
A Data Extraction and Visualization Framework for
Information Retrieval Systems

Alessandro Celestini
Institute for Applied

Computing, National Research
Council of Italy

a.celestini@iac.cnr.it

Antonio Di Marco
Institute for Applied

Computing, National Research
Council of Italy

a.dimarco@iac.cnr.it

Giuseppe Totaro
Department of Computer

Science, University of Rome
“Sapienza”

totaro@di.uniroma1.it

ABSTRACT
In recent years we are witnessing a continuous growth in the
amount of data that both public and private organizations
collect and profit by. Search engines are the most common
tools used to retrieve information, and more recently, clus-
tering techniques showed to be an effective tool in helping
users to skim query results. The majority of the systems
proposed to manage information, provide textual interfaces
to explore search results that are not specifically designed
to provide an interactive experience to the users.
Trying to find a solution to this problem, we focus on how to
extract conveniently data from sources of interest, and how
to enhance their analysis and consultation through visual-
ization techniques. In this work we present a customizable
framework able to acquire, search and interactively visualize
data. This framework is built upon a modular architectural
schema and its effectiveness will be illustrated by a proto-
type implemented for a specific application domain.

Keywords
Data Visualization, Data Extraction, Acquisition.

1. INTRODUCTION
The size of data collected by private and public organizations
is steadily growing and search engines are the most common
tools used to quickly browse them. Many works, in differ-
ent research areas, face the problem of how to manipulate
such data and to transform them into valuable information,
by making them navigable and easily searchable. Cluster-
ing techniques have been shown to be quite effective to that
purpose and have been thoroughly investigated in the past
years [17, 18, 2]. However the majority of currently avail-
able solutions (e.g., Carrot21, Yippy2) just supply textual
interfaces to explore search results.
In recent years, several works studied how users interact with

1http://project.carrot2.org
2http://www.yippy.com/

interfaces during exploratory search sessions, reporting use-
ful results about their behavior [12, 11]. These works show
that users spend the majority of their time looking at the
results and at the facets, whereas only a neglectable amount
of time for looking at the query itself [11] underlining the im-
portance of user interfaces development. According to those
works, it is clear that textual interfaces are not very effective
to improve exploratory search, so a different solution has to
be applied.
Data visualization techniques seem to be well suited to pur-
sue such goals. Indeed, visualization offers an easy-to-use,
efficient, and effective method capable to present data to a
large and diverse audience including users without any pro-
gramming background. The main goal of such techniques
is to present data in a fashion that supports intuitive inter-
action to spot patterns and trends, thus making the data
usable and informative. In this work we focus on data ex-
traction and data visualization for information retrieval sys-
tems, i.e., how to extract data from the sources of inter-
est in a convenient way, and how to enhance their analysis
and consultation through visualization techniques. To meet
these goals we propose a general framework, presenting its
architectural schema composed of four logic units: acquisi-
tion, elaboration, storage, visualization. We also present a
prototype developed for a case study. The prototype has
been implemented for a specific application domain and is
available online.
The rest of the paper is organized as follows. Section 2 dis-
cusses some frameworks and platforms related to our study.
Section 3 presents the framework architectural schema. Sec-
tion 4 describes a prototype through a case study, and fi-
nally, Section 5 concludes the paper suggesting directions
for future works.

2. RELATED WORK
In this section we discuss some works proposing frameworks
and platforms for data visualization.
WEKA [9] is a Java library that provides a collection
of state-of-the-art machine learning algorithms and data
processing tools for data mining tasks. It comes with
several graphical user interfaces, but can also be extended
by using a simple API. The WEKA workbench includes a
set of visualization tools and algorithms for classification,
regression, attribute selection, and clustering, useful to
discover and understand data.
Orange [6] is a collection of C++ routines providing a set
of data mining and machine learning procedures which can
be easily combined in order to develop new algorithms.



