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ABSTRACT
Processing models efficiently is an important productivity
factor in Model-Driven Engineering (MDE) processes. In or-
der to optimize a toolchain to meet scalability requirements
of complex MDE scenarios, reliable performance measures
of different tools are key enablers that can help selecting the
best tool for a given workload. To enable systematic and re-
producible benchmarking across different domains, scenar-
ios and workloads, we propose MONDO-SAM, an extensi-
ble MDE benchmarking framework. Beyond providing eas-
ily reusable features for common benchmarking tasks that
are based on best practices, our framework puts special em-
phasis on metrics, which enables scalability analysis along
different problem characteristics. To illustrate the practical
applicability of our proposal, we demonstrate how different
variants of a model validation benchmark featuring several
MDE tools from various technological domains have been
integrated into the system.

1. INTRODUCTION
As Model-Driven Engineering (MDE) has gained mainstream
momentum in complex system development domains over
the past decade, scalability issues associated to MDE tools
and technologies are nowadays well known [6]. To address
these challenges, the community has responded with a mul-
titude of benchmarks.

The majority of these efforts have been created by tool
providers for the purpose to measure performance develop-
ments of specific engines [8, 2]. As a notable exception,
the Transformation Tool Contest (TTC) [1] attempts cross-
technology comparison by proposing multiple cases which
are solved by the authors of (mainly EMF based) MDE tools.
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TTC cases focus on measuring query and transformation ex-
ecution time against instance models of increasing size. TTC
promotes reproducibility by providing pre-configured virtual
machines on which individual tools can be executed; how-
ever, the very nature of this environment and the limited
resources make precise comparison difficult.

Benchmarks are also used outside of the MDE community.
The SP2Bench [7] and Berlin SPARQL Benchmark (BSBM)
[3] are SPARQL benchmarks over semantic databases (triple
stores). The first uses RDF models based on the real world
DBLP bibliography database, while the latter is centered
around an e-commerce case study. Both benchmarks scale
up in the size of models (up to 25M and 150B elements),
however SP2Bench does not consider model modifications,
and BSBM does not detail query and instance model com-
plexity. SPLODGE [4] is another similar approach, where
SPARQL queries were generated systematically, based on
metrics for a predefined dataset. Queries are scaled up
to three navigations (joins), but other metrics as the com-
plexity of the instance model were not investigated. The
common technological characteristics of these benchmarks is
that they are frequently run on very large computer systems
that are not accessible to most users, or rely on commercial
software components that are hard to obtain.

To summarize, currently available graph based benchmarks
are affected by two main issues: (i) technologically, they are
frequently built on virtualized architectures or have exotic
dependencies, making measurements hard to reproduce in-
dependently; and (ii) conceptually, they typically only ana-
lyze measurement results against a limited view of the prob-
lem: the execution time of a fixed task scaled against in-
creasing model size. As a result, the relative complexity of
current benchmarks can not be precisely quantified, which
makes them difficult to compare them to each other.

In previous work [5], we have found that other metrics (such
as various query complexity measures, instance model char-
acteristics, and the combination of these) can affect results
very significantly. Building on these results, in this pa-
per we propose the extensible MONDO-SAM framework
that is integrated into the official MONDO benchmark open
repository1. MONDO-SAM provides reusable benchmark-

1http://opensourceprojects.eu/p/mondo/
d31-transformation-benchmarks/
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Figure 1: Benchmarking process.

ing primitives (like metrics evaluation, time measurement,
result storage) that can be flexibly organized into bench-
marking workflows that are specific to a given case study.
MONDO-SAM also provides an API so that tehnologically
different tools can be integrated into the framework in a uni-
form way. A unique emphasis of the framework is built-in
support for metrics calculation that enables characteriza-
tion of the benchmarking problems as published in [5]. The
built-in reporting facility allows to investigate the scalabil-
ity of MDE tools along different metrics in diagrams. Fi-
nally, the entire framework and integrated case studies can
be compiled and run using the Maven build system, mak-
ing deployment and reproducible execution in a standard,
Java-enabled computing environment feasible.

