
Argumentation Extensions Enumeration as a Constraint
Satisfaction Problem: a Performance Overview

Mauro Vallati1, Federico Cerutti2, and Massimiliano Giacomin3

1 School of Computing and Engineering, University of Huddersfield, UK
m.vallati@hud.ac.uk

2 Department of Computing Science, University of Aberdeen, UK
f.cerutti@abdn.ac.uk

3 Department of Information Engineering, University of Brescia, Italy
massimiliano.giacomin@unibs.it

Abstract. Enumerating semantics extensions in abstract argumentation is gener-
ally an intractable problem. For preferred semantics four implementations have
been recently proposed, CONArg2, AspartixM, PrefSATand NAD-Alg, with
significant runtime variations. This work is a first empirical evaluation of the per-
formance of these implementations with the hypothesis that NAD-Alg, as repre-
sentative of a family of ad-hoc approaches, will overcome in sequence PrefSAT
— a SAT-based approach —, CONArg2— a CSP-based approach —, and the
ASP-based approach AspartixM. The results shows that this is not always the
case, as PrefSAT has been often the best approach both in terms of numbers of
enumeration problems solved, and CPU-time. Moreover, we identify situations
where AspartixM has been proved to be significantly faster than CONArg2.

Keywords: argumentation, preferred semantics, empirical evaluation

1 Introduction

Dung’s theory of abstract argumentation frameworks [11] provides a general model,
which is widely recognized as a fundamental reference in computational argumentation
in virtue of its simplicity, generality, and ability to capture a variety of more specific
approaches as special cases [11]. An abstract argumentation framework (AF ) consists
of a set of arguments and of an attack relation between them. The concept of extension
plays a key role in this simple setting, where an extension is intuitively a set of argu-
ments which can “survive the conflict together”. Different notions of extensions and of
the requirements they should satisfy correspond to alternative argumentation seman-
tics. In [11] four “traditional” semantics were introduced, namely complete, grounded,
stable, and preferred semantics (see [2, 1] for an introduction).

The introduction of preferred semantics is one of the main contribution of Dung’s
paper. The semantics’ name, in fact, reflects a sort of preference w.r.t. other traditional
semantics, as it allows multiple extensions (differently from grounded semantics), the
existence of extensions is always guaranteed (differently from stable semantics), and no
extension is a proper subset of another extension (differently from complete semantics).



The main computational problems in abstract argumentation are naturally related to
extensions and can be partitioned into two classes: decision problems and construction
problems. Decision problems pose yes/no questions like “Does this argument belong to
one (all) extensions?” or “Is this set an extension?”, while construction problems require
to explicitly produce some of the extensions prescribed by a semantics. In particular,
extension enumeration is the problem of constructing all the extensions prescribed by a
given semantics for a given AF .

Theoretical analysis of worst-case computational issues in abstract argumentation
is in a state of maturity with the available complexity results covering all Dung’s tra-
ditional semantics and several subsequent prominent approaches in the literature (for
a summary see [12]). In the case of preferred semantics, standard decision problems
result to be in-between tractability and full second-level complexity [9, 8] and this ex-
tends directly to construction/enumeration problems. On the practical side, however, the
investigation on efficient algorithms for abstract argumentation and on their empirical
assessment is less developed, with few results available in the literature.

This paper contributes to fill this gap by comparing the two families of approaches
considered in the literature. On one hand, one may develop a dedicated algorithm to
obtain the problem solution, on the other hand, one may reduce the problem instance
into an equivalent instance of a different class of problems for which solvers are already
available. The results produced by the solver have then to be translated back to the
original problem.

In our experiment, we compare the state-of-the-art approaches which reduce the
preferred extension enumeration problem into a CSP (CONArg2), ASP (AspartixM)
and SAT (PrefSAT) with the best ad-hoc approach [18] in its latest version — NAD-Alg
[19]. Our experimental hypothesis is that there will be a strict ordering — under any
configuration — regarding the performance of the software measured in (1) CPU-time
needed to enumerate all the preferred extensions given an AF and in (2) percentage of
successful enumeration. Such an ordering should see the ad-hoc approach NAD-Alg as
the best one, followed by PrefSAT, CONArg2, and finally AspartixM. As discussed
later on the paper, our hypothesis has been proved true only partially: we identified
several cases where (1) PrefSAT has been the best implementation — and it is also
the only one implementation that solved all the AF s considered in the experiment —
and (2) AspartixM performed significantly — according to the Friedman statistic test
confirmed by a post-hoc analysis with the Wilcoxon signed rank with a Bonferroni
correction applied [22] — better than CONArg2.

