
Evaluating OWL 2 Reasoners in the Context Of

Checking Entity-Relationship Diagrams During Software

Development

Alexander A. Kropotin

Department of Economic Informatics, Leuphana University of Lüneburg, Lüneburg, Germany

Abstract. This paper evaluates the performances of the OWL 2 reasoners Her-

miT, FaCT++ and TReasoner in the context of an ontological decision support

system in designing entity-relationship diagrams during software development.

First, I described a developed ontology which is the knowledge base of the de-

veloped application for designing databases. In the first set of experiments I

compared how the classification and realization time of the DBOM ontology

varied when increasing the ABox with ERD elements individuals. In the second

set of experiments the consistency checking time of the DBOM ontology was

estimated by increasing the ABox with ERD elements individuals.

Keywords: Benchmark, Description Logics, FaCT++, HermiT, Ontology,

OWL 2 reasoners, TReasoner

1 Introduction

In the software development process special attention is paid to the databases design-

ing stage. Working capacity and extensibility of the developed system depend on the

operations performed at this stage. This process consists of creation and updating of

an information model according to the levels and rules of the designing process [5].

Nonobservance of the designing process rules or making mistakes can lead to the

situation when the developed software won't allow upgrade and extension, won't sup-

port all enterprise business logic etc.

As a tool for the design of database diagrams, the entity-relationship model (ERM)

can be considered as generalization and extension of existing data models (network,

relational, information, etc.), which allow to describe all completeness of the relations

between database diagrams elements at different designing levels [3,4]. Besides it is

quite probable to express some knowledge bases (KB) of an ontology described in

Web Ontology Language (OWL) in this model [2].

That expressive likenesses of description logics (DL) and ERM are the main argu-

ments in favor of the hypothesis of that it is probable to express some information

domain model. The model was created in the form of semantic network, in the form

of DL formalism and to check for creation rules consistency of not only ERM, but

also of databases designing rules in different notations.

2 The DBOM ontology

The Database OWL Model (DBOM) is developed as a knowledge base of the de-

veloped application for the automatization of the design process of databases dia-

grams. It is planned that this application will allow to detect semantic and syntax mis-

takes in databases diagrams, which were designed in different notations and data

models, and also to convert databases diagrams from one notation and/or a data model

into another.

At present, this ontology describes a meta model of P. Chen ERM [3] in termino-

logical box (TBox), including the assertions about the notation elements and rules

within a frame of the relational data model. In other words, the DBOM ontology is the

pattern for the E D forma i ation It means that each new ERD should be described

in assertional box (ABox) of DBOM. Table 1 provides a DBOM in terms of number

of entities, individuals, axioms and expressivity.

Table 1. Summary of the DBOM ontology metrics

Metric Value

DL Expressivity SROIQ (D)

Classes 25

Object properties 19

Data properties 11

#Individuals 3

#Axioms 295

#Logical axioms 239

It is worth noting that the metrics were taken from ontology DBOM in a general

view, without describing of ERD elements individuals in ABox.

The main idea of ERD validation by reasoner consists in ontology consistency

checking [6,7,8]. Thus, if ERD was designed with mistakes, its interpretation in

DBOM will have consistencies of ABox assertions to TBox assertions. However, it

works only for detection of semantic and syntax of ERD designing mistakes.

Therefore, for detection of live lock mistakes, which can be detected by methods of

simulation modeling, I use the DL transitive property. The idea is in describing in

ABox the transitive object property hasCycle which will be as the super property for

object property one-to-many in ERD [10]. During the process of describing ERD

elements individuals in ABox of DBOM it is necessary to describe the negative object

property hasCycle for each individual. This negative object property will assert that

object property hasCycle can't be reflexive for this individual. Thus, an ABox will be

completed by transitive object property hasCycle during the process of the tableau

algorithm [1] running. And if in the ABox there is an individual, from a set of indi-

viduals which form the live lock mistake, then the reflexive object property hasCycle

surely will be described in this individual. And that will be the identifier of existence

of live lock mistake.

3 Evaluation

I evaluated the scalability of the DBOM ontology by OWL 2 reasoners: HermiT 1.3.8

[12], FaCT++ 1.6.2 [14] and TReasoner [11]. These OWL 2 reasoners are winners of

the OWL reasoner evaluation workshop ORE 2013 [9]. The tests were performed on a

Windows 7 64-bit desktop computer with 8 GB of RAM and an Intel Core i7-3770S

3.10 GHz CPU. The following JVM arguments were used: java -Xms500M -

Xmx4400M -DentityExpansionLimit=100000000 .