2. OVERVIEW OF THE FRAMEWORK
2.1 A process model for MDE benchmarks
The benchmarking process for MDD applications is depicted
in Fig. 1. Inputs of the benchmark are the instance model,
queries run on the instance model, the transformation rules
or modification logics and a scenario definition (or workflow)
describing execution sequences. In this case, scenario can de-
scribe MDD use cases (like model validation, model trans-
formation, incremental code generation), including warmup
and teardown operations, if required. Inputs can also be
derived from real-world applications, or are synthetically
generated providing complete control over the benchmark.
Complexity of the input is characterized by metrics, while
scenario execution implementations are instrumented to mea-
sure resource consumption (wall-clock times, memory and
I/O usage). Finally, these measured values and calculated
metrics are visualized on diagrams automatically to find the
fastest tool, or to identify performance improvements of a
specific tool.

2.2 Architecture
The benchmark framework consisting of four components is
depicted in Fig. 2. The generator component allows syn-
thetic generation of benchmark inputs. The core module
handles configuration, domain-specific modules describe gen-
eration method of input data (like generation of instance
models, queries), and language-specific modules serialize gen-
erated logical artifacts into files (like EMF models or OCL
queries). The selected domain constrains languages, as do-
main description concepts must be supported. For exam-
ple transitivity or multi-level metamodeling is not supported
by EMF, but the latter is required by the e-commerce case
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study of BSBM. Generated models should be semantically
equivalent, however, it is a question whether structural equal-
ity should be preserved. E.g. in certain cases EMF models
must have a dedicated container object with containment
relations to all objects which is not required in RDF.

2.3 Core features

Benchmark component. The benchmark component (in Fig. 2)
measures performance of different tools for given cases. A
case can be defined as a quintuple of (D,S,M,Q, T ), where
D defines the domain, S the scenario, M the modification
and Q the query. The T modules implement tool specific
glue code and select D,S,M,Q. All modules reuse com-
mon functions of the core, like configuration (with default
values and tool-specific extensions), wall-clock time mea-
surement which is done with highest (nanosecond) precision
(that does not mean same accuracy), and momentary mem-
ory consumption, which are recorded in a central place. At
runtime, language-specific modifications (transformations),
queries, and instances of the selected domain must be avail-
able.

Model instantiator. A common aspect of the generator
and the benchmark module is reproducibility. In tool-specific
scenario implementations boundaries are well separated by
the scenario interfaces, and where generation or execution
is randomized, a pseudo-random generator is used with the
random seed set to a predefined value. However, nondeter-
ministic operations (like choosing an element from a set) and
tool implementations can disperse results between runs.

Metrics evaluator. To describe benchmark input with quan-
titative values, they are characterized by metrics which are
evaluated by the metrics component. Language specific im-
plementations analyze model-query pairs, and store calcu-
lated metric values centrally gathered by the core which are
analyzed later together with the measured values.

Result reporting and analysis. When measurement and
metrics data become available, the analyzer component (im-
plemented in R) automatically creates HTML report with
diagrams. To show scalability according to different mea-
sures, on the x axis metrics can be selected, while the y axis
represents resource consumption. Raw data can be post-



processed, i.e. dimensions can be changed (e.g. to change
time to ms dimension to reflect its accuracy), and derived
values can be calculated (e.g. the median of incremental
recheck steps, or total processing time).

2.4 Best Practices to Minimize Validity Threats
During the execution of the cases, noise coming from the
environment should be kept at minimum. Possible sources
of noise include the caching mechanisms of various compo-
nents (e.g. file system and the database management sys-
tem), warm-up effect of the runtime environment (e.g. the
Java Virtual Machine), scheduled tasks (e.g. cron) and swap-
ping. For large heaps, the Garbage Collector of the JVM can
block the run for minutes, so minimizing its call is advised
which is achieved by setting minimal and maximal heap size
to an equal value, thus eliminating GC calls at memory ex-
pansions.

In the implementation of framework components, only the
minimal amount of libraries should be loaded. On one hand,
proper organization of the dependencies is the responsibility
of the developer. On the other hand it is enforced by the
framework architecture, as tool-specific implementations are
independent, and functions as entry points calling the frame-
work that uses inversion of control (IoC) without the usage
of additional execution environments, such as OSGi.

To alleviate random disturbances, each test case is run sev-
eral times (e.g. ten times) by the framework and aggregated
by the analyzer.

3. INTEGRATED CASE STUDIES
The usability of the framework is demonstrated by four ex-
amples. Three variations of the previously published Train
Benchmark, and a new, soon to be released model compre-
hension benchmark are integrated into the framework.

