
Reaction RuleML 1.0 for Distributed
Rule-Based Agents in Rule Responder

Adrian Paschke1 and Harold Boley2

1 Freie Universitaet Berlin, Germany
paschke AT inf.fu-berlin.de

2 University of New Brunswick, Fredericton, NB, Canada
harold.boley AT unb.ca

Abstract. Rule Responder is a rule-based multi-agent framework in
which agents run platform-specific rule engines as distributed inference
services. They communicate with each other using Reaction RuleML
as the common rule interchange format, e.g. for question answering or
execution of mobile rule code in distributed problem solving, concur-
rent processing workflows and distributed event/action processing. In
this paper we demonstrate the new capabilities of Reaction RuleML 1.0
for supporting the functionalities of Rule Responder such as knowledge
interface declarations with signatures, modes, and scopes; distributed
knowledge modules with static and dynamic scopes enabling imports
and scoped reasoning within metadata-based scopes (closed construc-
tive views) on the knowledge base; messaging reaction rules enabling
conversation-scope based interactions between agents interchanging queries,
answers, and rulebases; and evaluation and testing of interchanged knowl-
edge bases with intended semantic profiles and self-validating test suites.
We demonstrate these Reaction RuleML 1.0 capabilities with our proof-
of-concept implementation Rule Responder agent architecture and Prova
3.0 rule engine.

1 Rule Responder

Rule Responder1 [11, 14, 15] is a multi-agent system that supports distributed rule-
based inference services on the Semantic-Pragmatic Web. It provides the infrastructure
for using platform-specific rule engines for rule-based agents / inference services which
can communicate with each other using Reaction RuleML as standardized rule inter-
change format.

RuleML is a knowledge representation language designed for the interchange of the
major kinds of Web rules in an XML format that is uniform across various rule logics
and platforms. It has broad coverage and is defined as an extensible family of sublan-
guages, whose modular system of schemas permits rule interchange with high precision.
RuleML 1.0 encompasses both Deliberation RuleML 1.0 and Reaction RuleML 1.02 [1,
16, 10, 12, 13].

1
http://responder.ruleml.org [14]

2
http://reaction.ruleml.org



2 Adrian Paschke, Harold Boley

Reaction RuleML is a standardized rule markup language and semantic inter-
change format for reaction rules and rule-based event processing. Reaction rules include
distributed Complex Event Processing (CEP), Knowledge Representation (KR) calculi,
as well as Event-Condition-Action (ECA) rules, Production (CA) rules, and Trigger
(EA) rules [13, 1, 16].

In this paper, we demonstrate the features of Reaction RuleML 1.0 for Rule Respon-
der. Reaction RuleML defines a generic rule syntax distinguishing between metadata,
interface, and implementation, enabling distributed and modularized rulebases and
rules. It supports both programming-in-the-large with compositional import and mes-
sage interchange mechanisms and programming-in-the-small with abstraction and scop-
ing mechanisms. Semantic Profiles attach meaning to interchanged Reaction RuleML
rulebases and messages and enable their semantic interpretation and interchange, e.g. in
distributed rule-based agent system and rule-based Complex Event Processing (CEP)
agent architectures [17].

As demonstration scenario we use a typical Semantic CEP scenario, namely the
real-time monitoring of stock market events[19, 21, 20]. Multiple Rule Responder event
processing agents monitor different stock market event streams which publish stock
market ticker data, such as

{(Name, OPEL)(Price, 45)(Volume, 2000)(Time, 1) }
{(Name, SAP)(Price, 65)(Volume, 1000) (Time, 2)}

In contrast to standard CEP agents which apply syntactic event patterns, the Rule
Responder agents support more expressive semantic event queries, such as ”stocks
of companies, which have production facilities in Europe and produce products out of
metal and have more than 10,000 employees” and which require additional background
knowledge bases (such as DBPedia), e.g.,

(OPEL, is_a, car_manufacturer),
(car_manufacturer, build, Cars),
(Cars, are_build_from, Metall),
(OPEL, has_production_facilities_in, Germany),
(Germany, is_in, Europe)
(OPEL, is_a, Major_corporation),
(Major_corporation, have, over_10,000_employees)

The paper is organizes as follows: Section 2 introduces semantic profiles which al-
low defining the intended evaluation semantics of Reaction RuleML knowledge. Section
3 distinguishes the knowledge interface from the knowledge implementation, which is
the basis for describing the interfaces of distributed Rule Responder agents. Section
4 explains how Reaction RuleML supports modularization and distribution of knowl-
edge locally, externally, and by import. Section 5 broadens the concept of scopes to
the construction of dynamic views on the knowledge base by metadata based scopes
and scoped reasoning. Section 6 uses this scoping mechanism for conversation based
scopes which allow to maintain local (reasoning) context in messaging reaction rules
with send and receive actions for interchanging Reaction RuleML based knowledge
actions between Rule Responder agents. Finally, section 7 summaries the contribution
of Reaction RuleML 1.0 for Rule Responder and their implementation in Prova 33.

3 http://prova.ws



Reaction RuleML 1.0 for Rule Responder 3

2 Dialects and Semantic Profiles

Dialects in Reaction RuleML provide a layer of general representation expressiveness
by defining a dialect language, typically for a particular sort of reaction rules or a
combination of different sorts. The main Reaction RuleML dialects with their core
elements are:

– Derivation Reaction RuleML (if-then) - Time, Spatial, Interval, Situation (+ alge-
bra operators)

– KR Reaction RuleML (if-then or on-if-do) - Happens(@type), Initiates, Termi-
nates, Holds, fluent

– Production Reaction RuleML (if-do) - Assert, Retract, Update, Action
– ECA Reaction RuleML (on-if-do) - Event, Action, (+ event / action algebra op-

erators)
– CEP Reaction RuleML (arbitrary combination of on, if, do) - Receive, Send, Mes-

sage

Combinations of dialects are also possible, e.g., DR-PR Reaction RuleML, which com-
bines derivation and production rules, or KR-CEP Reaction RuleML, which combines
KR calculi with CEP reaction rules, enabling e.g. profiles with an interval-based Event
Calculus semantics for complex (event/action) algebra operators [5, 18].