Figure 1: Architectural Schema

The framework allows to perform different tasks including
data input and manipulation, methods for developing
classification models, visualization of processed data, etc.
Orange provides also a scriptable environment, based on
Python, and a visual programming environment, based on
a set of graphical widgets.
While WEKA and Orange contain several tools to deal
with data mining tasks, our aim is to improve information
retrieval systems and user data understanding through
visualization techniques. Basic statistical analysis on data,
should be implemented by charts through interactions
patterns, so that could be performed directly by users.
In [8] authors present FuseViz, a framework for Web-based
fusion and visualization of data. The framework provides
two basic features: fusion and visualization. FuseViz
collects data from multiple sources and fuses them into
a single data stream. The joint data streams are then
visualized trough charts and maps in a Web page. FuseViz
has been designed to operate in a smart environment, where
several deployed probes sense the environment in real time,
and the data to visualize are live time series.
The Biketastic platform [16] is an application developed to
facilitate knowledge exchange among bikers. The platform
enables users to share routes and experience. For each
route Biketastic captures location, sensed data and media.
Such information are recorded while participants ride.
Routes’ data are then managed by a backend platform that
makes visualizing and sharing routes’ information easy and
convenient.
FuseViz and Biketastic share the peculiarity of being
explicitly designed to cope with a specific task in a par-
ticular environment. The proposed schemas could be
re-implemented in different applications, but there is not
a clear extension and adaptation procedure defined (and
possibly supported) by the authors. Our aim is to present
a framework that: a) can be easily integrated with an
existing information retrieval system b) provides a set of
tools to profitably extract data from heterogeneous sources
c) requires minimum effort to produce new interactive
visualizations.

3. FRAMEWORK OVERVIEW
Our framework adheres to a simple and well-known schema
(shown in Figure 1) structured in four logic units:

1. Acquisition: aims at obtaining data from sources;

2. Elaboration: responsible for processing the acquired

data to fit operational needs;

3. Storage: stores the data previously processed in per-
sistent way and make them available to the users;

4. Visualization: provides a visual representation of
data.

Actually the framework is mainly focused on the acquisition
and visualization stages, whereas the other ones are re-
ported as part of the architecture but are not implemented
by us. From an engineering perspective, both middle stages
(elaboration and storage) are considered as black-box
components: only their input and output specifications
must be available. All logic units play a crucial role for
visualizing data thus we describe them according to the
purposes of our framework.

3.1 Acquisition
This component is in charge of collecting and preprocessing
data. Given a collection of documents, possibly in different
formats, the acquisition stage prepares data and organizes
them to feed the elaboration unit.
Data acquisition can be considered the first (mandatory)
phase for any data processing activity that anticipates the
data visualization. Cleveland [5] and Fry [7] examine in
depth the logical structure of visualizing data by identifying
seven stages: acquire, parse, filter, mine, represent, refine,
and interact. Each stage in turn requires to apply techniques
and methods from different fields of computer science.
The seven stages are important in order to reconcile all sci-
entific fields involved in data visualization especially from
the logical point of view. However, regarding to our proto-
type we refer to data acquisition as a software component
which is able to collect, parse and extract data in an effi-
cient and secure way. The output of data acquisition will be
a selection of well-formed contents that are intelligible for
the elaboration unit.
We can collect data3 by connecting the acquisition unit to
data source (e.g., files from a disk or data over a network).
The approach to data collection depends on goals and de-
sired results. For instance, forensic data collection requires
the application of scientifically sound and proven methods4

to produce a bit-stream copy from data, that is an exact
bit-by-bit copy of the original media certified by a message
digest and/or a secure hash algorithm. Thus, data collection
in many circumstances has to address specific issues about
prevention, detection and correction of errors.
The acquired data must be parsed according to their digital
structure in order to extract data of interest and prepare
them for an elaboration unit. Parsing is potentially a time-
consuming process especially while working with heteroge-
neous data formats. The parsing stage is necessary also to
extract the metadata related to examined data. Both tex-
tual contents and metadata are usually extracted and stored
in specific data interchange formats like JSON or XML.
Moreover, security and efficiency aspects have to be consid-
ered during the design of a data acquisition unit. However,

3We assume to work with static data. Static/persistent data
are not modified during data acquisition, while dynamic
data refer to information that is asynchronously updated.
4http://dfrws.org/2001/dfrws-rm-final.pdf



it is beyond the scope of the present work to discuss secu-
rity and efficiency related issues regardless their important
implications for data acquisition.