The paper is organized as follows. Section 2 recalls the necessary basic theoretical
concepts of Dung’s argumentation frameworks, Constraint Satisfaction Programming,
Answer Set Programming, and Propositional Satisfiability Problems. Section 3 sum-
marises the current state-of-the-art of the approaches for enumerating preferred exten-
sions, namely NAD-Alg, CONArg2, AspartixM, and PrefSAT. Section 4 describes
the test setting and comments the experimental results and then Section 5 concludes the
paper.



2 Background

2.1 Dung’s Argumentation Framework

An argumentation framework [11] consists of a set of arguments and a binary attack
relation between them.4

Definition 1. An argumentation framework (AF ) is a pair Γ = 〈A,R〉 where A is
a set of arguments and R ⊆ A × A. We say that a2 attacks a1 iff 〈a2, a1〉 ∈ R,
also denoted as a2 → a1. The set of attackers of an argument a1 will be denoted
as a−1 , {a2 : a2 → a1}, the set of arguments attacked by a1 will be denoted as
a+1 , {a2 : a1 → a2}.

An argument a1 without attackers, i.e. such that a−1 = ∅, is said initial. The neigh-
bour of an argument a1 is a−1 ∪ a+

1 . Moreover, each argumentation framework can be
represented as a directed graph where the vertices are the arguments, and the edges are
the attacks.

The basic properties of conflict–freeness, acceptability, and admissibility of a set of
arguments are fundamental for the definition of argumentation semantics.

Definition 2. Given an AF Γ = 〈A,R〉:

– a set S ⊆ A is a conflict–free set of Γ if @ a1, a2 ∈ S s.t. a1 → a2;
– an argument a1 ∈ A is acceptable with respect to a set S ⊆ A of Γ if ∀a2 ∈ A s.t.

a2 → a1, ∃ a3 ∈ S s.t. a3 → a2;
– a set S ⊆ A is an admissible set of Γ if S is a conflict–free set of Γ and every

element of S is acceptable with respect to S of Γ .

An argumentation semantics σ prescribes for any AF Γ a set of extensions, denoted
as Eσ(Γ ), namely a set of sets of arguments satisfying the conditions dictated by σ. Here
we need to recall the definitions of complete (denoted as CO), and preferred (denoted
as PR) semantics only.

Definition 3. Given an AF Γ = 〈A,R〉:

– a set S ⊆ A is a complete extension of Γ , i.e. S ∈ ECO(Γ ), iff S is admissible and
∀a1 ∈ A s.t. a1 is acceptable w.r.t. S, a1 ∈ S;

– a set S ⊆ A is a preferred extension of Γ , i.e. S ∈ EPR(Γ ), iff S is a maximal
(w.r.t. set inclusion) complete extension of Γ .

It can be noted that each extension S implicitly defines a three-valued labelling of
arguments, as follows: an argument a1 is labelled in iff a1 ∈ S, is labelled out iff
∃ a2 ∈ S s.t. a2 → a1, is labelled undec if neither of the above conditions holds. In
the light of this correspondence, argumentation semantics can equivalently be defined
in terms of labellings rather than of extensions (see [5, 1]). In particular, the notion of
complete labelling [6, 1] provides an equivalent characterization of complete semantics,
in the sense that each complete labelling corresponds to a complete extension and vice
versa. Complete labellings can be (redundantly) defined as follows.

