐶(𝑎)[𝛼 ,𝛽 ] means that we have a belief degree in [𝛼, 𝛽] that the individual 𝑎 is an in-

stance of the concept 𝐶. 𝑅(𝑎, 𝑏)[𝛼 ,𝛽 ] means that the individual 𝑎 is related with the in-

dividual 𝑏 by the role 𝑅 with a belief degree in [𝛼, 𝛽]. 
3. Using conjunction (∧) or disjunction (∨) are not allowed in DLs, thus the satisfaction of 

axioms that contain these notations is not defined for features. Therefore we define it as 

follow: for a given axiom 𝑥 = 𝑥1 ∧ 𝑥2 …∧ 𝑥𝑛  where each 𝑥𝑖  is a 𝐷𝐿‐𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  axiom, 

we say that a feature 𝐹 = 〈Ξ, 𝐻〉 satisfied 𝑥  if 𝐹 ⊨ 𝑥𝑖  for every 𝑥𝑖  in 𝑥  and we write 



 

𝐹 ⊨ 𝑥. We say that 𝐹 satisfies 𝑥 = 𝑥1 ∨ 𝑥2 …∨ 𝑥𝑛  if 𝐹 satisfies at least one 𝑥𝑖 . Belief 

about these axioms is allowed in 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁 . Thus, the probabilistic axiom 

𝑥 = (𝑥1 ∧ 𝑥2 …∧ 𝑥𝑛 )[𝛼 ,𝛽 ] means that we have a belief in [𝛼, 𝛽] that all 𝑥𝑖  can be satis-

fied in the same situation. The probabilistic axiom (𝑥1 ∨ 𝑥2 …∨ 𝑥𝑛  )[𝛼 ,𝛽 ] means that we 

have a belief in [𝛼, 𝛽] that at least one 𝑥𝑖  can be satisfied. This type of axioms is called 

probabilistic conjunction and disjunction axioms (𝑃𝐶𝐷𝐴 for short). Using ∧ is not al-

lowed with ∨ in the same 𝑃𝐶𝐷𝐴 axiom 

The values 𝛼 and 𝛽  are in [0,1] where 𝛼 ≤ 𝛽 , 𝛼 is the lower bound and 𝛽 is the upper 

bound. In 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁 , the probabilistic terminological box 𝑃𝑇 is a finite set of PCIs. 

The probabilistic assertions box 𝑃𝐴 is a finite set of probabilistic assertions. 𝑃𝐶𝐷𝐴 is a set 

of conjunction and disjunction axioms. A probabilistic knowledge base  𝐾𝐵  in 

𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  is defined as 𝐾𝐵 = 〈𝑇, 𝑃𝑇, 𝐴, 𝑃𝐴, 𝑃𝐶𝐷𝐴〉, the axioms of 𝑇⋃𝐴 are called 

certain axioms whereas the axioms in 𝑃𝑇⋃𝑃𝐴⋃𝑃𝐶𝐷𝐴 are uncertain axioms. Probabilistic 

Axiom with [1,1] are considered as certain axiom. Thus they are removed and added to 

𝑇⋃𝐴. A single belief value is allowed, thus in this case 𝛼 = 𝛽 (see axiom 10 in fig.2).  

To model a 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  probabilistic knowledge, we must have an ontology (𝑇 and 

𝐴) in 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  and then extend it by adding probabilistic axioms. 

Example 3. We present an example of probabilistic knowledge base 

𝐾𝐵 = 〈𝑇, 𝑃𝑇, 𝐴, 𝑃𝐴, 𝑃𝐶𝐷𝐴〉  in 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  which is an extension of 𝐾 = (𝑇, 𝐴)  in 

fig.1 with additional probabilistic axioms. Axioms numbered from 1 to 7 are the same in 

𝐾. The PTBox 𝑃𝑇 tells that the concept professor is a subclass of the concept PhD student 

with a belief degree in [0.44,0.65] (8). The 𝑃𝐴 defining RIDA and KAMEL as respectively a 

PhD student (9) and a professor (10) with belief degree respectively in [0.55,0.60] and 

[0.80,0.80]. The 𝑃𝐶𝐷𝐴 axiom 11 says that we have a belief degree in [0.45,0.67] that 

LOTFI is a professor and teacher of DISCRIPTION LOGICS. Axiom 12 tell that ALA is a PhD 

student or professor with a belief degree in [0.30,0.60]. 

