
Software

Engineering

Methods in

Spreadsheets
First International Workshop

Proceedings

Organised by the TU Delft Spreadsheets Lab

Co-located with EuSpRiG 2014

Delft, The Netherlands, 2 July 2014

Editors: Felienne Hermans, Richard F. Paige, Peter Sestoft

Preface

This volume contains the papers presented at SEMS-14: Workshop on Software
Engineering Methods in Spreadsheets held on July 2, 2014 in Delft. The work-
shop was organised by Felienne Hermans (TU Delft), Richard Paige (University
of York) and Peter Sestoft (IT University of Copenhagen) as a result of their ob-
servation that significant research was taking place on spreadsheets in software
engineering, and that the time was ripe for a collective meeting bringing together
people from different communities - e.g., the end-user programming community,
modelling community, testing and verification community, etc. The intent was to
have an open workshop, with a reviewing process and open-access proceedings,
with the emphasis being on discussions and promoting collaboration. The event
was organised by TU Delft and the Spreadsheets Team, as part of Eusprig.

The program committee reviewed and selected 15 papers (including short
papers, long papers and tools papers) for presentation during the workshop.
Each paper received 3 reviews.

The organisers would like to thank TU Delft for their support for organising
Eusprig. As well, they would like to acknowledge use of Easychair in organising
the program committee activities, and CEUR for publishing the post-workshop
proceedings.

2 July, 2014
Delft, York and Copenhagen

Felienne Hermans
Richard F. Paige

Peter Sestoft

v

Table of Contents

Tool-supported fault localization in spreadsheets: Limitations of current
research practice . 1

Birgit Hofer, Dietmar Jannach, Thomas Schmitz, Kostyantyn Shcheko-
tykhin and Franz Wotawa

Toward Interactive Spreadsheet Debugging . 3
Dietmar Jannach, Thomas Schmitz and Kostyantyn Shchekotykhin

Improving Methodology in Spreadsheet Error Research 7
Raymond Panko

Spreadsheets are models too . 9
Richard Paige, Dimitris Kolovos and Nicholas Matragkas

On the Usage of Dependency-based Models for Spreadsheet Debugging . . 11
Birgit Hofer and Franz Wotawa

A Spreadsheet Cell-Meaning Model for Testing . 15
Daniel Kulesz

SBBRENG: Spreadsheet Based Business Rule Engine 18
Pablo Palma

End-user development via sheet-defined functions . 23
Peter Sestoft, Jonas Druedahl Rask and Simon Eikeland Timmermann

Dependence Tracing Techniques for Spreadsheets: An Investigation 27
Sohon Roy and Felienne Hermans

MDSheet Model-Driven Spreadsheets . 31
Jácome Cunha, Joao Fernandes, Jorge Mendes, Rui Pereira and João
Saraiva

How can we figure out what is inside thousands of spreadsheets? 34
Thomas Levine

Sheetmusic: Making music from spreadsheets . 39
Thomas Levine

Are We Overconfident in Our Understanding of Overconfidence? 43
Raymond Panko

Anonymizing Spreadsheet Data and Metadata with AnonymousXL 45
Joeri van Veen and Felienne Hermans

Using a Visual Language to Create Better Spreadsheets 48
Bas Jansen and Felienne Hermans

vi

Program Committee

Jácome Cunha HASLab/INESC TEC & Universidade do Minho
Felienne Hermans Delft University of Technology
Nicholas Matragkas University of York
Richard Paige University of York
Peter Sestoft IT University of Copenhagen
Leif Singer University of Victoria
Tijs Van Der Storm Centrum Wiskunde & Informatica
Arie van Deursen Delft University of Technology

vii

Additional Reviewers

Fernandes, Joao
Saraiva, João

viii

Tool-supported fault localization in spreadsheets:
Limitations of current evaluation practice

Birgit Hofer
Graz University of Technology

8010 Graz, Austria
bhofer@ist.tugraz.at

Dietmar Jannach
TU Dortmund

44221 Dortmund, Germany
dietmar.jannach@udo.edu

Thomas Schmitz
TU Dortmund

44221 Dortmund, Germany
thomas.schmitz@udo.edu

Kostyantyn
Shchekotykhin

University Klagenfurt, Austria
kostya@ifit.uni-klu.ac.at

Franz Wotawa
Graz University of Technology

8010 Graz, Austria
wotawa@ist.tugraz.at

ABSTRACT
In recent years, researchers have developed a number of tech-
niques to assist the user in locating a fault within a spread-
sheet. The evaluation of these approaches is often based
on spreadsheets into which artificial errors are injected. In
this position paper, we summarize different shortcomings of
these forms of evaluations and sketch possible remedies in-
cluding the development of a publicly available spreadsheet
corpus for benchmarking as well as user and field studies to
assess the true value of the proposed techniques.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications]: Office Au-
tomation—Spreadsheets; D.2.5 [Software Engineering]:
Testing and Debugging—Debugging aids

General Terms
Spreadsheets, Debugging, Fault Localization

1. INTRODUCTION
Locating the true causes why a given spreadsheet program

does not compute the expected outcomes can be a tedious
task. Over the last years, researchers have developed a num-
ber of methods supporting the user in the fault localization
and correction (debugging) process. The techniques range
from the visualization of suspicious cells or regions of the
spreadsheet, and the application of known practices from
software engineering like spectrum-based fault localization
(SFL) or slicing, to declarative and constraint-based reason-
ing techniques [1, 3, 6, 7, 9, 11, 12, 16].

However, there is a number of challenges common to all
these approaches. Unlike other computer science sub-areas,
such as natural language processing, information retrieval
or automated planning and scheduling, no standard bench-
marks exist for spreadsheet debugging methods. The ab-
sence of commonly used benchmarks prevents the direct
comparison of spreadsheet debugging approaches. Further-
more, fault localization and debugging for spreadsheets re-
quire the design of a user-debugger interface. An important
question in this context is: what input or interaction can
realistically be expected from the user? Finally, the main
question to be answered is whether or not automated de-

bugging techniques actually help the developer as discussed
in [14] for imperative programs.

In this position paper, we discuss some limitations of the
current research practice in the field and outline potential
ways to improve the research practice in the future.

2. LACK OF BENCHMARK PROBLEMS
To demonstrate the usefulness of a new debugging tech-

nique, we need spreadsheets containing faults. Since no
public set of such spreadsheets exists, researchers often cre-
ate their own suite of benchmark problems, e.g., by apply-
ing mutation operators to existing correct spreadsheets [2].
Unfortunately, these problems are only rarely made pub-
licly available. This makes a comparative evaluation of ap-
proaches difficult and it is often unclear if the proposed tech-
nique is applicable to a wider class of spreadsheets.

In some papers, spreadsheets from the EUSES corpus1

are used for evaluations. As no information exists about the
intended semantics of these spreadsheets, mutations are ap-
plied in order to obtain faulty versions of the spreadsheets.
The spreadsheets in this corpus are however quite diverse,
e.g., with respect to their size or the types of the used formu-
las. Often only a subset of the documents is used in the eval-
uations and the selection of the subset is not justified well.
Even when the benchmark problems are publicly shared like
the ones used in [10], they may have special characteristics
that are advantageous for a certain method and, e.g., con-
tain only one single fault or use only certain functions or cell
data types.

A corpus of diverse benchmark problems is strongly needed
for spreadsheet debugging to make different research ap-
proaches better comparable and to be able to identify short-
comings of existing approaches. Such a corpus could be
incrementally built by researchers sharing their real-world
and artificial benchmark problems. In addition, since it is
not always clear if typical spreadsheet mutation operators
truly correspond to mistakes developers make, insights and
practices from the Information Systems field should be bet-
ter integrated into our research. This in particular includes
the use of spreadsheet construction exercises in laboratory
settings that help us identify which kinds of mistakes users
make and what their debugging strategies are, see, e.g., [4].

1http://esquared.unl.edu/wikka.php?wakka=
EUSESSpreadsheetCorpus

3. USABILITY AND USER ACCEPTANCE
Spreadsheet debugging research is often based on offline

experimental designs, e.g., by measuring how many of the
injected faults are successfully located with a given tech-
nique, see, e.g., [5]. In some cases, plug-ins to spreadsheet
environments are developed like in [1] or [11]. Similar to
plug-ins used for other purposes, e.g., spreadsheet testing,
the usability of these plug-ins for end users is seldom in the
focus of the research. The proposed plug-ins typically re-
quire various types of input from the user at different stages
of the debugging process. Some of these inputs have to be
provided at the beginning of the process and some can be
requested by the debugger during fault localization. Typical
inputs of a debugger include statements about the correct-
ness of values/formulas in individual cells [10], information
about expected values for certain cells [1, 3], specification of
multiple test cases [11], etc.

In many cases, it remains unclear, if an average spread-
sheet developer will be willing or able to provide these inputs
since concepts like test cases do not exist in the spreadsheet
paradigm. Therefore, researchers have to ensure that a de-
veloper interprets the requests from the debugger correctly
and provides appropriate inputs as expected by the debug-
ger. One additional problem in that context is that user
inputs, e.g., the test case specifications, are usually consid-
ered to be reliable and most existing approaches have no
built-in means to deal with errors in the inputs.

Overall, we argue that offline experimental evaluations
should be paired with user studies whenever possible as
done, e.g., in [8] or [11]. Such studies should help us validate
whether our approaches are based on realistic assumptions
and are acceptable at least for ambitious users after some
training. At the same time, observations of the users’ be-
havior during debugging can be used to learn about their
problem solving strategies and to evaluate whether the tool
actually helped to find a fault.

Again, insights and practices both from the fields of In-
formation Systems and Human Computer Interaction should
be the basis for these forms of experiments.

4. FIELD RESEARCH
In addition to user studies in laboratory environments, re-

search on real spreadsheets as suggested in [15] is required
to determine potential differences between the experimental
usage of the proposed debugging methods and the everyday
use of such tools in companies or institutes. Error rates and
types found in practice could differ from what is observed in
user studies whose participants in many cases are students.
In [13], e.g., a construction exercise with business managers
was done to determine error rates. In addition, the user
acceptance of fault localization tools could vary strongly be-
cause of different expectations of professional users with re-
spect to the utilized tools. To ensure the usability for real
users, existing spreadsheets can be examined and question-
naires with users can be made, as done, e.g., in [7].

5. CONCLUSIONS
A number of proposals have been made in the recent liter-

ature to assist the user in the process of locating faults in a
given spreadsheet. In this position paper, we have identified
some limitations of current research practice regarding the
comparability and reproducibility of the results. As possi-

ble remedies to these shortcomings we advocate the develop-
ment of a corpus of benchmark problems and the increased
adoption of user studies of various types as an evaluation in-
strument. As experimental settings differ from real-life, we
additionally propose to use field studies to obtain insights
on how debugging methods are used in companies.

6. REFERENCES
[1] R. Abraham and M. Erwig. GoalDebug: A

Spreadsheet Debugger for End Users. In Proc. ICSE
2007, pages 251–260, 2007.

[2] R. Abraham and M. Erwig. Mutation Operators for
Spreadsheets. IEEE Trans. on Softw. Eng.,
35(1):94–108, 2009.

[3] R. Abreu, A. Riboira, and F. Wotawa.
Constraint-based debugging of spreadsheets. In Proc.
CibSE’12, pages 1–14, 2012.

[4] P. S. Brown and J. D. Gould. An Experimental Study
of People Creating Spreadsheets. ACM TOIS,
5(3):258–272, 1987.

[5] C. Chambers and M. Erwig. Automatic Detection of
Dimension Errors in Spreadsheets. J. Vis. Lang. &
Comp., 20(4):269–283, 2009.

[6] J. Cunha, J. a. P. Fernandes, H. Ribeiro, and J. a.
Saraiva. Towards a catalog of spreadsheet smells. In
Proc. ICCSA’12, pages 202–216, 2012.

[7] F. Hermans, M. Pinzger, and A. van Deursen.
Supporting Professional Spreadsheet Users by
Generating Leveled Dataflow Diagrams. In Proc. ICSE
2011, pages 451–460, 2011.

[8] F. Hermans, M. Pinzger, and A. van Deursen.
Detecting and Visualizing Inter-Worksheet Smells in
Spreadsheets. In ICSE 2012, pages 441–451, 2012.

[9] F. Hermans, M. Pinzger, and A. van Deursen.
Detecting Code Smells in Spreadsheet Formulas. In
Proc. ICSM 2012, pages 409–418, 2012.

[10] B. Hofer, A. Riboira, F. Wotawa, R. Abreu, and
E. Getzner. On the Empirical Evaluation of Fault
Localization Techniques for Spreadsheets. In Proc.
FASE 2013, pages 68–82, 2013.

[11] D. Jannach and T. Schmitz. Model-based diagnosis of
spreadsheet programs - A constraint-based debugging
approach. Autom. Softw. Eng., to appear, 2014.

[12] D. Jannach, T. Schmitz, B. Hofer, and F. Wotawa.
Avoiding, finding and fixing spreadsheet errors - a
survey of automated approaches for spreadsheet QA.
Journal of Systems and Software, to appear, 2014.

[13] F. Karlsson. Using two heads in practice. In Proc.
WEUSE 2008, pages 43–47, 2008.

[14] C. Parnin and A. Orso. Are Automated Debugging
Techniques Actually Helping Programmers? In Proc.
ISSTA 2011, pages 199–209, 2011.

[15] S. G. Powell, K. R. Baker, and B. Lawson. A critical
review of the literature on spreadsheet errors. Decision
Support Systems, 46(1):128–138, 2008.

[16] J. Reichwein, G. Rothermel, and M. Burnett. Slicing
Spreadsheets: An Integrated Methodology for
Spreadsheet Testing and Debugging. In Proc. DSL
1999, pages 25–38, 1999.

Toward Interactive Spreadsheet Debugging

Dietmar Jannach
TU Dortmund, Germany
dietmar.jannach@tu-

dortmund.de

Thomas Schmitz
TU Dortmund, Germany
thomas.schmitz@tu-

dortmund.de

Kostyantyn
Shchekotykhin

University Klagenfurt, Austria
kostya@ifit.uni-klu.ac.at

ABSTRACT
Spreadsheet applications are often developed in a compara-
bly unstructured process without rigorous quality assurance
mechanisms. Faults in spreadsheets are therefore common
and finding the true causes of an unexpected calculation out-
come can be tedious already for small spreadsheets. The goal
of the Exquisite project is to provide spreadsheet developers
with better tool support for fault identification. Exquisite is
based on an algorithmic debugging approach relying on the
principles of Model-Based Diagnosis and is designed as a
plug-in to MS Excel. In this paper, we give an overview of
the project, outline open challenges, and sketch different ap-
proaches for the interactive minimization of the set of fault
candidates.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Spreadsheets;
D.2.8 [Software Engineering]: Testing and Debugging

1. INTRODUCTION
Spreadsheet applications are mostly developed in an un-

structured, ad-hoc process without detailed domain analysis,
principled design or in-depth testing. As a result, spread-
sheets might often be of limited quality and contain faults,
which is particularly problematic when they are used as de-
cision making aids. Over the last years, researchers have
proposed a number of ways of transferring principles, prac-
tices and techniques of software engineering to the spread-
sheet domain, including modeling approaches, better test
support, refactoring, or techniques for problem visualiza-
tion, fault localization, and repair [2, 5, 9, 13, 15].

The Exquisite project [12] continues these lines of research
and proposes a constraint-based approach for algorithmic
spreadsheet debugging. Technically, the main idea is to
translate the spreadsheet under investigation as well as user-
specified test cases into a Constraint Satisfaction Problem
(CSP) and then use Model-Based Diagnosis (MBD) [14] to
find the diagnosis candidates. In terms of a CSP, each can-
didate is a set of constraints that have to be modified to
correct a failure. In our previous works, we demonstrated
the general feasibility of the approach and presented details
of an MS Excel plug-in, which allows the user to interactively
specify test cases, run the diagnosis process and then explore
the possible candidates identified by our algorithm [12].

Using constraint reasoning and diagnosis approaches for
spreadsheet debugging – partially in combination with other
techniques – was also considered in [3, 4, 11]. While these

techniques showed promising results in helping users to lo-
cate faults in spreadsheets, a number of challenges remain.
In this paper, we address the question of how the end user
can be better supported in situations when many diagno-
sis candidates are returned by the reasoning engine. We
will sketch different interactive candidate discrimination ap-
proaches in which the user is queried by the system about
the correctness of individual cells’ values and formulas.

2. DIAGNOSING SPREADSHEETS

Algorithmic Approach.
In [14], Reiter proposed a domain-independent and logic-

based characterization of the MBD problem. A diagnos-
able system comprises a set of interconnected components
Comps, each of which can possibly fail. A system descrip-
tion SD specifies how components behave when they work
correctly, i.e., given some inputs, the definitions in SD and
Comps determine the expected outputs. In case the expected
outputs deviate from what is actually observed, the diagno-
sis problem consists of identifying a subset of Comps, which,
if assumed faulty, explains the observations.

Figure 1: A spreadsheet with an unexpected output

The main idea can be transferred to the spreadsheet do-
main as follows [12]. In the example shown in Figure 1,
the intended formula in cell C2 should be an addition, but
the developer made a typo. When testing the spreadsheet
with the inputs {A1=1, A2=6} and the expected output
{C1=20}, the user notices an unexpected output (36) in C1.
MBD reasoning now aims to find minimal subsets of the pos-
sibly faulty components – in our case the cells with formulas
– which can explain the observed discrepancy. A closer in-
vestigation of the problem reveals that only two minimal
explanations exist in our example if we only allow integer
values: “C1 is faulty” and “B2 is faulty”. The formula in
cell B1 alone cannot be the sole cause of the problem with
B2 and C1 being correct as 18 is not a factor of the ex-
pected value 20, i.e., there is no solution to the equation

B1 �18 � 20,B1 P N. Note that we assume that the constant
values in the spreadsheet are correct. However, our approach
can be easily extended to deal with erroneous constants.

In [12], we describe a plug-in component for MS Excel,
which relies on an enhanced and parallelized version of this
diagnostic procedure, additional dependency-based search
space pruning, and a technique for fast conflict detection.

We have evaluated our approach in two ways. (A) We an-
alyzed the required running times using a number of spread-
sheets in which we injected faults (mutations). The results
showed that our method can find the diagnoses for many
small- and mid-sized spreadsheets containing about 100 for-
mulas within a few seconds. (B) We conducted a user study
in the form of an error detection exercise involving 24 sub-
jects. The results showed that participants who used the
Exquisite tool were both more effective and efficient than
those who only relied on MS Excel’s standard fault local-
ization mechanisms. A post-experiment questionnaire indi-
cated that both groups would appreciate better tool support
for fault localization in commercial tools [12].

The Problem of Discriminating Between Diagnoses.
While we see our results so far to be promising, an open

issue is that the set of diagnosis candidates can be large.
Finding the true cause of the error within a larger set of
possible explanations can be tedious and, finally, make the
approach impractical when a user has to inspect too many
alternatives. Since this is a general problem of MBD, the
question of how to help the user to better discriminate be-
tween the candidates and focus on the most probable ones
was in the focus of several works from the early days of MBD
research [7]. In the next section, we will propose two possible
remedies for this problem in the spreadsheet domain.

3. TOWARD INTERACTIVE DEBUGGING
Early works in MBD research were dealing with fault di-

agnosis of electrical circuits. In this domain, an engineer
can make additional measurements, e.g., of the voltage at
certain nodes. These measurements can then help to reduce
the set of candidates because some observations may rule
out certain explanations for the observed behavior.

Each measurement however induces additional costs or
effort from the user. One goal of past research was thus to
automatically determine “good” measurement points, i.e.,
those which help to narrow down the candidate space fast
and thus minimize the number of required measurements. In
[7], for example, an approach based on information theory
was proposed where the possible measurement points were
ranked according to the expected information gain.

3.1 Example
Figure 2 exemplifies how additional measurements (inputs

by the user) can help us to find the cause of a fault. The
example is based on the one from Figure 1. The user has
corrected the formula in C1 and added a formula in D1 that
should multiply the value of C1 by 10. Again, a typo was
made and the observed result in D1 is 30 instead of the
expected value of 200 for the input values {A1=1, A2=6}.

Given this unluckily chosen test case, MBD returns four
possible single-element candidates {B1}, {B2}, {C1}, and
{D1}, i.e., every formula could be the cause. To narrow
down this set, we could query the user about the correctness
of the intermediate results in the cells B1, B2, and C1.

Figure 2: Another faulty spreadsheet

If we ask the user for a correct value of B1, then the user
will answer “2”. Based on that information, B1 can be ruled
out as a diagnosis and the problem must be somewhere else.
However, if we had asked the user for the correct value of C1,
the user would have answered“20”and we could immediately
infer that {D1} remains as the only possible diagnosis.

The question arises how we can automatically determine
which questions we should ask to the user. Next, we sketch
two possible strategies for interactive querying.

3.2 Querying for Cell Values
The first approach (Algorithm 1) is based on interactively

asking the user about the correct values of intermediate cells
as done in the example1.

Algorithm 1: Querying cell values

Input: A faulty spreadsheet P, a test case T
S = Diagnoses for P given T
while |S| ¡ 1 do

foreach intermediate cell c P P not asked so far do
val = computed value of c given T
count(c) = 0
foreach Diagnosis d P S do

CSP 1 � CSP of P given T z Constraints(d)
if CSP 1 Y tc � valu has a solution then

inc(count(c))

Query user for expected value v of the cell c where
count(c) is minimal

T � T Y tc � vu
S = Diagnoses for P given T

The goal of the algorithm is to minimize the number of re-
quired interactions. Therefore, as long as there is more than
one diagnosis, we determine which question would help us
most to reduce the set of remaining diagnoses. To do so, we
check for each possible question (intermediate cell c), how
many diagnoses would remain if we knew that the cell value
val is correct given the test case T . Since every diagnosis
candidate d corresponds to a relaxed version CSP 1 of the
original CSP, where the latter is a translation of the spread-
sheet P and the test case T , we check if CSP 1 together
with the assignment tc � valu has a solution. Next, we
ask the user for the correct value of the cell for which the
smallest number of remaining diagnoses was observed. The
user-provided value is then added to the set of values known
to be correct for T and the process is repeated.

To test the approach, we used a number of spreadsheets
containing faults from [12], measured how many interactions

1Actually, a user-provided range restriction for C1 (15 C1
 25) would have been sufficient in the example.

Scenario #C #F #D IRand Min
Sales forecast 143 1 89 46.7 11
Hospital form 38 1 15 7.6 5
Revenue calc. 110 3 200 11.8 9
Example Fig. 3 170 1 85 50.3 12

Table 1: Results for querying cell values.

it requires to isolate the single correct diagnosis using Algo-
rithm 1 and compared it to a random measurement strategy.

The results given in Table 1 show that for the tested exam-
ples the number of required interactions can be measurably
lowered compared to a random strategy. The sales forecast
spreadsheet, for example, comprises 143 formulas (#C) and
contains 1 fault (#F). Using our approach, only 11 cells
(Min) have to be inspected by the user to find the diagnosis
explaining a fault within 89 diagnosis candidates (#D). Re-
peated runs of the randomized strategy lead to more than
45 interactions (IRand) on average.

As our preliminary evaluation shows, the developed heuris-
tic decreases the number of user interaction required to find
the correct diagnosis. In our future work, we will also con-
sider other heuristics. Note however that there are also prob-
lem settings in which all possible queries lead to the same
reduction of the candidate space. Nonetheless, as the ap-
proach shows to be helpful at least in some cases, we plan
to explore the following extensions in the future.

 Instead of asking for expected cell values we can ask
for the correctness of individual calculated values or
for range specifications. This requires less effort by the
user but does not guarantee that one single candidate
can be isolated.