Semantic profiles in Reaction RuleML are used to define the intended semantics
for knowledge interpretation (typically a model-theoretic semantics), reasoning (e.g.,
entailment regimes and proof-theoretic semantics), and for execution (e.g., operational
semantics such as selection and consumption policies and windowing techniques in
complex event processing). That is, they further detail the syntax and semantics of a
dialect and provide necessary information about the intended semantics for Reaction
RuleML knowledge representations as required for interchange, translation, inference,
and verification and validation.

A dialect has a default semantic profile defining the default semantics, i.e., the
semantics which by default is used for interpretation. Deviating semantic profiles
(<Profile>) can be specified (<evaluation>) on all formulas and terms in Reaction
RuleML giving them an interpretation and execution different from the default seman-
tics.

Definition 1. (Semantic Profile) A semantic profile, SP = 〈SSP , ΣSP , ISP , ΦSP , τSP 〉,
(partially) defines a profile signature SSP , a language ΣSP , an interpretation ISP ,
a domain-independent theory ΦSP , and a semantics-preserving translation function
τSP (·) which translates from Reaction RuleML to the profile’s language / signature
(and vice versa, with the inverse function τ−1

SP ).

Semantic Profiles can be defined internally within a Reaction RuleML document
(<Profile>) or externally. External semantic profiles can be referenced by their profile
name (@type) and imported by their resource identifier (@iri). Their specification can
be given in any XML format (<content>), including RuleML formulas (<formula>), as
well as other formal and textual languages (which need not be directly machine process-
able). For non-Reaction RuleML profiles a semantics-preserving translation function τ
needs be defined in order to allow interpretations of Reaction RuleML knowledge bases
with the profile’s semantics.

Multiple alternative semantic profiles are allowed with or without a priority order-
ing and their scope can be specified. For instance the following XML snippet uses two
alternative profiles and gives the first profile preference by ordering them (@index).



4 Adrian Paschke, Harold Boley

<evaluation index="1"> <!-- WFS semantic profile -->
<Profile type="ruleml:Well-Founded-Semantics" direction="backward"/>

</evaluation>
<evaluation index="2"> <!-- alternative ASS semantic profile -->

<Profile type="ruleml:Answer-Set-Semantics"/>
</evaluation>

Semantic profiles might define further specialized or deviating structures (e.g., mod-
ule composition with modular join semantics etc.), intended models (e.g., in terms of
entailment regimes) and axioms and propositions (e.g., domain independent meta ax-
ioms of a theory, e.g. for calculi such as event calculus, situation calculus), as well
as proof-theories and properties of operational semantics (e.g., process semantics and
protocols, windowing techniques, selection and consumption policies in complex event
processing and actions), etc. Also, they might specialize the language of a dialect, e.g.,
by limiting the dialect’s signature to subsignatures.

Definition 2. (Subsignature) A signature S1 is a subsignature of S2, i.e., S1 ⊆ S2

iff S1 is a signature which consist only of symbols from S2 without changing their sort
and arity.

For instance, the following example defines the signature of a global predicate
“planned” as subsignature of the already existing <Happens> predicate in the KR dialect
of Reaction RuleML, which takes an event as first argument and a time as second
argument, with the mode attribute defining it as input predicate.

<signature>
<Atom type="ruleml:Happens" arity="2" mode="+">

<Rel scope="global">planned</Rel>
<Var type="ruleml:Event" mode="+" scope="local"/>
<Var type="ruleml:Time" mode="+" scope="local"/>

</Atom>
</signature>

These explicitly defined signatures are introduced as further specialized sorts into
the multi-sorted signature of a Reaction RuleML dialect and they are interpreted by
the intended semantic profile, which defines a multi-sorted interpretation for the sort
symbols. For further details about the core multi-sorted signatures and structures of
Reaction RuleML see [10].

The following example (in Prova 3 syntax) filters received stock market ticks and
sends the filtered events as new happens facts to another event processing agent, called
”epa1”.

Filter for stocks starting with "A" and price > 100
rcvMult(SID,stream,"S&P500", inform, tick(S,P,T)) :-

filter(S,P), sendMsg(SID2,esb,"epa1", inform, happens(tick(S,P),T).
filter(Symbol,Price) :-
Price > 100, Symbol = "A.*".

The transformed happens facts are interchanged to agent ”epa1” as Reaction
RuleML messages, e.g., specifying a reified event calculus profile as intended semantics.

<evaluation index="1"> <!-- Event Calculus semantic profile -->
<Profile type="ruleml:ReifiedClassicalEventCalculus"/>

</evaluation>



Reaction RuleML 1.0 for Rule Responder 5

3 Knowledge Interface Definition

A knowledge representation element in Reaction RuleML consists of the representa-
tional knowledge object, such as rulebases, rules, facts, queries, events, etc., and
optional additional meta knowledge.

The meta knowledge comprises descriptive metadata (<meta>) and the knowl-
edge interface, which contains information about the knowledge scope (<scope>),
guard constraints (<guard>), intended semantics (<evaluation>), explicit signatures
(<signature>), qualifying metadata (<qualification>), and quantifiers (<quantification>).