3.1 Basic Train Benchmark
The first version of the Train Benchmark [9] compares the
performance of EMF-IncQuery with Eclipse OCL and its
incremental version, the OCL Impact Analyzer in an incre-
mental model validation use case. Instance models are gen-
erated from a railway domain, and four hand-written queries
(with different complexity) perform model validation tasks.
The scenario starts with a model loading phase, where the
instance is read from a file, followed by a check phase, where
a model validation query is executed (returning constraint
violating elements). Afterwards (to simulate a user in front
of an editor), multiple (100) edits and rechecks performed.
In this case batch, incremental validation time and memory
consumption was measured.

One kind of diagrams display execution times as the func-
tion of model and query metrics. Fig. 3 shows total exe-
cution time for a specific query and scenario in a logarith-
mic diagram for different tools. On the x axis model size
(the number of nodes and edges) is displayed, together with
the number of results, and the number of changes in the
result set. Although model size is the most influencing per-
formance factor during the load phase, in the check phase,
especially for incremental tools other metrics come into the
picture as most influencing factors, like the result set size,
or the number of variables in a query [5].
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Figure 3: Required time to perform a task.
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3.2 Extended Train Benchmark
The extended version is available online2 which introduces
new languages: in addition to EMF, RDF and GraphML
model formats were added. New tools (Drools, Sesame,
4store and Neo4j) were added, and queries were translated
to each tool’s native language. From now not all tools have
in-memory implementation, some use hard disk as storage,
so to lower disk overhead, memory filesystems were used for
storage. Also it should be noted that some databases com-
piled as JARs next to the benchmark code, some database
use native server daemons that are also handled by the
benchmark execution framework. In this case a new sce-
nario variation is defined, where after the batch validation,
larger modification is performed in one edit phase (to sim-
ulates automatic model correction), and finally recheck is
executed.

As the benchmark framework records every check and edit
time subsequently calls can be displayed on a diagram to
show its changes. Fig. 4 depicts such a case for tools at a
given model size and query. It can be observed that the
first query time is almost always the highest, probably due
to the lazy loading of classes and tool initialization. An-
other interesting point for the incremental EMF-IncQuery
and Drools tools is around the tenth check, where evalua-
tion times are dropped significantly. As the same queries
are executed, this may be attributed to the changed model
structure, or to the kicked in JIT compiler. This diagram
also shows the required warmup time for each tool, and its
changing in stages.

2https://incquery.net/publications/trainbenchmark/

https://incquery.net/publications/trainbenchmark/
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3.3 Model Metrics for Performance Prediction
In the article [5] tools are narrowed down to a basic Java
implementation, EMF-IncQuery, and Sesame. However,
for a modified metamodel nine new instances were generated
(belonging to different edge distributions). The benchmark
was extended with 31 queries scaling along 5 query metrics.
The goal of this paper was not to compare tool performances,
but to identify which metrics influence processing time and
memory usage the most. (See Fig. 5a.)

Detailed results are available in the paper, however it can
be noted that for the EMF-IncQuery tool the number of
matches, for Sesame the number of query variables showed
high correlation with the check time, and low correlation
of model size metrics that also emphasize considering other
aspects than model size.

3.4 ITM Factory
The fourth case (inspired by [10]) integrated into the frame-
work is currently under development, and it took another
domain from the field of software comprehension. Input of
the benchmark are not serialized models, but Java projects.
In the first step, source code is read into a software model,
transformations are code edits or complex refactor opera-
tions. After software modifications, correctness of the code
base is validated (Fig. 5b).

In the code modeling case similar investigations can be done,
however processing tools should scale in the lines of code
(and not in the number of nodes or edges). This also moti-
vates displaying performance as a function of different met-
rics.

4. CONCLUSION
In this paper we proposed MONDO-SAM, a framework that
provides common functions required for benchmarking, and
MDE-specific scenarios, models, queries and transformations
as reusable and configurable primitives. As the main focus,
integrated benchmark cases can be characterized by metrics,
which enables the reporting module to analyze the scal-

ability of tools against various complexity measures. We
demonstrated the versatility of the framework is demon-
strated by the integration of previous versions of the Train
Benchmark [9, 5] and a new benchmark from the code model
domain.

The extensible framework including the APIs, core compo-
nents and documentated samples is available as open source
code from the MONDO Git repository3.
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