 Additional test cases can help to rule out some can-
didates. Thus, we plan to explore techniques for au-
tomated test-case generation. As spreadsheets often
consist of multiple blocks of calculations which only
have few links to other parts of the program, one tech-
nique could be to generate test cases for such smaller
fragments, which are easier to validate for the user.

3.3 Querying for Formula Correctness
Calculating expected values for intermediate cells can be

difficult for users as they have to consider also the cells pre-
ceding the one under investigation. Thus, we propose ad-
ditional strategies in which we ask for the correctness of
individual formulas. Answering such queries can in the best
case be done by inspecting only one particular formula.

1. We can query the user about the elements of the most
probable diagnoses as done in [16], e.g., by limiting the
search depth and by estimating fault probabilities.

2. In case of multiple-fault diagnoses, we can ask the user
to inspect those formulas first that appear in the most
diagnoses. If one cell appears in all diagnoses, it must
definitely contain an error.

3. After having queried the user about the correctness of
one particular formula, we can search for copy-equiva-
lent formulas and ask the user to confirm the correct-
ness of these formulas.

Figure 3: A small extract of a faulty spreadsheet
with structurally identical formulas

The rationale of this last strategy, which we will now
discuss in more detail, is that in many real-world spread-
sheets, structurally identical formulas exist in neighboring
cells, which, for example, perform a row-wise aggregation of
cell values. Such repetitive structures are one of the ma-
jor reasons that the number of diagnosis candidates grows
quickly. Thus, when the user has inspected one formula,
we can ask him if the given answer also applies to all copy-
equivalent formulas, which we can automatically detect.

In the example spreadsheet shown in Figure 3 the user
made a mistake in cell M13 entering a minus instead of the
intended plus symbol. A basic MBD method would in the
worst case and depending on the test cases return every
single formula as equally ranked diagnosis candidates. When
applying the value-based query strategy of Section 3.2, the
user would be asked to give feedback on the values of M1 to
M12, which however requires a lot of manual calculations.

With the techniques proposed in this section, the formulas
of the spreadsheet would first be ranked based on their fault
probability. Let us assume that our heuristics say that users
most probably make mistakes when writing IF-statements.
In addition, the formula M13 is syntactically more complex
as those in M1 to M12 and thus more probable to be faulty.

Based on this ranking, we would, for example, ask the
user to inspect the formula of G1 first. Given the feedback
that the formula is correct, we can ask the user to check the
copy-equivalent formulas of G1 to L12. This task, however,
can be very easily done by the user by navigating through
these cells and by checking if the formulas properly reflect
the intended semantics, i.e., that the formulas were copied
correctly. After that, the user is asked to inspect the formula
M13 according to the heuristic which is actually the faulty
one. In this example, we thus only needed 3 user interactions
to find the cause of the error. In a random strategy, the user
would have to inspect up to half of the formulas in average
depending on the test case. The evaluation of the described
techniques is part of our ongoing work.

3.4 User Acceptance Issues
Independent of the chosen strategy, user studies have to

be performed to assess which kinds of user input one can re-
alistically expect, e.g., for which problem scenarios the user
should be able to provide expected (ranges of) values for
intermediate cells. In addition, the spreadsheet inspection
exercise conducted in [12] indicates that users follow differ-
ent fault localization strategies: some users for example start
from the inputs whereas others begin at the “result cells”.
Any interactive querying strategy should therefore be care-
fully designed and assessed with real users. As a part of a
future work we furthermore plan to develop heuristics to se-
lect one of several possible debugging techniques depending
on the users problem identification strategy.

4. ADDITIONAL CHALLENGES
Other open issues in the context of MBD-based debug-

ging that we plan to investigate in future work include the
following aspects.

Probability-Based Ranking.
Another approach to discriminate between diagnoses is

to try to rank the sometimes numerous candidates in a way
that those considered to be the most probable ones are listed
first. Typically, one would for example list diagnoses candi-
dates of smaller cardinality first, assuming that single faults
are more probable than double faults. In addition, we can
use fault statistics from the literature for different types of
faults to estimate the probability of each diagnosis. In the
spreadsheet domain, we could also rely on indicators like
formula complexity or other spreadsheet smells [10], the lo-
cation of the cell within the spreadsheet’s overall structure,
results from Spectrum-Based Fault Localization [11], or the
number of recent changes made to a formula. User studies
in the form of spreadsheet construction exercises as done in
[6] can help to identify or validate such heuristics.

Problem Encoding and Running Times.
For larger problem instances, the required running times

for the diagnosis can exceed what is acceptable for inter-
active debugging. Faster commercial constraint solvers can
alleviate this problem to some extent. However, also au-
tomated problem decomposition and dependency analysis
methods represent a powerful means to be further explored
to reduce the search complexity.

Another open issue is that in works relying on a CSP-
encoding of the spreadsheets, e.g., [3, 11] and our work,
the calculations are limited to integers, which is caused by
the limited floating-point support of free constraint solvers.
More research is required in this area, including the incor-
poration of alternative reasoning approaches like, e.g., linear
optimization.

User Interface Design.
Finally, as spreadsheet developers are usually not pro-

grammers, the user interface (UI) design plays a central
role and suitable UI metaphors and a corresponding non-
technical terminology have to be developed. In Exquisite,
we tried to leave the user as much as possible within the
known MS Excel environment. Certain concepts like “test
cases” are, however, not present in modern spreadsheet tools
and require some learning effort from the developer. The
recent work of [8] indicates that users are willing to spend
some extra effort, e.g., in test case specification, to end up
with more fault-free spreadsheets.

How the interaction mechanisms actually should be de-
signed to be usable at least by experienced users, is largely
open in our view. In previous spreadsheet testing and de-
bugging approaches like [1] or [2], for example, additional
input was required by the user. In-depth studies about the
usability of these extensions to standard spreadsheet envi-
ronments are quite rare.

5. SUMMARY
In this paper, we have discussed perspectives of constraint

and model-based approaches for algorithmic spreadsheet de-
bugging. Based on our insights obtained so far from the

Exquisite project, we have identified a number of open chal-
lenges in the domain and outlined approaches for interactive
spreadsheet debugging.

Acknowledgements
This work was supported by the EU through the programme
“Europäischer Fonds für regionale Entwicklung - Investition
in unsere Zukunft” under contract number 300251802.

6. REFERENCES
[1] R. Abraham and M. Erwig. AutoTest: A Tool for

Automatic Test Case Generation in Spreadsheets. In
Proceedings VL/HCC 2006, pages 43–50, 2006.

[2] R. Abraham and M. Erwig. GoalDebug: A
Spreadsheet Debugger for End Users. In Proc. ICSE
2007, pages 251–260, 2007.

[3] R. Abreu, A. Riboira, and F. Wotawa.
Constraint-based Debugging of Spreadsheets. In Proc.
CIbSE 2012, pages 1–14, 2012.

[4] S. Außerlechner, S. Fruhmann, W. Wieser, B. Hofer,
R. Spörk, C. Mühlbacher, and F. Wotawa. The Right
Choice Matters! SMT Solving Substantially Improves
Model-Based Debugging of Spreadsheets. In Proc.
QSIC 2013, pages 139–148, 2013.

[5] S. Badame and D. Dig. Refactoring meets Spreadsheet
Formulas. In Proc. ICSM 2012, pages 399–409, 2012.

[6] P. S. Brown and J. D. Gould. An Experimental Study
of People Creating Spreadsheets. ACM TOIS,
5(3):258–272, 1987.

[7] J. de Kleer and B. C. Williams. Diagnosing Multiple
Faults. Artificial Intelligence, 32(1):97–130, 1987.

[8] F. Hermans. Improving Spreadsheet Test Practices. In
Proc. CASCON 2013, pages 56–69, 2013.

[9] F. Hermans, M. Pinzger, and A. van Deursen.
Supporting Professional Spreadsheet Users by
Generating Leveled Dataflow Diagrams. In ICSE
2011, pages 451–460, 2011.

[10] F. Hermans, M. Pinzger, and A. van Deursen.
Detecting Code Smells in Spreadsheet Formulas. In
Proc. ICSM 2012, pages 409–418, 2012.

[11] B. Hofer, A. Riboira, F. Wotawa, R. Abreu, and
E. Getzner. On the Empirical Evaluation of Fault
Localization Techniques for Spreadsheets. In Proc.
FASE 2013, pages 68–82, 2013.

[12] D. Jannach and T. Schmitz. Model-based diagnosis of
spreadsheet programs - A constraint-based debugging
approach. Autom Softw Eng, to appear, 2014.

[13] D. Jannach, T. Schmitz, B. Hofer, and F. Wotawa.
Avoiding, finding and fixing spreadsheet errors - a
survey of automated approaches for spreadsheet QA.
Journal of Systems and Software, to appear, 2014.

[14] R. Reiter. A Theory of Diagnosis from First
Principles. Artificial Intelligence, 32(1):57–95, 1987.

[15] G. Rothermel, L. Li, C. Dupuis, and M. Burnett.
What You See Is What You Test: A Methodology for
Testing Form-Based Visual programs. In Proc. ICSE
1998, pages 198–207, 1998.

[16] K. Shchekotykhin, G. Friedrich, P. Fleiss, and
P. Rodler. Interactive ontology debugging: Two query
strategies for efficient fault localization. Journal of
Web Semantics, 12-13:788–103, 2012.

Improving Methodology in
Spreadsheet Error Research

Raymond R. Panko

Shidler College of Business
University of Hawai`i

2404 Maile Way
Honolulu, HI 96821
001.808.377.1149

Ray@Panko.com

ABSTRACT
Too much spreadsheet research is unpublishable in high-quality
journals due to poor methodology. This is especially a problem for
computer science researchers, who often are untrained in beha-
vioral research methodology. This position paper reflects the
author’s experiences in reviewing submissions to information
systems and computer science journals.1

Categories and Subject Descriptors
K.8.1: Spreadsheets. D.2.5 Testing and Debugging.

General Terms
Experimentation, Verification.

Keywords
Methodology. Spreadsheet Experiments, Experiments, Inspection.
Sampling, Statistics

1. INTRODUCTION

For a number of years, computer science journal editors have taken
to sending me articles to review that involve experimental and other
methodology. It is frustrating to review these studies because they
often show a weak understanding of methodology. Fatal
methodological errors are too common, and errors that hobble the
use of results are even more frequent. In spreadsheet error research,
methodological issues have been particularly common in papers by
computer scientists. Based on my experience, this paper presents
some prescriptions for improving spreadsheet error research. We
will look at issues in inspections (audits) of operational
spreadsheets, spreadsheet development experiments, and spread-
sheet inspection experiments.

2. INSPECTIONS (AUDITS) OF
OPERATIONAL SPREADSHEETS

Several studies have inspected corpuses of operational spread-
sheets to look for errors. Many studies call this auditing, but
auditing is a sample-driven statistical analysis method for devel-

oping an option about quality in development. Audits are not
comprehensive error detection tools.

2.1 Respect Human Error Research

Inspection methodologies often fail to reflect the fact that software
and spreadsheet error rates are similar. Consequently, spreadsheet
methodologies tend to ignore the rather vast literature on code
inspection. By code inspection standards, most spreadsheet inspec-
tion methodologies do look like mere audits. They lack the required
initial understanding of the spreadsheet, are undertaken on whole
spreadsheets instead of modules, use single inspectors, and so forth.

2.2 Don’t Trust. Verify.

Spreadsheet inspection methodologies are rarely verified. Instead,
they tend to be refined until the researchers “feel good” about them.
To verify the effectiveness of a methodology, it is important to have
multiple inspectors independently use the same methodology to
inspect the same spreadsheets. Comparing errors from multiple
inspectors can indicate relative effectiveness in finding different
types of errors. If the methodology is strong, cross-analysis can
even give an estimate of errors remaining.

2.3 Report Time Spent

Time spent in testing is important in assessing human error
research. It is important to reveal inspection rates for individual
spreadsheets—both time in total and time as a percentage of size
expressed in multiple ways, such as all cells, all formula cells,
unique formulas, and so forth. If a spreadsheet inspection method
has multiple phases, time in each phase should be reported.

2.4 Understanding the Spreadsheet First

Spreadsheets are not self-documenting. It is important for inspec-
tors to be given a thorough explanation of the spreadsheet’s detailed
logic before they begin testing.

2.5 Report Error Seriousness

The seriousness of errors—at least the most serious error found—
should be assessed. Seriousness should be reported by size of each
error on monetary or other scales, percentage size of the error
relative to the size of the correct value, seriousness of the error in
its context, and risk created for the organization. Context must be
understood well. In annual budgeting, small errors can be very
damaging, while in major one-off projects such as the purchasing
of another company, errors would have to be large compared to the
results variance caused by uncertainties in input numbers.

3. DEVELOPMENT EXPERIMENTS

In development experiments, participants create spreadsheet
models based on requirements in a word problem. To date, we have
done well in estimating cell error rate ranges during development.
However, there is much more we need to do.

3.1 Use New Tasks

Spreadsheet development experiments have only used a few tasks.
We need to do development experiments with more tasks to be
confident about typical cell error rates. The widely used Wall and
Galumpke tasks have different error patterns. We need to try new
tasks to see if new patterns emerge. The Wall task is especially
problematic because it was designed to be extremely simple and
almost free of domain knowledge requirements. Participants make
very few errors on the Wall task.

3.2 Have Adequate Task Length

Errors are rare in spreadsheet development. Tasks need to be
relatively long or there will be too few errors to analyze. One way
to address this is to have subjects do multiple tasks in a balanced
design and to analyze errors in the total multitask sample.

3.3 Go Beyond Student Samples

We also need to do studies on people with different levels of
experience in spreadsheet development to ensure that spreadsheet
research does not suffer from being the science of sophomores.

3.4 Test Prescriptions for Safety and
Effectiveness

We need to move beyond simply claiming that certain prescriptions
(such as have a separate assumptions section) and certain tools are
good ideas. We must test them to see if they really are “safe and
effective.” We cannot just build tools and make claims about why
they will save the world. Prove it.

3.5 Go All the Way to Error Reduction

Showing that users like it or showing that a tool can help point to
earlier cells is not enough. Does it reduce errors? If not, who cares?

3.6 Use Ample Sample Sizes

Sample sizes must be large—at least around 30 to 50 participants
per condition. Otherwise, statistical analysis is unreliable. The
minimum number should be determined empirically, by a power
test.

3.7 Avoid Friends and Family Samples

We also need clean samples. Mixing highly experienced pro-
fessionals with rank novices in the sample requires far larger
samples for statistical validity.

3.8 Do Rigorous Random Assignment to
Conditions

Doing rigorous random assignment to the control and treatment
groups is mandatory and critical. This must be done on the basis of
individuals. We cannot assign whole class sections to different
treatments. Nor can we place earlier arrivers in one condition and
later arrivers in another condition.

3.9 Use Nonparametric Statistics

It is important to use nonparametric statistics because errors do not
follow the normal distribution even roughly. Transforming data so
that they are pseudonormal and then applying traditional parametric
statistics is not acceptable today.

3.10 Be Generous in Presenting Statistical
Results

When giving results, do not just give bare minimum result numbers
like means, medians, and standard deviations. Show the full results
matrix generated by statistical analysis programs. Also, in com-
parisons, give overall numerical differences. Do not just say that a
difference was statistically significant without giving the numerical
differences or correlations.

4. INSPECTION EXPERIMENTS

Inspection experiments should follow the advice in both previous
sections. It is wise to avoid seeded errors and go with data from
actual development experiments. (The author has such a corpus.)

4.1 Higher Error Rates

One good thing is that human error detection rates are worse than
error commission rates, so sample can be a little smaller and still
generate enough errors. However, statistical analysis is misleading
with less than about 30 subjects per group and rigorous subject
randomization.

4.2 Test for Safety and Effectiveness

Again, we need to go beyond simply measuring error detection
rates and move to testing alternative methods for finding errors. If
we test only two methods—such as doing nothing and using a
particular method, then we double the required sample size and
must be extremely careful about random treatment assignment.
Effects size is also critical in selecting sample sizes.

5. CONCLUSION

We need to stop touting untested prescriptions and tools if we are
to put our field on a scientific footing. We must scrutinize pre-
scriptions for safety and effectiveness, and we must do so with
exemplary methodology. We also should be balanced in our pre-
sentation of results. Everything has strengths and weaknesses. Our
results should be honest about weaknesses. Obscuring
methodology is a professional sin.

Spreadsheets are Models Too [Position Statement]

Richard F. Paige, Dimitrios S. Kolovos and Nicholas Matragkas
Dept. of Computer Science

University of York, UK
[richard.paige, dimitris.kolovos, nicholas.matragkas]@york.ac.uk

ABSTRACT
Spreadsheets are among the most widely used tools in sys-
tems engineering, especially for documenting system require-
ments and tests, and for supporting tasks like impact anal-
ysis, traceability management and project planning. We ar-
gue for the treatment of spreadsheets as models, in order to
support the systems engineering lifecycle, and to provide a
suitable migration path for organisations to follow in matur-
ing their use of modelling techniques.

1. INTRODUCTION
In Model-Driven Engineering (MDE) approaches to systems
engineering, many different languages are used (e.g., UML,
SysML, domain-specific languages). Usually such languages
are designed and implemented by MDE specialists, who use
metamodelling infrastructure (e.g., EMF/Ecore1) to define
the abstract syntax of such languages, and thereafter exploit
the infrastructure for the purposes of automation – for ex-
ample, generating code or text, version control, validation,
etc. Once languages with metamodels have been provided,
automated model management tools and techniques can be
used for systematically manipulating and modifying models
across the engineering lifecycle. In particular, tools such as
Obeo Designer2, Epsilon [3], or ATL [1] can be applied to
support different engineering tasks.

Systems engineering is expensive and complex, often in-
volves multiple engineering disciplines (e.g., in avionics or
aerospace, it can involve software, mechanical, materials and
power engineering), and substantial communications over-
head between skilled personnel with different vocabularies,
practices and tools. Arguably, MDE as it is currently prac-
ticed (and supported by tools) is insufficient for supporting
the full systems engineering lifecycle. In particular, it can
very easily fall short in the early stages, when requirements
are still being elicited. Often, early requirements are am-

1http://www.eclipse.org/emf
2http://www.obeodesigner.com/download

biguous and need to be described in unconstrained natural
language: using a domain-specific language may place too
many constraints (both conceptual or structural) on speci-
fication. As well, requirements often emerge from previous
developments, and these requirements may have been speci-
fied in non-MDE languages. Combine this with the gradual
increase in MDE skills, there is substantial benefit to be
able to interface MDE languages and tools with non-MDE
languages and tools.

In this position paper, we argue for interfacing spreadsheets
with MDE languages and tools. We provide motivation for
doing this, and briefly touch on some the important technical
challenges of, and alternatives for doing so.

2. MOTIVATION
There have been a number of contributions made related to
integrating spreadsheets into an engineering process. Much
of this work focuses on using software engineering practices
to improve the quality of spreadsheets. This includes work
on bad smell detection and visualisation in spreadsheets
[6], and other analytic approaches that exploit assertions
to identify formula errors [8], or that provide testing tech-
niques for spreadsheets [7]. Constructive approaches such
as [4, 2] focus on generating high quality spreadsheets using
transformation approaches. None of this research has taken
the perspective of treating spreadsheets as models.

We have hinted at a number of motivations for treating
spreadsheets as models, and for supporting the use of model
management operations (such as model transformations) on
spreadsheets. We briefly summarise key motivations.

• Early stages of engineering. MDE operates most effi-
ciently on well-defined languages (that do not change
frequently, or at least, not in significant ways) and
models with limited uncertainty. In the early stages
of requirements engineering, the concepts of interest
in our models may change frequently; they may be
imprecisely defined; and the languages that we use to
express these concepts may need to evolve. MDE tech-
niques may not be the most useful or appropriate in
early stages. Natural language with some restrictions
is widely used for early requirements engineering, as
are tables of natural language requirements. These
can easily be expressed using spreadsheets, which also
enable traceability and (in later stages) requirements
coverage analysis. Being able to treat spreadsheets

as models thus enables defining bridges between early
stages of systems engineering, and later stages, where
more precise languages are needed.

• Support for legacy models. Industry uses spreadsheets,
and many large organisations have legacy spreadsheets
that can play critical roles, such as in project con-
figuration and monitoring/measurement, requirements
capture for product lines, etc. Being able to use such
legacy spreadsheets as-is with new engineering pro-
cesses, practices and tools makes it easier to change
processes and practices while reducing risk of bad ef-
fects on the bottom line.

• Tabular problems need tabular solutions. Some mod-
elling problems are inherently tabular in nature, and
benefit from being able to specify data (models) in
columns and rows (with constraints amongst them)
without requiring relational solutions. Specification of
control laws, or parameters used to configure product
lines, simple requirements capture, and test suite spec-
ification are all problems that lend themselves to tabu-
lar specifications, where spreadsheets can conceivably
provide support. Providing MDE support for such id-
ioms allows engineers who need to use such concepts
to benefit from automated processing support.

• Supporting existing skillsets. Not every organisation
has, or can quickly acquire, expertise in MDE and
model management. Most organisations do have ex-
pertise and skills with spreadsheets. Providing means
for organisations to transition gradually to use of MDE
and model management, and allowing those organisa-
tions to maximise the use of their current skillset, could
reduce the risks associated with adopting MDE.

• Catching repeated errors. Substantial research has been
carried out in MDE in terms of automated support for
identifying and repairing repeated errors in modelling
and model management. For example, updating mod-
els or evolving models after changes in a modelling
language are problems for which good automated or
semi-automated solutions exist. These are problems
with spreadsheets as well (e.g., bad smell detection).
By interfacing spreadsheets with MDE, it may be that
spreadsheet users can exploit MDE solutions.

3. MECHANISMS
There are several plausible ways to interface spreadsheets
and MDE.

• Build injectors which generate models (with metamod-
els) from spreadsheets, thus allowing MDE languages
and tools to be applied to spreadsheets indirectly. Ad-
ditionally, extractors from models to spreadsheets may
also be needed in order to return results to a form
amenable to processing by spreadsheet tools. In both
the injection and extraction, specification blow-up may
be an issue (i.e., encoding or decoding spreadsheets as
or from models may lead to less than optimal spread-
sheet or model sizes or structures).

• Provide equivalents of MDE and model management
operations on spreadsheets, e.g., update-in-place trans-

formations, validation/constraint checking, transfor-
mations, text generation. These would need to be
encoded using any scripting languages provided by a
spreadsheet tool. For example, for Google Spread-
sheets, these operations might be encoded using the
Spreadsheet Service3. However, such encodings would
need to be reimplemented for each spreadsheet tool.

• Provide spreadsheet drivers for model management to-
ols, so that these tools can directly manipulate spread-
sheets like any other form of models. This is the ap-
proach we have taken in Epsilon [5]. A driver must be
implemented for each spreadsheet tool - though some
abstraction is possible (specifically, a spreadsheet in-
terface is provided that needs to be implemented for
each spreadsheet tool). Arguably, implementing an in-
terface for querying and changing spreadsheets via an
API is less expensive than implementing model man-
agement operations for each spreadsheet tool.

4. CONCLUSIONS
Spreadsheets are models: a less constrained and less expres-
sive form of model than those permitted by full-blown MDE
languages and tools. By treating spreadsheets as models,
we can provide ways to bootstrap the MDE process, to en-
able automated and powerful tool support for legacy models,
and a way to maximise use of current skillsets while per-
sonnel are educated in using MDE and model management
techniques. Arguably, MDE and model management tools
should support more model/data representation formats and
techniques like spreadsheets, which allow more flexible and
less constrained styles of specification and design.

5. REFERENCES
[1] Atlas Transformation Language, official web-site.

http://www.sciences.univ-nantes.fr/lina/atl/.