Moreover, several knowledge formulas can have further specialized meta knowl-
edge, such as a truth/uncertainty degree (<degree>) for atomic formulas (<Atom>)
and equations (<Equal>), conversation identifiers (<cid>), protocols (<protocol>),
sender/recevier agents (<sender>, <receiver>) for messages (<Message>), etc. Sev-
eral meta knowledge attributes specify additional information, e.g. about sort (@type),
arity (@arity), cardinality of set values (@card, @maxCard, @minCard), relative weight
(@weight), default quantification closure (@closure), inference direction (@direction),
ordering (@index), internationalized (remote) resource locator (@iri), global node iden-
tifier (@node), internal key and key reference (@key, @keyref), input-output mode dec-
laration (@mode), material implication (@material), equality orientation (@oriented),
interpretation semantics of relations and functions (@per), prefix and vocabulary def-
inition for ”webized” IRI mappings (@prefix, @vocab), processing/execution safety
(@safety), reasoning and execution style (@style), and indeterminism/determinism of
functions and operators (@val).

The knowledge implementation is an instance (a knowledge object) of the knowl-
edge interface, i.e. it needs to be well-formed according to the signature and it needs
to be interpreted with the intended structures (Semantic Profiles) in the scope (quan-
tification and qualification scope) defined by the interface.

The following example shows this distinction into metadata, interface, and imple-
mentation for a rule.

<Rule @key @keyref @style>
<!-- descriptive rule metadata -->
<meta> <!- descriptive metadata of the rule --> </meta>

<!-- rule interface -->
<scope> <!- scope of the rule e.g. a rule module --> </scope>
<evaluation> <!-- intended semantics --> </evaluation>
<signature> <! rule signature --> </signature>
<qualification> <!- e.g. qualifying rule metadata, e.g.

priorities, validity, strategy --> </qualification>
<quantification> <!-- quantifying rule declarations,

e.g. variable bindings --> </quantification>

<!-- rule implementation -->
<oid> <! object identifier --> </oid>
<on> <!- event part --> </on>
<if> <!- condition part --> </if>
<then> <!- (logical) conclusion part --> </then>
<do> <!-- action part --> </do>
<after> <!- postcondition part after action,

e.g. to check effects of execution --> </after>
<else> <!- (logical) else conclusion --> </else>
<elsedo> <!-- alternative/else action,

e.g. for default handling --> </elsedo>
</Rule>

– The <meta> roles, contain the descriptive metadata, which is used for annotations
describing the knowledge object. By default all knowledge is contextually anno-



6 Adrian Paschke, Harold Boley

tated by metadata about their source (@src([Locator])) and their name (@label([OID])),
with Locator being the module’s source location in which the knowledge object
is implemented/defined and OID being the implicitly (i.e., automatically created)
or explicitly defined object identifier.

– The <scope> role defines subsets of the universe as domain of discourse in which
interpretation takes place. That is, from an operational point of view they define a
static or dynamic constructive view on the knowledge base in which scoped reason-
ing takes place. The Reaction RuleML vocabulary predefines the scopes “global”
(globally visible) “local” (visible with local interpretation) and “private” (hidden
and not visible outside of the module). Reaction RuleML dialects might intro-
duce further scopes, such as, e.g., “supremum” and “infimum”, which expand
the scope of nested submodules to its least upper bound or greatest lower bound.
Further, named metadata scopes can be defined (in the scope role) and used as
scoped submodule in scoped reasoning.

– The <evaluation> roles are used to specify semantic profiles, which define the
intended semantics for knowledge interpretation (typically a model-theoretic se-
mantics), reasoning (typically entailment regimes and proof-theoretic semantics),
and for execution (e.g., operational semantics such as selection and consumption
policies and windowing techniques in complex event processing). This includes,
e.g., semantic properties and assumptions such as closed world, open world, closed
(positively, negatively closed), etc.

– The <signature> role explicitly defines signatures, i.e., it introduces (special-
ized) signature definitions in the core multi-sorted signature of the used Reaction
RuleML dialect. With the @type attribute locally defined signature sorts (e.g. frame
types, event patterns etc.) as well as externally defined sorts from external (possi-
bly order-sorted) type systems can be introduced as new sorts in the multi-sorted
signature. Modes (@mode) further partition the universe into subsets having a dif-
ferent mode. Reaction RuleML predefines the modes (@mode) ”+” (input mode),
”−” (output mode) and ”?” (open mode, i.e., input or output).

– The <qualification> role defines qualifying metadata. In contrast to descriptive
metadata (meta), qualifying metadata has an impact on the interpretation, e.g. it
is used for knowledge prioritization (e.g., conflict resolution strategies, defeasible
reasoning etc.), or for defining validity times (e.g., for windowing techniques in
event processing etc.).

– The <quantification> role explicitly defines the quantifiers. Note, there is a de-
fault quantifier scope assumed in a dialect; typically a universal closure, so that
formulas are universally closed by default.

While these optional meta roles allow explicit definitions of meta knowledge, cor-
responding attributes on the knowledge formulas can point to these definitions. For
instance, the @scope attribute can use the predefined terms4 “global”, “local” and
“private”, as well as scope names defined in the <scope> role. In following example
(in Prova 3 syntax) the first public rule receives stock market ticks from the event
stream ”S&P500” and the second private selection rule compares the price with ticker
information from other streams in the same event group in order to detect suspicious
price information.

% Select stock ticker events from stream "S&P500"

4 by using @vocab, an automated mapping of terms into IRIs is performed, i.e., the
predefined terms are mapped into IRIs of the Reaction RuleML vocabulary.



Reaction RuleML 1.0 for Rule Responder 7

% Each received event starts a new subconversation (CID) which further processes the selected
% event (select)
@group(g1) rcvMult(CID,stream,"S&P500", inform, tick(S,P,T)) :-
@scope(private) select(CID,tick(S,P,T)).

