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Abstract: Many software systems publish their interface
using event-driven programming, where the application
programmers create routines, called as responses to the
events. One of such systems is the Bobox parallel frame-
work, where the elements of a parallel pipeline react to
events signalizing the arrival of input data. However, many
algorithms are more efficiently described using classical
serial approach, where the application code calls system
routines to wait for required events. In this paper, we
present a method of code transformation producing event-
driven code from serial code and we concentrate mostly on
its first part, responsible for the management of variables.
Besides a friendlier programming environment, the trans-
formation often improves the structure of the code with
respect to compiler optimizations.

1 Introduction

Many frameworks and libraries present their interface as
event-driven programming [1], where the user code reacts
to a set of events produced by the framework at runtime.

Implementing an application in this fashion is not as dif-
ficult in areas like user interface, where most complex op-
erations are performed by an application kernel and the
interface just presents the results.

This approach is not very practical for complex algo-
rithms, where the event-driven design can significantly in-
crease complexity [2], making the implementation diffi-
cult to maintain and test. The difference in complexity is
illustrated by a simple merge algorithm, the basic imple-
mentation is in Listing 1 and the event-driven version is in
Listing 2.

The merge algorithm takes two input streams and
merges them into a single output stream. The input
streams provide the data one at a time, the method get ()
provides current value and the method next () obtains next
value. The results are passed on to the output stream using
the put () method.

1.1 Event-Driven Implementation

The merge algorithm, presented in Listing 1 merges two
ordered sets and then it passes the results to the output
stream. The implementation is simple to understand and
test, but there is a hidden event management in the code.
The method next() retrieves new data, and, if there is noth-
ing in the input buffer, it waits. Here the application is
waiting for an event (the arrival of input data).

void merge_box ( )
{

i n p u t _ s t r e a m l e f t ;
i n p u t _ s t r e a m r i g h t ;
o u t p u t _ s t r e a m o u t p u t ;

whi le ( l e f t . h a s _ d a t a ( ) &&
r i g h t . h a s _ d a t a ( ) )

{
i n t L = l e f t . g e t ( ) ;
i n t R = r i g h t . g e t ( ) ;

i f ( L < R)
{ / / p o s s i b l e w a i t i n g f o r da ta

l e f t . n e x t ( ) ;
o u t p u t . p u t ( L )

}
e l s e
{ / / p o s s i b l e w a i t i n g f o r da ta

r i g h t . n e x t ( ) ;
o u t p u t . p u t (R ) ;

}
}

}
Listing 1: Basic join implementation for Bobox

An event-driven implementation is usually less compre-
hensive and it can be difficult to maintain or verify [2],
at least in the case of complex algorithms. The Listing
2 shows an event-driven implementation of merge algo-
rithm. It is more complex than the simple version pre-
sented in Listing 1 and it contains significant code dupli-
cation. The implementation is further complicated by the
fact that we must check if the current event is the event we
were waiting for.

The event driven implementation uses the method
notify_next () instead of next () . This method only re-
quests the framework to call the task again, once new data
is available. The task does not wait for the data.

1.2 Method Inversion

We propose a special technique called method inversion
that removes waiting for events. Instead the code reacts
to an event and it ends when the event is processed. The
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void merge_box ( e v e n t _ t e v e n t )
{

/ / choose pr o p e r r e a c t i o n based
/ / on t h e e v e n t − a v a i l a b l e da ta
sw i t ch ( e v e n t )
{
case DATA_LEFT :

i f ( r i g h t . h a s _ d a t a ( ) )
{

i n t L = l e f t . g e t ( ) ;
i n t R = r i g h t . g e t ( ) ;
i f ( L < R)
{ / / no w a i t i n g f o r e v e n t s

l e f t . n o t i f y _ n e x t ( ) ;
o u t p u t . p u t ( L ) ;

}
e l s e
{ / / no w a i t i n g f o r e v e n t s

r i g h t . n o t i f y _ n e x t ( ) ;
o u t p u t . p u t (R ) ;