3.2 Elaboration and Storage
The elaboration unit takes as input the data extracted dur-
ing the acquisition phase, so it has to analyze and extrapo-
late information from them. Data analysis for instance, may
be performed by a semantic engine or a traditional search
engine. In the former case we will obtain, as output, the doc-
uments collection enriched with semantic information, in the
second case the output will be an index. Moreover, along
with the analysis results, the elaboration unit may return
analysis of the metadata, related to the documents, which
are received as an input.
The main task of the storage unit is to store analysis results
produced by the elaboration unit and make them available
for the visualization unit. At this stage the main issue is to
optimize data access, specifically the querying time, in order
to reduce the time spent by the visualization unit retrieving
the information to display. Several storage solutions can be
implemented, in particular one may choose among different
types of data bases [3, 13]. The traditional choice could be a
relational database, but there are several alternatives, e.g.,
XML databases or graph databases.

3.3 Visualization
The visualization unit is in charge of making data available
and valuable for the user. As a matter of fact, visualization
is fundamental to transform analysis results into valuable
information for the user and help her/him to explore data.
In particular, the visualization of the results may help the
user to extract new information from data and to decide
future queries. As previously discussed, the time spent by
the user looking at the query itself is negligible, whereas the
time spent looking at the results and how they are displayed
is long-lasting. Thus, the interface design is crucial for the
effectiveness of this unit, and the guidelines outlined in [12]
may became a useful guide for the design and implementa-
tion of this unit. Given the tight interaction with the user,
it is quite important to take into account the response time
and usability of the interface. The visualizations provided
should be interactive, to enable the user performing analysis
operations on data. The same data should be displayed in
several layouts to highlight their different aspects. Finally, it
is quite important to provide multiple filters for each visual-
ization, in order to offer to the user the chance of a dynamic
interaction with the results.

3.3.1 The “Wow-Effect”
A really-effective data visualization technique has to be de-
veloped keeping in mind two fundamental guidelines that
are abstraction and correlation.
However, scientists often focus on the creation of trendy –
but not always useful – visualizations that should arouse
astonishment in the users who observe them, causing what
McQuillan [14] defines as the Wow-Effect. Unfortunately,
the Wow-Effect vanishes quickly and results in having stun-
ning visualizations that are worthless for the audience. This
effect is also related to the intrinsic complexity of the data
generated from acquisition to visualization stage. As shown
in Figure 2, the impact of original data into the total amount

DATA DATA

other metadata

RESULTS

DATABASE 
METADATA

Intepretation

METADATA

DATA

METADATA

RESULTS

DATA

METADATA

DATABASE 
METADATA

RESULTS

DATA

METADATA

other metadata other metadata other metadata

TIME

M
EM

O
RY

original data Parsing Processing Preservation Presentation

impact of 
original data

Figure 2: Data enrichment over time

of information decreases over time. Thus, we invested in ef-
fort to develop a framework able to overcome the “negative”
wow effect by providing visualizations easy to use and effec-
tive.

4. CASE STUDY: 4P’S PIPELINE
In this section we present an application of the framework
developed for a case study. According to the main task ac-
complished by each framework unit, we named the whole
procedure the 4P’s pipeline: parsing, processing, preserva-
tion, and presentation.
The prototype is a browser based application available on-
line5. The data set used for testing the 4P’s pipeline is a
collection of documents in different file formats (e.g., PDF,
HTML, MS Office types, etc). The data set was obtained by
collecting documents from several sources, mainly related to
news in English language.

4.1 Parsing task
The acquisition unit is designed to effectively address the
issues discussed in Section 3.1. Parsing is the core task of
our acquisition unit and for its implementation we exploited
the Apache Tika6 framework. The Apache Tika is a Java
library that carries out detection of document type and the
extraction of both metadata and structured textual content.
It uses existing parser libraries and supports most data for-
mats.

4.1.1 Tika parsing
Tika is currently the de-facto “babel fish”, performing au-
tomatic text extraction and content analysis of more than
1200 data formats. Furthermore there are several projects
that aim at expanding Tika to handle other data formats.
Document type detection is based on a taxonomy provided
by the IANA media types registry7that contains hundreds
of officially registered types. There are also many unoffi-
cial media types that require attention, so Tika has its own
media types registry that contains both official registered
types and other, widely used albeit unofficial, types. This
registry maintains information associated to each supported
type. Tika implements six methods for type detection [4] re-
spectively based on the following criteria: filename patterns,
Content-Type hints, magic byte prefixes, character encod-
ings, structure/schema detection, combined approaches.