Probabilistic Terminological Box 𝑃𝑇: 

8. (𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 ⊑ 𝑃𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡)[0.44,0.65] 

Probabilistic Assertion Box 𝑃𝐴: 

9. 𝑃𝑑𝑆𝑡𝑢𝑑𝑒𝑛𝑡(RIDA)[0.55,0.60] 

10. 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟(KAMEL)[0.80,0.80] 

Probabilistic Conjunction and Disjunction Axioms 𝑃𝐶𝐷𝐴: 

11. (𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟(LOTFI) ∧ 𝑡𝑒𝑎𝑐(LOTFI, DESCRIPTION LOGICS))[0.45,0.67] 

12. (𝑃𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡(ALA) ∨ 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟(ALA))[0.30,0.60] 

Fig. 2. An example of 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  probabilistic knowledge base  

3.2 Semantics of 𝑷𝒓𝑫𝑳‐ 𝑳𝒊𝒕𝒆𝒃𝒐𝒐𝒍
𝑵  Probabilistic Knowledge Bases 

Given a probabilistic axiom, the certain axiom is specified by removing the belief interval. 

The certain one of (𝐶 ⊑ 𝐷)[𝛼 ,𝛽 ] denoted by 𝑐𝑒𝑟( 𝐶 ⊑ 𝐷  𝛼 ,𝛽 ) is 𝐶 ⊑ 𝐷. Given a set of 

PCIs 𝑃𝑇, the certain set of 𝑃𝑇 denoted by 𝑐𝑒𝑟(𝑃𝑇) is a set of concept inclusions. Proba-



bilistic assertion and the set of probabilistic assertions 𝑃𝐴 are treated in the same manner. 

Because every axiom in 𝑃𝐶𝐷𝐴 has at least two axioms (∨ or ∧ must connects more than 

an axiom), a set of certain axioms can be extracted from every 𝑃𝐶𝐷𝐴 axiom, this set can 

includes concept inclusions and assertions. Therefore two functions: 𝑐𝑒𝑟_𝑐 and 𝑐𝑒𝑟_𝑑 are 

defined to extract these sets where 𝑐𝑒𝑟_𝑐((𝑥1 ∧ 𝑥2 …∧ 𝑥𝑛 )𝛼) is a set contains all 𝑐𝑒𝑟(𝑥𝑖) 

(all 𝑥𝑖  must be satisfied), and 𝑐𝑒𝑟_𝑑((𝑥1 ∨ 𝑥2 …∨ 𝑥𝑛  )𝛼)  is a set contains at least a 

𝑐𝑒𝑟(𝑥𝑖) (at least one 𝑥𝑖  must be satisfied). Thus 𝑐𝑒𝑟(𝑃𝐶𝐷𝐴) is a set contains all sets of 

certain axioms of all 𝑃𝐶𝐷𝐴 axioms. 

A set of deterministic knowledge bases can be extracted from 𝐾𝐵, everyone must con-

tains 𝑇 ∪ 𝐴 and it can contains selected axioms from 𝑐𝑒𝑟(𝑃𝑇) ∪ 𝑐𝑒𝑟(𝑃𝐴) and selected 

sets of axioms from 𝑐𝑒𝑟(𝑃𝐶𝐷𝐴). Axioms from 𝑐𝑒𝑟(𝑃𝑇) ∪ 𝑐𝑒𝑟(𝑃𝐴) are added directly. 

For every selected set from 𝑐𝑒𝑟(𝑃𝐶𝐷𝐴), all its certain axioms are added. Each determinis-

tic knowledge base respects the 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  language and every satisfiable knowledge 

base is called 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑏𝑎𝑠𝑒. 