}
}
re turn ;

case DATA_RIGHT :
i f ( l e f t . h a s _ d a t a ( ) )
{

i n t L = l e f t . g e t ( ) ;
i n t R = r i g h t . g e t ( ) ;
i f ( L < R)
{ / / no w a i t i n g f o r e v e n t s

l e f t . n o t i f y _ n e x t ( ) ;
o u t p u t . p u t ( L ) ;

}
e l s e
{ / / no w a i t i n g f o r e v e n t s

r i g h t . n o t i f y _ n e x t ( ) ;
o u t p u t . p u t (R ) ;

}
}
re turn ;

}
}

Listing 2: Event-driven version of merge

transformation produces an algorithm with a behavior sim-
ilar to the code in Listing 2. In this paper we concentrate
mostly on the first part of the optimization responsible for
data management, also called movement of variables. In
the first part, we must identify currently used variables,
preserve their value and later restore them, so the compu-
tation can be safely interrupted and resumed.

The rest of the paper is organized as follows: Sec-
tion 2 describes our motivations for this work along with

the main problems we try to solve, we also present an
overview of our development environment here. In sec-
tion 3 we put method inversion in the context of other
works related to Bobox and we discuss similar works con-
centrating on parallel pipelines. Section 4 contains the al-
gorithm that implements method inversion. Section 5 con-
centrates on the effects the transformation has on the en-
tire pipeline and it concludes the results of our research;
we also discuss possible ways to improve presented opti-
mizations and similar future work.

2 Motivation

2.1 Parallel Pipelines

Parallel pipelines represent a great way to utilize the full
capacity of contemporary computers [3], because they are
highly scalable and they offer a suitable framework for
many applications, including database operations [4].

A parallel pipeline is a set of independent tasks con-
nected by data streams, where the tasks can communicate
only via passing messages and data through the streams.
The streams pass the output of one task to the next task
which uses it as input. Tasks can be run in parallel, with
each task processing different data [5]

Source 
(right)

Source 
(left)

Merge Output

Figure 1: Simple pipeline that merges two ordered sets

Figure 1 shows a simple pipeline for merging data.
Source tasks produce input, the Merge task merges its two
input streams and the Output task stores the results. The
arrows represent data streams that transport data between
tasks.

Parallel pipelines can be treated as event-driven sys-
tems, where the main event is the arrival of input data.
Each task processes input data and then waits for new data,
basically reacting to new data as an event.

Calling a method that waits for an event (new data) is
referred to as a blocking call in this paper, because the
task is blocked until there is new data available.

One of the most important problems of pipelines is the
fact that different tasks may process their data at a differ-
ent rate, which may lead to a situation where parts of the
pipeline are engaged in complex computations while oth-
ers are waiting for input [6]. It is necessary that the wait-
ing tasks stop their computations and release any system
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resources that can be used for other tasks, but doing that
by hand can be difficult (Listing 2).

We propose a way to automatically produce event-
driven code from serial code without any additional infor-
mation, like code annotations, attributes or special com-
ments. This allows users to develop simple tasks that
can be easily maintained. The compiler removes blocking
calls and transforms the code for the target environment.
We designed this transformation for the Bobox framework,
but it can be used for other environments.

2.2 Bobox

In this paper we focus on parallel pipelines developed for
the Bobox framework. The Bobox framework provides
a runtime environment used to execute a general (even
non-linear) pipeline in parallel [7]. The actual execution of
the pipeline is managed by the framework, which executes
tasks (called boxes) in parallel according to the pipeline
structure defined by the users.

There are two ways to use Bobox framework, users can
either define the pipeline by hand or they can use an in-
terface that produces the pipeline from another code, like
a SPARQL query [4].

We developed the method inversion to expose all the
blocking calls (waiting for data) so they can be removed.
This way we can optimize separate tasks and improve the
efficiency of the entire pipeline.

2.3 Development Environment

We designed a special development environment to ap-
ply presented optimizations automatically. The environ-
ment should simplify the implementation of the Bobox
boxes and we intend to allow programmers to design entire
Bobox pipelines in the environment [8]. The structure of
the environment is in Figure 2, where the bold components
are part of the development environment.