% Indefinitely (count=-1) receive further ticker events from other streams that follow the
% previous selected event in event processing group (group=g1). If the price differs for
% the same stock at the same time [T1=T2, P1!=P2] then ...
@scope(private)
select(CID,tick(S,P1,T1)) :-
@group(g1) @count(-1)
rcvMsg(CID,stream, StreamID ,inform, tick(S,P2,T2)) [T1=T2, P1!=P2]

println (["Suspicious:",StreamID, tick(S,P2,T2)]," ").

4 Knowledge Modularization and Distribution

Reaction RuleML supports knowledge modularization and distribution. A syntactic
way to distribute knowledge locally within a KB is by separating the representation of
a knowledge formula into several syntactic parts and connecting and conjoining them
syntactically by key-keyref pairs (@key, @keyref). A key is a local (“webized” by using
@prefix and @vocab) identifier, with a unique name assumption (UNA), which can be
defined as meta knowledge on any Reaction RuleML language element. A key reference
is a syntactic local reference (within a KB) using the key as locator to connect and
conjoin the key element with the key reference element. Multiple references to a key
element are possible (1 : m as well as n : m by defining both key and keyref on pairwise
conjoined elements). The resulting combined syntax elements need to be well-formed
(according to their signature definitions) to allow meaningful interpretations, i.e. key-
keyref pairs need to be on similar syntactic elements and for each key reference a
matching unique key needs to be defined in a KB. A typical application of the key-
keyref mechanism is the separation of the knowledge interface with signatures from the
knowledge implementation, so that both can be represented and reused independently.
For instance, the following example shows the separated implementation of a rule
”ruleimpl1” which is referencing the rule interface ”ruleinterface1”.

<Rule key="ruleinterface1">
<evaluation><Profile> ... </Profile></evaluation>
<signature> ... </signature>
...

</Rule>
...
<Rule keyref="rulreinterface1" key="ruleimpl1 ">

<if> ... </if>
<do> ... </do>

</Rule>

This enables, e.g., template definitions (e.g., abstracted signature patterns, knowl-
edge templates, event pattern definitions, etc.), modularization and information hiding,
e.g. by publishing the interface in a document distributed from the document with the
(possibly private) implementation5.

Furthermore, with the @iri attribute also remote resources can be referenced. For
instance, in the following example an RDFS entailment regime is referenced as intended
semantic profile for the order-sorted interpretation of external sorts defined in external
RDFS ontologies (taxonomies).

5 With XML Inclusion (XInclude) such distributed documents can be syntactically
included into one KB enabling local key intra-references within it.



8 Adrian Paschke, Harold Boley

<evaluation><Profile type="rif:RDFS iri="http://www.w3.org/ns/entailment/RDFS"/></evaluation>

This profile can be used, e.g. for the type reasoning in the following example rule
(in Prova syntax), which defines a semantic event query with variables typed by back-
ground knowledge bases (ontologies)6.

rcvMult(SID,stream,S&P500, inform,
tick(Name^^car:Major_corporation,P^^currency:Dollar,T^^time:Timepoint)) :- ...

Rule-based Data Access (RBDA) with optimizing techniques, such as enrichment,
can be used for efficient processing. For instance, the following example defines a rule-
based data access rule which selects with the SPARQL query built-in of Prova 7 all
luxury car manufacturers from DBPedia.

luxuryCar(Manufacturer,Name,Car) :-
Query="SELECT ?manufacturer ?name ?car % SPARQL RDF Query

WHERE {?car <http://purl.org/dc/terms/subject>
<http://dbpedia.org/resource/Category:Luxury_vehicles> .

?car foaf:name ?name .
?car dbo:manufacturer ?man .
?man foaf:name ?manufacturer. } ORDER by ?manufacturer ?name,

sparql_select(Query,manufacturer(Manufacturer),name(Name),car(Car)).

Rulebase formulas (<Rulebase>) introduce a (possibly nested) structuring of groups
of knowledge formulas, called modules. External (<RuleML>) documents and messages
(<Message>) can be consulted/imported (<Consult>) or received (<Receive>). They
are treated as submodules in the importing KB.

Definition 3. (Import) A document KB′ is said to be an import to a document KB,
if it is directly imported into KB (or it is imported into another document, which is
directly imported into KB). An imported document KB′ becomes a module of the KB.

For instance, the following example consults (imports) the rule interface which has
been published in a separated Reaction RuleML document.

<Consult iri="http://reaction.ruleml.org/1.0/exa/dr/DistributedDerivationRuleInterface.rrml"/>

The importing Reaction RuleML KB (i.e., <RuleML> document) is the super module
of all modules. All asserted, imported, and received rulebases are submodules of this
KB module.

Definition 4. (Module and Submodule) A module Φ is a tuple 〈@φ, φ〉, where φ
is an ordered or unordered finite set of knowledge formulas φi ∈ φ (without or with
duplicates) and @φ is an ordered or unordered finite set of meta knowledge formulas
@φi ∈ @φ, called the module interface. A module Ψ is a submodule of Φ if Ψ ⊆ Φ.

Modes partition the symbols in the universe used for formulas (predicates, func-
tions, and terms) into input, output, and open symbols. Also, scopes partition formulas
(and terms) into global, local, and private symbols. The set of input formulas In and
the set of output formulas Out are visible and can be imported and accessed by other

6 RuleML and Prova support external types, such as object-oriented Java class hier-
archies and ontologies [4]

7 Prova has various built-ins for rule-based data access such as Java object access, file
access, XML (DOM), SQL, RDF triples, XQuery, SPARQL



Reaction RuleML 1.0 for Rule Responder 9

modules. Accordingly, their scope must be either global or local. The set of formulas
with private scope are hidden internal formulas Priv and hence not accessible by other
modules. This is used for defining the semantics of imports (<Consult>, XInclude) and
the composition semantics of modules.