4 In this paper we consider only finite sets of arguments: see [3] for a discussion on infinite sets
of arguments.



Definition 4. Let 〈A,R〉 be an argumentation framework. A total function Lab : A 7→
{in, out, undec} is a complete labelling iff it satisfies the following conditions for any
a1 ∈ A:

– Lab(a1) = in⇔ ∀a2 ∈ a−1 Lab(a2) = out;
– Lab(a1) = out⇔ ∃a2 ∈ a−1 : Lab(a2) = in;
– Lab(a1) = undec⇔ ∀a2 ∈ a−1 Lab(a2) 6= in ∧ ∃a3 ∈ a−1 : Lab(a3) = undec;

It is proved in [5] that preferred extensions are in one-to-one correspondence with
those complete labellings maximizing the set of arguments labelled in.

2.2 Constraint Satisfaction Programming

Constraint programming is a powerful paradigm for solving combinatorial search prob-
lems that draws on a wide range of techniques from artificial intelligence (AI), opera-
tions research, algorithms, and graph theory [21].

Following [4], a Constraint Satisfaction Problem (CSP) P [21] is a triple P =
〈X,D,C〉 such that:

– X = 〈x1, . . . , xn〉 is a tuple of variables;
– D = 〈D1, . . . , Dn〉 a tuple of domains such that ∀i, xi ∈ Di;
– C = 〈C1, . . . , Ct〉 is a tuple of constraints, where ∀j, Cj = 〈RSj , Sj〉, Sj ⊆
{xi|xi is a variable},RSj

⊆ SDj ×SDj where SDj = {Di|Di is a domain, and xi ∈
Sj}.

A solution to the CSP P is A = 〈a1, . . . , an〉 where ∀i, ai ∈ Di and ∀j, RSj
holds

on the projection of A onto the scope Sj . If the set of solutions is empty, the CSP is
unsatisfiable.

2.3 Answer Set Programming

Over the the last years, Answer Set Programming (ASP) [15] has emerged as a declar-
ative problem solving paradigm. It evolved from various fields such as Logic Program-
ming, Deductive Databases, Knowledge Representation, and Nonmonotonic Reason-
ing, and serves as a flexible language for declarative problem solving. There are two
main tasks in problem solving, representation and reasoning, which are clearly sepa-
rated in the declarative paradigm. In ASP, representation is done using a rule-based
language, while reasoning is performed using implementations of general-purpose al-
gorithms, referred to as ASP solvers.

Rules in ASP are interpreted according to common sense principles, including a
variant of the closed-world-assumption (CWA) and the unique-name-assumption (UNA).
Collections of ASP rules are referred to as ASP programs, which represent the modelled
knowledge. To each ASP program a collection of answer sets, or intended models, is
associated, which stand for the solutions to the modelled problem; this collection can
also be empty, meaning that the modelled problem does not admit a solution. Several
reasoning tasks exist: the classical ASP task is enumerating all answer sets or determin-
ing whether an answer set exists, but ASP also allows for query answering in brave or
cautious modes [16].



2.4 Propositional Satisfiability Problems

In the propositional satisfiability problem (SAT) the goal is to determine whether a
given Boolean formula is satisfiable. A variable assignment that satisfies a formula is
a solution. In SAT, formulae are commonly expressed in Conjunctive Normal Form
(CNF). A formula in CNF is a conjunction of clauses, where clauses are disjunctions
of literals, and a literal is either positive (a variable) or negative (the negation of a
variable). If at least one of the literals in a clause is true, then the clause is satisfied, and
if all clauses in the formula are satisfied then the formula is satisfied and a solution has
been found.

A wide range of decision and optimisation problems can be reduced as SAT in-
stances. A few examples are logical circuit design [14], AI Planning [20], and Su-
doku [23]. Finally, a growing number of high performance SAT solver is available,
mainly fostered by the annual SAT competition.5 The competition allows to have a
good overview of the performance of the current state-of-the-art on structurally differ-
ent SAT instances.

3 The State of the Art of Enumerating Preferred Extensions

In this section we summarise the main idea behind the most competitive ad-hoc ap-
proach for solving the enumeration problem for preferred semantics, viz. NAD-Alg, and
the three champions for transforming such a problem into a (resp.) CSP (CONArg2),
ASP (AspartixM), and SAT (PrefSAT) problem.