The boxes are implemented in the C# programming lan-
guage and they are compiled to a CIL assembly. The op-
timized CIL code is then transformed to C++ source code
for Bobox framework.

2.4 Goals

We have designed the method inversion to optimize tasks
in parallel pipelines and to simplify their development.
This way we can improve the pipeline efficiency while
making the development simpler at the same time.

Second goal is to use the method inversion as a general
transformation that can simplify the development of many
applications.

Last goal is to improve the structure of the Bobox tasks
that might allow the compiler to apply more advanced op-
timizations.

Bobox 
application

Bobox C# 
interface 

library

Bobox 
framework

C# 
compiler

C# source 
code

CIL code

Optimized 
CIL code

C++ 
source 
code

ParallaX 
C++ 

compiler

C++ 
compiler

ParallaX 
optimizer

Parts of 
ParallaX 

development 
enironment

Figure 2: Development environment for Bobox framework

3 Related Work

3.1 Event-Driven Programming

There are very few works concentrating on the genera-
tion of event-driven programs from serial code. There
are works that discuss event-driven programming, but
they consider mostly applications already implemented as
event based [9], [2]. There are few systems that try to sim-
plify the development of event-driven programs [10], but
they do not fully hide the events from users, instead they
require special annotations or comments.

3.2 Parallel Pipeline Optimizations

Optimizations for parallel pipelines concentrate mostly
on task distribution and scheduling according to available
CPUs [11] and other system resources [12], because load
balancing has a major impact on the pipeline efficiency.
The solution used in Bobox tasks are distributed among
processors at the beginning of the pipeline execution [7]
and the system migrates them very carefully to minimize
communication overhead, which is especially useful in
distributed environments [13].

Most parallel pipeline environments leave task opti-
mization to the users and that is why there are not many
task-specific optimizations. There are development en-
vironments that generate tasks or even pipeline structure
from user code [14] and these systems can optimize the en-
tire pipeline because they can influence its structure. Our
development environment is designed for a similar pur-
pose [7], but the current implementation concentrates on
separate boxes.
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3.3 Bobox

Bobox optimizations concentrate mostly on the structure
and execution of the entire pipeline, leaving the task op-
timization for the users. Most works concentrate on
task scheduling. There are general scheduling optimiza-
tions [6] as well as special strategies based on data-
flow [15] [16] or input structure.

Bobox is used mostly for query processing and there are
many works presenting optimizations specific for different
query languages [4] [17], but there are no optimizations for
the tasks produced by users.

4 Method Inversion

The inversion transformation is used to expose the parts
where a pipeline task is waiting for input data to arrive.
These so called blocking calls represent a problem, be-
cause it means that the task waits for data without doing
anything useful thus blocking an execution unit (CPU).
This is a problem, even when a task is waiting passively,
because then it is necessary to swap it for another task.

The inversion requires three main steps. First, we must
back up all the required data so we can safely interrupt
and resume execution. Second, blocking calls must be
replaced by non-blocking methods that only notify the
framework without waiting. Third, it is necessary to re-
structure the code so it is possible to safely resume the
execution.

We present the last two steps in a simplified version, but
the first step is the main focus of this paper because it is
necessary for any implementation of the inversion and it
can be used for other optimizations.

The inversion is presented on a simple code shown in
Listing 3, the code applies a function f () on all values
in an input stream and it passes the results to an output
stream.

f o r ( ; ; )
{

i f ( i C u r r e n t >= i S i z e )
{

i n p u t . f e t c h _ n ( iBuf , i S i z e ) ;
i C u r r = 0 ;

}
oBuf [ oCurr ++] = f ( iBu f [ i C u r r + + ] ) ;
i f ( oCurr >= o S i z e )
{

o u t p u t . pu t_n ( oBuf , o S i z e ) ;
oCurr = 0 ;

}
}

Listing 3: Original code before inversion

4.1 Basic and Advanced Inversion

Our ultimate goal is to restructure the code to expose all
the blocking calls so we do not have to jump inside a com-
plex control flow to resume computations. Such an al-
gorithm would produce code that can be efficiently par-
allelized and further optimized.