Definition 3 (𝒑𝒐𝒔𝒔𝒊𝒃𝒍𝒆 𝒌𝒏𝒐𝒘𝒍𝒆𝒅𝒈𝒆 𝒃𝒂𝒔𝒆𝒔 ). Given a probabilistic knowledge base 

𝐾𝐵 = 〈𝑇, 𝑃𝑇, 𝐴, 𝑃𝐴, 𝑃𝐶𝐷𝐴〉. The possible knowledge bases of 𝐾𝐵, denoted by 𝑃𝑜𝑠𝐾𝐵 is 

defined as follows: 𝑃𝑜𝑠𝐾𝐵 = {𝐾 = 〈𝑇 ∪ 𝑇 ′ , 𝐴 ∪ 𝐴′ 〉|𝐾 is satisfiable where 𝑇 ′  (resp. 𝐴′ ) 

contains selected axioms from  𝑐𝑒𝑟 𝑃𝑇  (resp. 𝑐𝑒𝑟 𝑃𝐴 ) and concept inclusions (resp. 

assertions) in the selected certain sets from 𝑐𝑒𝑟(𝑃𝐶𝐷𝐴)}. 

In other words, the possible knowledge base 𝐾 is a possible consistent situation of 𝐾𝐵. 
In this situation, the actual world is a model of 𝐾. The satisfiability condition is important 

for preventing inconsistencies and contradictions that may occur between the axioms in 

𝑐𝑒𝑟(𝑃𝑇), 𝑐𝑒𝑟(𝑃𝐴) and 𝑐𝑒𝑟(𝑃𝐶𝐷𝐴). If there are probabilistic axioms that have certain 

axioms which are inconsistent with 𝑇 ∪ 𝐴 then they can’t participated in creating 𝑃𝑜𝑠𝐾𝐵, 

thus they are omitted and do not considered in reasoning.  

Using definition 3, another notion is defined which is 𝑡𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒:    

Definition 4  𝒑𝒐𝒔𝒔𝒊𝒃𝒍𝒆 𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔 . Given a probabilistic knowledge base 𝐾𝐵 =
〈𝑇, 𝑃𝑇, 𝐴, 𝑃𝐴, 𝑃𝐶𝐷𝐴〉, let 𝑃𝑜𝑠𝐾𝐵 be the set of all possible knowledge bases of 𝐾𝐵. The 

possible features related to 𝐾𝐵 , denoted by 𝑃𝑜𝑠ℱ  is defined as follows: 𝑃𝑜𝑠ℱ =
{𝐹|𝐹 𝑖𝑠 𝑎 𝑚𝑜𝑑𝑒𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝐾 𝑠𝑢𝑐 𝑡𝑎𝑡 𝐾 ∈ 𝑃𝑜𝑠𝐾𝐵}. 

From the definition, 𝑃𝑜𝑠ℱ contains all model features of all possible knowledge bases 

in 𝑃𝑜𝑠𝐾𝐵. Like models, the possible features are used to describe the current  𝐾𝐵 situa-

tion. The signature of probabilistic knowledge base 𝐾𝐵  is defined as a finite set 𝑆 =
𝑠𝑖𝑔(𝑇) ∪ 𝑠𝑖𝑔(𝑐𝑒𝑟 𝑃𝑇 ) ∪ 𝑠𝑖𝑔(𝐴) ∪ 𝑠𝑖𝑔(𝑐𝑒𝑟 𝑃𝐴 ) ∪ 𝑠𝑖𝑔(𝑐𝑒𝑟𝑡 𝑃𝐷𝐶𝐴 ). 