As the developed the DBOM ontology has to provide the possibility of a logical

output about consistency ERD to design rules and classification of each ERD element,

the evaluation of two inference services of the "standard" set of DL inference services

was estimated: realization and consistency checking [13].

As test data, I designed ERD consisting of 20 elements: 5 entities, 4 relationships

and 11 attributes first. Then, during making evaluation experiments, I added 419 ERD

elements to the DBOM ontology incrementally. On each grown increment I formal-

ized created ERD in DBOM. After that, I created a relationship between one entity

type individual of formalized ERD and other entity type individual of the DBOM

ontology, which were selected in a random way. Based on the assumption that is in

case of database extension it can be concluded that there is at least one new entity

which will be connected with at least one entity of an expanded database. I also sup-

posed that 419 ERD elements is enough for the simulation of a statistically average

ERD diagram.

All in all, I represent two sets of experimental results that are given below. Note

that all results reported in this paper were acquired as averages of at least 10 repeti-

tions of the described experimental setup.

3.1 Evaluating realization of the DBOM ontology with ERD elements

increasing

In the first set of experiments I compared how the classification and realization time

of the DBOM ontology varied when increasing the ABox with ERD elements indi-

viduals. That end, I recorded the time taken by each reasoner to perform classification

first (i.e. execution of the method precomputeInferences(CLASS_HIERARCHY)) and

after realization of each ERD elements individual (i.e. execution of the method

getTypes()). Realization can be performed only after classification since direct types

are defined with respect to a class hierarchy [13]. Figure 1 summarizes the realization

times of the DBOM ontology that were obtained for HermiT and FaCT++. As

TReasoner does not provide realization methods yet and realization can be executed

only after classification, I also recorded the time taken by each reasoner to perform

classification. Figure 2 summarizes the classification times of the DBOM ontology

obtained for all three reasoners.

Fig. 1. Realization times of the DBOM with 20 to 419 ERD elements

Fig. 2. Classification times of the DBOM with 20 to 419 ERD elements

200

66 200

132 200

198 200

264 200

330 200

396 200

462 200

528 200

594 200

660 200

20 41 62 83 104 125 146 167 188 209 251 314 356 419

T
im

e
(m

s)

Number of ERD elements

HermiT FaCT++

20

40

60

80

100

120

140

160

180

200

220

240

20 41 62 83 104 125 146 167 188 209 251 314 356 419

T
im

e
(m

s)

Number of ERD elements

HermiT FaCT++ Treasoner

As expected, the realization time increases as ERD elements individuals are added to

the ontology. It's noticeable that HermiT and FaCT++ have similar behaviors. At first,

time of realization with respect to the number of individuals in the ontology increases

rather gradually, but then it increases very quickly and clearly with a non-linear fash-

ion for both reasoners (see Figure 1). This behavior seems like an exponential se-

quence. And the HermiT realization time is considerably slower, it increases more

quickly in comparison with FaCT++.

As can be seen, HermiT and TReasoner have similar behavior and insignificant

time difference. Arithmetic average value of TReasoner classify runtime is 22 milli-

seconds less, than HermiT has (see Figure 2). FaCT++ has the smallest time again and

it is 143 milliseconds faster than the others. In addition, the classification time of the

DBOM ontology by all three reasoners does not depend on the increase in the number

of ERD elements individuals in ABox to 419.

3.2 Evaluating consistency checking of the DBOM ontology with ERD

elements increasing

In the second set of experiments the consistency checking time of the DBOM ontolo-

gy was estimated by increasing the ABox with ERD elements individuals. That end, I

recorded the time taken by each reasoner to perform consistency checking (i.e. execu-

tion of the method isConsistent()) of the DBOM ontology. Figure 3 summarizes the

consistency checking times of the DBOM ontology obtained for all four reasoners.

Fig. 3. Consistency checking times of the DBOM with 20 to 419 ERD elements

50

1 050

2 050

3 050

4 050

5 050

6 050

7 050

8 050

9 050

10 050

11 050

20 41 62 83 104 125 146 167 188 209 251 314 356 419

T
im

e
(m

s)

Number of ERD elements

HermiT FaCT++ Treasoner

In this case TReasoner has the smallest time of consistency checking (see Figure 3).