3.1 NAD-Alg

The algorithm proposed in [18, 19] has been shown to outperform the other ad-hoc
approaches [10, 17] and will be therefore taken as the only term of comparison for this
family of approaches.

NAD-Alg [19] is a depth-first backtracking procedure that traverses a binary search
tree. The root considers the case where all the arguments in the AF are blank, i.e. not
yet visited. At each step of the search process, a blank node is selected and assumed to
belong to the preferred extension, and a local evaluation on its neighbour is performed.
Then the procedure recursively call itself on the assumption that the above arguments
are respectively in or out the extension. Any inconsistency leads to a backtrack.6

3.2 CONArg2

In [4], the authors propose a mapping from AF s to CSPs. Given an AF 〈A,R〉, they
first create a variable for each argument whose domain is always {0, 1} — ∀ai ∈
A,∃xi ∈ X such that Di = {0, 1}.

5 http://satcompetition.org/
6 NAD-Alg’s implementation is available at https://sourceforge.net/projects/
argtools/files/?source=navbar (retrieved on 11th March 2014).



Subsequently, they describe constraints associated to different definitions of Dung’s
argumentation framework: for instance {a1, a2} ⊆ A is conflict–free iff ¬(x1 = 1 ∧
x2 = 1). The other constraints are imposed following the same reasoning line.

In this paper, we consider the most recent advancement of the Conarg project, viz.
CONArg2, which is the command line version that is implemented by Gecode 4.0
(C++). This version is faster and it is able to compute credulous/skeptical acceptance of
an argument for stable, complete and admissible AF semantics too.

3.3 AspartixM

AspartixM [13] expresses argumentation semantics in Answer Set Programming (ASP):
a single program is used to encode a particular argumentation semantics, and the in-
stance of an argumentation framework is given as an input database. Tests for subset-
maximality exploit the metasp optimisation frontend for the ASP-package gringo/claspD.7

Given an AF 〈A,R〉, Aspartix encodes the requirements for a “semantics” (e.g. the
conflict–free requirements) in an ASP program whose database considers:

{arg(a) | a ∈ A} ∪ {defeat(a1, a2) | 〈a1, a2〉 ∈ R}

The following program fragment is thus used to check the conflict–freeness [13]:

πcf = { in(X)← notout(X), arg(X);
out(X)← not in(X), arg(X);
← in(X), in(Y ),defeat(X,Y )}.

3.4 PrefSAT

PrefSAT [7] performs a search in the space of complete extensions to enumerate the
maximal ones. In particular, PrefSAT encodes the constraints corresponding to com-
plete extensions into a SAT-problem. A SAT-solver is then called to solve it, thus return-
ing a complete extension. A depth-first technique is then applied in order to determine
the maximal complete extension containing the one already found — i.e. a preferred
extension. Previously explored search’s states are excluded from further exploration by
adding specific constraints to the encoding of complete extensions.

Differently from Aspartix and Conarg, PrefSAT encodes the Caminada labelling
requirements in a CNF. To do so, for each argument ai ∈ A, three propositional
variables are considered: Ii (which is true iff Lab(ai) = in), Oi (which is true iff
Lab(ai) = out), Ui (which is true iff Lab(ai) = undec).

Given |A| = k and φ : {1, . . . , k} 7→ A, the conjunction of the formulae listed
below is a CNF representing the requirements for a complete labelling (the last formula
filters out the trivial case of the empty set):

∧
i∈{1,...,k}

(
(Ii ∨Oi ∨ Ui) ∧ (¬Ii ∨ ¬Oi)∧(¬Ii ∨ ¬Ui) ∧ (¬Oi ∨ ¬Ui)

)
(1)

7 AspartixM has been executed with gringo version 3.0.3 and claspD version 1.1.4.



∧
{i|φ(i)−=∅}

Ii (2)

∧
{i|φ(i)− 6=∅}

Ii ∨
 ∨
{j|φ(j)→φ(i)}

(¬Oj)

 (3)

∧
{i|φ(i)− 6=∅}

 ∧
{j|φ(j)→φ(i)}

¬Ii ∨Oj

 (4)