Results of such transformation are presented in List-
ing 4, while the original code is in Listing 3. The switch
statement manages the restoration of variables and then it
resumes computation by jumping into the original code.
We use goto to minimize code duplication.

void do_someth ing ( )
{

sw i t ch ( e v e n t )
{
c ase INPUT_RECEIVED :

i c = 0 ; goto l oop ;
c ase OUTPUT_SENT :

oc = 0 ; goto l oop ;
}

loop :
k = min ( i S i z e−i c , oSize−oc ) ;
f o r ( i =0 ; i <k ;++ i )

oBuf [ oc+ i ] = f ( iBu f [ i c + i ] ) ;

i f ( i c + i >= i S i z e )
{

oc += k ;
re turn WAIT_FOR_INPUT ;

} e l s e
{

i c += k ;
re turn WAIT_FOR_OUTPUT ;

}
}

Listing 4: Product of the advanced inversion

This transformation is still under development, but we
implemented a simpler version. It lacks certain advantages
of the advanced version, but it is easier to implement.

The simple version does not move the blocking calls
outside of the loop, instead it simply jumps inside any con-
trol flow, after restoring all the necessary variables. The
result of this inversion algorithm is in Listing 5, where the
methods used for input and output are not blocking, they
just inform the system to send or receive data when there
are resources available.

4.2 Movement of Variables

The goal of our transformation is to release the thread
of execution during blocking operations. Releasing the
thread causes loss of the local storage associated with the
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sw i t ch ( s t a t e )
{
case WAIT_FOR_INPUT :

i f ( e v e n t != i n p u t ) re turn ;
i C u r r = 0 ; i S i z e = s i z e ; goto iLoop ;

case WAIT_FOR_OUTPUT :
i f ( e v e n t != o u t p u t ) re turn ;
oCurr = 0 ; o S i z e = s i z e ; goto oLoop ;

}

f o r ( ; ; )
{

i f ( i C u r r e n t >= i S i z e )
{

s t a t e = WAIT_FOR_INPUT ;
i n p u t . p r e f e t c h n ( iBuf , i S i z e ) ;
re turn ;
iLoop :

}
oBuf [ oCurr ++] = f ( iBu f [ i C u r r + + ] ) ;
i f ( oCurr >= o S i z e )
{

s t a t e = WAIT_FOR_OUTPUT ;
o u t p u t . sendn ( oBuf , o S i z e ) ;
re turn ;
oLoop :

}
}

Listing 5: Product of the simple inversion

thread, namely the registers and stack. Therefore, we need
a backup storage for the local variables that are live dur-
ing a blocking operation. The backup storage will usually
consist of data members of a dynamically allocated class
object.

Moving aggregate variables, i.e. arrays and structures,
is expensive or even impossible (due to aliasing); in most
cases, the best strategy is storing aggregate variables in the
backup storage for their complete lifetime.

Unaliased scalar variables (including dissociated struc-
tures) may be moved easily and their movement between
the backup storage and the local storage offers the advan-
tage of faster access to the local storage. The faster ac-
cess to the local storage is primarily given by the abil-
ity of compilers to allocate registers for important local-
storage objects (i.e. local variables); furthermore, scalar
local-storage variables allow the compilers to apply many
advanced optimization steps while similar optimization
for backup storage members would require difficult inter-
procedural analysis of code.

The movement of unaliased scalar variables between
the backup storage and the local storage must be carefully
statically planned in order to achieve correctness and effi-
ciency. For the planning of movement, we developed the

static movement planner algorithm described in the fol-
lowing paragraphs. The algorithm inserts the necessary
movement operations at appropriate places of the code; in
addition, it may minimize the number of movements at the
cost of duplication of code.

Let GCFG = (VCFG,ECFG) be the control-flow graph of
a procedure, where VCFG are inidividual statements and
ECFG the transitions between them. Let I ∈ VCFG denotes
the initial node (entry point) of the control-flow graph and
F ⊆ VCFG denotes all the final nodes (return statements).
Each statement is either non-blocking or blocking.