And it's noticeable that HermiT and FaCT++ have similar behaviors again, but it dif-

fers from TReasoner very much. While the increasing time of both reasoners is grad-

ual at first then it is very quick, the TReasoner increasing time is more gradual in

comparison with HermiT and FaCT++, but also non-linearly. Although the consisten-

cy checking time achieved by HermiT is the longest, the consistency checking time

by FaCT++ is also considerably slower compared with TReasoner.

4 Conclusions

In this paper I evaluated empirically the realization and consistency checking perfor-

mances of the DBOM ontology by three OWL 2 reasoners: HermiT, FaCT++ and

TReasoner. They are also winners of the OWL reasoner evaluation workshop ORE

2013 [9].

I found out that FaCT++ is the best choice for my application since it provides very

fast inference time for realization and middle interface time for consistency checking.

Though TReasoner provides very fast inference time for consistency checking the

DBOM ontology, it also does not provide realization methods. The best solution is to

combine both reasoners : TReasoner for consistency checking and FaCT++ for reali-

zation. HermiT has the last position in realization and consistency checking, but it is

faster than TReasoner in the classification of the DBOM ontology.

It is noteworthy that HermiT and FaCT++ have similar behaviors in realization and

consistency checking of the DBOM ontology, but they both have very disparate be-

haviors in comparison with TReasoner. HermiT and TReasoner have similar behavior

and insignificant time difference in classification of the DBOM ontology. And classi-

fication times of the DBOM ontology by all three reasoners does not depend on the

increase in the number of ERD elements individuals in ABox to 419.

Also excellent productivity of HermiT, TReasoner and FaCT++ showed that the

DBOM ontology is a good decision for application oriented tasks for verification of

ERD since it is capable to provide acceptable speed of consistency checking operation

of the DBOM ontology.

References

1. Baader, F., Sattler, U.: An Overview of Tableau Algorithms for Description Logics. Studia

Logica, Volume 69, Issue 1, pp 5-40 (2001)

2. Bucella, A., Penabad, M.R., Rodriguez, F.J., Farina, A., Cechich, A.: From relational data-

bases to OWL ontologies, Digital Libraries: Advanced Methods and Technologies. Digital

Collection, Pushchino, Russia

3. Chen, P. P-S.: The Entity-Relationship Model-Toward a Unified View of Data, ACM

Transactions on Database Systems, pp. 9-36, (March 1976)

4. Chen, P. P-S.: The ER Designer: Reference Manual. Chen & Associates (1987)

5. Connolly, T. : Database Systems: A Practical Approach to Design, Implementation and

Management. Addison Wesley; 5 edition (24 Feb 2009)

6. Di Francescomarino, C., Ghidini, C., Rospocher, M , Serafini, L , Tone a, P : A frame-

work for the co aborative specification of semantica y annotated business processes in

Journal of Software Maintenance and Evolution: Research and Practice, vol. 23, pp. 261-

295 (2011)

7. Di Francescomarino, C., Ghidini, C , ospocher, M , Serafini, L , Tone a, P : easoning

on Semantically Annotated Processes, in International Conference on Service- Oriented

Computing, Springer, vol. 5364, pp. 132 - 146 (2008)

8. Ghidini, C., Rospocher, M., Serani, L.: A formalisation of BPMN in description logics.

Technical Report TR 2008-06-004, FBK (2008)

9. Gonça ves, R., Others.: OWL Reasoner Evaluation (ORE) Workshop 2013 Results: Short

Report. ORE 2013. (2013)

10. Grigoriev, A.V., Kropotin, A.A., Ovsyannikova, E.O.: The Problem of Detecting Incon-

sistencies on UML Class Diagrams. Scientific log. Collection of scientific works SWorld.

The modern problems and ways of their decision in science, transport, production and

education' 2012, Odessa, ISSN 2224-0187. Volume 14, pp 3-10 (2012)

11. Grigoryev, A.V., Ivashko, A.G.: TReasoner: System Description. Proceedings of the 2nd

OWL Reasoner Evaluation Workshop (ORE 2013), pp. 26-31 (2013)

12. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. J. Artif.

Intell. Res. 36, 165–228 (2009)

13. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL

reasoner. J. Web Sem. 5(2), pp. 51–53 (2007)

14. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Description. In:

Third International Joint Conference on Automated Reasoning, IJCAR., pp. 292–297

(2006)