5http://kelvin.iac.rm.cnr.it/interface/
6http://tika.apache.org/
7http://tools.ietf.org/html/rfc6838



The Parser interface is the key concept of Apache Tika. It
provides a high level of abstraction hiding the complexity
of different file formats and parsing libraries. Moreover, it
represents an extension point to add new parser Java classes
to Apache Tika, that must implement the Parser interface.
The selection of the parser implementation to be used for
parsing a given document may be either explicit or auto-
matic (based on detection heuristics).
Each Tika parser allows to perform text (only for text-
oriented types) and metadata extraction from digital docu-
ments. Parsed metadata are written to the Metadata object
after the parse() method returns.

4.1.2 Acquisition unit in detail
Our acquisition unit uses Tika to automatically perform
type detection and parsing, against files collected from data
sources, by using all available detectors and parser imple-
mentations. Although Tika is, to the best of our knowledge,
the most complete and effective way to extract text and
metadata from documents, there are some situations where
it could not accomplish its job, for example when Tika fails
to detect the document format or, even if it correctly recog-
nizes the filetype, when an exception occurs during parsing.
The acquisition unit handles both situations by using alter-
native parsers which are designed to work with specific types
of data (see figure 3):

• Whenever Tika is not able to detect a file because ei-
ther it is not a supported filetype or the document is
not correctly detectable (for example, it has a mal-
formed/misleading Content-Type attribute), the ex-
amined file is marked as application/octet-stream,
i.e., a type used to indicate that a body contains ar-
bitrary binary data. Therefore, the acquisition unit
processes documents whose the exact type is unde-
tectable by using a customized set of ad-hoc parsers,
each one specialized to handle specific types. For in-
stance, Tika does not currently support Outlook PST
files, so they are marked as octet-stream subtypes.
Then, the acquisition unit analyzes the undetected file
by using criteria as extension pattern or more sophis-
ticated heuristics and finally it sends the binary data
to an ad-hoc parser based on the java-libpst8 library.

• During parsing, even though a document is correctly
detected by Tika, some errors/exceptions can occur,
interrupting the extraction process related to the tar-
get file. In this case, the acquisition unit tries to restart
the parsing against the file that has caused a Tika ex-
ception by using, if available, a suitable parser selected
from an ad-hoc parsers list.

The acquisition unit extracts metadata from documents ac-
cording to a unified schema based on basic metadata proper-
ties contained in the TikaCoreProperties interface, which
all (Tika and ad-hoc) parsers will attempt to extract. A uni-
fied schema is necessary in order to have a unique experience
with searching against metadata properties. A complete and
more complex way to address “metadata interoperability”
consists in applying schema matching techniques in order to
provide suitable metadata crosswalks.

8https://code.google.com/p/java-libpst/

Text and 
Metadata

Functional Units

octet-stream

Tika 
Detector

Ad-hoc 
parsers

Input File detectable?

YES Tika 
Parser

Tika exception
If any error occurs, try to 
apply an ad-hoc parser

NO

Figure 3: Acquisition unit

4.2 Processing and Preservation tasks
The second and the third tasks are respectively the pro-
cessing and the preservation of data. The elaboration and
storage units which perform these tasks are tightly coupled.
All processed data must be stored in order to preserve the
elaboration results in a persistent way. They work by us-
ing a simple strategy like Write-Once-Read-Many pattern,
where the visualization unit plays the reader role.

4.2.1 Elaboration unit
The elaboration unit is formed by the semantic engine Cog-
ito9. Cogito analyzes text documents, and is able to find hid-
den relationships, trends and events, transforming unstruc-
tured information into structured data. Among the several
analysis it identifies three different types of entities (peo-
ple, places and companies/organizations), categorizes docu-
ments on the basis of several taxonomies and extract entities
co-occurrences. Notice that this unit is outside the frame-
work despite we included it in the architectural schema. In-
deed, we do not take care of the elaboration unit design and
development, we consider it as given. This unit is the en-
tity with which the framework interacts and to which the
framework provides functionalities, i.e., text extraction and
visualization.

4.2.2 Storage unit
As storage unit we resorted to BaseX10, an XML data base.
BaseX is an open source solution released under the terms
of the BSD License. We decided to use an XML data base
because the results of the elaboration unit are returned in
XML format. Moreover, the use of an XML data base helps
to reduce the time for XML documents manipulation and
processing, compared to a middleware application [10, 15].
An XML data base has also the advantage of not constrain-
ing data to a rigid schema, namely in the same data base we
can add XML documents with different structures. Thus,
the structure of the elaboration results can change without
effecting the data base structure itself.