The semantics of 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  probabilistic knowledge bases is given by probabilis-

tic interpretations. A probabilistic interpretation 𝑃𝑟 is a probability function on all possi-

ble features in 𝑃𝑜𝑠ℱ (𝑃𝑟: 𝑃𝑜𝑠ℱ →  0,1 ) such the sum of all 𝑃𝑟 𝐹  is equal to 1. We 

have a probability distribution over 𝑃𝑜𝑠ℱ and 𝑃𝑟 distributed its probability values only on 

possible features i.e. considering only possible situations of 𝐾𝐵. The probability of any 

axiom 𝑥 is the sum of the probabilities associated with all features that satisfy 𝑥: 𝑃𝑟 𝑥 =



 

 𝑃𝑟(𝐹)𝐹∈𝑃𝑜𝑠ℱ 𝑎𝑛𝑑  𝐹⊨𝑥 . A probabilistic interpretation 𝑃𝑟  satisfies a PCI (𝐶 ⊑ 𝐷)[𝛼 ,𝛽 ] 

denoted by 𝑃𝑟 ⊨ (𝐶 ⊑ 𝐷)[𝛼 ,𝛽 ]  if and only if 𝑃𝑟 𝐶 ⊑ 𝐷 ∈ [𝛼, 𝛽] . 𝑃𝑟  satisfies a set of 

PCIs 𝑃𝑇 denoted by 𝑃𝑟 ⊨ 𝑃𝑇 if 𝑃𝑟 satisfies all elements in 𝑃𝑇. The same is with a prob-

abilistic assertion and a set of probabilistic assertions 𝑃𝐴. 𝑃𝑟 satisfies 𝑃𝐷𝐶𝐴 denoted by 

𝑃𝑟 ⊨ 𝑃𝐷𝐶𝐴 if 𝑃𝑟 satisfies all elements in 𝑃𝐶𝐷𝐴. 𝑃𝑟 satisfies a certain concept inclusion 

𝐶 ⊑ 𝐷, denoted by 𝑃𝑟 ⊨ 𝐶 ⊑ 𝐷 if and only if for every feature with 𝑃𝑟 𝐹 > 0, we have 

𝐹 ⊨ 𝐶 ⊑ 𝐷. 𝑃𝑟 satisfies a set of concept inclusions 𝑇 denoted by 𝑃𝑟 ⊨ 𝑇 if 𝑃𝑟 satisfies all 

elements in 𝑇. The same is with certain assertion and certain set of assertions 𝐴. There-

fore, a probabilistic interpretation 𝑃𝑟 is a model of probabilistic knowledge base 𝐾𝐵 =
〈𝑇, 𝑃𝑇, 𝐴, 𝑃𝐴, 𝑃𝐶𝐷𝐴〉 if and only if 𝑃𝑟 satisfies 𝑇, 𝐴 , 𝑃𝑇, 𝑃𝐴 and 𝑃𝐷𝐶𝐴. 𝐾𝐵 is satisfiable 

(or consistent) if there is at least a model of 𝐾𝐵. Given a probabilistic axiom 𝑥[𝛼,𝛽 ], 𝐾𝐵 

entails 𝑥[𝛼 ,𝛽 ] , denoted by 𝐾𝐵 ⊨ 𝑥[𝛼 ,𝛽 ]  if for every 𝑃𝑟  such that 𝑃𝑟 ⊨ 𝐾𝐵  we have 

𝑃𝑟 ⊨ 𝑥[𝛼,𝛽 ]. Before checking the satisfiability of 𝐾𝐵, 〈𝑇, 𝐴〉 must be consistent. 

Example 4. The 𝐾𝐵 in fig.2 has the signature 𝑆 = 𝑆𝐶 ∪ 𝑆𝑅 ∪ 𝑆𝐼 ∪ 𝑆𝑁  where: 𝑆𝐶 , 𝑆𝑅, and 

𝑆𝑁  are the same of 𝐾 in fog.1 but 𝑆𝐼 = {FOFO, ALA, LOTFI , RIDA, KAMEL}. The set 𝑃𝑜𝑠𝐾𝐵 of 

𝐾𝐵contains for example 𝐾1 = 〈𝑇 ∪ {𝑐𝑒𝑟 8 }, 𝐴 ∪ {𝑐𝑒𝑟 9 , 𝑐𝑒𝑟(10)}〉. We observe that 𝐾1 

is satisfiable and it respects the expressiveness of 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁 . 

4 Reasoning and Inferences Tasks 

The main reasoning and inference tasks for 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  are the following: 

 Probabilistic Knowledge Base Satisfiability (𝑃𝐾𝐵𝑆𝐴𝑇): Given a probabilistic know-

ledge base 𝐾𝐵 = 〈𝑇, 𝑃𝑇, 𝐴, 𝑃𝐴, 𝑃𝐶𝐷𝐴〉, decide whether 𝐾𝐵 is satisfiable. 

 Tightest Belief interval for Logical Entailment  (𝑇𝐵𝐼𝐿𝑜𝑔𝐸𝑛): Given a probabilistic 

knowledge base 𝐾𝐵 = 〈𝑇, 𝑃𝑇, 𝐴, 𝑃𝐴, 𝑃𝐶𝐷𝐴〉 and an axiom 𝑥, compute the tightest be-

lief interval [𝛼, 𝛽] such tha𝑡 𝐾𝐵 ⊨ 𝑥[𝛼,𝛽 ]. 

 Logical Entailment ( 𝐿𝑜𝑔𝐸𝑛 ): Given a probabilistic knowledge base 𝐾𝐵 =
〈𝑇, 𝑃𝑇, 𝐴, 𝑃𝐴, 𝑃𝐶𝐷𝐴〉  and probabilistic axiom 𝑥[𝛼 ,𝛽 ]  associated with belief interval 

[𝛼, 𝛽], decide whether 𝐾𝐵 ⊨ 𝑥[𝛼 ,𝛽 ] or not. 

The first task is achieved by using theorem 1. The second and the thirds uses theorem 

2. Similarly to [9], the reasoning tasks use a system of linear constraints. 

Theorem 1. Let 𝐾𝐵 = 〈𝑇, 𝑃𝑇, 𝐴, 𝑃𝐴, 𝑃𝐶𝐷𝐴〉 a probabilistic KB. This latter is satisfiable if 

the next linear constraints system over variables 𝑝𝐹 (𝐹 ∈ 𝑝𝑜𝑠ℱ) is solvable: 

 𝑝𝐹 ≥ 𝛼
𝐹∈𝑝𝑜𝑠ℱ,𝐹⊨𝑥

 (𝑜𝑛𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐 𝑥 𝛼 ,𝛽  𝑖𝑛 𝑃𝑇 𝑎𝑛𝑑 𝑃𝐴 𝑎𝑛𝑑 𝑃𝐶𝐷𝐴) 

 𝑝𝐹 ≤ 𝛽
𝐹∈𝑝𝑜𝑠ℱ,𝐹⊨𝑥

 (𝑜𝑛𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐 𝑥 𝛼 ,𝛽  𝑖𝑛 𝑃𝑇 𝑎𝑛𝑑 𝑃𝐴 𝑎𝑛𝑑 𝑃𝐶𝐷𝐴) 

 𝑝𝐹 = 1
𝐹∈𝑝𝑜𝑠ℱ

 



𝑝𝐹 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐹 ∈ 𝑝𝑜𝑠ℱ  

Proof. The solver tries to find assignments to every 𝑝𝐹 such that all constraints are satis-

fied. Every 𝑝𝐹 is considered as probability of 𝐹 ∈ 𝑝𝑜𝑠ℱ. Thus the solver tries to find a 

probability function on 𝑝𝑜𝑠ℱ that respects the constraints. The two first constraints are to 

respect the satisfiability of every probabilistic axiom in 𝐾𝐵 i.e., the sum of probabilities of 

the features that satisfy 𝑥 is in [𝛼, 𝛽]. The third one is to respect that the sum of all proba-

bilities associated with all features is 1. The condition of positive probabilities is specified 

in the last constraint. By respecting the two last constraints, the condition that the proba-

bility ∈ [0,1] is also respected. If the solver get a solution i.e., value for every 𝑝𝐹 then the 

solution respects the satisfiability conditions and 𝐾𝐵  has a model 𝑃𝑟  that assigns for 

every 𝐹 ∈ 𝑝𝑜𝑠ℱ a value 𝑝𝐹 . Thus 𝐾𝐵 is satisfiable. We can proof by the same manner 

that if 𝐾𝐵 is satifiable then the previous system of linear constraints is solvable. 