∧
{i|φ(i)− 6=∅}

 ∧
{j|φ(j)→φ(i)}

¬Ij ∨Oi

 (5)

∧
{i|φ(i)− 6=∅}

¬Oi ∨
 ∨
{j|φ(j)→φ(i)}

Ij

 (6)

∧
{i|φ(i)− 6=∅}

 ∧
{k|φ(k)→φ(i)}

Ui ∨ ¬Uk ∨
 ∨
{j|φ(j)→φ(i)}

Ij

 (7)

∧
{i|φ(i)− 6=∅}

 ∧
{j|φ(j)→φ(i)}

(¬Ui ∨ ¬Ij)

 ∧
¬Ui ∨

 ∨
{j|φ(j)→φ(i)}

Uj

 (8)

∨
i∈{1,...k}

Ii (9)

As noticed in [7], the conjunction of the above formulae is redundant. However, the
non-redundant CNFs are not equivalent from an empirical evaluation [7]: the overall
performance is significantly affected by the chosen configuration pair CNF encoding–
SAT solver. In the following, we considered the most efficient configuration of PrefSAT
as described in [7].

4 Empirical Evaluation

In this section we present the results of an experimental study examining CONArg2,
AspartixM, PrefSAT and NAD-Alg.



The experimental analysis has been conducted on 720 AF s that were divided in
different classes, according to two dimensions: the number of arguments, |A| and the
criterion of random generation of the attack relation, |R|. As to |A| we considered 8
different values, ranging from 25 to 225 with a step of 25. As to the generation of the
attack relation we used two alternative methods. The first method consists in fixing the
probability patt that there is an attack for each ordered pair of arguments (self-attacks
are included): for each pair a pseudo-random number uniformly distributed between
0 and 1 is generated and if it is lesser or equal to patt the pair is added to the attack
relation. We considered three values for patt, namely 0.25, 0.5 and 0.75. Combining the
9 values of |A| with the 3 values of patt gives rise to 27 test classes, each of which has
been populated with 20 AF s. 10 of them included auto-attacks, the other do not.

The second method consists in generating randomly, for each AF , the number natt
of attacks it contains (extracted with uniform probability between 0 and |A|2). Then the
natt distinct pairs of arguments constituting the attack relation are selected randomly.
Applying the second method with the 9 values of |A| gives rise to 9 further test classes,
each of which has been populated with 20 AF s.

The solvers and the feature extraction algorithms have been run on a cluster with
computing nodes equipped with 2.5 Ghz Intel Core 2 Quad ProcessorsTM, 8 GB of
RAM and Linux operating system. As in the International Planning Competition (IPC),
a cutoff of 900 seconds was imposed to compute the preferred extensions for each AF .8

The systems under evaluation have been compared with respect to the ability to produce
solutions within the time limit and to the execution time. As to the latter comparison,
we adopted the IPC speed score, also borrowed from the planning community, which is
defined as follows:

– For each test case (in our case, each test AF ) let T ∗ be the best execution time
among the compared systems (if no system produces the solution within the time
limit, the test case is not considered valid and ignored).

– For each valid case, each system gets a score of 1/(1 + log10(T/T
∗)), where T is

its execution time, or a score of 0 if it fails in that case. Runtimes below 1 sec get
by default the maximal score of 1.

– The (non normalised) IPC score for a system is the sum of its scores over all the
valid test cases. The normalised IPC score ranges from 0 to 100 and is defined as
(IPC/# of valid cases) ∗ 100.

Therefore, the higher the IPC score, the better the performance.
Figure 1 presents the values of normalised IPC score considering all test cases

grouped w.r.t. |A|, while Table 1 shows the average time needed by the four systems for
computing the preferred extensions. Cutoff runtime is considered for unsolved AF s.
Both PrefSAT and NAD-Alg performed significantly better (note that the IPC score is
logarithmic) than AspartixM and CONArg2 for all values of |A| > 75, and the per-
formance gap increases with increasing |A|. Interestingly, it is possible to clusterise the
approaches according to their IPC performance. In one cluster there are AspartixM and
CONArg2, and the other includes PrefSAT and NAD-Alg. It is a surprising result, in
the light of the very different approaches they exploit in order to enumerate preferred