We will assume in the following paragraphs that there is
only one type of blocking operation and that there are no
parameters (nor return values) to this operation. The set of
blocking statements is denoted B⊆VCFG.

The non-blocking statements include access to variables
and memory, calculations, and calls to non-blocking pro-
cedures. For simplicity of the description, we will assume
that all write operations in a statement are ordered after
all read operations in the same statement. The relations
R,W ⊆VCFG×X where X is the set of variables determine
which statements read/write which variables.

Let x ∈ X be a scalar local variable with no alias. With
respect to x, the input code may contain only two opera-
tions: read (Rx) and write (Wx). In the output code, we
keep the read/write operations working on the local stor-
age and we add two additional operations: store (Sx) for
copying the variable from the local storage to the backup
storage and load (Lx) for copying in the opposite direction.
The load/store operations are always inserted between the
original statements, i.e., they are attached to the edges of
the original control flow graph. Note that after an Sx or Lx
operation, both the local storage and the backup storage
contain identical copies of the variable.

In the input code, the blocking statements do not af-
fect the local storage. In the inverted code, blocking state-
ments are broken into a pair of a return statement and an
additional entry point. The inversion causes that the lo-
cal storage is destroyed by every B operation and must be
substituted by the backup storage.

The purpose of the static movement planner is insert-
ing L and S operations so that the semantics of the code
is not affected by the destruction of the local storage by
B operations. The simplest solution would be inserting
a S-L pair around every B operation; however, it is not an
optimal solution with respect to the number of load/store
operations required.

Essentially, the variable x is used to transport a value
from a W operation to an R operation, across a path in the
control-flow graph which contains no other W operations.

If such a path contains a B operation, the transported
value must be saved by inserting S somewhere between the
W and the first B, and loaded back to local storage using
an L operation inserted after any B followed by R.
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4.3 Static Movement Planner

The first phases of the algorithm determine the following
set of relations between the control flow graph nodes and
the variables:

NB,NL,NB,NL,PB,PL,PB,PL ⊆VCFG×X

For a statement s ∈ VCFG and a variable x∈X , 〈s,x〉 ∈
NB indicates that there is a control-flow path starting at s
which needs x located in the backup storage. Similarly,
〈s,x〉 ∈ NL indicates that there is a path where x is needed
in the local storage.

The next two relations are complementary: 〈s,x〉 ∈ NB

means that there is a path starting at s where x is not needed
in the backup storage, similarly for NL and the local stor-
age.

Furthermore, 〈s,x〉 ∈ PB indicates that there is a control-
flow path ending at s which leaves x present in the backup
storage; similarly for PL and the local storage. Finally,
PB and PL indicate the ends of paths where x is not present
in the backup or local storage, respectively.

The sets NB, NL, NB, and NL are computed by backward
propagation Algorithm 1.

Algorithm 1 Backward propagation algorithm
Require: (VCFG,ECFG) control flow graph; F,B ⊆ VCFG; X

set of variables; R,W ⊆VCFG×X
Ensure: NB,NL,NB,NL ⊆VCFG×X

1: NB, NL, NB, NL := /0
2: N′B := /0
3: N′L := R
4: N′B := W ∪ (F×X)

5: N′L := W ∪ ((B∪F)×X)

6: while N′B∪N′L∪N′B∪N′L 6= /0 do
7: NB := NB∪N′B ; NL := NL∪N′L
8: NB := NB∪N′B ; NL := NL∪N′L
9: N′B, N′L, N′B, N′L := /0

10: for 〈a,b〉 ∈ ECFG do
11: N′B[a] := N′B[a]∪ (NB[b]\W [a]\NB[a])
12: N′L[a] := N′L[a]∪ (NL[b]\R[a]\NL[a])
13: if a ∈ B then
14: N′B[a] := N′B[a]∪ (NL[b]\W [a]\NB[a])
15: else
16: N′L[a] := N′L[a]∪ (NL[b]\W [a]\NL[a])
17: N′B[a] := N′B[a]∪ (NB[b]\NB[a])
18: end if
19: end for
20: end while

The algorithm essentially enlarges the four relations
from the initial state until stable. The primed versions
of the relations represent the increments added to the re-
lations at lines 7 and 8. The initial state, formed at the
lines 2 to 5, reflects the fact that a read operation induces
immediate need for local storage while a write operation
or a return statement causes that the previous value is no

longer needed. In addition, any blocking operation aborts
any need for local storage.