[2] J. Cunha, J. P. Fernandes, H. Ribeiro, and J. Saraiva.
MDSheet: A framework for model-driven spreadsheet
engineering. In Proc. ICSE, 2012.

[3] Dimitrios S. Kolovos, Louis M. Rose, Antonio Garcia
Dominguez and Richard F. Paige. The Epsilon Book.
2013. http://www.eclipse.org/epsilon/doc/book/.

[4] G. Engels and M. Erwig. Classsheets: automatic
generation of spreadsheet applications from
object-oriented specifications. In Proc. ASE’05, ASE
’05. ACM, 2005.

[5] M. Francis, D. S. Kolovos, N. Matragkas, and R. F.
Paige. Adding spreadsheets to the MDE toolkit. In
Proc. MoDELS. LNCS 8107, Springer-Verlag, 2013.

[6] F. Hermans, M. Pinzger, and A. van Deursen.
Detecting and visualizing inter-worksheet smells in
spreadsheets. In ICSE, pages 441–451. IEEE, 2012.

[7] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and
A. Sheretov. A methodology for testing spreadsheets.
ACM Trans. Softw. Eng. Methodol., 10(1):110–147,
Jan. 2001.

[8] J. Sajaniemi. Modeling spreadsheet audit: A rigorous
approach to automatic visualization. Journal of Visual
Languages & Computing, 11(1):49 – 82, 2000.

3https://developers.google.com/apps-script/
reference/spreadsheet/

On the Usage of Dependency-based Models
for Spreadsheet Debugging

Birgit Hofer
Graz University of Technology

Inffeldgasse 16b/II
8010 Graz, Austria

bhofer@ist.tugraz.at

Franz Wotawa
Graz University of Technology

Inffeldgasse 16b/II
8010 Graz, Austria

wotawa@ist.tugraz.at

ABSTRACT
Locating faults in spreadsheets can be difficult. Therefore,
tools supporting the localization of faults are needed. Model-
based software debugging (MBSD) is a promising fault local-
ization technique. This paper presents a novel dependency-
based model that can be used in MBSD. This model allows
improvements of the diagnostic accuracy while keeping the
computation times short. In an empirical evaluation, we
show that dependency-based models of spreadsheets whose
value-based models are often not solvable in an acceptable
amount of time can be solved in less than one second. Fur-
thermore, we show that the amount of diagnoses obtained
through dependency-based models is reduced by 15% on
average when using the novel model instead of the origi-
nal dependency-based model. The short computation time
and the improved diagnostic accuracy enable the usage of
model-based debugging for spreadsheets in practice.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications]: Office Au-
tomation—Spreadsheets; D.2.5 [Software Engineering]:
Testing and Debugging—Debugging aids

Keywords
Spreadsheets, Debugging, Model-based Fault Localization

1. INTRODUCTION
Even for small spreadsheets, the localization of faults can
be time consuming and frustrating. Thus, approaches sup-
porting fault localization in spreadsheets are needed. Some
fault localization techniques developed for the software en-
gineering discipline have been adapted to the spreadsheet
domain, for example [1, 9, 10, 8]. Model-based software de-
bugging (MBSD) [16, 18, 13] is one of these techniques. So
far, researchers have only focused on methods that use value-
based models [3, 4, 12, 11]. Value-based models compute a
small set of possible explanations (i.e., diagnoses) for an ob-
served misbehavior. This small set of diagnoses is helpful
for users when debugging. Unfortunately, value-based mod-
els have high computation times and they do not scale: the
underlying solving mechanisms have problems when dealing
with variables with large domains and real numbers. In an
empirical evaluation, Außerlechner et al. [5] showed the limi-
tations of different constraint solvers and SMT (satisfiability
modulo theories) solvers when using these models.

To the best of our knowledge, dependency-based models
have not been used for localizing faults in spreadsheets. The

reason for this may be their inaccuracy. Dependency-based
models compute a significantly higher number of diagnoses
than value-based models. In this paper, we propose a novel
type of dependency-based model which uses equivalence in-
stead of the implication to model the dependency relation
between cells. This allows improvements on the diagnostic
accuracy while keeping the computation times short.

In order to demonstrate the differences between the value-
based, the original dependency-based, and our improved
dependency-based model, we make use of a running ex-
ample. This example is a simplified version of the “home-
work/budgetone”spreadsheet taken from the EUSES spread-
sheet corpus [6]. We manually injected a fault into the
spreadsheet in cell D5. Figure 1a shows the normal (or value)
view of this faulty spreadsheet variant. Figure 1b shows the
formula view of the same spreadsheet. The output cells1 of
the spreadsheet are shaded in gray. The faulty cell D5 is
highlighted with a red box. The fault manifests in the value
of the output cell D7. The expected value for this cell is
78,6%.

(a) Normal view

(b) Formula view

Figure 1: Running example

When using model based debugging, the faulty cell of this
example spreadsheet can be detected independent of the un-
derlying model. There are however differences with respect
to runtime and solution size. The value-based model and
our novel dependency-based model identify three cells that

1An output cell is a cell that is not referenced by any other cell.

could explain the observed misbehavior, while the original
dependency-based model identifies six cells as possible ex-
planations. When using the constraint solver Minion [7],
both dependency-based models require only one third of the
computation time compared with the value-based model.

This work is related to the work of Mayer and Stumpt-
ner [15] and Wotawa [17]. Mayer and Stumptner evaluated
models for model-based debugging in the software domain.
Wotawa discussed the relationship of model-based debug-
ging and program slicing.

In the remainder of this paper, we will explain the differ-
ent types of models and show the model representations for
the above described running example (see Section 2). In
Section 3, we will empirically compare the different mod-
els with respect to efficiency and effectiveness. The novel
dependency-based model reduces the number of computed
diagnoses by 15% compared to original dependency-based
model. Furthermore, the empirical evaluation shows that
the dependency-based models can be solved in less than one
second even for those spreadsheets whose value-based mod-
els require more than 20 minutes solving time.

2. MODEL-BASED DEBUGGING
In model-based software debugging (MBSD), the cells of a
spreadsheet and the given observations (i.e., the test case2)
are converted into constraints. As the given test case is a
failing test case, this constraint system results in a contradic-
tion. In order to determine which cells could resolve this con-
tradiction, MBSD introduces abnormal variables (AB) for
each cell. These abnormal variables represent the “health”
state of the cells. If a cell c is not abnormal, the formula of
the cell must be correct [18]:

¬AB(c) → constraint(c). (1)

This logic expression can be transformed to

AB(c) ∨ constraint(c). (2)

Having such a constraint system, we are able to use a con-
straint or SMT solver to determine which abnormal variables
have to be set to true to eliminate the contradiction. We
refer the interested reader to [18, 14] for more information
about the principles of MBSD. MBSD can be performed
using either dependency-based or value-based models. We
discuss these models and our novel dependency-based model
in the following subsections.

2.1 Value-based models
When using value-based models, the values of the cells are
propagated. A value-based constraint system contains (i) the
input cells and their values, (ii) the output cells and their ex-
pected values, and (iii) all formulas concatenated with their
abnormal variable. The constraint representation handles
the formulas as equations instead of assignments. This al-
lows to draw conclusions on the input from the output of a
formula. Such a value-based model for spreadsheets is pro-
posed by Abreu et al. [3, 4]. The running example from
Figure 1b is converted into the following constraints:
2A test case is a tuple (I,O), where I are the values for the input
cells and O the expected values for the output cells. A test case
is a failing test case if at least one computed output value differs
from the expected value.

Input:

B2 == 1000

C2 == 1500

B3 == 20

. . .

Output:

D3 == 20.6

B7 == 0.75

C7 == 0.81

D7 == 0.786

Formula constraints:

AB(cellD2) ∨ D2 == B2 + C2

AB(cellD3) ∨ D3 == D4/D2

AB(cellB4) ∨ B4 == B3×B2

AB(cellC4) ∨ C4 == C3× C2

AB(cellD4) ∨ D4 == B4 + C4

AB(cellD5) ∨ D5 == B5

. . .

AB(cellD7) ∨ D7 == D6/D4

Solving this constraint system leads to three possible solu-
tions: Either cell D5, D6 or D7 must contain the fault.

2.2 Original dependency-based models
When using dependency-based models, only the information
about whether the computed values are correct is propa-
gated. Therefore, all cell values are represented as Boolean
instead of Integer or Real values. All variables representing
input cells are initialized with true. All variables represent-
ing correct output cells are also initialized with true. The
variables representing erroneous output cells are initialized
with false. Instead of using the concrete formulas in the
constraints, only the correctness relation is modeled. If the
formula of cell c is correct and the input values of a formula
are correct then cell c must compute a correct value:

AB(cellc) ∨
∧

c′∈ρ(c)

c′ → c (3)

where ρ(c) is the set of all cells that are referenced in c. De-
tails about this modeling for software written in an imper-
ative language can be found e.g. in [17]. The dependency-
based constraints for our running example are as follows:

Input:

B2 == true

C2 == true

B3 == true

. . .

Output:

D3 == true

B7 == true

C7 == true

D7 == false

Formula constraints:

AB(cellD2) ∨ (B2 ∧ C2 → D2)

AB(cellD3) ∨ (D2 ∧D4 → D3)

AB(cellB4) ∨ (B2 ∧B3 → B4)

AB(cellC4) ∨ (C2 ∧ C3 → C4)

AB(cellD4) ∨ (B4 ∧ C4 → D4)

AB(cellD5) ∨ (B5 → D5)

. . .

AB(cellD7) ∨ (D4 ∧D6 → D7)

Solving this constraint system leads to six possible solu-
tions: Either cell B4, C4, D4, D5, D6 or D7 must contain

the fault. This dependency-based model computes more
diagnoses because of the implication. In the value-based
model, the cells B4, C4, and D4 can be excluded from the
set of possible diagnoses because B4 and C4 are used to com-
pute D4, and D4 is used to compute D3, which is known to
compute the correct value. Unfortunately, this information
gets lost when using the implication because the implication
allows conclusions only from the input to the output but
not vice versa. This problem will be solved with the novel
dependency-based model that is explained in the following
subsection.

2.3 Novel dependency-based models
In order to eliminate the previously described weakness of
dependency-based models, we use bi-implication (equiva-
lence) instead of the implication. The formula constraints
for our running example from Figure 1b are as follows:

AB(cellD2) ∨ (B2 ∧ C2 ↔ D2)

AB(cellD3) ∨ (D2 ∧D4 ↔ D3)

AB(cellB4) ∨ (B2 ∧B3 ↔ B4)

AB(cellC4) ∨ (C2 ∧ C3 ↔ C4)

AB(cellD4) ∨ (B4 ∧ C4 ↔ D4)

AB(cellD5) ∨ (B5 ↔ D5)

. . .

AB(cellD7) ∨ (D4 ∧D6 ↔ D7)

Solving this constraint system leads to the same 3 diagnoses
as when using a value-based model.

The bi-implication cannot be used in case of coincidental
correctness. Coincidental correctness might occur for exam-
ple in the following situations:

• usage of conditional function (e.g., the IF-function),

• abstraction function like MIN, MAX, COUNT,

• usage of Boolean,

• multiplication with a 0-value, and

• power with 0 or 1 as base number or 0 as exponent.

Please note, that this list gives only examples. It is not
a complete list, because the size of the list depends on the
functions that are supported by the concrete spreadsheet en-
vironment (e.g. Microsoft Excel, iWorks’Number, OpenOf-
fice’s Calc). All formulas where coincidental correctness
might happen still have to be modeled with the implication
instead of the bi-implication.

3. EMPIRICAL EVALUATION
This section consists of two major parts: the empirical setup
(discussing the prototype implementation, the used plat-
form, and the evaluated spreadsheet corpora) and the re-
sults showing that dependency-based models are able to
compute diagnoses within a fraction of a second even for
spreadsheets whose value-based models require more than
20 minutes of solving time. In addition, this empirical eval-
uation shows that the number of diagnoses obtained by the
novel dependency-based model is reduced by 15% on aver-
age compared to the original dependency-based model.

We developed a prototype in Java for performing the em-
pirical evaluation. This prototype uses Minion [7] as a con-
straint solver. Minion is an out-of-the-box, open source
constraint solver and offers support for almost all arithmetic,

relational, and logic operators such as multiplication, divi-
sion, and equality over Boolean and Integers.

The evaluation was performed on an Intel Core2 Duo proces-
sor (2.67 GHz) with 4 GB RAM andWindows 7 as operating
system. We used theMinion version 0.15. The computation
time is the average time over 10 runs.

We evaluated the models by means of spreadsheets from the
publicly available Integer spreadsheet corpus3 [5]. This cor-
pus contains 33 different spreadsheets (12 artificially created
spreadsheets and 21 real-life spreadsheets), e.g., a spread-
sheet that calculates the lowest price combination on a shop-
ping list or the winner of Wimbleton 2012. These spread-
sheets contain both arithmetical and logical operators as well
as the functions SUM and IF. The spreadsheets contain on
average 39 formula cells, the largest spreadsheet contains 233
formulas. Faulty versions of the spreadsheets (containing
single, double and triple faults) were created by randomly
selecting formulas and applying mutation operators [2] on
them. The corpus contains in total 220 mutants. In the
empirical evaluation, we used only the spreadsheets which
contain a single fault, i.e. 94 spreadsheets.

Table 1 compares the three types of models with respect
to fault localization capabilities and runtimes. The fault
localization capabilities are expressed by means of the num-
ber of cells that are single fault diagnoses. The runtime
is measured by means of Minion’s average solving time in
milliseconds. The spreadsheets are divided into two sub-
groups: spreadsheets whose value-based models are solved
by Minion in less then 20 minutes and spreadsheets whose
value-based models could not be solved within 20 minutes
(i.e. 31 from 94 spreadsheets). For these 31 spreadsheets,
the dependency-based models are solved in less than one sec-
ond. These runtime results indicate that dependency-based
models are better suited for debugging large spreadsheets
than value-based models.

Table 1: Evaluation results

Model
Single fault Solving time
diagnoses (in ms)

63 spreadsheets
Value-based 4.0 56818.8
Original dep.-based 13.2 32.0
Novel dep.-based 11.0 31.6
31 spreadsheets
Value-based - > 20 minutes
Original dep.-based 45.0 187.4
Novel dep.-based 38.6 164.8

Considering the diagnostic accuracy, the value-based model
yields better results. It computes only one third of the di-
agnoses of the original dependency-based model. The im-
proved dependency-based model computes on average 15%
less diagnoses than the original dependency-based model.

Table 2 gives an overview of the reduction that can be achieved
when using the novel instead of the original dependency-
based model. The reduction is expressed by means of the
following metric:

Reduction = 1−
|Diagnoses in the novel model|

|Diagnoses in the original model|
. (4)

3
https://dl.dropbox.com/u/38372651/Spreadsheets/Integer Spreadsheets.zip

Table 2: Summary of the achieved reduction when using the
novel model instead of the original dependency-based model

Reduction Number of spreadsheets
0% 64

]0%;10%] 0
]10%;20%] 1
]20%;30%] 1
]30%;40%] 2
]40%;50%] 5
]50%;60%] 0
]60%;70%] 4
]70%;80%] 2
]80%;90%] 7
]90%;100%] 8

For 64 spreadsheets, no reduction in the number of diagnoses
was achieved when using the novel dependency-based model
instead of the original model. However, for 15 spreadsheets,
a reduction of more than 80% was achieved.

4. DISCUSSION AND CONCLUSIONS
Locating faulty formulas in spreadsheets can be time con-
suming. This paper addresses the fault localization prob-
lem by means of model-based diagnosis. Our most impor-
tant contribution is the introduction of a novel dependency-
based model. This novel dependency-based model improves
previous work in two ways: (1) Compared to the original
dependency-based model, it reduces the amount of diagnoses
that have to be manually investigated by 15%. (2) Com-
pared to the value-based model, it reduces the required solv-
ing time and allows the computation of diagnoses in real-
time where the value-based model cannot compute solutions
within 20 minutes. The savings in computation time can be
explained by the reduction of the domain: The dependency-
based model requires only Boolean variables instead of In-
tegers and Real numbers.

The reduction of the domain comes with additional advan-
tages: (1) An arbitrary solver can be used, because all solvers
support at least Boolean variables. Even spreadsheets con-
taining Real numbers can be debugged with any solver when
using dependency-based models. (2) The user does not need
to indicate concrete values for the erroneous output vari-
ables. The information that an output cell computes the
wrong value is sufficient.

In the description of the model, we listed all types of coinci-
dental correctness occurring in the spreadsheets used in the
empirical evaluation. This list is not exhaustive. For using
this model in practice, the list has to be extended.

We are convinced that the model presented improves the
state of the art in model-based diagnosis. Further work in-
cludes a user study and the adaptation to other types of
programs, e.g. programs written in imperative or object-
oriented languages.

Acknowledgments
The research herein is partially conducted within the compe-
tence network Softnet Austria II (www.soft-net.at, COMET
K-Projekt) and funded by the Austrian Federal Ministry of
Economy, Family and Youth (bmwfj), the province of Styria,
the SteirischeWirtschaftsförderungsgesellschaft mbH. (SFG),
and the city of Vienna in terms of the center for innovation
and technology (ZIT).

5. REFERENCES
[1] R. Abraham and M. Erwig. GoalDebug: A

Spreadsheet Debugger for End Users. In Proceedings
of the 29th International Conference on Software
Engineering (ICSE 2007), pages 251–260, 2007.

[2] R. Abraham and M. Erwig. Mutation Operators for
Spreadsheets. IEEE Transactions on Software
Engineering, 35(1):94–108, 2009.

[3] R. Abreu, A. Riboira, and F. Wotawa.
Constraint-based debugging of spreadsheets. In
CibSE’12, pages 1–14, 2012.

[4] R. Abreu, A. Riboira, and F. Wotawa. Debugging of
spreadsheets: A CSP-based approach. In 3th IEEE
Int. Workshop on Program Debugging, 2012.

[5] S. Außerlechner, S. Fruhmann, W. Wieser, B. Hofer,
R. Spörk, C. Mühlbacher, and F. Wotawa. The right
choice matters! SMT solving substantially improves
model-based debugging of spreadsheets. In Proceedings
of the 13th International Conference on Quality
Software (QSIC’13), pages 139–148. IEEE, 2013.

[6] M. Fisher and G. Rothermel. The EUSES Spreadsheet
Corpus: A shared resource for supporting
experimentation with spreadsheet dependability
mechanisms. SIGSOFT Software Engineering Notes,
30(4):1–5, 2005.

[7] I. P. Gent, C. Jefferson, and I. Miguel. Minion: A fast,
scalable, constraint solver. In Proceedings of the 7th
European Conference on Artificial Intelligence (ECAI
2006), pages 98–102, 2006.

[8] B. Hofer, A. Perez, R. Abreu, and F. Wotawa. On the
empirical evaluation of similarity coefficients for
spreadsheets fault localization. Automated Software
Engineering, pages 1–28, 2014.

[9] B. Hofer, A. Riboira, F. Wotawa, R. Abreu, and
E. Getzner. On the Empirical Evaluation of Fault
Localization Techniques for Spreadsheets. In
Proceedings of the 16th International Conference on
Fundamental Approaches to Software Engineering
(FASE 2013), pages 68–82, Rome, Italy, 2013.

[10] D. Jannach, A. Baharloo, and D. Williamson. Toward
an integrated framework for declarative and
interactive spreadsheet debugging. In Proceedings of
the 8th International Conference on Evaluation of
Novel Approaches to Software Engineering (ENASE
2013), pages 117–124, 2013.

[11] D. Jannach and U. Engler. Toward model-based
debugging of spreadsheet programs. In JCKBSE 2010,
pages 252–264, Kaunas, Lithuania, 2010.

[12] D. Jannach and T. Schmitz. Model-based diagnosis of
spreadsheet programs: a constraint-based debugging
approach. Automated Software Engineering, pages
1–40, 2014.

[13] C. Mateis, M. Stumptner, D. Wieland, and
F. Wotawa. Model-based debugging of Java programs.
In Proceedings of AADEBUG, 2000.

[14] W. Mayer and M. Stumptner. Model-based debugging
– state of the art and future challenges. Electronic
Notes in Theoretical Computer Science, 174(4):61–82,
May 2007.

[15] W. Mayer and M. Stumptner. Evaluating models for
model-based debugging. In Proceedings of the
International Conference on Automated Software
Engineering (ASE), 2008.

[16] R. Reiter. A Theory of Diagnosis from First
Principles. Artificial Intelligence, 32(1):57–95, 1987.

[17] F. Wotawa. On the Relationship between
Model-Based Debugging and Program Slicing.
Artificial Intelligence, 135:125–143, February 2002.

[18] F. Wotawa, M. Nica, and I.-D. Moraru. Automated
debugging based on a constraint model of the program
and a test case. The journal of logic and algebraic
programming, 81(4), 2012.

A Spreadsheet Cell-Meaning Model for Testing

Daniel Kulesz
Institute of Software Technology

University of Stuttgart
daniel.kulesz@informatik.uni-stuttgart.de

ABSTRACT
Most attempts to test spreadsheets use the spreadsheet-
internal model to automatically detect input, intermediate
and output cells. In this paper, we discuss an example which
shows why this approach is problematic even for simple
spreadsheets. Following this, we derive a number of require-
ments for more feasible spreadsheet cell-meaning models and
describe a first prototype we have designed.

1. INTRODUCTION
Regardless of the hazards which can arise when using spread-
sheets, most businesses today regard them as indispensible
tools for supporting their processes. This fact, together with
the billions of existing spreadsheets [7], indicates a strong
need for finding faults in spreadsheets.

There are many approaches for finding faults in spreadsheets
[6]. One of them is testing, where the spreadsheet’s input
cells are populated with values and the values in the spread-
sheet’s output cells checked for certain criteria (e.g. [5, 3]).
To accomplish this, knowing which of the spreadsheet’s cells
are input cells and which are output cells is mandatory.
However, virtually no testing approaches use a designated
model for this purpose. Instead, they rely on the model
that spreadsheet execution environments use internally for
(re)calculation purposes, and which can easily be extracted
when considering the dependencies between cells:

• Input cells: Non-formula cells referenced by formula
cells

• Intermediate cells: Formula cells referenced by other
cells and referencing other cells themselves

• Result cells: Formula cells not referenced by other cells
but referencing other cells themselves

We will refer to this model as the ‘naive model‘ throughout
this paper. While this model is certainly correct from a

Figure 1: Example for a grading spreadsheet

technical point of view, looking at it from the perspective of
a spreadsheet user’s domain can lead to imminent conflicts
in a number of cases. In this paper we discuss these cases and
propose an explicit model which is more difficult to extract
but which we believe is better suited for testing spreadsheets.

Since the model is concerned with the type of cells from the
perspective of what the cells mean to users, we could refer
to it as “cell-type model”. Unfortunately, the term “cell-
type” is usually already used for describing the data type of
a spreadsheet cell’s contents. To avoid confusion, we use the
notion of “cell-meaning model” instead.

2. ISSUES WITH THE NAIVE MODEL
Figure 1 shows a spreadsheet for managing grades of a study
course. The spreadsheet is filled with data by a course in-
structor and later passed to a secretary for transferring the
grades to a different system. Furthermore, the spreadsheet
is used for statistical purposes by the manager of the study
course this exam belongs to. We want to use this spread-
sheet as a showcase with counter examples, arguing why the
naive model can lead to a biased perception of the actual
input cells and output cells of a spreadsheet:

• The total points (D7 to D12) could be output values

for a secretary who has to process these grades fur-
ther (e.g. write letters to students), but these cells are
referenced by the grade cells (E7 to E12). Thus, the
cells would be regarded as intermediate cells by naive
models and not as output cells.