8 http://helios.hud.ac.uk/scommv/IPC-14/



 0

 20

 40

 60

 80

 100

 25  50  75  100  125  150  175  200  225

CONArg2
AspartixM

PrefSAT
NAD-Alg

Fig. 1. Normalised IPC score (y axis) w.r.t. the number of arguments (x axis) of each considered
system.

extensions. While the good performance of NAD-Alg are expected, given the fact that
this system does not encode the AF into a CSP problem, we would have expected all
the others to perform somehow similarly. The behaviour observed in Figure 1 is con-
firmed by the results shown in Table 1. While the average runtime of AspartixM and
CONArg2 rapidly increases, NAD-Alg and PrefSAT have similar performance, even
though NAD-Alg run out of time in some of the largest considered AF s.

Average CPU-Time
25 50 75 100 125 150 175 200 225

CONArg2 0.25 0.27 0.65 2.15 5.48 14.98 73.78 86.62 187.11
AspartixM 0.18 0.67 1.44 3.26 6.02 15.70 27.99 87.46 117.18

PrefSAT 0.04 0.11 0.23 0.44 0.81 1.67 3.76 6.41 16.21
NAD-Alg 0.01 0.02 0.06 0.99 10.23 12.74 60.35 42.78 75.07

Table 1. Average runtime for each of the considered solvers, according to the number of argu-
ments of the AF s.

Figure 2 presents the values of normalised IPC considering all test cases grouped
w.r.t. |R|. Again, as in the previous analysis, it is possible to clearly distinguish between
two clusters of solvers, and the composition of clusters is the same as before. On the
other hand, it is worth noticing that relatives performance change significantly with the
probability of attacks between arguments. Systems that perform well with a high prob-
ability (50 to 75 %), are slow with small (25%) probabilities. Performance of solvers
within the same cluster tend to be the same on AF s with a random probability of at-
tacks. Intuitively, in highly constrained AF s, i.e. with a large number of attacks, it is
easier to enumerate preferred extensions; their number is low. If the number of attacks



 40

 60

 80

 100

 25  50  75  RAND

CONArg2
AspartixM

PrefSAT
NAD-Alg

Fig. 2. Normalised IPC score (y axis) w.r.t. the probability of attacks (x axis) of each considered
system.

decrease, the number of extensions increases, thus a bigger number of search steps is
required to enumerate all the possible extensions.

Table 2 shows the percentages of AF s in which each solver was able to provide a
solution, and the average time w.r.t. to the probability of attacks. Concerning the ability
to produce solutions, CONArg2 is the solver that is mostly affected by the probability
of attacks, and PrefSAT is the only one that solves all the considered instances. The av-
erage times trend confirms the observation made with regards to the IPC score: solvers
are either quick on AF s with small or high probabilities of attacks between arguments,
but not on both of them.

% Solved Average CPU-Time
25 50 75 RAND 25 50 75 RAND

CONArg2 97.8 100.0 100.0 97.2 87.4 11.0 7.1 59.6
AspartixM 98.3 100.0 100.0 98.9 56.5 14.7 10.0 34.0

PrefSAT 100.0 100.0 100.0 100.0 5.1 1.6 2.2 4.2
NAD-Alg 100.0 100.0 100.0 93.9 18.9 0.2 0.2 70.6

Table 2. Percentage of solved AF s and average runtime for each of the considered solvers, ac-
cording to the percentages of attacks.

In order to better understand the performance of the considered solvers, we per-
formed the Friedman test, and post-hoc analysis with Wilcoxon tests. The level of con-
fidence we used has been modified to p = 0.0125 due to the usage of the Bonferroni’s
correction. The results of this analysis are shown in Table 3. We considered the per-
formance of solvers w.r.t. the probabilities of attacks between arguments. Interestingly,
the Friedman indicates that there is always a statistically significant difference between



the performance of the solvers, regardless to the probability of attacks. On the other
hand, the post-hoc analysis performed with the Wilcoxon on solvers with similar run-
time median, indicates that the performance difference is always significant but in the
RAND set. This supports what we observed in Figure 2, i.e. in the RAND set similar-
performing solvers show analogous behaviours. Thus, the Wilcoxon test also suggests
that the “clusters” identified by the IPC score include solvers with significantly different
performance.