Theorem 2. Given a probabilistic knowledge base 𝐾𝐵 = 〈𝑇, 𝑃𝑇, 𝐴, 𝑃𝐴, 𝑃𝐶𝐷𝐴〉. Suppose 

𝐾𝐵 is satisfiable. Let 𝑥 be an axiom. The values 𝛼 and 𝛽 such that 𝐾𝐵 ⊨ 𝑥[𝛼 ,𝛽 ] are taken 

over all possible solutions of the system in Theorem 1 as follow: 

𝛼 = 𝑚𝑖𝑛 𝑝𝐹     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑛 𝑇𝑒𝑜𝑟𝑒𝑚 1
𝐹∈𝑝𝑜𝑠ℱ,𝐹⊨𝑥

 

𝛽 = 𝑚𝑎𝑥  𝑝𝐹
𝐹∈𝑝𝑜𝑠ℱ,𝐹⊨𝑥

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑛 𝑇𝑒𝑜𝑟𝑒𝑚 1 

Proof. Suppose that 𝐾𝐵 is satisfiable, the system in Theorem 1 has at least one solution 

i.e., probabilistic interpretation of 𝐾𝐵. Given an axiom 𝑥, for every solution i.e., probabil-

istic interpretation, the solver computes the sum of all values assigned with features that 

satisfy 𝑥. To minimization, it keeps 𝛼 and 𝛽 for the maximization. Thus, in every interpre-

tation 𝑃𝑟 we have 𝑃𝑟 𝑥 ∈ [𝛼, 𝛽] so 𝐾𝐵 ⊨ 𝑥[𝛼 ,𝛽 ]. 

The interval computed by theorem 2 is called the tightest belief interval i.e., 𝛼 (resp., 𝛽) is 

the min (resp., max) of 𝑃𝑟(𝑥) subject to all models 𝑃𝑟 of 𝐾𝐵. Theorem 2 can be used to 

decide if a given probabilistic axiom is entailed by a satisfiable probabilistic 𝐾𝐵. Thus 

𝐾𝐵 ⊨ 𝑥[𝛼 ,𝛽 ] if the tightest belief interval that 𝑥 is entailed by 𝐾𝐵 is in [𝛼, 𝛽]. 

Example 5. From the example 3, if 𝐾𝐵 is satisfiable using Theorem 1, then we can use 

theorem 2 to compute 𝑇𝐵𝐼𝐿𝑜𝑔𝐸𝑛 of some given axioms such as: computing the tightest 

belief interval [𝛼, 𝛽] such that 𝐾𝐵 ⊨ 𝑃𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡(KAMEL)[𝛼 ,𝛽 ], finding the 𝑇𝐵𝐼𝐿𝑜𝑔𝐸𝑛of 

𝑃𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑ 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟. We can also decide whether 𝑃𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡 LOTFI [0.4,0.6] is a 

logical consequence of 𝐾𝐵. 

5 Implementation and Experimentation  

A prototype of 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  is implemented in Java with Eclipse, using Pellet [18] for 

reasoning, owlapi [19] for knowledge base creation, and LpSolve 5.5 [20] for solving the 



 

linear programs. 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  supportes only concept inclusion, concept and role asser-

tions. In owlapi the previous axioms are respectively created by OWL.𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓 , 

OWL. 𝑐𝑙𝑎𝑠𝑠𝐴𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛 , OWL. 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝐴𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛 . For example 𝑃𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑
𝑆𝑡𝑢𝑑𝑒𝑛𝑡 is represented by OWL.𝑠𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓(𝑃𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡, 𝑆𝑡𝑢𝑑𝑒𝑛𝑡). Therefore 𝑇, 𝐴, 

𝑃𝑇, 𝑃𝐴 and 𝑃𝐶𝐷𝐴 are created using owlapi where every probabilistic axiom is associated 

with its belief  interval. 