• The study program manager might not be interested
at all in the total points of the particular students but
only in the failure rate (B15). Thus, he would not see
the grades as output cells.

• Spreadsheet authors sometimes use defensive program-
ming techniques and introduce checks themselves. The
plausibility column (G) is such an example: It checks
whether any of the grades for Task 1 or Task 2 are
outside acceptable limits (zero to maximum points for
the task). The naive model would treat the cells in the
plausibility column (G7 to G12) as output as well.

• The second worksheet named ‘grading key‘ is refer-
enced by VLOOKUP functions in the grade column’s
cells (E7 to E12). The naive model would therefore
interpret these referenced cells as input cells. How-
ever, none of the users of this spreadsheet is supposed
to change the contents of these cells as they contain
merely static data.

3. REQUIREMENTS
We are convinced that biased perceptions can be reduced if
a spreadsheet is tested using a model explicitly designed for
this purpose. From the discussion in the previous section,
we derive the following requirements for such a model:

• User-specifiable: It must be possible for users to
specify the cells themselves. If automatic extraction is
used, users must be able to change it.

• Support for views: Since users have different per-
ceptions and needs of the same spreadsheet, we either
need one testing model with different views or it must
be allowed that more than one testing model instance
per spreadsheet exists.

• Input cell types: The model must separate input
cells at least into two types: data cells (which contain
data that rarely changes or is fed from another system)
and actual decision variables which are supposed to be
manipulated by the user (of this model).

• Output cell types: Apart from intermediate cells,
the model must support cells which provide the data
with final results (which the user is looking for) as well
as support for plausibility and other additional cells.

Apart from these rather theoretical requirements, we identi-
fied two major practical requirements for the success of the
implementation of such a model:

• Understandability: It must be easy for spreadsheet
users to understand the model with no or little train-
ing, so that users can identify cells correctly in the
sense of the model.

• Acceptance: Even if the model would be easily un-
derstandable for spreadsheet users, its benefits must be
striking so that spreadsheet users will be motivated to
take the effort connected with using the model. (Basi-
cally this requires a proper attention investment model
as described by Blackwell and Burnett [2] [1]).

It seems infeasible to expect spreadsheet users to identify all
cell-meanings manually, especially for huge spreadsheets. As
already discussed, fully automated cell-meaning detection
seems impossible — but it might be beneficial to consider
assisting users by proposing cell-meanings based on auto-
detection techniques.

A promising starting point could be the work of Hermans
[4] which tries to identify plausibility cells automatically by
inspecting result cells for two additional constraints: the for-
mula starting with the IF operation and containing at least
one branch which can result in a string. While this cer-
tainly works in many cases (including our small example),
we have already seen spreadsheets which use numeric out-
puts for plausibility cells so this approach would fail. Yet,
since such cases are pretty rare, asking users to just validate
auto-detected cell-meanings instead of asking them to spec-
ify cell-meanings themselves might result in lower overall
effort and thus higher acceptance.

4. PROTOTYPE
We prototyped a cell-meaning model which takes into ac-
count the requirements stated in the previous section. The
model is illustrated in Figure 2 as a standard UML class
diagram.

We provide a partial implementation of our prototype in our
tool ‘Spreadsheet Inspection Framework‘ which is available
as open source software from GitHub1. The implementation
allows users to manually mark cells and use them later for
specifying test cases, but does not support all proposed cell-
meaning types yet and lacks auto-detection capabilities.

5. FUTURE WORK
To assess the feasibility of the model, further research is
required. A crucial aspect for evaluation will be the question
whether the cell types can be communicated clearly to users,
so users will tag existing spreadsheet cells according to our
proposed model.

Another important aspect will be the acceptance of the model.
Since we believe that acceptance might be very low without
a reasonable level of automated assistance, it seems worth-
while to address this point first.

Although we explained the theoretical limitations of the
naive model in this work, it must be explored whether the
additional manual effort connected with applying our model
yields enough benefits in terms of its ability to detect faults
in spreadsheets more accurately.

1https://github.com/kuleszdl/Spreadsheet-Inspection-
Framework

Figure 2: The cell-meaning model we propose

6. ACKNOWLEDGEMENT
We would like to thank Zahra Karimi, Kornelia Kuhle, Mandy
Northover, Jochen Ludewig and Stefan Wagner for their con-
structive feedback on earlier versions of this position paper.
Furthermore, we received many good hints and comments
from the reviewers for which we are very thankful.

7. REFERENCES
[1] A. Blackwell and M. Burnett. Applying attention

investment to end-user programming. In Human
Centric Computing Languages and Environments,
2002. Proceedings. IEEE 2002 Symposia on, pages
28–30. IEEE, 2002.

[2] A. F. Blackwell. First steps in programming: A
rationale for attention investment models. In Human
Centric Computing Languages and Environments,
2002. Proceedings. IEEE 2002 Symposia on, pages
2–10. IEEE, 2002.

[3] M. Fisher II, G. Rothermel, D. Brown, M. Cao,
C. Cook, and M. Burnett. Integrating automated test
generation into the wysiwyt spreadsheet testing
methodology. ACM Transactions on Software
Engineering and Methodology (TOSEM),
15(2):150–194, 2006.

[4] F. Hermans. Improving spreadsheet test practices.
Center for Advanced Studies on Collaborative Research,
CASCON, 2013.

[5] D. Jannach, A. Baharloo, and D. Williamson. Toward
an integrated framework for declarative and interactive

spreadsheet debugging. In Proceedings of the 8th
International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), pages
117–124. SciTePress, 2013.

[6] D. Jannach, T. Schmitz, B. Hofer, and F. Wotawa.
Avoiding, finding and fixing spreadsheet errors–a
survey of automated approaches for spreadsheet qa.
Journal of Systems and Software, 2014.

[7] C. Scaffidi, M. Shaw, and B. Myers. Estimating the
numbers of end users and end user programmers. In
Visual Languages and Human-Centric Computing, 2005
IEEE Symposium on, pages 207–214. IEEE, 2005.

SBBRENG: Spreadsheet Based Business Rule Engine

 Pablo D. Palma

Incentings
Latadia 4623, Santiago, Chile

+562 2207 7158

pablo.palma@incentings.com

ABSTRACT
We developed a software product to replace the use of

spreadsheets as a data processing solution within a specific

business area. This paper explains the characteristics of the tool

and the findings, both resulting from a process of 3 years real life

refinement inside the ICM domain, and that we postulate can be

valid in other business domains.

General Terms
Documentation, Design, Security, Human Factors, Languages.

Verification

Keywords
Spreadsheet, Business Rules Engine, DDD, SEmS'14

1. INTRODUCTION

1.1 Use of spreadsheets for ICM solutions
The last four years our company has been working in the field of

Incentive Compensation Management –ICM-. Current solutions,

based on calculating performance-based payment for employees,

are complex and highly dynamic.

Worldwide, “only a 10% of sales organizations with more than

100 payees deploy prepackaged sales ICM applications” [1].

Almost all the remainder uses Excel. This is a reaction to the

combination of factors: high rate of change, short time available

for implementation, and typically long cycles in IT development.

However, Excel introduces its own limitations. It requires a lot of

human intervention that results in overpayment, and user-

generated errors that could be reduced “by more than 90%” [1]

(see subsection 5.2). In addition, there is “dissatisfaction with the

reliability of spreadsheets in adequately supporting compensation

processes” [1]. Excel also does not accomplish auditing,

accounting and regulation requirements.

In our market, the most important features of ICM software are

flexibility, security, auditing capabilities, and allowing the end

users to update the product themselves by including changes in

business rules.

1.2 Goals for a new ICM software
Some or the issues of pre-existing ICM solutions are:

 World Class ICM software solutions are costly and demand

long implementation processes

 In-house developments are slow1 and rigid2

1 in the range of 2 hrs per 2.000 transactions

 Excel-based solutions are fragile, difficult to audit and error

prone3

 Currently available solutions don’t attempt to improve

problem representation4 beyond conventional system

documentation

 Excel formulas are one-line expressions and are thus difficult

to read (e.g. nested if statements)

1.3 Importance and state of our work
There are two elements we consider important. First, we are

putting in practice some ideas (see Section 8) that may be useful

in other areas of enterprise software development. Second, we

want to determine how well our selection of functionalities

succeeds in creating a tool that best takes advantage of a mental

model of spreadsheets.

Customized ICM applications developed with SBBRENG have

been in use for more than a year in several companies from

different areas: car dealerships, banks, retail, etc. This happens in

the Chilean market where we use the product name IM4

2. BUSINESS RULES ENGINE
Business rules engines aren’t a new product category, they started

around the 80s [2]. Since then, many products and companies

have undergone a cycle of creation, development, merging and

death. We will use two currently successful solutions as

comparison standards: Drools (see Drools Guvnor Knowledge

Base)5 [3] -a component of the open source platform JBoss

BRMS- and ODM [3, 4] by IBM. Both are much larger systems

than SBBRENG, sharing the same global objective: make the

application more business agile.

Drools is a low level programming environment oriented to

efficiently manage a large quantity of conditions of any type. It

provides APIs for integration with other languages, tools and

processing environments. On the other hand, Operational

Decision Management –ODM- is a more business oriented

solution that conceptually splits systems into two different

components, talking to each other under a data contract. One is a

traditional Data Processing System for storing, updating and

reporting information related to some business domain, and the

other is a specialized system for managing and executing the

business rules of the same business domain.

2 no provisions for isolation or special management of business

logic
3 http://eusprig.org/horror-stories.htm
4 problem representation has impact on the maintenance agility

same as on the ability to preserve application coherence
5 http://drools.jboss.org/drools-guvnor.html

SBBRENG is closer to ODM with some big differences: domain

model is not Object Oriented and input/output documents are

simple shared folders for storing interchanging files

3. THE SPREADSHEET-LIKE SIDE OF

SBBRENG

3.1 The ApplyRules operation
A WorkSheet -WS- is a set of files and columns such as each

column has a unique name and each cell stores an immutable

value (current implementation does not yet force this

immutability). A SBBRENG Process is a specific sequence of

steps that modifies a WorkSheet. There is an operation

ApplyRules (•) for implementing SBBRENG Processes,

following statements of Business Rules. A Business Rule is -in

the context of SBBRENG- a directive detailing how to calculate

the numeric values used to run the business.

We represent a SBBRENG Process using the formula

 BRk • WSp => (WSk
p, OFp)

Where: • is the ApplyRules operation

 BRk is a subset of the Business Rules comprising the

 Application

 WSp is a current WorkSheet that is part of the

 Application

 WSk
p is a new WorkSheet that will be part of the

 Application

 OFp is an Output File that consists of a subset of

 WSk
p

Operation • adds new columns at the right of WSp. Business

Rules define how to calculate the immutable values of the new

cells. New columns can reference any column located at its left

(Figure 2).

.

AA BB CC DD EE FF GG HH II JJ

a1 b1 c1 d1 e1 f1 g1

a2 b2 c2 d2 e2 f2 g2

a3 b3 c3 d3 e3 f3 g3

 Figure 2: A SBBRENG Process

A SBBRENG Application is a sequence of Processes as seen

below:

Process 1: BR1 • WSa

Process 2: BR2 • WSb

 ……………………… .

Process k: BRk • WSm

3.2 The Assemble operation
An Input File becomes a WS when it contains all the information

referenced by one or more Business Rules. When Business Rule

references are contained in several Input Files, it is necessary to

build a WorkSheet by assembling several Input Files. We use the

Assemble operation (+) for this purpose, as shown in the

following formula.

 IFi (p) + IFk (q) => WSa

Where p is a column of IFi and q is a column of IFk, and they

provide a mechanism for matching rows of the Input Files.

Operation + produces a WorkSheet out of all the columns of both

Input Files. The WorkSheet contains all the IFi (p) rows and for

each of them, only one matching IFk (q) row. The matching logic

is the same of an Excel Table Lookup operation, in which p is a

column in the data and q represents the first column of the table.

The + operation is associative but not commutative.

The + operation can also be applied to a WorkSheet. In such

cases we have a precedence of Processes. Figure 3 shows an

example in which BR1• WSa precedes BR2 • WSb.

 Figure 3: Process precedence

There are situations where it is necessary to assemble the same file

more than one time, using different column keys. In such a case

SBBRENG adds a prefix to column names to avoid collisions. In

the following example, IFk is applied twice:

 (IFi (p) + IFk (q)) (r) +IFk (s) => WSb

4. NON COMPATIBLE SPREADSHEET

FUNTIONALITY
The most important difference with Spreadsheets is spreadsheet

interactivity, because SBBRENG follows a batch processing

model. Other examples of incompatible features are Table

Lookup, Dynamic Tables, external links, totals and other

processing

secuence

can use any value from

columns AA to GG

WSp

WSk
p

columns calculated by

Business Rules

columns

names

Business User

External
Systems

Rules

Engine

Input

Document

Output

Document

Figure 1: ODM high level view

aggregated values in the same column as the original data,

macros, different formulas in the same column, and the

programming language.

5. SOME ADITIONAL FEATURES OF

SBBRENG

5.1 Referential Transparency
A SBBRENG application offers “referential transparency”, which

is the base for providing reproducible results. In order to achieve

that goal, it is necessary to replace links to external sources (other

spreadsheets, Databases, etc.) by static Input Files containing the

external linked information.

5.2 Separation of Data and Parameters
In the context of SBBRENG, Parameters are a special type of

data: input files are produced by other systems, but parameters are

maintained by users. Parameters represent a high level system

abstraction, which is required to adapt the system behavior. Data

is stored in Files and WorkSheets, and Parameters are stored in a

special repository. SBBRENG’s IDE provides the means for

Parameter editing.

5.3 Iteration over Data
The calculus performed on each column follows a cycle. Rows are

filtered by conditions and grouped by some column values. The

logic applied to the cells belonging to a group, is repeated for

each group until reaching the last. Some SBBRENG core

functions offer aggregated operations over groups, e.g. count,

sum, average, max.

5.4 Domain Model
5.4.1 Introduction
Five objects support Domain modeling: Matrix, Classifier, List,

Rules and Files. Files are input/output files. Rules are pieces of

code that have some specific properties (i.e. name, filter, sequence

and granularity). The three remaining objects are the most

important, because they store in their structure the values of the

Parameters of the application. This allows a direct user interaction

with the Domain Model representation, when adjusting

Parameters values.

Parameters directly represent elements of the ubiquitous language

[5] Those elements appear in several real life working documents:

memos, agreements, contracts, regulations, etc. The shape of the

Parameters as used in SBBRENG mimics its representation in

documents. Therefore, business users understand them without

requiring further explanations.

As needed, some Parameters may have embedded logic that is

executed every time they are used in a Rule.

5.4.2 Matrixes
Matrixes are bi-dimensional arrays of values and conditions that

return a value (or several values) based on the evaluation of its

embedded logic.

Matrixes have two headings, X and Y. Each heading represents a

tree of conditions: sibling nodes make an OR and parent-child

nodes make an AND. It is very easy to see the tree as a set of

adjacent boxes with the outermost boxes of the headings matching

columns or rows of the Matrix. Each box has a label that makes

apparent its associated condition.

Spot

Clients

Recurrent

Clients

Premiun

Clients

Recurrent

Clients

Premiun

Clients

5% 6% 7% 7% 8%

North Region 4% 5% 6% 0% 0%

South Region 3% 4% 5% 0% 0%

North Region 5% 6% 7% 7% 8%

Central Region 4% 5% 5% 6% 6%

South Region 3% 4% 5% 0% 0%

New Products Old Products

Salesmen type A

Salesmen

type B

Salesmen

Type C

Figure 4: A Matrix

Matrixes change the way in which complex nested conditions are

visualized (see figure 5)

A B

C
1 2 3 4

5 6

a b c d e

 (A && (1 || 2 || 3))
|| (B && (5 && (a || b || c)) || (6 && (d || e))
|| C

Figure 5: Equivalence of nested conditions

Matrixes are self-explanatory for anyone familiar with the

Business Domain of the application. Their behaviour doesn’t

depend on the context in which they are used; it only depends on

the values of some of the input data in a clear and explicit manner.

Matrixes provide a powerful mechanism of Domain

representation, because of its expressivity and because of the way

they isolate behavior.

5.4.3 Classifiers
Classifiers are Boolean expressions whose value is automatically

set based exclusively on the input data and remain immutable

until the input data change. They represent business concepts,

mostly corresponding to nouns in the ubiquitous language.

Regardless of how many relationships input fields have in the

system they comes from, Classifiers implements only those

conditions required by our application. Classifiers are used by

Matrixes to build its embedded logic.

 Classifiers create a conceptual layer for mapping a SBBRENG

application Domain with the Domain of systems where the input

data were generated. Classifiers are used by Matrixes to build its

embedded logic. Classifiers increase program readability and

improve our ability to adapt to changes in the Input Files.

5.4.4 List and Constants
A List is a Dictionary where a value associated to an entry can be

simple or complex. Constants are Lists that use a special syntax.

5.5 Programming Language
We use JavaScript to replace spreadsheets’ functions. To improve

productivity, we developed a library of "core functions"

frequently used in our Domain of applications. It is easy to add

new core functions.

We also provide a graphic block language, similar to MIT's

Scratch [6] and others [7]. Blocks automatically generate the

equivalent JavaScript instructions. Blocks are very well suited to

SBBRENG because each Rule is made of a few instructions.

Blocks were initially implemented for the Assemble operation,

and we have plans to extend it to the Rules.

5.6 Auditing
A Run is a complete execution of a SBBRENG Application. Each

Run is stored as a backup document containing all inputs, outputs,

parameters and logic utilized. SBBRENG automatically assigns a

unique ID to each Run. Later, a Run can be opened as read-only

for revision, but it cannot be modified. It is possible to reprocess

a backup document, generating a new backup document with a

different ID.

Additionally, there is a log of the changes made to the parameters,

the input files and the logic, indicating old and new values, the

user involved and date/time of all changes.

5.7 IDE
There is a special IDE -Integrated Development Environment- to

support all tasks: application development, documentation,

design, testing, etc. It also has functions for running applications,

for reviewing previous Runs and for downloading results.

The IDE offers two views: a conventional nested folders type and

an advanced mental map type [8, 9]. The latter is the base for

some advanced visualization options that ease the understanding

of an Application (pending development).

5.8 Documentation
Documentation is a part of a broader content we call problem

representation. It includes parameters, code, blocks, ad-hoc

descriptions, etc. Additional to the content, there are tools for

filtering information, displaying information, and displaying

information relationships. Some of this functionality is currently

in use; some is pending development. Because documentation is

supported by the IDE, it is always available on line when working

with the application.

6. SOFTWARE STRUCTURE
On the Server side, there is a Web application than runs on IIS

using .NET and SQL Server.

On the Client side, there is the IDE running in any modern

browser.

7. RESULTS
Security and auditability of the applications were improved in

relationship to spreadsheets, as a result of some new specific

functionality (see Subsections 5.1, 5.2 and 5.6).

Documentation was improved when compared to conventional

solutions, because of the integration of different types of

information into one common repository (see Subsections 5.7,

5.8) and the availability of new capabilities based on the use of a

Mental Map.

The use of the Domain Model (see Subsection 5.4) enhanced

productivity of development and maintenance, because less code

is required to implement the same business logic compared to

solutions using spreadsheet (See Sub Subsection 5.4.2)

Performance is good. We were expecting 10 min per 2.000

transactions and 4 hrs per 3.000.000 transactions, but real

numbers were 4 min and 1 hr 45min, respectively. We were using

a conventional entry level server.

8. KEY LESSONS LEARNED FROM

WORKING WITH SBBRENG
Looking at one of the components of the productivity equation,

we think we successfully tried some new ideas, like a new

approach for representing the Business Rules Domain, a method

for avoiding complex nested conditions, an IDE based in a Mental

Map, a graphic replacement for the programming language of

spreadsheets, some mechanisms to improve security and

auditability, etc.

But looking at the other component -the process of getting and

agreeing to specifications for building the application- we think it

is necessary to achieve important improvements. The ubiquitous

language requires more elaboration6. The cognitive process that

ends with a working application can probably take advantage of

the impressive new findings in neuroscience. Focus, resources,

new instruments and new methodologies are moving the limits.

“Constant development of more sensitive and accurate

neuroimaging and data analysis methods creates new research

possibilities” [10].

9. FUTURE DEVELOPMENTS
We are interested in two areas for future development. The first is

improving automatic analysis capabilities used during the testing

phase, and the other is improving visualization capabilities for

mental maps in the IDE.

10. REFERENCES
[1] Dunne, M. 2010. MarketScope for Sales Incentive

Compensation Management Software. Gartner MarketScope

Series (March 2010)

[2] Bosh 2010. The Past, Present, and Future of Business Rules.

Bosch Software Innovations GmbH. (March 2010)

[3] Craggs, S. 2012. Competitive Review of Operational

Decision Management, Lustratus Research (October 2012)

[4] IBM 2012. Why IBM Operational Decision Management?

Software. Thought Leadership White Paper (June 2012)

[5] Evans, E. 2003. Domain-Driven Design. Addison Wesley; E

(August 2003)

[6] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N.,

Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E.,

Silver, J., Silverman, B. and Kafai Y. Scratch: Programming

for all. Communications of the ACM (November 2009)

6 it has been apparent that some additional concepts are necessary

[7] Hosick, E. 2014. Visual Programming Languages -

Snapshots. (February 2014)

http://blog.interfacevision.com/design/design-visual-

progarmming-languages-snapshots/

[8] Eppler, M. 2006. A comparison between concept maps,

mindmaps, conceptual diagrams, and visual metaphors as

complementary tools for knowledge construction and

sharing. Faculty of Communication Sciences, University of

Lugano

(USI), Lugano, Switzerland

[9] Novak, J., and Cañas, A. 2008. The Theory Underlying

Concept Maps and How to Construct and Use Them. Florida

Institute for Human and Machine Cognition (IHMC)

[10] Jääskeläinen, L. 20012. Cognitive Neuroscience:

Understanding the neural basis of the human mind .

Jääskeläinen & Ventus Publishing ApS (November 2012)|

http://bookboon.com/

.

End-user development via sheet-defined functions

Peter Sestoft
∗

Jonas Druedahl Rask Simon Eikeland
Timmermann

ABSTRACT
We have developed an implementation of sheet-defined func-
tions, a mechanism that allows spreadsheet users to define
their own functions, using only spreadsheet concepts such as
cells, formulas and references, and no external programming
languages. This position paper presents the motivation and
vision of this work, describes the features of our prototype
implementation, and outlines future work.

Keywords
Spreadsheets, end-user development, functional programming

1. INTRODUCTION
Spreadsheet programs such as Microsoft Excel, OpenOffice
Calc, Gnumeric and Google Docs are used by millions of
people to develop and maintain complex models in finance,
science, engineering and administration. Yet Peyton Jones,
Burnett and Blackwell [9] observed that spreadsheet pro-
grams lack even the most basic abstraction facility — a way
to encapsulate an expression as a reusable function — and
proposed a design for such a mechanism.

We have implemented this idea in the form of sheet-defined
functions. A user may define a function F simply by declar-
ing which (input) cells will hold F’s formal parameters and
which (output) cell will compute F’s result, as a function of
the input cells. The function definition may involve arbi-
trary additional cells, spreadsheet formulas, calls to built-in
functions, and calls to other sheet-defined functions. Fig-
ure 1 shows an example. In the example, values are referred
to by cell (such as B25). A mechanism that allows for sym-
bolic names (such as “periods”) instead could be added, but
Nardi speculates that end user developers would not neces-
sarily find that better [7, page 44].