Definition 5. (Modes and Scopes) Let M be a module consisting of a tuple 〈F, I,O,G,L, P 〉,
where F is a finite set of all knowledge formulas in M ; I, O are pairwise disjoint sets of
input and output formulas, i.e., formulas with input or output mode; G, L, and P are
disjoint sets of formulas with global, local, and private scope. The function signature(F )
gives the signature of F , mode(F ) gives the mode, and scope(F ) gives the scope. Let R
be the set of rules in M , then signatureatom(R) gives the atoms (atomic formulas) of
a rule R, where

– signatureatom(on), signatureatom(if), signatureatom(after) are in I, i.e. the parts
of R which consist of input atoms

– signatureatom(then), signatureatom(else), signatureatom(do) and
signatureatom(elseDo) are in O, i.e. output atoms which are not in I.

Semantic profiles can define the composition semantics of modules.
The composition semantics must respect the declared modes and scopes. While

global and local scopes are visible and hence can be used in input and output modes,
a private scope is only visible within the module in which it is defined. For instance,
the composition of imported modules removes the output atoms from the set of input
atoms and enforces that KB′ and KB are mutual independent and that private atoms
from one module are not part of the signature of the other module in which they are
not visible. Private and local symbols might be defined and interpreted differently in
two imported modules, but their interpretation must coincide for global symbols.

Definition 6. (Module Composition) Let KB′ and KB be two modules; their com-
position is the union KB′ tKB = 〈FKB′ ∪FKB , (IKB′ ∪ IKB) (OKB′ ∪OKB), OKB′ ∪
OKB , GKB′ ∪ GKB , LKB′ ∪ LKB , PKB′ ∪ PKB〉, where signature(KB′) ∩ P1 = ∅ and
signature(KB)∩P2 = ∅ and there are no (positive) cyclic dependencies8 in FKB′∪FKB

through loops between input and output atoms.

That is, semantic profiles define the intended interpretations for composed multi-
module KBs. Semantic profiles might also specify syntactic translation and transfor-
mation mapping, e.g., to consistently map all imported local symbols into the local
symbols of the importing KB or to do program transform such as renaming output
formulas to guarantee compositionality. Furthermore, they can define concrete module
composition semantics, e.g. as semantic join of models, as well as a mechanism to avoid
cyclic imports9.

Definition 7. (Modular Semantic Multi-Structure) A modular semantic multi-
structure M = 〈MKB0 ,MKB1 ,MKB2 , ..〉 is a set of semantic structures such that MKB

is the semantic structure of the importing KB and MKBk is a set of semantic structures

8 One approach to detect mutual positive or negative dependencies is by adding extra
meta information in the models.

9 see the Semantic Profiles for modular Reaction RuleML knowledge bases and the
OntoMaven/RuleMaven dependency analysis and importation resolution algorithm
for imports from distributed KB repositories.



10 Adrian Paschke, Harold Boley

of the imported modules. The semantic structures MKB and all structures MKBk are
required to coincide in the mappings of global symbols in all semantic structures. But
they might differ for local and private symbols in their interpretation using the module
scope to constrain and close the domain of discourse for deviating local interpretations
in each MKBk .

A semantic profile can specify how to do the expansion of the modular semantic
multi-structure. The default is that the semantics of imported modules expands to the
semantics of the importing KB. But, other semantics can be define in a profile, e.g.
as a conservative composition using renaming output transformations on the output
formulas in the module composition and a semantic outer join operator for the joint
interpretation.

Definition 8. (Join) Let KB′ and KB be two modules and I ′ and I be their sets
of interpretations; then the natural outer join I ′ ./ I = {I ′ ∩ signature(KB) = I ∩
signature(KB′)andI ∪ I ′}, where I ′ ∈ I ′ and I ∈ I.

The following example (in Prova) shows the rule of a manager agent which reads a
Prova script from a file and uploads it to a contractor agent. The contractor consults
and evaluates the receive mobile code.

% Manager
upload_mobile_code(Remote,File) :

Writer = java.io.StringWriter(),
fopen(File,Reader),
copy(Reader,Writer),
Text = Writer.toString(),
SB = StringBuffer(Text),
sendMsg(XID,esb,Remote,eval,consult(SB)).

% Service (Contractor)
rcvMsg(XID,esb,Sender,eval,[Predicate|Args]):- derive([Predicate|Args]).

5 Scoped Reasoning

A particular important feature of Reaction RuleML 1.0 feature for Rule Responder
agents is that it allows constructing views dynamically on the KB. These views are
defined by metadata scopes [14, 8] in which scoped reasoning can be performed.

Definition 9. (Metadata Scope) Let KB be a KB. A metadata scope KB@ (aka con-
structive view on KB), which is defined by one or more closed metadata (constrained)
formulas {@(L1), ..,@(Ln)} on the KB, is a submodule KB@ ⊆ KB, where for every
formula φ in KB@ their metadata @(φ) satisfies the metadata constraints defined by
the metadata scope. The scope’s subsignature S@ is said to be the scoped domain of
discourse.

Scoped reasoning can be performed on such metadata scopes (aka constructive
views on the KB) by defining scoped literals in conditions, queries, and event pat-
terns. Scope literals are interpreted in the scoped domain of discourse and by default
have the scopes’ closure10. The scope definition of a scope literal might contain vari-
ables. In addition to scopes, Reaction RuleML supports guards which act as additional

10 like for module imports in the large semantic profiles can define different closure
semantics



Reaction RuleML 1.0 for Rule Responder 11

pre-conditional constraints on the literal. The following example defines a scoring rule
which selects ticker events with a score value (scope) over 2 (guard). Accordingly, only
the second ticker event with a score value over 2 is further analyzed.