4.3 Presentation task
For the development of the visualization unit we used
D3.js11 [1], a JavaScript library. The library provides several
graphical primitives to implement visualizations and uses
only web standards, namely HTML, SVG and CSS. With
D3 it is possible to realize multi-stage animations and inter-
active visualizations of complex structures.

9http://www.expertsystem.net
10http://basex.org
11http://d3js.org



Figure 4: Treemap with category zooming

Figure 5: Geographic visualization and country se-
lection

To improve data retrieval, we realized several visualization
alternatives that exploit Cogito’s analysis results. Figure 4
shows a treemap visualization that displays a documents cat-
egorization, notice that the same document may fall in dif-
ferent categories. Not all categories are displayed, only eight
among the most common ones. The categories reported are
selected on the basis of the number of documents contained
in the category itself. The treemap visualization is quite
effective in providing a global view of the data set. Our im-
plementation enables also a category zooming to restrict the
set of interest, i.e., clicking on a document the visualization
displays only the documents in the same category. More-
over, the user is able to retrieve several information such as
the document’s name, part of the document content and the
document’s acquisition date, directly from the visualization
interface. Figure 5 shows a geographic visualization that
displays a geo-categorization of documents. The countries
appearing in the documents are rendered with a different
color (green), to highlight the difference respect to the oth-
ers. The user can select each green country to get several

Figure 6: Co-occurrences matrix.

information that are reported inside a tooltip as shown in
figure. For each country are reported general information
such as capital’s name, spoken languages, population fig-
ures, etc. Such information do not come from the Cogito
analysis, but are added to enrich and enhance the retrieval
process carried out by users. The tooltip reports also the list
of documents in which the country appears and the features
detected by Cogito. Features are identified according to a
specific taxonomy and for each country are reported all the
features detected inside the documents related to that coun-
try. Moreover, this visualization displays geographic loca-
tions belonging to the country, possibly identified during the
analysis, e.g. rivers, cities, mountains, ecc. Figure 6 shows
the visualization of entities co-occurrence (only a section of
the matrix is reported in figure). Three types of entities are
identified by Cogito, that are places, people, organizations.
All entities are listed both on rows and columns, when two
entities appear inside the same document the square at the
intersection is highlighted. The color of the squares is al-
ways the same, but the opacity of each square is computed
on the basis of the number of co-occurrences. Thus, the
higher the number of co-occurrences, the darker the square
at the intersection. Furthermore, a tooltip for each high-
lighted square reports the type of the two entities, informa-
tion about the co-occurrence and the list of documents in
which they appear. Specifically, the tooltip reports the verb
or noun connecting the entities and some information about
the verb or noun used.
Figure 7 shows a force directed graph that displays the re-
lations detected among the entities identified in the docu-
ments. Each entity is represented by a symbol denoting the
entity’s type. An edge connects two entities if a relation has
been detected between them, self-loop are possible. Edges
are rendered with different colors based on relations’ type.
The legend concerning edges and nodes is reported on top of
the visualization. A tooltip reports some information about
the relations. In particular, for each edge is reported the
sentence connecting the entities, the verb or noun used in
the sentence and the document’s name in which the sen-
tence appear. Instead for each node a tooltip reports the
list of document in which the entity appears. Furthermore,
for each visualization, the user may apply several filters. In
particular, we give the possibility to filter data by acquisi-
tion date, geographic location, nodes’ types (co-occurrence
matrix and force directed graph), relations’ type (force di-
rected graph), categories (treemap).



Figure 7: Entity-relations force directed graph

5. CONCLUSIONS
The interest in data visualization techniques is increasing,
indeed these techniques are showing to be a useful tool in
the processes of data analysis and understanding. In this pa-
per we have discussed a general framework for data extrac-
tion and visualization, whose aim is to provide a methodol-
ogy to conveniently extract data and facilitate the creation
of effective visualizations. In particular, we described the
framework’s architecture, illustrating its components and its
functionalities, and a prototype. The prototype represents
an example of how our framework can be applied when deal-
ing with real information retrieval systems. Moreover, the
online application demo provides several visualization exam-
ples that can be reused in different contexts and application
domains.
Currently we’re experimenting our prototype for digital
forensics and investigation purposes, aiming at providing to
law enforcement agencies a tool for correlating and visualiz-
ing off-line forensic data, that can be used by an investiga-
tor even if she/he does not have advanced skills in computer
forensics. As a future activity we plan to release a full ver-
sion of our prototype. At the moment the elaboration en-
gine is a proprietary solution that we cannot make publicly
available, hence we aim at replacing this unit with an open
solution. Finally, we want to enhance our framework in or-
der to facilitate the integration of data extraction and data
visualization endpoints with arbitrary retrieval systems.