Augustsson et al. from Standard Chartered Bank provide
further support for the utility of such abstraction mecha-

∗sestoft@itu.dk, IT University of Copenhagen, Denmark

Figure 1: A sheet-defined function implementing
Excel’s NOMINAL built-in. Cells B23 and B24 are in-
put cells, cell B26 is the output cell, and B25 holds
an intermediate result. The call to DEFINE in cell A22
creates the function. Cell A28 contains a call to the
defined function. It takes around 200 ns to execute
it, of which 80 ns is due to exponentiation (ˆ). As
shown in cell A28, a sheet-defined function is called
just like a built-in or VBA function.

nisms, saying about the traditional combination of Excel
and externally defined functions that “change control, static
type checking, abstraction and reuse are almost completely
lacking” [1].

2. THE VISION
The ultimate goal of this work is to allow spreadsheet users
themselves to develop and evolve libraries of user-defined
functions to support sophisticated spreadsheet models. Defin-
ing a function requires only well-known spreadsheet concepts
such as cell, cell reference and function, and no external pro-
gramming languages. Therefore experimentation and adap-
tation of user-defined functions remain under the control of
the spreadsheet users and domain experts, who need not
wait for an IT department to understand, describe, imple-
ment and test the desired changes.

Any spreadsheet computation can be turned into a sheet-
defined function. This ensures conceptual and notational
simplicity. Moreover, it means that new user-defined func-
tions may arise by refactoring of a spreadsheet model as
it evolves. As a spreadsheet model becomes more refined
and complex, it may be observed that the same cluster of
formulas appears again and again. Such a cluster of formu-
las may then be encapsulated in a sheet-defined function,
and each formula cluster replaced by a call to that function.
This both simplifies the spreadsheet model and improves its

Table 1: Time to compute the cumulative distribu-
tion function of the normal distribution N(0, 1).

Implementation Time/call (ns)
Sheet-defined function 118
C# 47
C (gcc 4.2.1 -O3) 51
Excel 2007 VBA function 1925
Excel 2007 built-in NORMSDIST 993

maintainability, because a bug-fix or other improvement to
the function will automatically affect all its uses, unlike the
traditional situation when there are multiple copies of the
same cluster of formulas.

Sheet-defined functions may be shared with other users in
the same department or application domain, without pre-
venting them from making their own improvements — be-
cause the domain knowledge is not locked into the notation
of a “real” programming language, but one that presumably
is familiar to users and that they are (more) comfortable
experimenting with.

Sheet-defined functions support end-user “tinkering” to de-
velop models and workflows that are appropriate within
their application domain [7]. Clearly not all spreadsheet
users will be equally competent developers of sheet-defined
functions, and clearly not all software should be developed
in this way. However, judging from the huge popularity
of spreadsheets within banks, finance, management, science
and engineering, the immediate response and the user con-
trol offered by spreadsheets are attractive features. Also,
from anecdotal evidence, structured use of spreadsheets is a
flexible, fast and cheap alternative to“big bang”professional
IT projects.

3. THE FUNCALC PROTOTYPE
We have created a prototype implementation of sheet-defined
functions, called Funcalc. The implementation is written in
C#, is quite compact (12,000 lines of code) and compiles
sheet-defined functions to .NET bytecode [3] at run-time.
As shown by Table 1 execution efficiency is very good; this
is due both to local optimizations performed by our function
compiler and to Microsoft’s considerable engineering effort
in the underlying .NET just-in-time compiler.

Funcalc features include:

• a “normal” interpretive spreadsheet implementation;

• a compiled implementation of sheet-defined functions;

• recursive functions and higher-order functions;

• functions can accept and return array values in addi-
tion to numbers and string;

• automatic specialization, or partial evaluation [12];

• facilities for benchmarking sheet-defined functions.

Because Funcalc supports higher-order functions, the value
contained in a cell, say A42, may be a function value. This

Table 2: Time to call a square root function; includes
recalculation time.

Calling Time/call (ns)
Sheet-defined function from Funcalc 400
Excel built-in from Excel 160
.NET function from Excel/Excel-DNA 4,900
VBA function from Excel 12,000

value may be called as APPLY(A42,0.053543,4) using built-
in function APPLY.

Function values are built by applying a sheet-defined func-
tion to only some of its arguments, the absent arguments
being given as NA(); the resulting function value will dis-
play as NOMINAL(#NA,4) or similar.

Such a function value may be specialized, or partially eval-
uated, with respect to its available (non-#NA) arguments.
The result is a new function value with the same behavior
but potentially better performance because the available ar-
gument values have been inlined and loops unrolled in the
underlying bytecode. For more information, see [5] and [12].
Specialization provides some amount of incremental compu-
tation and memoization, and we do not currently have other
general mechanisms for these purposes.

A forthcoming book [13] gives many more details of the im-
plementation, more examples of sheet-defined functions, and
a manual for Funcalc. A previously published paper [15]
presents a case study of reimplementing Excel’s built-in fi-
nancial functions as sheet-defined functions.

A comprehensive list of US spreadsheet patents is given in
a forthcoming report [14].

4. INTEGRATION WITH EXCEL
In ongoing work [10] we integrate sheet-defined functions
with the widely used Microsoft Excel spreadsheet program,
rather than our Funcalc prototype, as illustrated in Figures 2
and 3. This enables large-scale experimentation with sheet-
defined functions because they can be defined in a context
that is familiar to spreadsheet users and provides charting,
auditing, and so on.

The main downside is that calling a sheet-defined function
from Excel is much slower than from the Funcalc implemen-
tation (yet apparently faster than calling a VBA function);
see Table 2. However, the sheet-defined function itself will
execute at the same speed as in Funcalc. This work uses the
Excel-DNA runtime bridge between Excel and .NET [4].

5. FUTURE WORK
So far we have focused mostly on functionality and good
performance. We emphasize performance because we want
sheet-defined functions to replace not only user-defined func-
tions written in VBA, C++ and other external languages,
but to replace built-in functions also. Domain experts in
finance, statistics and other areas of rather general interest
should be able to develop well-performing high-quality func-
tions themselves and not have to rely on Microsoft or other
vendors to do so.

Figure 2: Funcalc as Excel plug-in, showing formulas of sheet-defined function TRIAREA with input cells A3,
B3 and C3, intermediate cell D3, and output cell E3. The call to DEFINE in cell E4 creates the function.
Through the new “Excelcalc” menu one can interact with the underlying Funcalc implementation and the
Excel-Funcalc bridge (mostly for development purposes).

Figure 3: Same sheet as in Figure 2, here showing values rather than formulas. Note the editing in progress
of a call to sheet-defined function TRIAREA in cell E6.

However, a well-performing implementation of sheet-defined
functions is just the beginning: one should investigate ad-
ditional infrastructure and practices to support their use.
For instance, how can we extend the natural collaboration
around spreadsheet development [8] in a community of users
to cover also libraries of sheet-defined functions; how can we
support versioning and merging of such libraries in a way
that does not preclude individual users’ tinkering and ex-
perimentation; how can we support systematic testing; and
so on.

Our concept of sheet-defined functions should be subjected
to a systematic usability study; the study conducted by
Peyton-Jones, Blackwell and Burnett [9] assumed that func-
tions could not be recursive, whereas ours can.

Finally, sheet-defined functions lend themselves well to par-
allelization, because they are pure (yet strict, an unusual
combination) so that computations can be reordered and
performed speculatively, and often exhibit considerable ex-
plicit parallelism. In fact, they resemble dataflow languages
such as Sisal [6]. Presumably some of the 1980es techniques
used to schedule dataflow languages [11] could be used to
perform spreadsheet computations efficiently on modern mul-
ticore machines. The result might be “supercomputing for
the masses”, realizing Chandy’s 1984 vision [2].

6. CONCLUSION
We have presented a prototype implementation of sheet-
defined functions and outlined some future work. Our hope
is that such functionality will become available in widely
used spreadsheet programs, or via a full-featured version of
the plugin described in Section 4, and will enable spread-
sheet users to develop their own computational models into
reusable function libraries, without loss of computational
efficiency and without handing over control to remote IT
departments or software contractors. Moreover, there seems
to be a technological opportunity to harness the power of
multicore machines through spreadsheet programming.

7. REFERENCES
[1] L. Augustsson, H. Mansell, and G. Sittampalam.

Paradise: A two-stage DSL embedded in Haskell. In
International Conference on Functional Programming
(ICFP’08), pages 225–228. ACM, September 2008.

[2] M. Chandy. Concurrent programming for the masses.
(PODC 1984 invited address). In Principles of
Distributed Computing 1985, pages 1–12. ACM, 1985.

[3] Ecma TC39 TG3. Common Language Infrastructure
(CLI). Standard ECMA-335. Ecma International,
sixth edition, June 2012.

[4] Excel DNA Project. Homepage. At
http://exceldna.codeplex.com/ on 28 February 2014.

[5] N. D. Jones, C. Gomard, and P. Sestoft. Partial
Evaluation and
Automatic Program Generation. Prentice Hall, 1993. At
http://www.itu.dk/people/sestoft/pebook/pebook.html
on 9 June 2013.

[6] J. McGraw et al. Sisal. Streams and iteration in a
single assignment language. Language reference
manual, version 1.2. Technical report, Lawrence
Livermore National Labs, March 1985.

[7] B. A. Nardi A small matter of programming.
Perspectives on end user programming. MIT Press,
1993.

[8] B. A. Nardi and J. R. Miller Twinkling lights and
nested loops: distributed problem solving and
spreadsheet development. International Journal of
Man-Machine Studies, 34:161–184, 1991.

[9] S. Peyton Jones, A. Blackwell, and M. Burnett. A
user-centred approach to functions in Excel. In ICFP
’03: Proceedings of the Eighth ACM SIGPLAN
International Conference on Functional Programming,
pages 165–176. ACM, 2003.

[10] J. D. Rask and S. E. Timmermann. Integration of
sheet-defined functions in Excel using C#. Master’s
thesis, IT University of Copenhagen, 2014. (Expected
June 2014).

[11] V. Sarkar and J. Hennessy. Compile-time partitioning
and scheduling of parallel programs. In ACM
SIGPLAN ’86 Symposium on Compiler Construction,
pages 17–26, June 1986.

[12] P. Sestoft. Online partial evaluation of sheet-defined
functions. In A. Banerjee, O. Danvy, K. Doh, and
J. Hatcliff, editors, Semantics, Abstract Interpretation,
and Reasoning about Programs, volume 129 of
Electronic Proceedings in Theoretical Computer
Science, pages 136–160, 2013.

[13] P. Sestoft. Spreadsheet Implementation Technology.
Basics and Extensions. MIT Press, 2014. ISBN
978-0-262-52664-7. (Expected August 2014). 313
pages.

[14] P. Sestoft. Spreadsheet patents. Technical Report
ITU-TR-2014-178, IT University of Copenhagen, 2014.
ISBN 978-87-7949-317-9. (To appear).

[15] P. Sestoft and J. Z. Sørensen. Sheet-defined functions:
implementation and initial evaluation. In Y. Dittrich
et al., editors, International Symposium on End-User
Development, June 2013, volume 7897 of Lecture
Notes in Computer Science, pages 88–103, 2013.

Dependence Tracing Techniques for Spreadsheets: An

Investigation
Sohon Roy

Delft University of Technology

S.Roy-1@tudelft.nl

Felienne Hermans
Delft University of Technology

F.F.J.Hermans@tudelft.nl

ABSTRACT
Spreadsheet cells contain data but also may contain formulas that

refer to data from other cells, perform operations on them, and

render the results directly to show it to the user. In order to

understand the structure of spreadsheets, one needs to understand

the formulas that control cell-to-cell dataflow. Understanding this

cell-to-cell inter-relation or dependence tracing is easier done in

visual manners and therefore quite a few techniques have been

proposed over the years. This paper aims to report the results of

an investigative study of such techniques. The study is a first step

of an attempt to evaluate the relevance of these techniques from

the point of view of their benefits and effectiveness in the context

of real world spreadsheet users. Results obtained from such a

study will have the potential for motivating the conception of

newer and better techniques, in case it is found that the need for

them is still not fully catered.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications]: Office Automation –

Spreadsheets

General Terms

Design, Experimentation, Human Factors

Keywords

End-user computing, Dependence tracing, Spreadsheet

visualizations

1. INTRODUCTION

1.1 Background
Spreadsheets offer the end-users an interface that is incomparable

in its simplicity and flexibility. However it is mostly beneficial for

performing rapid calculations and quick simple analyses. This

interface is not helpful at all in understanding the design logic

behind a spreadsheet, especially the type of understanding that is

necessary in order to make modifications to existing spreadsheets.

Modification becomes harder in the case where it is done by a

user different from the creator. This situation is fairly common in

the industry as the average lifespan of spreadsheets have been

found to be 5 years [3] which can often prove too long for the

possibility that the original creator will be always available

whenever some modifications are required. When understanding

spreadsheets, the visual structure that is perceived from just

looking at the cells is referred to as spreadsheet surface structure

[2] comparable to the anatomical structure of the human body.

However calculations are performed based on formulas and the

formulas connect the cells to form another kind of structure called

the computational/deep structure that is comparable to the

nervous system of the human body. These two structures are often

not similar and at times can be radically different. The deep

structure reflects the data flow in the spreadsheet and is basically

the cell-to-cell inter-dependence. In the understanding of a

spreadsheet, this cell-to-cell inter-dependence plays a key role.

Without having a clear idea of cell-to-cell inter-dependence, the

modification of a fairly complex spreadsheet becomes impossible

without ample risks of errors. It is considerably easier to

understand for a user if the referred cell(s) in a formula are

indicated in an enhanced manner with visualization techniques,

instead of having to manually inspect each and every formula and

trying to locate the exact cell(s) that it is referring to. Therefore a

number of visualization techniques have been proposed in various

research papers over the years. However there are some questions

about these techniques that still need to be explored and they form

the core of our investigation. They are listed in subsection 1.3.

1.2 Motivation
It is our opinion that visualization based dependence tracing

techniques, as found in research literature, are not making across

to the industry of spreadsheet users. In a study conducted by

Hermans et al. [3] with spreadsheet users working in a large

Dutch financial company, it was found that “the most important

information needs of professional spreadsheet users concern the

structure of the formula dependencies”. This study also mentions

the feeling of inadequacy felt by the users while using the only

available dependence tracing tool within their reach the Excel

Audit toolbar [Fig.1]; a feature of MS (Microsoft) Excel which is

by far the most popular [1] spreadsheet application in the market.

This feature demonstrates cell inter-dependencies with an overlaid

dependency graph over a worksheet, with graph edges shown as

blue arrows; the edges however are generated on a cell-by-cell

basis which has to be interactively activated by the user. Findings

of another informal survey conducted in October 2013 at the

offices of the UK based financial modeling company F1F91 also

point repeatedly at the direction of the sense of inadequacy the

spreadsheet users are suffering from when depending heavily on

this Excel Audit tracing feature. These findings lead us to the

question why there are no better tools available to spreadsheet

users? Nevertheless, as will be shown in this paper, there is

considerable amount of research already done on this topic. This

gives rise to the question why implementations of such research

are not making it to the industry? Only a handful of highly

1 F1F9: A financial modeling company http://www.f1f9.com/

Figure 1: Tracing dependents with Excel Audit toolbar: blue connecting arrows and coloring of precedent cells

customized tools are existing today and that also are mostly used

internally by organizations; they are not compared against each

other based on any well accepted metrics framework. Their

efficacy in actually helping in the end-user experience is not

measured. Our investigation is therefore dedicated to evaluating

the effectiveness of these proposed techniques in the context of

real world spreadsheet users. Such an evaluation might also open

up specific areas in which to improve upon or come up with

newer techniques that are not only innovative but viable in terms

of practically realizable implementations that can be adopted by

spreadsheet users in the industry.

1.3 Hypothesis and Research Questions
Hypothesis: Proposals thus far described and demonstrated in

research literature about visualization based techniques for

spreadsheet dependence tracing have not adequately made it

across to the industry in forms of reliable, user-friendly, wide-

spread, multi-platform, and standardized software tools of both

stand-alone and plug-in type.

On the basis of the premise established in Subsection 1.2 and the

above mentioned hypothesis, we arrive at the following three

research questions.

Research Questions:

R1. Why the proposals thus far described and

demonstrated in research literature have not reached the

industry as implementations?

An attempt to study what may be the key causes of the perceived

bottleneck between research and industrial implementations.

R2. Is there any well-accepted metrics framework with

which such implementations as above (R1) can be compared to

each other?

If and when implementations are made available to the industry, it

is necessary to measure their usefulness in actually helping the

end-user computing experience. If such a framework is not there,

then it can be devised and made into an industrial standard.

R3. Is there any well-defined opportunity for

improvement in the dependence tracing context?

Improvement not just from the aspect of innovativeness of idea

but also from the angle of how well the idea can be translated into

a user-friendly and reliable implementation; the efficacy being

measured against metrics as mentioned in R2.

1.4 Approach
To ascertain answers to the research questions, as a first step, we

did a critical review of the existing research literature on this

specific topic of visualization based dependence tracing

techniques for spreadsheets. This paper summarizes in brief the

findings of the review and the conclusions drawn from it. It

essentially presents preliminary results and indicators related to

the research questions. In order to illustrate our findings for this

paper, we chose a number of research papers relevant on this topic

and revisited their contents from the following aspects:

I. The basic technique/principle/strategy

II. Characteristic features related to dependents tracing

III. Tools or prototypes developed if any

IV. Comments or details available on testing, performance,

and limitations

V. Current status of the research and its implementation,

and its perceived relevance or influence in the industrial

scene

2. THE SELECTED RESEARCH PAPERS

2.1 Fluid Visualization of Spreadsheet

Structures [4]
In this paper Igarashi et al. provide the description of a

spreadsheet visualization technique mainly based on

superimposition of visual enhancement and animations on top of

the regular tabular structure of spreadsheets. The strategy is

primarily the use of graphical variation (color, shading, outlining,

etc.), animation, and lightweight interaction that allows the user to

directly perceive the spreadsheet dataflow structure, keeping the

tabular spreadsheet view unchanged. The transient local view

feature is a visual enhancement based on outlining and shading

that allows a user to view the dataflow associated with a particular

cell. There is a static global view that visually enhances the entire

spreadsheet by overlaying the complete dataflow graph of all the

cells. Animated global explanation plays an animation to illustrate

the dataflow of the entire spreadsheet. Visual editing techniques is

a graphical manipulation technique that allows the user to directly

edit the generated dataflow graph in global static view by

dragging and its effect is then reflected in the spreadsheet

structure as the textual formulas are updated automatically. A

prototype for UNIX was developed using Pad++ and Python.

Pad++ was a visualization platform developed and maintained by

University of Maryland. A video demonstration of the tool in

action is available. It is mentioned that the smoothness of

animation is limited to spreadsheets of 400 cells2 or lesser.

Performance of the tool radically degrades with increase in size of

the spreadsheets. There is no information if the efficacy of the

prototype was tested with real spreadsheet users. No future plan is

provided on how this tool can be implemented or scaled up for

use in the industry of spreadsheet users. Pad++ and its support has

been long discontinued and the project is closed by UMD.

However, an extension of the idea of “transient local view” as

proposed in this paper can be observed in MS Excel version 2007

onwards. In Excel 2007 the precedent cells of a cell are outlined

in different colors. In Excel 2013 the precedent cells are actually

shaded fully in different colors [Fig.1].

2.2 3D Interactive Visualization for Inter-cell

Dependencies of Spreadsheets [5]
In this paper Shiozawa et al. propose a technique of cell

dependence visualization in 3D based on an interactive lifting up

operation. The technique utilizes the fact that spreadsheets are two

dimensional tabular structures and therefore the third dimension

can be used to depict complementary information like cell inter-

dependencies. A spreadsheet is first graphically re-rendered in a

3D space. Next, users are allowed to select a cell and drag it

upwards level-wise along the z-axis. The selected cell’s dependent

cells are pointed with arrows [Fig.2] and they themselves are also

lifted up but kept one level below the selected cell. However in

this case the advantage is in the fact that unlike in Excel, arrows

connecting dependent cells lying on the same row would never

overlap with each other to generate visual ambiguity. The lifting

up operation is recursively repeated on the dependent cells as well

to generate a leveled tree structure in 3D. This provides the user a

clear idea of which cells in the sheet are more important by

looking at the levels of dependents lying below them. A prototype

for UNIX was developed by modifying the spreadsheet program

SLSC. The 3D graphics were implemented with OpenGL APIs.

No information regarding the performance of the prototype is

provided. For an application such as this, making heavy use of

computer graphics, it is presumable that performance and scaling

could be a concern. Unfortunately the paper does not throw any

light on this matter. Neither was given any detail about how

beneficial or acceptable the tool proved for spreadsheet users.

2.3 Visual Checking of Spreadsheets [2]
In this paper Chen et al. propose a set of strategies aimed at

checking and debugging of spreadsheets using visual methods to

2 This is a much smaller number of cells than what is observed in

typical real life spreadsheets

reveal the deep structure of spreadsheets to the users. A set of

visual methods is described followed by strategies on how to best

use those visual tools for different purposes of checking. The

functional identification feature demarcates cells with different

colors according to whether they behave as input, output,

processing or standalone and this classification is based on

whether a cell is having dependents, precedents, both or none.

Multi-precedents and dependents tool, block-precedents tool, and

the in-block-precedents-dependents tool are all tools that illustrate

various types of inter-cell dependencies with pointed arrow-heads

similar to the Excel feature. The difference here being that arrows

not only connect individual cells but also have the capability of

offering the visual perception that they are connecting a set of

related cells that are visually grouped together by shading or

coloring; such group of cells are termed in the paper as cell block.

Three debugging strategies each for global and local context were

described to illustrate the use of these tools. The tools were

implemented using VBA (Visual Basic for Applications) and

authors claimed that they can be plugged in to any Excel

installation. In spite of claims that the tools increase usability of

spreadsheets, no details were given about user acceptance or any

measurement of by how much they increased usability.

2.4 Spreadsheet Visualisation3 to Improve

End User Understanding [1]
In this paper Ballinger et al. provide description of a visualization

toolkit that could ease understanding of spreadsheets by

introducing visual abstraction with types of images that emphasize

on layout and dependency rather than values of cells. In order to

achieve this, their idea was to extract all the information contained

in a spreadsheet and utilize that in a more versatile programming

environment to quickly generate visualizations. They chose Java

for this purpose and since Excel is the most popular spreadsheet

application, their toolkit was designed to operate on

Figure 3: (a) Data dependency unit vector map (b) Spring view

graph structure

Excel spreadsheets. The toolkit is capable of extracting low level

structural information and data from spreadsheet files, analyze

that information, and produce visualization. The data dependency

flow feature is capable of generating 2D and 3D maps that

illustrate the general drift of dataflow in a spreadsheet with arrows

of unit magnitude [Fig.3 (a)]. This helps reduce the visual clutter

which normally occurs with arrows of different lengths due to

different distances between cells. The graph structure feature

provides the spring view [Fig.3 (b)] which is a generated graph of

cells stripped of their values. The detailed inspection of formula

feature provides visualizations that are similar to Excel Audit and

3 Paper is in New Zealand English

Figure 2: Recursive lifting-up operation

block precedents tool (subsection 2.3) but they are not overlaid on

spreadsheets; the images are generated on spreadsheet-like matrix

structures and the cells are reduced to row-column intersection

points, their values wiped out to reduce visual overhead on the

user’s understanding. The toolkit was run successfully on a corpus

of 259 workbooks. User-studies were not conducted and no

details were given on whether real users found it convenient

enough to understand the various types of images.