Lines 11 to 18 propagate the relations backward across
a control-flow edge 〈a,b〉. Line 11 states that a need for
backup propagates backward unless a write is encoun-
tered. Line 12 propagates the absence of requirement for
local storage unless a read is encountered.

Line 14 corresponds to blocking operations – if a vari-
able is needed in the local storage after a blocking state-
ment, it is needed before the blocking statement in the
backup storage, unless the blocking statement writes the
variable. Lines 16 and 17 propagate through non-blocking
statements – the need for local storage propagates unless
a write is encountered, the absence for backup storage
propagates unconditionally.

The sets PB, PL, PB, and PL are computed by forward
propagation Algorithm 2.

Algorithm 2 Forward propagation algorithm
Require: (VCFG,ECFG) control flow graph; F,B ⊆ VCFG; X

set of variables; R,W ⊆VCFG×X
Ensure: PB,PL,PB,PL ⊆VCFG×X

1: PB, PL, PB, PL := /0
2: P′B := /0
3: P′L := W ∪R
4: P′B := W ∪ (I×X)

5: P′L := (B∪ I)×X
6: while P′B∪P′L∪P′B∪P′L 6= /0 do
7: PB := PB∪P′B ; PL := PL∪P′L
8: PB := PB∪P′B ; PL := PL∪P′L
9: P′B, P′L, P′B, P′L := /0

10: for 〈a,b〉 ∈ ECFG do
11: P′B[b] := P′B[b]∪ (PB[a]\W [b]\PB[b])
12: P′L[b] := P′L[b]∪ (PL[a]\R[b]\W [b]\PL[b])
13: if b ∈ B then
14: P′B[b] := P′B[b]∪ (PL[a]\W [b]\PB[b])
15: else
16: P′L[b] := P′L[b]∪ (PL[a]\PL[b])
17: P′B[b] := P′B[b]∪ (PB[a]\PB[b])
18: end if
19: end for
20: end while

The algorithm is analogous to the backward propagation
with different propagation rules reflecting the following
observations: After any write or read operation, the value
is present in the local storage (line 3, 12); after any write,
the value of backup storage is obsolete (line 4, 11). The
backup storage is initialized by moving from local storage
before a blocking statement (line 14, 17); any blocking
statement invalidates the local storage (line 5, 16).

The final stage of the static movement planner is the de-
termination of control-flow edges where the variables shall
be loaded or stored, i.e. the determination of the relations
L,S⊆ ECFG×X .
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The relations are calculated locally from the relations
created in the previous phases using the following rules:

〈〈a,b〉,x〉 ∈ S⇔ 〈a,x〉 ∈ PB∧〈b,x〉 ∈ NB \ (NB \PB)

〈〈a,b〉,x〉 ∈ L⇔ 〈a,x〉 ∈ PL∧〈b,x〉 ∈ NL \ (NL \PL)

The two rules are based on the same observation:
A copy towards a storage may be placed at an 〈a,b〉 edge if
the value was not present (P) in the storage after the state-
ment a and it may be required (N) by a path starting at b.
Nevertheless, if the value is not needed (N) at some of the
other paths starting at b, copying would be premature and
shall be postponed until the point where all paths need the
variable. However, if the value may already be present (P)
at b (due to a different path ending there), postponing is
not possible because the copy operation will disturb the
existing value.

The intersection ZB = NB ∩ NB ∩ PB ∩ PB denotes the
places where the rules create suboptimal code: In such
nodes, there exist outgoing paths that need the validity of
the storage as well as outgoing paths where the storage is
not needed; at the same time, incoming paths that ensure
the presence as well as incoming paths without the pres-
ence exist. Consequently, placing a store operation here is
both necessary and premature. Similar sub-optimality ex-
ist at the intersection ZL = NL ∩NL ∩PL ∩PL for the load
operation.