Acknowledgements
We would like to express our appreciation to Expert Systems
for support in using Cogito. Moreover, financial support
from EU projects HOME/2012/ISEC/AG/INT/4000003856
and HOME/2012/ISEC/AG/4000004362 is kindly acknowl-
edged.

6. REFERENCES

[1] M. Bostock, V. Ogievetsky, and J. Heer. D3

Data-Driven Documents. IEEE TVCG,
17(12):2301–2309, Dec 2011.

[2] C. Carpineto, S. Osiński, G. Romano, and D. Weiss. A
survey of web clustering engines. ACM Comput. Surv.,
41(3):1–17, Jul 2009.

[3] R. Cattell. Scalable SQL and NoSQL Data Stores.
SIGMOD Rec., 39(4):12–27, May 2011.

[4] M. Chris and J. Zitting. Tika in Action. Manning
Publications Co., 2011.

[5] W. S. Cleveland. Visualizing data. Hobart Press, 1993.

[6] J. Demšar, T. Curk, A. Erjavec, v. Gorup, T. Hočevar,
M. Milutinovič, M. Možina, M. Polajnar, M. Toplak,
A. Starič, M. Štajdohar, L. Umek, L. Žagar,
J. Žbontar, M. Žitnik, and B. Zupan. Orange: Data
mining toolbox in python. Journal of Machine
Learning Research, 14(1):2349–2353, Jan 2013.

[7] B. Fry. Visualizing Data: Exploring and Explaining
Data with the Processing Environment. O’Reilly
Media, Inc., 2007.

[8] G. Ghidini, S. Das, and V. Gupta. FuseViz: A
Framework for Web-based Data Fusion and
Visualization in Smart Environments. In Proc. of
IEEE MASS ’12, pages 468–472, Oct 2012.

[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18, Nov 2009.

[10] S. Jokić, S. Krco, J. Vuckovic, N. Gligoric, and
D. Drajic. Evaluation of an XML database based
Resource Directory performance. In Proc. of TELFOR
’11, pages 542–545, Nov 2011.

[11] B. Kules, R. Capra, M. Banta, and T. Sierra. What do
exploratory searchers look at in a faceted search
interface? In Proc. of JCDL ’09, pages 313–322, 2009.

[12] B. Kules and B. Shneiderman. Users can change their
web search tactics: Design guidelines for categorized
overviews. Information Processing & Management,
44(2):463–484, Mar 2008.

[13] K. K.-Y. Lee, W.-C. Tang, and K.-S. Choi.
Alternatives to relational database: Comparison of
NoSQL and XML approaches for clinical data storage.
Computer Methods and Programs in Biomedicine,
110(1):99–109, Apr 2013.

[14] A. G. McQuillan. Honesty and foresight in computer
visualizations. Journal of forestry, 96(6):15–16, Jun
1998.

[15] M. Paradies, S. Malaika, M. Nicola, and K. Xie.
Comparing xml processing performance in middleware
and database: A case study. In Proc. of Middleware
Conference Industrial Track ’10, pages 35–39, 2010.

[16] S. Reddy, K. Shilton, G. Denisov, C. Cenizal,
D. Estrin, and M. Srivastava. Biketastic: Sensing and
Mapping for Better Biking. In Proc. of SIGCHI ’10,
pages 1817–1820, 2010.

[17] O. Zamir, O. Etzioni, O. Madani, and R. M. Karp.
Fast and intuitive clustering of web documents. In
Proc. of KDD ’97, pages 287–290, 1997.

[18] H.-J. Zeng, Q.-C. He, Z. Chen, W.-Y. Ma, and J. Ma.
Learning to cluster web search results. In Proc. of
SIGIR ’04, pages 210–217, 2004.