2.5 Supporting Professional Spreadsheet

Users by Generating Leveled Dataflow

Diagrams [3]
In this paper Hermans et al. propose a spreadsheet visualization

technique and the description of an implementation along with the

findings of a user study. The work in this paper extends that of

previous work by the authors about extraction of class diagrams

from spreadsheets. The basic principle depends upon classifying

all cells in a spreadsheet as either of type data, formula, label, or

empty. Diagrams similar to ER (Entity-Relationship) diagrams are

next created by representing data cells as entities and formula

cells as method (operation) + entity (result). The interconnections

are illustrated as relationships. Next these elements are grouped

together based on the presence of label type cells to form larger

entities that represent cell blocks. These are then assembled

Figure 4: Global view (L) and Worksheet view (R)

inside entities that represent their respective worksheets. In this

manner the hierarchical leveled dataflow diagrams are generated.

The global view [Fig.4] feature offers the users a high level

interactive visualization of the whole workbook showing the

dependencies between worksheets. The worksheet view shows the

dependencies between blocks in the same sheet and the low level

formula view shows in details how individual cells are inter-

connected via formulas. A tool was developed called GyroSAT

(Gyro Spreadsheet Analysis Toolkit) in C# 4.0. The output

dataflow diagram is produced in DGML (Directed Graph Markup

Language) which can be viewed and navigated in Microsoft

Visual Studio 2010 Ultimate’s built-in DGML browser. This tool

was extensively evaluated with a user group consisting of 27

professional spreadsheet users working in a large Dutch financial

management company. A set of 9 spreadsheets that were used for

testing in 9 case studies had number of worksheets ranging from 4

to 42, and number of cells ranging from 1048 to 503050.

Subsequently this tool and its features have been integrated into

the set of services offered by the spreadsheet solutions company

Infotron.4

4 Infotron is a spreadsheet solution company offering web based

spreadsheet analysis services http://www.infotron.nl/

3. CONCLUSIONS
Our study indicates that each of the five research papers proposes

unique and innovative visualization techniques based on different

strategies. All of them offer rich set of features intended to help

spreadsheet users from different angles. Only two of them have

prototypes running on UNIX, both of which, to the best of our

beliefs will prove incompatible for current use on any popular

platform. One has Excel based VBA implementation which

supposedly should work as plug-in to any Excel version but is

subject to be tested against version incompatibility. Two of them

have full-fledged standalone implementations based on Java and

C#, both accepting Excel spreadsheets as inputs, but only one of

them has found practical exposure in the industry. This reinforces

the need to explore our research question “R1. Why the

proposals thus far described and demonstrated in research

literature have not reached the industry as implementations?”

Only one of the research ideas has been properly validated against

a set of real world professional spreadsheet users. The efficacies

of the rest of the research ideas have only been claimed in writing

but not demonstrated by user studies. This further reinforces the

need to explore our second research question “R2. Is there any

well-accepted metrics framework with which such

implementations as above (R1) can be compared to each

other?”

The above findings also lead us towards the general conclusion

that our third research question “R3. Is there any well-defined

opportunity for improvement in the dependence tracing

context?” is an open question indeed. In that light we therefore

judge that a suitable next step would be to do a more exhaustive

search of available spreadsheet visualization tools and 1) actually

test them on industrially used spreadsheets such as those available

in the EUSES corpus and if the tools are found to be performing

in a reliable manner then 2) test them on an adequately large and

well represented spreadsheet users group to measure usability.

4. REFERENCES
[1] Ballinger, D., Biddle, R., Noble, J. 2003. Spreadsheet Visualisation

to Improve End-user Understanding. In proceedings of the Asia-

Pacific Symposium on Information Visualisation - Volume 24

(APVIS 2003), Adelaide, Australia, pp. 99–109.

[2] Chen, Y., Chan, H. C. 2000. Visual Checking of Spreadsheets. In

proceedings of the European Spreadsheet Risks Interest Group 1st

Annual Conference (EuSpRIG 2000), London, United Kingdom.

[3] Hermans, F., Pinzger, M., Deursen, A. van. 2011. Supporting

Professional Spreadsheet Users by Generating Leveled Dataflow

Diagrams. In proceedings of the 33rd International Conference on

Software Engineering (ICSE 2011), Waikiki, Honolulu, HI, USA,

pp. 451–460.

[4] Igarashi, T., Mackinlay, J., Chang, B.-W., Zellweger, P. 1998. Fluid

Visualization of Spreadsheet Structures. In proceedings of the IEEE

Symposium on Visual Languages (VL 1998), Halifax, NS, Canada,

pp. 118–125.

[5] Shiozawa, H., Okada, K., Matsushita, Y. 1999. 3D Interactive

Visualization for Inter-Cell Dependencies of Spreadsheets. In

proceedings of the IEEE Symposium on Information Visualization

(Info Vis 1999), San Francisco, CA, USA, pp. 79–82, 148.

MDSheet – Model-Driven Spreadsheets

Jácome Cunha João Paulo Fernandes Jorge Mendes
Rui Pereira João Saraiva

{jacome,jpaulo,jorgemendes,ruipereira,jas}@di.uminho.pt
HASLab/INESC TEC & Universidade do Minho, Portugal
CIICESI, ESTGF, Instituto Politécnico do Porto, Portugal

RELEASE, Universidade da Beira Interior, Portugal

ABSTRACT
This paper showcases MDSheet, a framework aimed at im-
proving the engineering of spreadsheets. This framework is
model-driven, and has been fully integrated under a spread-
sheet system. Also, its practical interest has been demon-
strated by several empirical studies.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Spreadsheets;
D.2.0 [Software Engineering]: General; D.2.6 [Software
Engineering]: Programming Environments—Graphical en-
vironments, Integrated environments, Interactive environ-
ments

General Terms
Languages, Design, Human Factors

Keywords
Model-Driven Spreadsheets, MDSheet, Model Inference, Em-
bedding, Bidirectional Synchronization, Querying

1. INTRODUCTION
We can not run the modern world without spreadsheets.

Spreadsheets are omnipresent, from individuals needing to
cope with simple needs to large companies needing to im-
plement complex forecasts or to produce advanced reports.

The realization of such importance has made concrete im-
pact in the scientific community as well. This is due to more
research teams devoting their efforts to improving spread-
sheets, and a growing number of scientific events dedicated
to them.

A successful approach to address spreadsheets under a sci-
entific perspective consists of incorporating well-established
software engineering techniques in the spreadsheet develop-
ment process.

Our approach is essentially based on precisely one such
technique: we adopt model-driven spreadsheet engineering.
In the setting we propose a spreadsheet is abstracted through
a concise model, which is then used to improve effective-
ness and efficiency of spreadsheet users. The framework
we describe in this paper has been realized in a traditional
spreadsheet development system, thus not forcing spread-
sheet users to move to a different paradigm.

The spreadsheet development framework that we envision

has been fully incorporated in a tool, MDSheet1, whose fea-
tures include:2

1) Model inference: we extract the abstract representation
from legacy spreadsheets;
2) Embedded models: this abstract representation is manip-
ulated and evolved in spreadsheets themselves;
3) User guidance: relying on this business model, we are able
of guiding users in avoiding traditional spreadsheet mistakes;
4) Model/instance synchronization: we support the evolu-
tion of model and instances, ensuring an automatic synchro-
nization of the unevolved artifact;
5) Model quality assessment: a set of metrics on the com-
plexity of a spreadsheet model can be computed;
6) Querying: spreadsheet data can be queried.

2. SPREADSHEET ENGINEERING
MDSheet is a framework for the engineering of spread-

sheets in a model-driven fashion. This framework is highly
extensible: we have actually extended it with several new
functionalities that we have developed in the last few years.

2.1 Motivational Example
The realization of our approach to spreadsheet engineering

builds upon the embedding of ClassSheets in a spreadsheet
system. So, we start by introducing ClassSheets within MD-
Sheet with the example given in Figure 1: we present a model
for a Budget spreadsheet (Figure 1a), which we adapted
from [13]3, and an instance of such model (Figure 1b).

This model holds three classes where data is to be in-
serted by end users: i) Year, with a default value of 2010,
for the budget to accommodate multi-year information, ii)
Category, for assigning a label to each expense and iii),
a(n implicit) relationship class where quantity and costs are
registered and totals are calculated based on them. The ac-
tual spreadsheet may hold several repetitions of any of these
elements, as indicated by the ellipsis. For each expense we
record its quantity and its cost (with 0 as the default value),
and we calculate the total amount associated with it. Fi-
nally, (simple) summation formulas are used to calculate the
global amount spent per year (cell D5), the amount spent
per expense type in all years (cell F3) and the total amount
spent in all years (cell F5) are also calculated.

1MDSheet is available through the SSaaPP project website:
http://ssaapp.di.uminho.pt.
2In the next section, we describe each such feature in a dif-
ferent subsection.
3We assume colors are visible in the digital version of this
paper.

(a) Model worksheet.

(b) Data/instance worksheet.

Figure 1: A bidirectional model-driven environment for a budget spreadsheet.

Following is the description of the full set of features of-
fered by MDSheet.

2.2 Model Inference
A model-driven approach to spreadsheet engineering of-

fers an improved development experience: an abstract rep-
resentation of a spreadsheet, i.e., its model, helps us, among
other things, in guiding users into preventing errors. This
approach, however, requires the definition of a model in par-
allel with the spreadsheet it abstracts. In order to handle
legacy spreadsheets, i.e., the ones that have not been de-
veloped from scratch together with their model, we have
devised a model inference technique [2], that has been im-
plemented in MDSheet. Concretely, we infer models in the
ClassSheets language, an object-oriented high-level formal-
ism to abstract spreadsheets [13].

2.3 Embedded Models
The worksheet structure of spreadsheets is a decisive fac-

tor in their modularity. In fact, we exploited precisely this
structure to make the model of a spreadsheet available within
spreadsheet systems themselves: one worksheet holds the
model of a spreadsheet, while another holds its data. This

embedding of spreadsheets has also been implemented under
MDSheet [6], which was demonstrated in Section 2.1. More-
over, we extended the ClassSheets language with database
constraints, such as unique columns/rows or foreign keys,
which have also been incorporated in MDSheet [11]. In fact,
we have further extended the available restrictions so that
the user can specify the contents of a cell using regular ex-
pressions or intervals [8]. Finally, we extended ClassSheets
with references between different models making them more
flexible. Note that through this embedding we can guaran-
tee that spreadsheet data always conforms to a model.

2.4 User Guidance
The embedding of our extended version of the ClassSheet

language allows us to guide the user in inserting correct data.
When a model is designed, it serves as a guider in the cre-
ation of a data worksheet, which is initially empty. Only
cells containing plain data can be edited as all other are
inferred from the model. This prevents, e.g., users from
making mistakes when defining formulas as they are locked.
Moreover, the restrictions created in the model guarantee
that the data in the cells respects them. In the model it is
possible to define an interval of integers for a cell, or a regu-

lar expression that the content must conform to. A column
or row can be marked as having only unique values or being
a foreign key to another column or row. All these restric-
tions are enforced by MDSheet. In the case of foreign keys,
the user can use a combo box to select existing values from
the referred column/row.

2.5 Model/Instance Synchronization
As any other software artifact, spreadsheets evolve over

time. MDSheet accommodates changes by allowing the evo-
lution of models and instances, while automatically coevolv-
ing the unchanged artifact. For this, we introduced a for-
mal framework to allow evolutions of the model to be au-
tomatically spanned to the instances [6, 7, 12]. We have
later proposed techniques and tools to the evolution of data
by the user and corresponding automatic coevolution of the
model [3]. We therefore ensure that model/instance consis-
tency is never broken.

2.6 Model Quality Assessment
In a first attempt to measure the quality of a spreadsheet

model, we introduced a set of metrics to calculate the com-
plexity of ClassSheet models [9]. These metrics are imple-
mented under MDSheet and can be calculated for any Class-
Sheet defined using it. They are then compared to the same
metrics computed for a repository of ClassSheet models so
users can have a reference point for such values. The evolu-
tion mechanisms can then be used to evolve the spreadsheet
improving it according to the metrics calculated.

2.7 Querying
As many spreadsheets are used as data repositories, the

need to query their data is frequent. MDSheet also inte-
grates a query system, which allows the definition of model-
oriented queries, in the style of traditional database queries.
This allows the writing of queries without having to man-
ually observe a possibly large number of columns and rows
of concrete data. Indeed, queries are written, by analyzing
models, as abstractions that are simpler to understand. Our
system was initially presented as a textual language [1, 4],
very similar to SQL. Even being textual it already was of
great help for users [14]. Still, we have further improved it
by embedding the language in a worksheet, thus creating a
visual language for spreadsheet querying [5].

3. EMPIRICAL VALIDATION
One of the purposes of our tool is to help users commit

less errors; if possible, it also intends to help users work
faster with spreadsheets. To assess these two concerns we
have run an empirical study and we have found empirical
evidence that indeed our model-driven spreadsheet environ-
ment can in fact help users become more efficient and more
effective [10].

4. CONCLUSION
We briefly presented MDSheet and all the features it of-

fers to its users. Given the fact that it has been built as a
framework, new tools, even if not proposed by us, can easily
be integrated in it.

We believe this tool is in a very mature state and can
be used in real case scenarios. We have thus started its
integration in industry: i), to support test case evolution

in an agile testing framework of a software house; ii), to
adapt data produced by different database systems for a
car multimedia production company; and iii), to provide
spreadsheet models for a food bank.

Acknowledgments
This work is part funded by the ERDF - European Regional
Development Fund through the COMPETE Programme (op-
erational programme for competitiveness) and by National
Funds through the FCT - Fundação para a Ciência e a Tec-
nologia (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-020532. The first au-
thor was funded by the FCT grant SFRH/BPD/73358/2010.

5. REFERENCES
[1] O. Belo, J. Cunha, J. P. Fernandes, J. Mendes,

R. Pereira, and J. Saraiva. Querysheet: A bidirectional
query environment for model-driven spreadsheets. In
VLHCC ’13, pages 199–200. IEEE CS, 2013.

[2] J. Cunha, M. Erwig, and J. Saraiva. Automatically
inferring classsheet models from spreadsheets. In
VLHCC ’10, pages 93–100. IEEE CS, 2010.

[3] J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco,
and J. Saraiva. Bidirectional transformation of
model-driven spreadsheets. In ICMT ’12, volume 7307
of LNCS, pages 105–120. Springer, 2012.

[4] J. Cunha, J. P. Fernandes, J. Mendes, R. Pereira, and
J. Saraiva. Querying model-driven spreadsheets. In
VLHCC ’13, pages 83–86. IEEE CS, 2013.

[5] J. Cunha, J. P. Fernandes, J. Mendes, R. Pereira, and
J. Saraiva. Embedding model-driven spreadsheet
queries in spreadsheet systems. In VLHCC ’14, 2014.
to appear.

[6] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva.
Embedding and evolution of spreadsheet models in
spreadsheet systems. In VLHCC ’11, pages 186–201.

[7] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva.
MDSheet: A framework for model-driven spreadsheet
engineering. In ICSE 2012, pages 1412–1415. ACM.

[8] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva.
Extension and implementation of classsheet models. In
VLHCC ’12, pages 19–22. IEEE CS, 2012.

[9] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva.
Complexity Metrics for ClassSheet Models. In
ICCSA ’13, volume 7972, pages 459–474. LNCS, 2013.

[10] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva.
Embedding, evolution, and validation of spreadsheet
models in spreadsheet systems. 2014. submitted.

[11] J. Cunha, J. P. Fernandes, and J. Saraiva. From
Relational ClassSheets to UML+OCL. In SAC ’12,
pages 1151–1158. ACM, 2012.

[12] J. Cunha, J. Visser, T. Alves, and J. Saraiva.
Type-safe evolution of spreadsheets. In
D. Giannakopoulou and F. Orejas, editors, FASE ’11,
volume 6603 of LNCS, pages 186–201. Springer, 2011.

[13] G. Engels and M. Erwig. ClassSheets: automatic
generation of spreadsheet applications from
object-oriented specifications. In ASE ’05, pages
124–133. ACM, 2005.

[14] R. Pereira. Querying for model-driven spreadsheets.
Master’s thesis, University of Minho, 2013.

How can we figure out what is inside thousands of
spreadsheets?

Thomas Levine
_@thomaslevine.com

ABSTRACT
We have enough data today that we it may not be realistic
to understand all of them. In hopes of vaguely understand-
ing these data, I have been developing methods for exploring
the contents of large collections of weakly structured spread-
sheets. We can get some feel for the contents of these col-
lections by assembling metadata about many spreadsheets
and run otherwise typical analyses on the data-about-data;
this gives us some understanding patterns in data publish-
ing and a crude understanding of the contents. I have also
developed spreadsheet-specific search tools that try to find
related spreadsheets based on similarities in implicit schema.
By running crude statistics across many disparate datasets,
we can learn a lot about unweildy collections of poorly struc-
tured data.

Keywords
data management, spreadsheets, open data, search

1. INTRODUCTION
These days, we have more data than we know what to do
with. And by ”data”, we often mean unclean, poorly doc-
umented spreadsheets. I started wondering what was in all
of these spreadsheets. Addressing my curiosity turned out
to be quite difficult, so I’ve found up developing various ap-
proaches to understanding the contents of large collections
of weakly structured spreadsheets.

My initial curiosity stemmed from the release of thousands of
spreadsheets in government open data initiatives. I wanted
to know what they had released so that I may find interesting
things in it.

More practically, I often am looking for data from multi-
ple sources that I can connect in relation to a particular
topic. For example, in a project I had data about cash
flows through the United States treasury and wanted to join
them to data about the daily interest rates for United States

bonds. In situations like this, I usually need to know the
name of the dataset or to ask around until I find the name.
I wanted a faster and more systematic approach to this.

2. TYPICAL APPROACHES TO EXPLOR-
ING THE CONTENTS OF SPREADSHEETS

Before we discuss my spreadsheet exploration methods, let’s
discuss some more ordinary methods that I see in common
use today.

2.1 Look at every spreadsheet
As a baseline, one approach is to look manually at every
cell in many spreadsheets. This takes a long time, but it is
feasible in some situations.

2.2 Use standard metaformats
Many groups develop domain-specific metaformats for ex-
pressing a very specific sort of data. For example, JSON API
is a metaformat for expressing the response of a database
query on the web [4], Data Packages is a metaformat for
expressing metadata about a dataset [17], and KML is a
metaformat for expressing annotations of geographic maps
[19].

Agreement on format and metaformat makes it faster and
easier to inspect individual files. On the other hand, it does
not alleviate the need to acquire lots of different files and
to at least glance at them. We spend less time manually
inspecting each dataset, but we must still manually inspect
lots of dataset.

The same sort of thing happens when data publishers pro-
vide graphs of each individual dataset. When we provide
some graphs of a dataset rather than simply the standard
data file, we are trying to make it easier for people to un-
derstand that particular dataset, rather than trying to focus
them on a particular subset of datasets.

2.3 Provide good metadata
Data may be easier to find if we catalog our data well and
adhere to certain data quality standards. With this reason-
ing, many ”open data”guidelines provide direction as to how
a person or organization with lots of datasets might allow
other people to use them [16, 1, 18, 13, 15].

At a basic level, these guidelines suggest that data should
be available on the internet and under a free license; at the

other end of the spectrum, guidelines suggest that data be
in standard formats accompanied with particular metadata.

Datasets can be a joy to work with when these data quality
guidelines are followed, but this requires much upfront work
by the publishers of the data.

2.4 Asking people
In practice, I find that people learn what’s in a spreadsheet
through word of mouth, even if the data are already pub-
lished on the internet in standard formats with good meta-
data.

Amanda Hickman teaches journalism and keeps a list of data
sources for her students [3].

There entire conferences about the contents of newly re-
leased datasets, such as the annual meeting of the Associa-
tion of Public Data Users [14].

The Open Knowledge Foundation [16] and Code for America
[2] even conducted data censuses to determine which govern-
ments were releasing what data publically on the internet.
In each case, volunteers searched the internet and talked to
government employees in order to determine whether each
dataset was available and to collect certain information about
each dataset.

3. ACQUIRING LOTS OF SPREADSHEETS
In order to explore methods for examining thousands of
spreadsheets, I needed to find spreadsheets that I could ex-
plore.

Many governments and other large organizations publish
spreadsheets on data catalog websites. Data catalogs make
it kind of easy to get a bunch of spreadsheets all together.
The basic approach is this.

1. Download a list of all of the dataset identifiers that are
present in the data catalog.

2. Download the metadata document about each dataset.

3. Download data files about each dataset.

I’ve implemented this for the following data catalog soft-
wares.

• Socrata Open Data Portal

• Common Knowledge Archive Network (CKAN)

• OpenDataSoft

This allows me to get all of the data from most of the open
data catalogs I know about.

After I’ve downloaded spreadsheets and their metadata, I
often assemble them into a spreadsheet about spreadsheets
[6]. In this super-spreadsheet, each record corresponds to
a full sub-spreadsheet; you could say that I am collecting
features or statistics about each spreadsheet.

4. CRUDE STATISTICS ABOUT SPREAD-
SHEETS

My first approach was involved running rather crude anal-
yses on this interesting dataset-about-datasets that I had
assembled.

4.1 How many datasets
I started out by simply counting how many datasets each
catalog website had.

The smaller sites had just a few spreadsheets, and the larger
sites had thousands.

4.2 Meaninglessness of the count of datasets
Many organizations report this count of datasets that they
publish, and this number turns out to be nearly useless. As
illustration of this, let’s consider a specific group of spread-
sheets. Here are the titles of a few spreadsheets in New York
City’s open data catalog.

• Math Test Results 2006-2012 - Citywide - Gender

• Math Test Results 2006-2012 - Citywide - Ethnicity

• English Language Arts (ELA) Test Results 2006-2012
- Citywide - SWD

• English Language Arts (ELA) Test Results 2006-2012
- Citywide - ELL

• Math Test Results 2006-2012 - Citywide - SWD

• English Language Arts (ELA) Test Results 2006-2012
- Citywide - All Students

• Math Test Results 2006-2012 - Citywide - ELL

• English Language Arts (ELA) Test Results 2006-2012
- Citywide - Gender

• Math Test Results 2006-2012 - Citywide - All Students

• English Language Arts (ELA) Test Results 2006-2012
- Citywide - Ethnicity

These spreadsheets all had the same column names; they
were ”grade”, ”year”, ”demographic”, ”number tested”,
”mean scale score”, ”num level 1”, ”pct level 1”, ”num level 2”,
”pct level 2”, ”num level 3”, ”pct level 3”, ”num level 4”,
”pct level 4”, ”num level 3 and 4”, and ”pct level 3 and 4”.

These ”datasets” can all be thought of as subsets of the same
single dataset of test scores.

If I just take different subsets of a single spreadsheet (and
optionally pivot/reshape the subsets), I can easily expand
one spreadsheet into over 9000. This is why the dataset
count figure is near useless.

4.3 Size of the datasets
I can also look at how big they are. It turns out that most
of them are pretty small.

• Only 25% of datasets had more than 100 rows.

• Only 12% of datasets had more than 1,000 rows.

Figure 1: How many datasets (spreadsheets) each data catalog had

• Only 5% of datasets had more than 10,000 rows.

Regardless of the format of these datasets, you can think
of them as spreadsheets without code, where columns are
variables and rows are records.

5. MEASURING HOW WELL DIFFERENT
SPREADSHEETS FOLLOW DATA PUB-
LISHING GUIDELINES

Having gotten some feel for the contents of these various
data catalogs, I started running some less arbitrary statis-
tics. As discussed in section 2.3, many groups have written
guidelines as to how data should be published [16, 1, 18, 13,
15]. I started coming up with measures of adherence to these
guidelines and running them across all of these datasets.

5.1 File format
File format of datasets can tell us quite a lot about the data.
I looked at the MIME types of the full data files for each
dataset on catalogs running Socrata software and compared
them between data catalogs [11].