During the building of the possible knowledge bases, Pellet reasoner is used to test the 

satisfiability of the latters. For a given probabilistic 𝐾𝐵, we can generate 2 𝑃𝑇 + 𝑃𝐴 + 𝑃𝐶𝐷𝐴  

knowledge base, thus the one in fig.2 has 25 = 32 knowledge bases where all of the lat-

ters are consistent so  𝑃𝑜𝑠𝐾𝐵 = 32 (tested by the 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  prototype). We con-

clude that in worst cases, we have  𝑃𝑜𝑠𝐾𝐵 ≤ 2 𝑃𝑇 + 𝑃𝐴 + 𝑃𝐶𝐷𝐴 . For every 𝐾 in 𝑃𝑜𝑠𝐾𝐵, 

using its signature 𝑠𝑖𝑔(𝐾), we compute all types which satisfy its TBox, everyone is a set 

of basic concepts represented using owlapi by a set of OWLClassExpression. From the 

ABox of 𝐾, all basic concept and basic role assertions are extracted using Pellet. Thus 

these assertions are used create the 𝐻𝑒𝑟𝑏𝑟𝑎𝑛𝑑 set 𝐻 of 𝐾 according to the definition 1 (𝐻 

is created in owlapi as owl ontology). All possible combinations of the types associated 

with 𝐾 are generated. For every individual in 𝑠𝑖𝑔(𝐾), its type in 𝐻 is extracted and added 

to every combination. The latter is tested if it forms with 𝐻 a feature of 𝐾 using. Every 

element in 𝑃𝑜𝑠𝐾𝐵 is treated with the same manner and all features are added to 𝑃𝑜𝑠𝐹.  

 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  Probabilistic DL-Lite in [13] 

Semantics based on features Supported. Probabilistic 

interpretation on only poss-

ible features.  

Supported. Probabilistic in-

terpretation on all features of 

a given signature.   

Terminological probabilis-

tic knowledge 

Supports the belief in con-

cept inclusions. 

Supports the conditional 

constraints.  

Probabilistic Assertions Supported  Supported 

Conjunction  axioms supported Not supported 

Disjunction axioms Supported  Not supported 

Reasoning tasks Strong conclusions by com-

puting the tightest belief 

interval. Deciding entail-

ment is supported. The 

reasoning tasks use linear 

programming for efficient 

computation.    

Weak conclusions. It uses an 

inference rules that get only 

lower bounds. In most cases, 

the upper bound is 1. The 

inferences cover only special 

cases. The tightest interval is 

not supported 

Implementation and evalua-

tion   

A prototype is implemented 

and evaluated 

No implementation and eval-

uation 

Table 1. Comparison between 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  and the work in [13] 

One feature can model more than one knowledge base, thus the number of all possible 

features can be reduced. Using the prototype, we found that the probabilistic KB in fig.2 

has 1548 possible features and this proved that the number of features is finite.  The linear 



program Lp in theorem 1 is created using LpSolve, the variables number is  𝑃𝑜𝑠𝐹  be-

cause every 𝐹 ∈ 𝑃𝑜𝑠𝐹  is associated with one variable 𝑝𝐹 . Using 𝑃𝑇 , 𝑃𝐴 , 𝑃𝐶𝐷𝐴  and 

𝑃𝑜𝑠𝐹, two constraints are created for every axiom 𝑥, one for its interval lower bound and 

one for the upper bound. The coefficient of every variable 𝑝𝐹 in these constraints can be 1 

(𝐹 satisfies 𝑥) or 0 (𝐹 does not satisfy 𝑥). The Lp for the KB in fig.2 has 1548 variables 

and 12 constraints (10 for the probabilistic axioms).  

Example 6. Using the prototype and the probabilistic KB in fig.2, we have found 

that: 𝐾𝐵 ⊨ 𝑃𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡(KAMEL)[0.24,0.65] , (𝑃𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊑ 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟)[0.0,0.45]  and 

𝑃𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡 LOTFI [0.40,0.60] is not entailed by KB because the tightest belief interval of 

𝑃𝐷𝑆𝑡𝑢𝑑𝑒𝑛𝑡 LOTFI  is [0.45,0.67]. 
For comparison, our work and the one in [13] are used (see table 1) because the only 

probabilistic extension of 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  which based on features is in [13]. The goal of 

comparison is to understand the points of difference between the two works. We have not 

presented this section in detail because of the limitation in paper length. 