These sub-optimal placements may be avoided by code
duplication: For each node-variable pair 〈b,x〉 in the in-
tersection ZB, the node b shall be split into b1 and b2
and the incoming edges arranged so that 〈b1,x〉 /∈ PB and
〈b2,x〉 /∈ PB. The definition of PB and PB ensures that this
process is plausible because the source nodes for the in-
coming edges will be split, too. Similar splitting process
shall be applied for ZL. When repeated for all variables,
the ZB and ZL relations become empty and, consequently,
the insertion of the S and L operations becomes optimal.
However, it comes at the cost of code expansion, in the
worst case exponential with respect to the number of vari-
ables.

4.4 Simple Method Inversion

We can perform the actual inversion, once all the necessary
variables are identified and saved. The simple inversion
algorithm is shown in Listing 6. The steps are explained
in following text. Listing 5 shows an example of a code
produced by this algorithm.

The blocking methods are internal to the Bobox inter-
face library (provided as part of the development environ-
ment), so they are called only inside the library methods
and we expose them by integrating (inlining) all the library
methods into the inverted method.

Locate blocking calls This step is very simple, because
we have a complete list of all potentially blocking methods
and this means that we simple check the code and record
all the places where the methods are called.

void I n v e r t ( )
{

/ / l o c a t e a l l t h e b l o c k i n g methods
L o c a t e B l o c k i n g C a l l s ( ) ;
/ / save a s t a t e f o r each c a l l
S t o r e S t a t e s ( ) ;
/ / u se non−b l o c k i n g methods i n s t e a d
R e p l a c e B l o c k i n g C a l l s ( ) ;
/ / i n s e r t r e t u r n and l a b e l
I n s e r t R e t u r n R e s u m e ( ) ;
/ / s t a t e machine f o r e v e n t d i s p a t c h
C r e a t e S t a t e M a c h i n e ( ) ;
/ / save and r e s t o r e l o c a l v a r i a b l e s
P a t c h L o c a l D a t a ( ) ;

}
Listing 6: Original code befor inversion

Store states We must create a separate state for each lo-
cated blocking call, not just each method, but for each ac-
tual call instruction in the code. This way we can resume
the computation at the exact location where we left off.
We simply create State1 - StateN, where N is the number
of located blocking calls. We store the state into a member
variable of the box.

Replace blocking calls In this step we must replace the
blocking methods for methods that do not wait for data.
These methods just notify the system to call the task, once
an event occurs. There is such a method for each blocking
method and we can assure this, because all the methods
are hidden in the Bobox interface library that is part of
the development environment. So we simply replace the
called blocking method for its safe version.

Insert return and resume Now we must insert constructs
that allow us to interrupt the computation and later resume
it at the same place. To do this we must place a return
statement after the former blocking call and immediately
after the return we place a label so we can jump back via
a goto statement.

Create state machine We must create switch statement to
complete the the state machine mechanics, so we can jump
to a correct place, based on the actual state. We create
a switch that takes the actual state as a parameter and it
jumps on the appropriate label placed in the code in the
previous step. There is one thing we must do before the
jump, we must check if the received event is the event we
are waiting for. If the received event is not the correct one,
we simply jump out. We can ignore events, since they
inform us about new data in an input buffer and we will
process it later.
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Patch local data In the last step we use the results of
the Variable movement algorithm (Section 4.2) to save and
restore necessary variables.

5 Conclusion and Future Work

We have successfully implemented a first version of
method inversion for CIL intermediated code. We are able
to eliminate blocking calls and we can produce an event-
driven code from sequential implementation.

The actual implementation produces a modified CIL
code that can be used in .NET implement of Bobox, but
the code cannot be used in the main C++ implementation,
because the compiler from CIL to C++ is not yet ready.
We are not yet able to measure the effect of the method
inversion on the efficiency of C++ Bobox pipeline, on the
other hand it produces working boxes that we tested in the
.NET implementation of Bobox.