If datasets are represented as tables inside the Socrata soft-
ware, they are available in many formats. If they are up-
loaded in formats not recognized by Socrata, they are only
available in their original format.

I looked at a few data catalogs for which many datasets
were presented in their original format. In some cases, the
file formats can point out when a group of related files is
added at once. For example, the results indicate that the
city of San Francisco in 2012 added a bunch of shapefile
format datasets to its open data catalog from another San

Francicso government website. As another example, most of
the datasets in the catalog of the state of Missouri are traffic
surveys, saved as PDF files [5].

5.2 Licensing
Many of the data publishing guidelines indicate that datasets
should be freely licensed. All of the data catalog websites
that I looked at include a metadata field for the license of the
dataset, and I looked at the contents of that field. I found
that most datasets had no license [10], and this is thought
to be detrimental to their ability to be shared and reused
[16, 1, 18, 13, 15].

5.3 Liveliness of links
One common guideline is that data be available on the in-
ternet. If a dataset shows up in one of these catalogs, you
might think that it is on the internet. It turns out that the
links to these datasets often do not work.

I tried downloading the full data file for each dataset refenced
in any of these catalogs and recorded any errors I received
[9, 12]. I found most links to be working and noticed some
common reasons why links didn’t work.

• Many link URLs were in fact local file paths or links
within an intranet.

• Many link ”URLs”were badly formed or were not URLs
at all.

• Some servers did not have SSL configured properly.

• Some servers took a very long time to respond.

I also discovered that one of the sites with very alive links,

https://data.gov.uk, had a ”Broken links” tool for identi-
fying these broken links.

6. SEARCHING FOR SPREADSHEETS
While assessing the adherence to various data publishing
guidelines, I kept noticing that it’s very hard to find spread-
sheets that are relevant to a particular analysis unless you
already know that the spreadsheet exists.

Major search engines focus on HTML format web pages,
and spreadsheet files are often not indexed at all. The var-
ious data catalog software programs discussed in section 3
include a search feature, but this feature only works within
the particular website. For example, I have to go to the
Dutch government’s data catalog website in order to search
for Dutch data.

To summarize my thoughts about the common means of
searching through spreadsheets, I see two main issues. The
first issue is that the search is localized to datasets that are
published or otherwise managed by a particular entity; it’s
hard to search for spreadsheets without first identifying a
specific publisher or repository. The second issue is that
the search method is quite naive; these websites are usually
running crude keyword searches.

Having articulated these difficulties in searching for spread-
sheets, I started trying to address them.

6.1 Searching across publishers
When I’m looking for spreadsheets, the publishing organiza-
tion is unlikely to be my main concern. For example, if I’m
interested in data about the composition of different pesti-
cides, but I don’t really care whether the data were collected
by this city government or by that country government.

To address this issue, I made a a disgustingly simple site
that forwards your search query to 100 other websites and
returns the results to you in a single page [7]. Lots of people
use it, and this says something about the inconvenience of
having separate search bars for separate websites.

6.2 Spreadsheets-specific search algorithms
The other issue is that our search algorithms don’t take ad-
vantage of all of the structure that is encoded in a spread-
sheet. I started to address this issue by pulling schema-
related features out of the spreadsheets (section 4.2).

6.3 Spreadsheets as input to a search
Taking this further, I’ve been thinking about what it would
mean to have a search engine for spreadsheets.

When we search for ordinary written documents, we send
words into a search engine and get pages of words back.

What if we could search for spreadsheets by sending spread-
sheets into a search engine and getting spreadsheets back?
The order of the results would be determined by various spe-
cialized statistics; just as we use PageRank to find relevant
hypertext documents, we can develop other statistics that
help us find relevant spreadsheets.

Figure 2: The search engine for words takes words
as input and emits words as output

Figure 3: The search engine for spreadsheets takes
spreadsheets as input and emits spreadsheets as out-
put

Figure 4: Commasearch infers some schema infor-
mation about each spreadsheet and looks for other
spreadsheets with similar schemas.

6.3.1 Schema-based searches
I think a lot about rows and columns. When we define tables
in relational databases, we can say reasonably well what each
column means, based on names and types, and what a row
means, based on unique indices. In spreadsheets, we still
have column names, but we don’t get everything else.

The unique indices tell us quite a lot; they give us an idea
about the observational unit of the table and what other
tables we can nicely join or union with that table.

Commasearch [8] is the present state of my spreadsheet
search tools. To use comma search, you first index a lot
of spreadsheets. Once you have the index, you may search
by providing a single spreadsheet as input.

In the indexing phase, spreadsheets are examined do find all
combinations of columns that act as unique indices, that is,
all combinations of fields whose values are not duplicated
within the spreadsheet. In the search phase, comma search
finds all combinations of columns in the input spreadsheet
and then looks for spreadsheets that are uniquely indexed
by these columns. The results are ordered by how much
overlap there is between the values of the two spreadsheets.

To say this more colloquially, comma search looks for many-
to-one join relationships between disparate datasets.

7. REVIEW
I’ve been downloading lots of spreadsheets and doing crude,
silly things with them. I started out by looking at very
simple things like how big they are. I also tried to quantify
other people’s ideas of how good datasets are, like whether
they are freely licensed. In doing this, I have noticed that it’s
pretty hard to search for spreadsheets; I’ve been developing
approaches for rough detection of implicit schemas and for
relating spreadsheets based on these schemas.

8. APPLICATIONS
A couple of people can share a few spreadsheets without any
special means, but it gets hard when there are more than a
couple people sharing more than a few spreadsheets.

Statistics about adherence to data publishing guidelines can

be helpful to those who are tasked with cataloging and main-
taining a diverse array of datasets. Data quality statistics
can provide a quick and timely summary of the issues with
different datasets and allow for a more targeted approach in
the maintenance of a data catalog.

New strategies for searching spreadsheets can help us find
data that are relevant to a topic within the context of anal-
ysis.

9. REFERENCES
[1] T. Berners-Lee. Linked data.

http://www.w3.org/DesignIssues/LinkedData.html,
2006.

[2] Code for America. U.S. City Open Data Census, 2014.

[3] A. Hickman. Where to Find Data, 2014.

[4] S. Klabnik and Y. Katz. Json api: A standard for
building apis in json. http://jsonapi.org/.

[5] T. Levine. License-free data in Missouri’s data portal,
2013.

[6] T. Levine. Open data had better be data-driven.
http://thomaslevine.com/!/dataset-as-datapoint,
2013.

[7] T. Levine. OpenPrism, 2013.

[8] T. Levine. commasearch, 2014.

[9] T. Levine. Dead links on data catalogs. http:
//thomaslevine.com/!/data-catalog-dead-links/,
2014.

[10] T. Levine. Open data licensing.
http://thomaslevine.com/!/open-data-licensing/,
2014.

[11] T. Levine. What file formats are on the data portals?
http://thomaslevine.com/!/socrata-formats/,
2014.

[12] T. Levine. Zombie links on data catalogs.
http://thomaslevine.com/!/zombie-links/, 2014.

[13] C. Malamud, T. O’Reilly, G. Elin, M. Sifry,
A. Holovaty, D. X. O’Neil, M. Migurski, S. Allen,
J. Tauberer, L. Lessig, D. Newman, J. Geraci,
E. Bender, T. Steinberg, D. Moore, D. Shaw,
J. Needham, J. Hardi, E. Zuckerman, G. Palmer,
J. Taylor, B. Horowitz, Z. Exley, K. Fogel, M. Dale,
J. L. Hall, M. Hofmann, D. Orban, W. Fitzpatrick,
and A. Swartz. 8 principles of open government data.
http://www.opengovdata.org/home/8principles,
2007. Open Government Working Group.

[14] A. of Public Data Users. Association of Public Data
Users Annual Conference, 2013.

[15] Open Data Institute. Certificates, 2013.

[16] Open Knowledge Foundation. Open Data Census,
2013.

[17] R. Pollock, M. Brett, and M. Keegan. Data packages.
http://dataprotocols.org/data-packages/, 2013.

[18] Sunlight Foundation. Open Data Policy Guidelines,
2014.

[19] T. Wilson. OgcÂő kml. Technical Report OGC
07-147r2, Open Geospatial Consortium Inc., 2008.
http://portal.opengeospatial.org/files/

?artifact_id=27810.

Sheetmusic: Making music from spreadsheets

Thomas Levine
csv soundsystem

_@thomaslevine.com

ABSTRACT
The spreadsheet provides an intuitive paradigm for the ex-
pression of musical scores. Musical scores can be expressed
as data tables, with each record corresponding to a place in
time and each column corresponding to a note or instrument.
Sheetmusic is a plugin for Gnumeric that provides music se-
quencing spreadsheet functions. Tools like Sheetmusic pro-
vide intuitive music composition interfaces for people who
are used to data analysis software. Moreover, they help us
plot data with the sense of sound.

Keywords
music, spreadsheets, gastronomification, data analysis

1. NON-VISUAL DISPLAYS OF QUANTITA-
TIVE INFORMATION

Data analyists often use visualization as a means for plotting
data, but there are other approaches!

1.1 Data sonification
Just as data can be expressed visually, data can also be
expressed in sound. As demonstration of this, Ferguson &
al. [4] created auditory analogs for simple visual plots, such
as the dotplot and boxplot.

Visual plots are far more common than auditory plots. Why
is this? My hunch is that our technology for visual rendering
is simply much further advanced; printing technology has
been around for centuries, and writing has been around for
millenia. With this history, we have also developed advanced
theory related to the visual plotting of data. Audio recording
is a comparably recent invention, and our theory around
auditory plotting is accordingly less developed.

In my view, we separate data sonification from data visual-
ization only because of technological constraints; there isn’t
a fundamental difference between these two processes.

1.2 Data-driven music videos
Combining the visual and auditory senses, we can plot data
in the form of music videos. One example of this is the FMS
Symphony (figure 1). In the FMS Symphony, each beat
of music corresponds to a business day during the period
between 2005 and 2013, the pitch of one instrument corre-
sponds to the United States interest rate, the pitch of an-
other instrument corresponds to the distance to the United
States debt ceiling, and the activation of certain flourishes
corresponds to changes in the balance of the United States
treasury. These data are also represented visually, through
the combination of an animated line plot and a Chernoff face
[1].

1.3 Food
Why stop at just vision and hearing? We can plot data as
food and use all five senses. One example of this is Census
Spices, a set of spices that represent different neighborhoods
based on demographics collected by the United States Cen-
sus [5].

2. OUR TOOLS FOR MUSICAL PLOTTING
We at csv soundsystem have been exploring multisensory
data plotting methods, including music videos and food. In
our production of data-driven music videos, we have recog-
nized a need for data analysis software and music software
to be more strongly integrated. We wanted a more seamless
transition between modeling and music, and we wanted it
to be easier for data analysts to work with music. We have
developed tools like Sheetmusic to bridge this gap.

To use the language of the Grammar of Graphics, [8] we
have abstract data and concrete plot elements, and we define
aesthetics that provide mappings between the abstract data
and the concrete elements. The primitive plot elements that
we use for music are things like key, rhythm, pitch, and
interval.

2.1 Data tables
We’ve found that the tabular representation of data aligns
very well with typical representations of music. Our data
music tools work by mapping these two concepts to each
other.

We can think of data tables as collections of similar things,
with the same sorts of information being collected about
each thing. In tidy data tables [7] each row corresponds to
an observation (a thing), and each column corresponds to a

Figure 1: Here is a frame from the FMS Symphony video. I unfortunately can’t play the accompanying song
in this paper.

variable. We add more rows to the table as we observe more
things, and we add more columns to the table as we collect
more information about each thing.

We can think of music as a composition of many different
sounds over time, with sounds coming from many different
instruments. In musical scores we represent time as move-
ment from left to right, and we represent different notes
played at the same time by different dots on a staff, The
staff becomes wider as the song gets longer, (They are often
spread across multiple pages.) and we add more dots as we
add more notes (figure 2).

Rather than composing music as traditional sheet music, we
can use a table-editing program of our choice to compose this
sort of table. Our data music software simply adds musical
functions to table containers in various data analysis tools.

Sheetmusic is our offering for spreadsheets, but we also have
libraries for R data frames [3] and Pandas data frames [2].

3. HOW TO USE SHEETMUSIC
Let’s divide Sheetmusic’s features into two groups. The first
group is spreadsheet functions for music synthesis—these
are functions like CHORD_PROGRESSION that take spreadsheet
cells or values as input and return values to other spread-
sheet cells. The second group is functions for rendering the
music to external devices, including MIDI and sheetmusic.

3.1 Organization of the spreadsheet
Sheetmusic expects that the spreadsheet be organized as fol-
lows. Each column corresponds to a musical track, and dif-
ferent tracks can have different music instruments. Row
corresponds to a beat (of time). Each cell contains the fre-
quency of sound to be played, represented in scientific nota-
tion (C4, D4, &c.).

3.2 Composing music

The data analyst can use conventional spreadsheet approaches
for composing music. For example, the following function
can be used to produce a major scale in a spreadsheet col-
umn.

=IONIAN_SCALE("A4")

Once you have a major scale in one column, you can easily
make chords with a spreadsheet functions like this.

=MAJOR_THIRD_INTERVAL(B1)

If you put this in cell B1, A1 and B1 will form a major third
interval.

3.3 Rendering music
Once we have composed our piece, we can select the appro-
priate cells, specify the key and time signatures of the piece,
and export it as MIDI or sheetmusic.

It is possible, of course, to convert to any number of music
formats, just as we can convert spreadsheets to any num-
ber of data table formats. Only MIDI and sheetmusic are
implemented at present, but you can indirectly convert to
many formats by first saving as MIDI and then converting
from MIDI to your output format of choice.

3.4 Musical plots
I’ve discussed how we can use Sheetmusic for conventional
music composition. To use it as a plotting tool, we simply
have to map our abstract data to musical notes. Sheetmusic
provides the FROMWHOLENUMBER function to enable this. If we
imagine an infinitely wide piano with the C0 as the left-most
note, FROMWHOLENUMBER starts at C0 and walks i keys to the
right, where i is the argument passed to FROMWHOLENUMBER.

Figure 2: A spreadsheet is displayed alongside some corresponding ordinary sheet music, with a corresponding
row/beat highlighted.

Figure 3: Using Sheetmusic to render a spreadsheet
as sheetmusic

After using ordinary spreadsheet modeling functions to ma-
nipulate data, a user may scale and round the data appropri-
ately and then run FROMWHOLENUMBER to convert them into
notes.

4. RELEVANCE
I hope that I’ve shown how data can be plotted in the form
of music. I would be remiss not to discuss the merits of this
plotting method.

4.1 Easier composition of music
When we plot data as music, we effectively let data compose
music for us. We still have to choose datasets that will
produce interesting music and map the data to the music
appropriately, but the randomness of the data can provide
the various subtleties of music that we would otherwise have
to design ourselves.

4.2 Data literacy
When we start using data analysis software for other things,
we blur the line between data analysis and other things.
Data analysis seems very magical to many people. When
we represent data as familiar things like music, people seem
to be a bit less scared of data analysis.

4.3 Expressing high-dimensional datasets
The use of multiple senses may also allow for the expres-
sion of high-dimensional datasets. Tufte advocates for the
production of visuals that express the multivariate nature of
the world.[6] I think that the use of multiple senses has the
potential to facilitate the expression of more easily express
many variables at once, and this may aid in the identification
of high-dimensional relationships.

5. REFERENCES
[1] B. Abelson, J. Bialar, B. DeWilde, M. Keller,

T. Levine, and C. Podkul. FMS Symphony, 2013.

[2] csv soundsystem. Data music for big data analysis,
2013.

[3] csv soundsystem. ddr: Data-driven Rhythms in R, 2013.

[4] S. Ferguson, W. Martens, and D. Cabrera. Statistical
Sonification for Exploratory Data Analysis.

[5] H. Kang-Brown. Making Census Data Taste Like New
York City, 2013.

[6] E. R. Tufte. The Visual Display of Quantitative
Information. Graphics Press, Cheshire, CT, USA, 1986.

[7] H. Wickham. Tidy data.
http://vita.had.co.nz/papers/tidy-data.pdf.

[8] L. Wilkinson. The Grammar of Graphics.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2005.

Are We Overconfident in Our Understanding of Overconfidence?

Raymond R. Panko
Shidler College of Business

University of Hawai`i
2404 Maile Way

Honolulu, HI 96821
001.808.377.1149

Ray@Panko.com

ABSTRACT
In spreadsheet error research, there is a Grand Paradox. Although
many studies have looked at spreadsheet errors, and have found,
without exception, has error rates that are unacceptable in
organizations, organizations continue to ignore spreadsheet risks.
They do not see the need to apply software engineering disciplines
long seen to be necessary in software development, in which error
types and rates are similar to those in spreadsheet development..1
Traditionally, this Great Paradox had been attributed to over-
confidence. This paper introduces other possible approaches for
understanding the Grand Paradox. It focuses on risk blindness,
which is our unawareness of errors when they occur.

Categories and Subject Descriptors
K.8.1: Spreadsheets. D.2.5 Testing and Debugging.

General Terms
Experimentation, Verification.

Keywords
Methodology. Spreadsheet Experiments, Experiments, Inspection.
Sampling, Statistics

1. INTRODUCTION

Despite overwhelming and unanimous evidence that spreadsheet
errors are widespread and material, companies have continued to
ignore spreadsheet error risks. In the past, this Great Paradox had
been attributed to overconfidence. Human beings are overconfident
in most things, from driving skills to their ability to create large
error-free spreadsheets. In one of the earliest spreadsheet experi-
ments, Brown and Gould [1] noted that developers were extremely
confident in their spreadsheets’ accuracy, although every par-
ticipant made at least one undetected error during the development
process. Later experimenters also remarked on overconfidence.
Panko conducted an experiment to see if feedback would reduce
overconfidence, as has been the case in some general over-
confidence studies. The study found a statistically significant
reduce in confidence and error rates, but the error rate reduction
was minimal. Goo performed another experiment to see if feedback
could reduce overconfidence and errors. There was some reduction
in overconfidence but no statistical reduction in errors.

2. RISK BLINDNESS IN BEHAVIORAL
STUDIES

This paper introduces other possible approaches for understanding
the Grand Paradox. It focuses on risk blindness, which is our
unawareness of errors when they occur.

Naatanen and Summala [9] first articulated the idea that humans
are largely blind to risks. Expanding on this idea, Howarth [5]
studied drivers who approached children wanting to cross at an
intersection. Fewer than 10% of drivers took action, and those
actions would have come too late if the children had started cros-
sing the street. Svenson [14] studied drivers approaching blind
bends in a road. Unfamiliar drivers slowed down. Familiar drivers
did not, approaching at speeds that would have made accident
avoidance impossible.

Fuller [2] suggested that risk blindness in experienced people stems
from something like operant conditioning. If we speed in a
dangerous area, we get to our destination faster. This positive
feedback reinforces risky speeding behavior. In spreadsheet
development, developers who do not do comprehensive error
checking finish faster and avoid onerous testing work. In contrast,
negative reinforcement in the form of accidents is uncertain and
rare.

Even near misses may reinforce risky behavior rather than to reduce
it. In a simulation study of ship handling, Habberley, Shaddick, and
Taylor [4] observed that skilled watch officers consistently came
hazardously close to other vessels. In addition, when risky behavior
required error-avoiding actions, watch officers experienced a gain
in confidence in their “skills” because they had successfully avoi-
ded accidents. Similarly, in spreadsheet development, if we catch
some errors as we work, we may believe that we are skilled in
catching errors and so have no need for formal post-development
testing.

Another possible explanation comes from modern cognitive/
neuroscience. Although we see comparatively little of what is in
front of us well and pay attention to much less, our brain’s
constructed reality gives us the illusion what we see what is in front
of us clearly [11]. To cope with limited cognitive processing power,
the CR construction process includes the editing of anything
irrelevant to the constructed vision. Part of this is not making us
aware of the many errors we make [11]. Error editing makes sense

for optimal performance, but it means that humans have very poor
intuition about the error rates and ability to avoid errors [11]. For
the CR process this is an acceptable tradeoff, but it makes us con-
fident that what we are doing works well.

Another explanation from cognitive/neuroscience is System 1
thinking, which has been discussed in depth by Kahneman [7].
System 1 thinking uses parallel processing to generate conclusions
it is fast and easy, but its working are opaque. If we are walking
down a street and a dog on a leash snaps at us, we jump. This is fast
or System 1 thinking. It is very effective and dominates nearly all
of our actions, but it has drawbacks. First, it gives no indication that
it may be wrong. Unless we actively turn on slow System 2
thinking, which we cannot do all the time, we will accept System 1
suggestions uncritically. One problem with doing so is that System
1 thinking, when faced with an impossible or at least very difficult
task, may solve a simpler task and make a decision on that basis.
For instance, if you are told that a bat and ball cost a dollar and ten
cents and that the bat costs a dollar more than the ball, a typical
System 1 thought response is that the ball costs ten cents. This is
wrong, of course, but System 1 thinking tends to solve the simpler
problem, $1.10 - $1.00. If we do not force ourselves to engage in
slow and odious System 2 thinking, we are likely to accept the
System 1 alternative problem solution.

This may be why, when developers are asked whether a spreadsheet
they have just completed has errors, they quickly say no, on the
basis of something other than reasoned risk. Reithel, Nichols, and
Robinson [13] had participants look at a small poorly formatted
spreadsheet, a small nicely formatted spreadsheet, a large poorly
formatted spreadsheet, and a large nicely formatted spreadsheet.
Participants rated their confidence in the four spreadsheets.
Confidence was modest for three of the four spreadsheets. It was
much higher for the large well-formatted spreadsheet. Logically,
this does not make sense. Larger spreadsheets are more likely to
have errors than smaller spreadsheets. This sounds like System 1
alternative problem solving.

3. CONCLUSION

If we are to address the Great Paradox successfully and convince
organizations and individuals that they need to create spreadsheets
more carefully, we must understand its causes so that we can be
persuasive. Beyond that, we must address the Spreadsheet Software
Engineering Paradox—that computer scientists and information
systems researchers have focused on spreadsheet creation aspects
of software engineering, largely ignoring the importance and com-
plexity of testing after the development of modules, functional
units, and complete spreadsheets. In software engineering, it accep-
ted that reducing errors during development is good but never gets
close to success. Commercial software developers spend 30% to
50% of their development resources on testing [6,8], and this does
not count rework costs after errors are found. Yet spreadsheet
engineering discussions typically downplay or completely ignore
this five-ton elephant in the room. It may be that spreadsheets are
simply newer than software development, but spreadsheets have
been use for a generation, and strong evidence of error risks have
been around almost that long.

We have only looked at the situation at the individual level. Testing
must be accepted by groups and even corporations. Even at the
group level, this paper has not explored such theories as the
diffusion of innovations. If spreadsheet testing is mandated, that
will reduce risks. However, user developers must have the freedom
to explore their problem spaces freely by modifying their

spreadsheets as their understanding grows. Testing methods must
reflect the real process of software development.

4. REFERENCES

[1] Brown, P. S. and Gould, J. D. 1987. An experimental study
of people creating spreadsheets. ACM Transactions on Office
Information Systems. 5, 3 (Nov. 1987), 258-272.

[2] Fuller, R. 1990. Learning to make errors: evidence from a
driving simulation. Ergonomics, 33, 10/11 (Oct/Nov, 1993),
1241-1250.

[3] Goo, Justin M. W. 2002. The effect of feedback on
confidence calibration in spreadsheet development. Doctoral
Dissertation, University of Hawaii.

[4] Habberley, J. S., Shaddick, C. A., and Taylor, D. H. 1986. A
behavioural study of the collision avoidance task in bridge
watchkeeping. College of Marine Studies, Southampton,
England. Cited in Reason (1990).