% event instances with metadata
@score(1) @src(stream1) @label(e1) tick("Opel",10,t1).
@score(3) @src(stream2) @label(e2) tick("Opel",15,t1).

happens(tick(S,P),T):-
@score(Value) tick(S,P,T) [Value>2].

By default, the scope of relations and functions is global and their arguments’ scope
is local. A global scope corresponds to a metadata scope defined over all knowledge
qualified with the source of the KB (@source([Locator])), and the local scope corre-
sponds to the metadata scope defined over all knowledge qualified with the name of the
module (@label([OID])). The mode of formulas when used as conditions, constraints,
queries, and event patterns is ”+” (input), and the mode of conclusions, answers, and
active actions is ”−” (output); with a corresponding mode for their constant arguments,
and by default for variables, the mode is ”?” (open). The default quantification scope
is universal (<Forall>). There is a nested submodule inheritance, i.e., meta knowledge
defined on outer modules is automatically inherited to the inner modules.

In the following example defines a rating of events from only trusted sources.

% stream1 is trusted but stream2 is not, so one solution is found: X=e1
@src(stream1) event(e1).
@src(stream2) event(e2).

%only event from stream1 are trusted
@scope(private) @label(trust_db) trusted(stream1).

ratedEvent(X):-
@src(Source) %scoped reasoning on @src
event(X) [trusted(Source)]. %guard on trusted sources

:-solve(ratedEvent(X)). % => X=e1 (but not e2)

6 Messaging

Reaction RuleML supports actions for sending (<Send>) and receiving (<Receive>)
knowledge via messages (<Message>) in messaging reaction rules (rule
@style="messaging"). Messages interchange Reaction RuleML documents as their
payload between agents (<Agent>), which are rule-based agents (aka inference services).
A Message element that provides the syntax for inbound and outbound messages / no-
tifications. Besides having the typical meta knowledge, a message consists of

– an <oid> (message object identifier) and a <cid> which is the conversation identi-
fier (enabling also long-running asynchronous conversations and sub-conversations
with new conversation identifiers),

– an optional <protocol>: protocol definition (e.g. high-level negotiation and coor-
dination protocols, agent protocols and operational transport protocols)

– an optional <sender> and <receiver>: denotes the sender and the target of the
message,

– a directive: pragmatic context defining the pragmatic interaction and interpreta-
tion context for the message payload, e.g. FIPA Agent Communication Language
primitives such as ”acl:query-ref”,



12 Adrian Paschke, Harold Boley

– an optional @type defines the type of the message and an optional @mode attribute
distinguishes ”inbound” from ”outbound” communication,

– a payload transporting any valid <RuleML> knowledge document (enclosing, e.g.,
queries (<Query>), answers (<Answer>), imports, and updates (<Consult>, <Assert>,
<Retract>, <Update>), as well as general actions (<Action>)) or arbitrary XML
<content>.

The following example shows the typical template of a message:

<Message>
<oid> <!-- message ID--> </oid>
<cid> <!-- conversation ID--> </cid>
<protocol> <!-- transport protocol --> </protocol>
<directive> <!-- pragmatic context --> </directive>
<sender> <!-- sender agent/service --> </sender>
<receiver> <!-- receiver agent/service --> </receiver>
<payload> <!-- message payload --> </payload>

</Message>

The knowledge of received RuleML documents can be used in the messaging re-
action rules of the receiving agent. An important difference to “standard” imports, as
described in the previous section, is that these knowledge updates are private to the
conversation scope of the message interaction which takes place in the execution
scope of the messaging reaction rules. A typical application of this conversation-based
interactions is distributed question-answering (Q&A) between distributed agents (i.e.,
agents providing query interfaces to their KBs), where the send and receive actions
in messaging reaction rules act as queries and answers to the external agents’ KBs.
For instance, the following messaging reaction rule starts two conversations, “xid1”
and “xid2”, sending two queries. The serial execution initially waits for the answers
from the second conversation and then, after proving some conditions (e.g., conditions
defined on the bound variables of the received answers), the execution waits for the
answers to the first query in the first conversation.

<Rule style="messaging">
...
<do><Send>

<Message>
<cid><Var>xid1</Var></cid>
... <payload> ... query1 ... </payload>

</Message>
</Send></do>
<do><Send>

<Message>
<cid><Var>xid2</Var></cid>
... <payload> ... query2 ... </payload>

</Message>
</Send></do>
<on><Receive>

<Message>
<cid><Var>xid2</Var></cid>
..<payload> ... answer2 ... </payload>

</Message>
</Receive></on>
<if> ... conditions ... </if>
<on><Receive>

<Message>
<cid><Var>xid2</Var></cid>
..<payload> ... answer1 ... </payload>

</Message>
</Receive></on>
...

</Rule>



Reaction RuleML 1.0 for Rule Responder 13

Answers are given in terms of solved formulas, e.g. as a rulebase (<Rulebase>) that
contains ‘solved’ equations with the variable bindings.

<Rulebase>
<Equal><Var>x</Var><Ind>a</Ind></Equal>
<Equal><Var>y</Var><Ind>b</Ind></Equal>
<Equal><Var>z</Var><Ind>c</Ind></Equal>

</Rulebase>

Alternatively, they are given one by one as ground literals (<Atom>) matching the
sent query.