Median Friedman Wilcoxon A–C Wilcoxon N–P
C A P N χ2(3) p Z p Z p

ALL 2.0 3.9 0.4 0.2 1566.7 0.000 -3.8 0.000 -6.8 0.000
25 4.6 3.0 0.3 0.9 362.7 0.000 -3.8 0.000 -8.8 0.000
50 1.8 3.8 0.4 0.1 502.7 0.000 -4.3 0.000 -11.6 0.000
75 1.4 5.7 0.5 0.1 507.7 0.000 -7.1 0.000 -11.7 0.000

RAND 2.0 3.3 0.3 0.2 326.2 0.000 -0.6 0.585 -1.7 0.094

Table 3. Friedman and post-hoc analysis with Wilcoxon (Bonferroni correction — significance
level set at p < 0.0125). In evidence the non-significant results. A, N, P and C stands respectively
for AspartixM, NAD-Alg, PrefSAT and CONArg2.

5 Conclusions and Future Work

Recently, a number of high-performance algorithms have been proposed for comput-
ing preferred extensions. They exploit two approaches: (i) using a dedicated algorithm
to obtain the problem solution, or (ii) translating the problem instance at hand into an
equivalent instance of a different class of problems, for which solvers are already avail-
able, an then translate the solution back to the original problem.

This paper provided the first comparison of state-of-the-art approaches which trans-
form the preferred enumeration problem into a CSP (CONArg2), ASP (AspartixM)
and SAT (PrefSAT) with the best argumentation-dedicated approach NAD-Alg. Our
experimental hypothesis was that there would be a strict ordering regarding the perfor-
mance, in term of CPU-time required for enumerating the preferred extensions of given
AF s, of the solvers. The experimental analysis, conducted on more than 700 AF s with
increasing number of arguments and attacks, proved that the hypothesis was only par-
tially true. While in most of the cases an order is respected, i.e. NAD-Alg, PrefSAT,
CONArg2 and AspartixM, we identified several cases in which: (1) PrefSAT has been
the best implementation — and it is also the only one implementation that solved all
the AF s considered in the experiment — and (2) AspartixM performed significantly
— according to the Friedman statistic test confirmed by a post-hoc analysis with the
Wilcoxon signed rank with a Bonferroni correction applied — better than CONArg2.

The take-home message of this work is that non-dedicated approaches can achieve
similar (and sometimes better) performance than ad-hoc ones and, moreover, SAT-based
algorithms experimentally demonstrated to be the fastest among the non-dedicated ones.



While NAD-Alg performs well in “constrained” AF s, w.r.t. the percentage of attacks,
PrefSAT is faster and more reliable in instances with a low number of attacks. Clearly,
there are many aspects that affect algorithms’ performance, like data structures, proce-
dures implementations, etc., thus it is hard to give definitive conclusions.

Future work include a larger experimental evaluation and, whether possible, the ex-
ploitation of a white-box approach. Looking at the design of the solvers can give further
information on their performance, in particular can provide hints on procedures / design
decisions that should be refined, and, potentially, drive to significant performance im-
provements for both CSP and not CSP-based systems.

Acknowledgements. The authors would like to acknowledge the use of the Univer-
sity of Huddersfield Queensgate Grid in carrying out this work.

References

1. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics.
Knowledge Engineering Review 26(4), 365–410 (2011)

2. Baroni, P., Giacomin, M.: Semantics of abstract argumentation systems. In: Argumentation
in Artificial Intelligence, pp. 25–44. Springer (2009)

3. Baroni, P., Cerutti, F., Dunne, P.E., Giacomin, M.: Automata for Infinite Argumentation
Structures. Artificial Intelligence 203(0), 104–150 (May 2013)