[5] Howarth, C. I. 1990. The relationship between objective risk,
subjective risk, and behavior. Ergonomics, 31, 527-535.
Cited in Wagenaar & Reason, 1990.

[6] Jones, T. C. 1998. Estimating software costs. McGraw-Hill,
New York, NY.

[7] Kahneman, D. 2011. Thinking, fast or slow. Farrar, Strauss
and Giroux, New York, NY.

[8] Kimberland, K. 2004. Microsoft’s pilot of TSP yields
dramatic results, news@sei, No. 2.
http://www.sei.cmu.edu/news-at-sei/.

[9] Naatanen, R. and Summala, H. 1976. Road user behavior
and traffic accidents. North-Holland, Amsterdam. Cited in
Wagenaar & Reason, 1990.

[10] Panko, R. R. 2007. Two experiments in reducing
overconfidence in spreadsheet development. Journal of
Organizational and End User Computing, 19, 1 (January–
March 2007), 1-23.

[11] Panko, R. R. 2013. The cognitive science of spreadsheet
errors: Why thinking is bad. Proceedings of the 46th Hawaii
International Conference on System Sciences (Maui, Hawaii,
January 7-10, 2013).

[12] Reason, J. 1990. Human error. Cambridge University Press,
Cambridge, England.

[13] Reithel, B. J., Nichols, D. L., and Robinson, R. K. 1996. An
experimental investigation of the effects of size, format, and
errors on spreadsheet reliability perception. Journal of
Computer Information Systems, 54-64.

[14] Svensen, O. 1977. Risks of road transportation from a
psychological perspective: A pilot study. Report 3-77, Project
Risk Generation and Risk Assessment in a Social
Perspective, Committee for Future-Oriented Research,
Stockholm, Sweden, 1977. Cited in Fuller, 1990.

[15] Wagenaar, W. A. and Reason, J. T. 1990. Types and tokens
in road accident causation. Ergonomics, 33, 10/11 (Nov.
1993), 1365-1375.

Anonymizing Spreadsheet Data and Metadata with
AnonymousXL

Joeri van Veen
Infotron

Delft, the Netherlands
joeri@infotron.nl

Felienne Hermans
Delft University of Technology

Delft, the Netherlands
f.f.j.hermans@tudelft.nl

ABSTRACT
In spreadsheet risk analysis, we often encounter spreadsheets
that are confidential. This might hinder adoption of spread-
sheet analysis tools, especially web-based ones, as users do
not want to have their confidential spreadsheets analyzed.
To address this problem, we have developed AnonymousXL,
an Excel plugin that makes spreadsheets anonymous with
two actions: 1) remove all sensitive metadata and 2) obfus-
cate all spreadsheet data within the Excel worksheets such
that it resembles, untraceably, the original values.

1. INTRODUCTION
When commercializing our Breviz analysis toolkit [2, 3,

4] as an online tool called PerfectXL, we ran into the prob-
lem that customers often do not want to upload, share or
even show us confidential spreadsheets. Therefore, we have
developed a tool that obfuscates [1] both the data and the
metadata in a spreadsheet, while the values still resemble
the original ones. By construction, we guarantee that our
anonymization does not create or resolve Excel errors. This
enables us to run our smell detection tool on the anonymized
spreadsheets as if we were analyzing the original. This pa-
per describes the capabilities, limitations and applications
of AnonymousXL.

2. METADATA REMOVAL
AnonymousXL removes spreadsheet metadata: the au-

thor, the date the file was last opened and the total edit
time, in order to remove any ties with the company that the
spreadsheet originally came from. In addition, worksheet
names within the spreadsheet are replaced with anonymous
names.

2.1 Numerical and Date Related Metadata
All numerical metadata information is converted to 0. At

this time, only the numerical metadata “revision number”
and “total editing time” are converted. All metadata that is

of a date type is set to the day of anonymization: “last print
date”, “creation date” and “last save time”.

2.2 Textual Metadata
The following textual metadata are set to the text string

“anonymous”: title, subject, author, keywords, comments,
template, last author, application name, security, category,
format, manager, company.

3. DATA OBFUSCATION
Data obfuscation is the alteration of data to make it anony-

mous. This happens linearly, from the first sheet to the last
sheet, from the first to the last cell of the used range of cells
in each worksheet. We use different techniques for differ-
ent types of data in the spreadsheet: numeric data, dates,
textual data, formulas and other types of data.

3.1 Numeric Data
The basic step for anonymizing a number is to randomly

add or subtract up to 60% of its original value. Or, math-
ematically, for any number N in a cell, N is replaced by
N ±N × 0.6 × r where r is a random value in the range [0,
1]. We treat integers and real numbers differently: Integer
values remain integer, real numbers keep their decimals.

There is one exception in the anonymization: In Perfec-
tXL, one of the analyses that is performed is the occurrence
of so-called ‘magic numbers’, numbers of which the meaning
might be unclear to the user. There are some numbers, how-
ever, that are not considered to be magical, because of their
frequent occurrence: 0, 1, 2, 12, 100, 365, 1000. Therefore,
these numbers remain as is in our anonymization process.
Since all text fields (including column names) get changed,
we believe that leaving the non-magic numbers intact does
not pose a threat to the anonymity of the spreadsheet, since
labels give numbers semantics.

3.2 Dates
Dates are converted into random dates in the range of

representable dates in VBA, in contrast with metadata, in
which all date values are set to the day of anonymization.
This randomness is introduced as to maintain data variation.

3.3 Textual Data
For textual data, it does not suffice to simply change all

textual values to “text”, since in many situations, it matters
to keep equal strings equal. An example of such a situation
is a pivot table, as shown in Figure 1. Should we change all
categories to “text”, the spreadsheet would not work any-

more, as pivot tables cannot contain two fields of the same
name. If we would replace all textual values by unique ones,
such as “text1”, “text2”, “text3”, as shown in Figure 2, it
does work, pivot tables however are often based on textual
data (which denote categories, for example). This means
that where there once were three categories (“a”, “b” and
“c”, in Figure 1), now there are many (eight different ones
in Figure 2). Pivot tables calculate their size based on the
number of unique values they find for a category, so pivot
tables become larger than they were originally. This can
lead to problems, since multiple pivot tables are often situ-
ated close to each other on the same worksheet. If the pivot
tables grow because of the anonymization, they can start to
overlap and unfortunately, this causes Excel to crash.

Figure 1: Original spreadsheet with three categories

Figure 2: Simple text replacement

Figure 3: AnonymousXL applied to table

Therefore, we anonymize all textual values while keep-
ing intact cell uniqueness by replacing texts with “unique1”,
“unique2”, “unique3”, etc. (for example, “unique6” repre-
sents the textual value “a” in Figure 3).

3.4 Formulas
Formulas are basially left alone. The only modification

made to formulas are sheet references, since sheet names
are made anonymous as well.

3.5 Other Types
Other data types usually fall under either categories men-

tioned (for instance, a currency type is simply considered a

number). A special note on booleans TRUE and FALSE: as
booleans are interpreted by Excel as 0 and 1, they are not
changed. However, booleans are seldom present as literal
values. They are often the result of formulas, in which case
they only change in accordance with modifications to the
data they depend on.

4. INTRODUCING EXCEL ERRORS
By changing data in Excel cells, errors might be induced

that were not present in the original spreadsheet. For in-
stance, in the formula =A1/(3-A2), division by zero might
occur (and thus be reported after analysis) if A2 becomes
3, which could happen because of the anonymization step in
which data in cells is decreased or increased by 60% of their
original value.

To resolve this, we save the list of all formulas that re-
sult in an error before the anonymization. Then, after we
anonymize each data cell, we verify that we have not changed
this list. For this, we do not have to analyze all formulas
in the spreadsheet, we only analyze the recursive precedents
of the cell, plus all formulas that contain the INDIRECT
function.

5. LIMITATIONS

5.1 Confidential formulas
Every so often, spreadsheets contain confidential formu-

las. All formulas, including those confidential ones, are left
unaltered to preserve analysis results. This might not be
sufficient for some users.

5.2 Embedded constants
In the current implementation, we only change numeric

values in cells and not within formulas, such as in =SUM(A1:
A10)*1.2. This is a limitation because these constants too
can be of importance to the spreadsheet owner and thus
confidential.

5.3 Analysis Types
Different kinds of spreadsheet analyses scan for different

kinds of patterns. Developed to complement PerfectXL,
AnonymousXL leaves intact formulas, boolean literals and
certain numbers for they are key to mimicking analysis of
the original spreadsheet. Nevertheless, AnonymousXL or a
slight variation of it could carry great potential for alterna-
tive analysis types.

6. REFERENCES
[1] D. E. Bakken, R. Parameswaran, D. M. Blough, A. A.

Franz, and T. J. Palmer. Data obfuscation: Anonymity
and desensitization of usable data sets. IEEE Security
& Privacy, 2(6):34–41, 2004.

[2] F. Hermans, M. Pinzger, and A. van Deursen.
Supporting professional spreadsheet users by generating
leveled dataflow diagrams. In Proc. of ICSE ’11, pages
451–460, 2011.

[3] F. Hermans, M. Pinzger, and A. van Deursen.
Detecting and visualizing inter-worksheet smells in
spreadsheets. In Proc of ICSE ’12, pages 441–451, 2012.

[4] F. Hermans, M. Pinzger, and A. van Deursen.
Detecting code smells in spreadsheet formulas. In Proc
of ICSM ’12, pages 409–418, 2012.

Using a Visual Language to Create Better Spreadsheets

Bas Jansen
Delft University of Technology

b.jansen@tudelft.nl

Felienne Hermans
Delft University of Technology
f.f.j.hermans@tudelft.nl

ABSTRACT
It is known that spreadsheets are error-prone. It is very
difficult for users to get an overview of the design of the
spreadsheet, and this is causing errors. Furthermore users
are not always aware of the best way to structure a spread-
sheet and just start modeling. To address this we will build
a visual language to develop spreadsheet models. This en-
ables users to visualize the design of their spreadsheets. A
spreadsheet generator will create the spreadsheet based on
the specifications made with our visual language. During
this process, best practices for structuring spreadsheets are
automatically incorporated. There will be a bidirectional
link between the model and the associated spreadsheet.

1. INTRODUCTION
Spreadsheets are extensively used by companies. Informa-
tion embedded in these spreadsheets often forms the basis
for business decisions [7]. The quality of these spreadsheets
impacts the quality of the decisions. It is known that spread-
sheets are error-prone [9]. A poorly structured spreadsheet
is often the cause of errors. Because of the nature of the
spreadsheet user interface it is difficult to keep an overview of
the underlying design. And without a clear design the struc-
ture of the spreadsheet gets messy. Also users do not always
possess the knowledge to structure a spreadsheet properly.

In order to address this, we present a research plan to de-
velop an alternative user interface that enables the user to
design a spreadsheet using a visual language. Based on
the instructions made with this language the spreadsheet is
generated automatically. The transformation between the
model represented in the visual language and the automati-
cally generated spreadsheet is bidirectional. Changes in the
model are propagated to the spreadsheet and vice versa.
The visual language will help the user to keep an overall
overview of the spreadsheet design. And even more impor-
tant, because the spreadsheet is generated automatically,
well-known design patterns can be incorporated to structure
the spreadsheet.

2. PROBLEM DEFINITION
The success of spreadsheets can be partially explained by
their easy-to-use interface. However, it is this same interface
that is responsible for some of the problems that are associ-
ated with spreadsheets. If you write a document or a pro-
gram you can scroll up and down to get an overall overview
of the object you are creating. Also you can use tools (like
an outline view, table of contents generator, or dependency
graph) within the software to get a better overview. In Excel
users can easily enter data and formulas in cells, but as soon
as they hit the enter-button a spreadsheet will only show
the result of the formula and not the formula itself. In a for-
mula, references are made to other cells in the spreadsheet.
It is not possible to immediately see these references. You
could say the underlying design of the spreadsheet is hidden
‘behind’ the spreadsheet itself. The hidden design makes it
difficult to understand a spreadsheet and to get an overview
of the design. This is causing errors [8].

A part of the design of a spreadsheet is the way the informa-
tion is structured within the sheet. There are best practices
for the structure of a spreadsheet that can be found in lit-
erature. A commonly found model is to split input, model
and output. This works quite well for some of the problems
that people want to solve with spreadsheets. However, it is
not the best model in every situation. Spreadsheets are also
often used for what-if questions: “What is going to happen
if I change this?” In this situation it would be better to
have input and output closely together. Putting input and
output closely together will lead to a completely different
structure of the spreadsheet than implementation of the in-
put, model, output principle. The optimal way to structure
a spreadsheet depends on the kind of problem that you want
to solve with the spreadsheet.

In practice, users are not making a conscious choice of how
they structure their spreadsheets. They want to solve a
problem as quickly as possible and just start entering the
data and formulas without giving the structure a lot of
thought. When the complexity of spreadsheets increases
over time they end up with a messy model. At that point it
is difficult to change the underlying structure and the risk
of errors is imminent.

This brings us to the two problems we want to focus on in
our research:

1. The design of a spreadsheet is hidden behind the spread-

Figure 1: Model and associated spreadsheet

sheet itself, making it very difficult for an user to get
an overview of the design

2. Users are not aware of the best way to structure a
spreadsheet and just start modeling. The model works,
but is poorly structured and error-prone.

3. PROPOSED SOLUTION
To address the above mentioned problems, we will develop
an alternative user interface for the development of a spread-
sheet. The basis for this user interface is a visual language
(see also Figure 1). One of the success factors of spread-
sheets is their flexibility and ease of use. If users have to
learn a specific programming language before they can start
developing a spreadsheet, we expect that the adoption of
this alternative user interface will be very low. However, if
we can develop a visual language that is easy to understand,
works intuitively and at the same time makes use of a drag
and drop interface, we expect a higher adoption.

It will be possible for the user to develop a spreadsheet
with the visual language in one screen and seeing the as-
sociated spreadsheet in another screen. The link between
the model and the associated spreadsheet should be bidirec-
tional. Changes made in the model should be propagated to
the associated spreadsheet and vice versa.

To implement this solution we face many challenges. It it is
not in the scope of this paper to address them all, but we
would like to highlight two of them in more detail. First of
all, we face the challenge of the scalability of a visual lan-
guage. Real-life spreadsheets are often complex models and
it is difficult to present such a model visually in a clear way.
Careful attention should be paid to the level of details that
are presented in the visual language. Second, if we want to
make the link between the model en the spreadsheet bidi-
rectional, we have to think about what kind of operations

are allowed in the spreadsheet. How should we, for example,
handle a change in the spreadsheet that violates the model?

4. HYPOTHESIS
There are several hypotheses underpinning the proposed so-
lution that will be evaluated during the research:

1. Users are more likely to use a visual language than a
written language as an alternative to develop a spread-
sheet.

2. The representation of a spreadsheet in the visual lan-
guage will help users to get an overall overview of the
spreadsheet.

3. If the user has a better overall overview of the spread-
sheet, the spreadsheet will contain fewer errors.

4. The automatic spreadsheet generator will use common
design patterns to structure the data in a spreadsheet.
This will improve the underlying design of the spread-
sheets.

5. A better structured spreadsheet contains fewer errors.

5. APPROACH
A spreadsheet model consists of formulas and operations on
data. These formulas and operations are the constructs of
our visual language. To develop this visual language we
have to research what constructs should be included. With
our language it is possible to model the majority of questions
that are solved with spreadsheets. This implies that we need
to get an understanding of the different questions that users
try to solve with spreadsheets. Finally we will also explore
if the constructs we find are depending on the domain in
which the spreadsheet is used or if they are used regardless
of the domain.

To answer these questions we will use the EUSES spread-
sheet corpus [6]. This corpus contains over 4000 real world
spreadsheets from domains such as finance, biology, and ed-
ucation. We will analyze what kind of formulas are used in
spreadsheets and how they are combined. This will be trans-
lated to the constructs that are needed to build the visual
language. The spreadsheets from the EUSES corpus will be
complemented with real-life spreadsheets collected from our
industrial partners.

To automatically generate a spreadsheet and to structure it
in the most optimal way, we will inventory the best prac-
tices in spreadsheet design. Besides, we will research if ad-
ditional design patterns are needed to cover the majority
of questions. We will carry out a literature study to get
an overview of the commonly used and known design pat-
terns. Furthermore, we search for additional design patterns
by analyzing the spreadsheets in the EUSES corpus and the
spreadsheets collected from our industrial partners.

Based on the knowledge gained about the required con-
structs for the visual language and the best practices to
structure a spreadsheet, we develop a prototype of a ‘graph-
ical spreadsheet generator’. The spreadsheet generator will
generate the spreadsheet based on the specifications made

with the visual language and uses a suitable design pattern
to structure the data. At this point, we also investigate if
it is possible to automatically generate a graphical repre-
sentation (using the syntax of the visual language) from an
existing spreadsheet. This is needed to synchronize the vi-
sual model with the spreadsheet and allow the users to make
changes in both the model and the spreadsheet.

6. EVALUATION
To validate our hypotheses, we carry out two different kinds
of evaluations. First, we will evaluate the impact of the
visual language on the behavior of the users. Is it true that
they have a better overall overview of the spreadsheet and
do they prefer a visual language over a written language?
These two questions can be answered with case studies [11].
In the case studies we will ask users to develop a real-life
spreadsheet with the new interface and afterwards interview
them about their experiences.

Furthermore, we want to know if the spreadsheets that are
developed with our visual language contain less errors and
if this is caused by a better structure or because the end-
user has a better overview/understanding of the spreadsheet
or both. To evaluate this, controlled experiments will be
performed. Two sets of participants are asked to develop
a certain spreadsheet model. One group will use the visual
language, the other group the classical spreadsheet interface.
The two resulting sets of spreadsheets will be compared with
each other concerning the number of errors and development
time. Besides the experiments, we interview the participants
to get a better insight of the users experience with the visual
language.

7. RELATED WORK
Already in 2001 Burnett et al [2] developed Forms/3, a gen-
eral purpose visual programming language. Main rationale
to develop this language was to remove spreadsheet limi-
tations without sacrificing consistency with the spreadsheet
paradigm. Two principles in particular guided the develop-
ment process: directness and immediate visual feedback.

In our approach we are less concerned with the limitations
of modern spreadsheet languages. We want to improve the
overall quality of spreadsheets by introducing a visual lan-
guage that supports users by visualizing the design of their
spreadsheet and help them to better structure their data.
However, directness and especially immediate visual feed-
back are also two valuable guiding principles in our research.

Engels and Erwig [5] have described an automatic transfor-
mation process to generate a spreadsheet from a so called
ClassSheet. The development of ClassSheets is a further
elaboration of the work on spreadsheet templates [1]. With
ClassSheets, it is possible to model spreadsheets according to
domain-related business object structures. The ClassSheet
represents both the structure and relationships of the in-
volved (business) objects and classes and the computational
details of how attributes are related and derived from each
other. ClassSheets help to reduce the semantic distance be-
tween a problem domain and a spreadsheet application.

Cunha et al. [4] have further improved the concept of Class-
Sheets. They have embedded the ClassSheets spreadsheet

models in spreadsheets themselves. Because of this, users do
not have to familiarize themselves with a new programming
environment. Furthermore, the authors have presented a
technique to perform co-evolution of the ClassSheet model
and the related spreadsheet. Modifications to the model are
automatically propagated to the spreadsheet.

The main difference between the ClassSheet approach and
ours is the introduction of a visual language that does not
use the tabular two-dimensional layout of spreadsheet de-
sign. We agree that users should not be required to fa-
miliarize themselves with a new programming environment
before they can develop a spreadsheet. Therefore the visual
language will be used in the same environment as the asso-
ciated spreadsheet. However, if the model is represented in
a spreadsheet-like layout, it is still difficult for users to get a
good overview of the design of the model. That is the reason
why we develop a language that specifies and visualizes the
model at the same time.

Also, our visual language embraces object-oriented princi-
ples, but does not expect the users to be aware of these
principles. The overall goal of our research is to apply soft-
ware engineering principles to the design of spreadsheets to
improve the overall quality of spreadsheets. However, the
spreadsheet user - who is not a professional programmer -
should be able to develop the spreadsheet without being re-
quired to have knowledge of these principles.

Furthermore, our visual language can be used to generate
the associated spreadsheet. This does not imply that the
user is restricted in influencing the layout of this spread-
sheet (as is the case with the ClassSheet approach). It was
estimated that 95% of U.S. Firms uses spreadsheets for fi-
nancial reporting [10] and layout is an important factor for
effective reporting.

Finally, the current ClassSheets approach enables the co-
evolution of the spreadsheet model and the spreadsheet data.
At the theoretical level, the evolution of the instance of the
model and the co-evolution of the model itself has been real-
ized [3]. In our research, we focus on bidirectional transfor-
mations and integrate them in the prototype of the spread-
sheet generator.

8. EXPECTED CONTRIBUTION
This research will lead to the following contributions:

1. A classification of the type of questions that end-users
try to solve with spreadsheets.

2. Better understanding of the kind of formulas that are
used in spreadsheets and the way these formulas are
combined to solve questions.

3. Best practices for the design/structure of spreadsheets.

4. A visual language to model spreadsheets.

5. Methods to automatically generate a spreadsheet from
the visual language.

6. Methods to automatically generate a graphical repre-
sentation (using the syntax of the visual language) of
a spreadsheet.

7. A prototype of an alternative user interface for the
development of spreadsheets that is based on a visual
language.

9. REFERENCES
[1] R. Abraham, M. Erwig, S. Kollmansberger, and

E. Seifert. Visual specifications of correct
spreadsheets. In Visual Languages and Human-Centric
Computing, 2005 IEEE Symposium on, pages 189–196.
IEEE, 2005.

[2] M. M. Burnett, J. W. Atwood, R. W. Djang,
J. Reichwein, H. J. Gottfried, and S. Yang. Forms/3:
A first-order visual language to explore the boundaries
of the spreadsheet paradigm. Journal of functional
programming, 11(2):155–206, 2001.

[3] J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco,
and J. Saraiva. Bidirectional transformation of
model-driven spreadsheets. In Theory and Practice of
Model Transformations, pages 105–120. Springer,
2012.

[4] J. Cunha, J. Mendes, J. Saraiva, and J. P. Fernandes.
Embedding and evolution of spreadsheet models in
spreadsheet systems. In Visual Languages and
Human-Centric Computing (VL/HCC), 2011 IEEE
Symposium on, pages 179–186. IEEE, 2011.

[5] G. Engels and M. Erwig. Classsheets: automatic
generation of spreadsheet applications from
object-oriented specifications.

In Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pages
124–133. ACM, 2005.

[6] M. Fisher and G. Rothermel. The euses spreadsheet
corpus: a shared resource for supporting
experimentation with spreadsheet dependability
mechanisms. ACM SIGSOFT Software Engineering
Notes, 30(4):1–5, 2005.

[7] F. Hermans, M. Pinzger, and A. van Deursen.
Supporting professional spreadsheet users by
generating leveled dataflow diagrams. In Proceedings
of the 33rd International Conference on Software
Engineering, pages 451–460. ACM, 2011.

[8] F. Hermans, B. Sedee, M. Pinzger, and A. v. Deursen.
Data clone detection and visualization in spreadsheets.
In Proceedings of the 2013 International Conference
on Software Engineering, pages 292–301. IEEE Press,
2013.

[9] R. R. Panko. What we know about spreadsheet errors.
Journal of Organizational and End User Computing
(JOEUC), 10(2):15–21, 1998.

[10] R. R. Panko and N. Ordway. Sarbanes-oxley: What
about all the spreadsheets? arXiv preprint
arXiv:0804.0797, 2008.

[11] R. K. Yin. Case study research: Design and methods,
volume 5. sage, 2009.