We are not yet able to present reliable experimental re-
sults, because we can use the optimization only in the
.NET implementation of Bobox which is designed mostly
for testing and prototype evaluation. The .NET version is
not optimized for speed and the method inversion has only
a minimal effect on its efficiency.

In the future we will be mostly concentrating on the de-
velopment of the advanced method inversion that would
produce a code with better structure and behavior.
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balancing using work-stealing for pipeline parallelism in
emerging applications,” in Proceedings of the 23rd inter-
national conference on Supercomputing. ACM, 2009, pp.
517–518.

[4] Z. Falt, D. Bednarek, M. Cermak, and F. Zavoral, “On
parallel evaluation of SPARQL queries,” in DBKDA 2012,
The Fourth International Conference on Advances in

Databases, Knowledge, and Data Applications. IARIA,
2012, pp. 97–102.

[5] A. Navarro, R. Asenjo, S. Tabik, and C. Cascaval, “Ana-
lytical modeling of pipeline parallelism,” in Parallel Archi-
tectures and Compilation Techniques, 2009. PACT’09. 18th
International Conference on. IEEE, 2009, pp. 281–290.

[6] Z. Falt and J. Yaghob, “Task scheduling in data stream pro-
cessing.” in DATESO, 2011, pp. 85–96.

[7] D. Bednárek, J. Dokulil, J. Yaghob, and F. Zavoral, “The
Bobox project parallelization framework and server for
data processing,” Charles University in Prague, Technical
Report, vol. 1, p. 2011, 2011.

[8] M. Brabec and D. Bednárek, “Programming parallel
pipelines using non-parallel C# code,” CEUR Workshop
Proceedings, vol. 1003, pp. 82–87, 2013. [Online].
Available: http://ceur-ws.org/Vol-1003

[9] A. Ghosal, T. A. Henzinger, C. M. Kirsch, and M. A. San-
vido, “Event-driven programming with logical execution
times,” in Hybrid Systems: Computation and Control.
Springer, 2004, pp. 357–371.

[10] J. Fischer, R. Majumdar, and T. Millstein, “Tasks: language
support for event-driven programming,” in Proceedings of
the 2007 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation. ACM, 2007,
pp. 134–143.

[11] M. N. Garofalakis and Y. E. Ioannidis, “Parallel query
scheduling and optimization with time-and space-shared
resources,” SORT, vol. 1, no. T2, p. T3, 1997.

[12] J. Subhlok and G. Vondran, “Optimal latency-throughput
tradeoffs for data parallel pipelines,” in Proceedings of the
eighth annual ACM symposium on Parallel algorithms and
architectures. ACM, 1996, pp. 62–71.

[13] M. Cermak and F. Zavoral, “Achieving high availability in
D-Bobox,” in DBKDA 2014, The Sixth International Con-
ference on Advances in Databases, Knowledge, and Data
Applications. IARIA, 2014, pp. 92–97.

[14] C. Chambers, A. Raniwala, F. Perry, S. Adams,
R. R. Henry, R. Bradshaw, and N. Weizenbaum, “Flume-
java: easy, efficient data-parallel pipelines,” in ACM Sig-
plan Notices, vol. 45, no. 6. ACM, 2010, pp. 363–375.

[15] D. Bednárek, J. Dokulil, J. Yaghob, and F. Zavoral, “Data-
flow awareness in parallel data processing,” in Intelligent
Distributed Computing VI, ser. Studies in Computational
Intelligence, G. Fortino, C. Badica, M. Malgeri, and
R. Unland, Eds. Springer Berlin Heidelberg, 2013,
vol. 446, pp. 149–154. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-32524-3_19

[16] ——, “Data-flow awareness in parallel data processing,”
in Intelligent Distributed Computing VI, ser. Studies
in Computational Intelligence, G. Fortino, C. Badica,
M. Malgeri, and R. Unland, Eds. Springer Berlin
Heidelberg, 2013, vol. 446, pp. 149–154. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-32524-3_
19

[17] D. Bednárek, “Output-driven xquery evaluation,” in Intel-
ligent Distributed Computing, Systems and Applications.
Springer, 2008, pp. 55–64.

20 M. Brabec, D. Bednárek, P. Malý