4. Bistarelli, S., Santini, F.: Modeling and solving afs with a constraint-based tool: Conarg.
In: Modgil, S., Oren, N., Toni, F. (eds.) Theorie and Applications of Formal Argumenta-
tion, Lecture Notes in Computer Science, vol. 7132, pp. 99–116. Springer Berlin Heidelberg
(2012), http://dx.doi.org/10.1007/978-3-642-29184-5_7

5. Caminada, M.: On the issue of reinstatement in argumentation. In: Proceedings of JELIA
2006. pp. 111–123 (2006)

6. Caminada, M., Gabbay, D.M.: A logical account of formal argumentation. Studia Logica
(Special issue: new ideas in argumentation theory) 93(2–3), 109–145 (2009)

7. Cerutti, F., Dunne, P.E., Giacomin, M., Vallati, M.: Computing preferred extensions in ab-
stract argumentation: A sat-based approach. In: Proceedings of Theory and Applications of
Formal Argumentation (TAFA 2013). pp. 176–193 (2013)

8. Dimopoulos, Y., Nebel, B., Toni, F.: Preferred arguments are harder to compute than stable
extensions. In: Proceedings of IJCAI 1999. pp. 36–43 (1999)

9. Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and default theo-
ries. Journal Theoretical Computer Science 170, 209–244 (1996)

10. Doutre, S., Mengin, J.: Preferred extensions of argumentation frameworks: Query answering
and computation. In: Proceedings of IJCAR 2001. pp. 272–288 (2001)

11. Dung, P.M.: On the Acceptability of Arguments and Its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming, and n-Person Games. Artificial Intelligence 77(2), 321–357
(1995)

12. Dunne, P.E., Wooldridge, M.: Complexity of abstract argumentation. In: Argumentation in
Artificial Intelligence, pp. 85–104. Springer (2009)

13. Dvořák, W., Gaggl, S.A., Wallner, J., Woltran, S.: Making Use of Advances in Answer-
Set Programming for Abstract Argumentation Systems. In: Proceedings of the 19th Inter-
national Conference on Applications of Declarative Programming and Knowledge Manage-
ment (INAP 2011) (2011)

14. Estrada, G.G.: A note on designing logical circuits using sat. In: Evolvable Systems: From
Biology to Hardware, pp. 410–421 (2003)



15. Faber, W.: Answer set programming. In: Reasoning Web. Semantic Technologies for Intel-
ligent Data Access, Lecture Notes in Computer Science, vol. 8067, pp. 162–193. Springer
Berlin Heidelberg (2013)

16. Leone, N., Faber, W.: The dlv project: A tour from theory and research to applications and
market. In: de la Banda, M.G., Pontelli, E. (eds.) Logic Programming, 24th International
Conference, ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings. Lecture Notes in
Computer Science, vol. 5366, pp. 53–68. Springer (2008)

17. Modgil, S., Caminada, M.: Proof theories and algorithms for abstract argumentation frame-
works. In: Argumentation in Artificial Intelligence, pp. 105–129. Springer (2009)

18. Nofal, S., Dunne, P.E., Atkinson, K.: On preferred extension enumeration in abstract argu-
mentation. In: Proceedings of COMMA 2012. pp. 205–216 (2012)

19. Nofal, S., Atkinson, K., Dunne, P.E.: Algorithms for decision problems in argument systems
under preferred semantics. Artificial Intelligence 207, 23–51 (2014)

20. Rintanen, J.: Engineering efficient planners with sat. In: the 20th European Conference on
Artificial Intelligence (ECAI). pp. 684–689 (2012)

21. Rossi, F., van Beek, P., Walsh, T.: Chapter 4 constraint programming. In: Frank van Harme-
len, V.L., Porter, B. (eds.) Handbook of Knowledge Representation, Foundations of Artificial
Intelligence, vol. 3, pp. 181 – 211. Elsevier (2008), http://www.sciencedirect.
com/science/article/pii/S1574652607030040

22. Shaffer, J., P.: Multiple hypothesis testing. Annual Review of Psych 46, 561–584 (1995)
23. Weber, T.: A sat-based sudoku solver. In: 12th International Conference on Logic for Pro-

gramming, Artificial Intelligence and Reasoning (LPAR). pp. 11–15 (2005)