<Atom>
<Rel>p</Rel>
<Ind>a</Ind>
<Ind>b</Ind>
<Ind>c</Ind>

</Atom>

The semantics of sent queries interprets them as (sub-)goals which are proven by
the external agent’s knowledge and the variable bindings from the received answers are
used to continue the local proof logic in the serial execution of the messaging reaction
rule.

The following Prova example defines an event composition workflow, where first an
event ”A” is received which forks the process into two alternative branches for event
”B” and ”C”.

rcvMsg(XID,Process,From,event,["A"]) :-
fork_b_c(XID, Process).

fork_b_c(XID, Process) :-
@group(p1) rcvMsg(XID,Process,From,event,["B"]), .

fork_b_c(XID, Process) :-
@group(p1) rcvMsg(XID,Process,From,event,["C"]), .

fork_b_c(XID, Process) :-
% OR reaction group "p1" waits for either of the two event message handlers "B" or "C"
% and terminates the alternative reaction if one arrives

@or(p1) rcvMsg(XID,Process,From,or,_).

Such reaction groups establish an additional event processing scope which is
used to manage the event processing flow. This can be used, for instance, to define rel-
ative timer events in a reaction group within a time window, e.g., for the accumulation
of events over a time window as in the following Prova example.

% This reaction operates indefinitely. When the timer elapses (after 25 ms),
% the group by map Counter is sent as part of the aggregation event and consumed in an
% or group, and the timer is reset back to the second argument of @timer.

groupby_rate() :-
Counter = ws.prova.eventing.MapCounter(), % Aggr. Obj.
@group(g1) @timer(25,25,Counter), % timer every 25 ms
rcvMsg(XID,stream,From,inform,tick(S,P,T)) % event
[IM=T,Counter.incrementAt(IM)]. % aggr. operation

groupby_rate() :-
% receive the aggregation counter in the or reaction

@or(g1) rcvMsg(XID,self,From,or,[Counter]),
... % consume the Counter aggreation object.



14 Adrian Paschke, Harold Boley

Another important aspect in this distributed interaction is the interface declara-
tion of knowledge base, in particular the signatures and their scope visibility which
define which knowledge can be queried from external agents. Furthermore, the agent
conversations might follow certain defined protocols (<Protocol>) and the knowledge
interpretation might be given an additional pragmatic context (<directive>).

For the correct semantic interpretation, the intended semantic profiles can be inter-
changed together with test suites, which are special knowledge bases (<TestSuite>)
with a test assertion base (typically ground facts), and test items (<TestItem>), consist-
ing of test queries and predefined expected answers. [3, 8, 7, 2, 6] The following example
shows a typical template for a test.

<Test>
<TestSuite>
<!-- semantic profiles which should be used for the test suite -->
<evaluation><Profile></Profile></evaluation>
<!-- test assertion base, such as ground test facts -->
<testbase><Assert></Assert></testbase>
<!-- one particular test item of a test suite -->
<TestItem>

<!-- test query -->
<act><Query></Query></act>
<!-- expected result -->
<expectedResult>
<Answer>
<degree><Data>1</Data></degree> <!-- expected "1" = query succeeds -->
<!-- resulting query variable bindings -->
<Equal></Equal>
<Equal></Equal>

</Answer>
</expectedResult>

</TestItem>
</TestSuite>

</Test>

7 Conclusion - Reaction RuleML for Reaction Rules

In this paper we have described and exemplified several important features of Reaction
RuleML 1.0 which provide support for Rule Responder.

– Knowledge interface declarations can be used to define signatures/patterns,
intended semantic profiles, scopes, qualifications and quantifications of knowledge
implementations with possible separation and distribution of the interface from its
implementations by key-keyref references.

– Modules with declarations of scopes, modes, and profiles distinguish global,
local, and private knowledge with possibly varying interpretations and visibility
for external agents.

– Knowledge imports allow consultation of external knowledge as modules of the
importing KB with module composition and interpreting (join) semantics defined
by semantic profiles.

– Scoped reasoning can be used to close off the domain of discourse to a particu-
lar scope, including dynamic metadata-based scopes which act as constructive
views on the (modular) knowledge base. [14, 8]

– Messaging reaction rules are used for serial execution of (conditional) send and
receive actions which interchange knowledge between Rule Responder agents,
such as queries, answers, and rulebases, via Reaction RuleML messages within



Reaction RuleML 1.0 for Rule Responder 15

protocol conversation scopes and serial execution scopes of the messaging reaction
rules in which the conversations take place.

– Semantic profiles and test suites are optionally interchanged together with
the knowledge in order to test the Reaction RuleML knowledge with the intended
semantics against pre-defined test items (test cases) leading to self-validating
rule bases. [3, 8, 7, 2, 6]

The implementation of these advanced features of Reaction RuleML 1.0 and Rule
Responder is demonstrated in the Prova 3.0 rule engine with use cases for Q&A
answering on top of rule-based data access to Linked Open Data (LOD) knowledge
bases such as DBPedia and design pattern implementations for Semantic Complex
Event Processing (SCEP) functionalities [17, 9].

References

1. H. Boley, A. Paschke, and O. Shafiq. RuleML 1.0: The Overarching Specification
of Web Rules. In Semantic Web Rules - International Symposium, RuleML 2010,
Washington, DC, USA, October 21-23, 2010. Proceedings, volume 6403 of Lecture
Notes in Computer Science, pages 162–178. Springer, 2010.

2. Jens Dietrich and Adrian Paschke. On the Test-Driven Development and Valida-
tion of Business Rules. In Information Systems Technology and its Applications, 4th
International Conference ISTA’2005, 23-25 May, 2005, Palmerston North, New
Zealand, volume 63 of LNI, pages 31–48. GI, 2005.