6 Related Works 

Closest to our work, we have [13] where the 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  is extended to use conditional 

constraints on concepts i.e., statistical information about concepts, it supports probabilistic 

terminological knowledge and probabilistic assertions about concepts and roles. The 

probabilistic interpretation is defined on the set of all features of a given signature, unlike 

our work which uses only the possible features instead of all features. In [13], no reaso-

ning tasks and implementation are presented and the belief in concept inclusion is not 

supported. Its inferences are weak and consider only special cases. PrDLs [14] is a proba-

bilistic description logic which supports the belief in DL axioms. From the probabilistic 

knowledge, similarly to our approach, the last reference extracts a set of certain know-

ledge bases but using a discrete probability distribution on all possible worlds. The author 

in [9] who proposed P-SHOIN(D), P-SHIQ(D) and P-DL-Lite that are probabilistic exten-

sions of the DL-SHOIN(D), SHIF(D) and DL-Lite respectively, he uses the lexicographic 

entailment and his work is based on Nilsson’s probabilistic logic [11]. He defines a prob-

abilistic interpretation on possible objects (everyone contains concepts that are free of 

probabilistic individuals), one for terminological probabilistic knowledge and one for 

every probabilistic individual. PRONTO reasoner [6] is based on the works in [9]. Unlike 

our work, [9] does not allow probabilistic role assertions and it uses a separation between 

probabilistic interpretations for the individuals and this makes difficulties to draw conclu-

sions about relations between individuals. Another work is in [22] where probabilistic 

DLs based on the DL-ALC are presented. The work does not allow probabilistic termino-

logical knowledge and its semantics is subjective by considering the probabilities as be-

lieve degrees. The authors use probability distributions on possible worlds where every-

one is associated with a FOL interpretation. The quasi model is defined to check the con-



 

sistency of the probabilistic KB. This model shares some similarities with the feature 

because the former is a pair of two sets of types one contains ABox types and the other 

contains types for the individual. Contrary to this model the feature includes TBox and 

ABox types and this is important to capture the KB semantics. The authors in [22] use 

linear constraint systems that help to construct the worlds. In contrast, our work uses only 

one linear constraint system after the features construction. The work in [16] allows for 

epistemic and statistical probabilistic annotations in DL axioms by transforming the anno-

tated axioms to predicate logics. The authors consider the epistemic probability as belief 

degree. The BUNDLE [17] is a reasoner for the work in [16]. Other set of probabilistic 

DLs use graphical models such as Bayesian network BN as underlying probabilistic for-

malisms, some of these works are [7] and [5]. P-CLASSIC [7] is a probabilistic DL based 

on BN that supports terminological probabilistic knowledge about concepts and roles but 

does not allow assertional knowledge about concepts and roles. The work in [5] is an 

extension of DL-Lite that uses BN towards tractable probabilistic DL. For further reading 

about probabilistic uncertainty in semantic web, readers are referred to [10], [12] and [21]. 

7 Conclusion and Future Works 

In this paper, 𝑃𝑟𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  a novel probabilistic extension for 𝐷𝐿‐𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙

𝑁  knowledge 

bases is presented. The proposed work allows belief interval in a single 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  

axiom or a set of 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  axioms that are connected with ∧ or ∨. Its semantics is 

based on 𝐷𝐿‐ 𝐿𝑖𝑡𝑒𝑏𝑜𝑜𝑙
𝑁  features. Both terminological and assertion probabilistic knowledge 

are supported. Using this work, meaningful conclusions can be drawn from the probabilis-

tic knowledge. Analysing the computational complexity of our work and implementing 

efficient reasoner are the main future work directions. Another future work consists in 

using specific application domains such as: medical. 
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