3. Adrian Paschke. The ContractLog Approach Towards Test-driven Verification and
Validation of Rule Bases - A Homogeneous Integration of Test Cases and Integrity
Constraints into Evolving Logic Programs and Rule Markup Languages (RuleML)
. International Journal of Interoperability in Business Information Systems, 10,
2005.

4. Adrian Paschke. A Typed Hybrid Description Logic Programming Language with
Polymorphic Order-Sorted DL-Typed Unification for Semantic Web Type Systems.
In OWLED, 2006.

5. Adrian Paschke. ECA-RuleML: An Approach combining ECA Rules with temporal
interval-based KR Event/Action Logics and Transactional Update Logics. CoRR,
abs/cs/0610167, 2006.

6. Adrian Paschke. On Self-Validating Rule Bases. In Proceedings of 2nd Interna-
tional Workshop on Semantic Web Enabled Software Engineering (SWESE 2006),
Athens, Georgia, USA, 2006.

7. Adrian Paschke. Verification, Validation, Integrity of Rule Based Policies and Con-
tracts in the Semantic Web. In 2nd International Semantic Web Policy Workshop
(SWPW’06), Nov. 5-9, 2006, Athens, GA, USA, volume 207 of CEUR Workshop
Proceedings. CEUR-WS.org, 2006.

8. Adrian Paschke. Rule based service level agreements: RBSLA; knowledge represen-
tation for automated e-contract, SLA and policy management. Idea Verlag GmbH,
2007.

9. Adrian Paschke. Semantic Complex Event Processing.
http://www.slideshare.net/swadpasc/dem-aal-semanticceppaschke, May 2013.
Tutorial at Dem@Care Summer School on Ambient Assisted Living, 16-20
September 2013, Chania, Crete, Greece, http://www.slideshare.net/swadpasc/
dem-aal-semanticceppaschke.



16 Adrian Paschke, Harold Boley

10. Adrian Paschke. Reaction RuleML 1.0 for Rules, Events and Actions in Semantic
Complex Event Processing. In 8th International Web Rule Symposium, Prague,
Czech Republic, August 18-20, RuleML 2014 Proceedings, Lecture Notes in Com-
puter Science. Springer, 2014.

11. Adrian Paschke and Harold Boley. Rule Responder, October 2007. RuleML project,
http://responder.ruleml.org/.

12. Adrian Paschke and Harold Boley. Rule Markup Languages and Semantic Web
Rule Languages. In Adrian Giurca, Dragan Gasevic, and Kuldar Taveter, editors,
Handbook of Research on Emerging Rule-Based Languages and Technologies: Open
Solutions and Approaches, pages 1–24. IGI Publishing, May 2009.

13. Adrian Paschke and Harold Boley. Rules Capturing Events and Reactivity. In
Adrian Giurca, Dragan Gasevic, and Kuldar Taveter, editors, Handbook of Re-
search on Emerging Rule-Based Languages and Technologies: Open Solutions and
Approaches, pages 215–252. IGI Publishing, May 2009.

14. Adrian Paschke and Harold Boley. Rule Responder: Rule-Based Agents for the
Semantic-Pragmatic Web. International Journal on Artificial Intelligence Tools,
20(6):1043–1081, 2011.

15. Adrian Paschke, Harold Boley, Alexander Kozlenkov, and Benjamin Larry Craig.
Rule responder: RuleML-based agents for distributed collaboration on the prag-
matic web. In Proceedings of the 2nd International Conference on Pragmatic Web,
ICPW 2007, Tilburg, The Netherlands, October 22-23, 2007, volume 280 of ACM
International Conference Proceeding Series, pages 17–28. ACM, 2007.

16. Adrian Paschke, Harold Boley, Zhili Zhao, Kia Teymourian, and Tara Athan. Re-
action RuleML 1.0 : Standardized Semantic Reaction Rules. In Rules on the Web:
Research and Applications - 6th International Symposium, RuleML 2012, Montpel-
lier, France, August 27-29, 2012. RuleML 2012 Proceedings, volume 7438 of Lecture
Notes in Computer Science, pages 100–119. Springer, 2012.

17. Adrian Paschke, Paul Vincent, Alexandre Alves, and Catherine Moxey. Tutorial
on advanced design patterns in event processing. In Proceedings of the Sixth ACM
International Conference on Distributed Event-Based Systems, DEBS 2012, Berlin,
Germany, July 16-20, 2012, pages 324–334. ACM, 2012.

18. Kia Teymourian and Adrian Paschke. Semantic Rule-Based Complex Event Pro-
cessing. In Rule Interchange and Applications, International Symposium, RuleML
2009, Las Vegas, Nevada, USA, November 5-7, 2009. Proceedings, volume 5858 of
Lecture Notes in Computer Science, pages 82–92. Springer, 2009.

19. Kia Teymourian and Adrian Paschke. Plan-Based Semantic Enrichment of Event
Streams. In The Semantic Web: Trends and Challenges - 11th International Con-
ference, ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014. Proceedings,
volume 8465 of Lecture Notes in Computer Science, pages 21–35. Springer, 2014.

20. Kia Teymourian, Malte Rohde, and Adrian Paschke. Processing of Complex Stock
Market Events Using Background Knowledge. In Proceedings of the 5th Inter-
national RuleML2011@BRF Challenge, co-located with the 5th International Rule
Symposium, Fort Lauderdale, Florida, USA, November 3-5, 2011, volume 799 of
CEUR Workshop Proceedings. CEUR-WS.org, 2011.

21. Kia Teymourian, Malte Rohde, and Adrian Paschke. Knowledge-based processing
of complex stock market events. In 15th International Conference on Extending
Database Technology, EDBT ’12, Berlin, Germany, March 27-30, 2012, Proceed-
ings, pages 594–597. ACM, 2012.


