Infusing Green: Requirements Engineering for
Green In and Through Software Systems

Birgit Penzenstadler
University of California, Irvine
Irvine, CA, USA
bpenzens @uci.edu

Abstract—Environmental sustainability can be applied to soft-
ware systems in two different understandings — either as green in
software systems (greening of IT / green IT) or as green through
software systems (greening by IT). Currently it is not clear how
environmental sustainability can be systematically supported as
an objective in requirements engineering for either of these two
understandings.

This paper presents a checklist and guide word based approach
that demonstrates how to include the objective of environmental
sustainability from the very early steps in finding the stakeholders
and analyzing the domain to the definition of a usage model and
specific requirements. The elaboration is illustrated by a case
study on a car sharing system.

As software systems affect most aspects of our daily lives,
enabling software engineers to strategically align the objective
of environmental sustainability with the other objectives for the
software system under development could considerably decrease
the impact of people in the industrialized world on the environ-
ment.

Index Terms—requirements engineering; environmental sus-
tainability; green through IT; green software systems

I. INTRODUCTION: WHAT IS GREEN REQUIREMENTS
ENGINEERING?

Over the last decades, sustainability research has emerged
as an interdisciplinary area; knowledge about how to achieve
sustainable development has grown, while political action
towards the goal is still in its infancy [20], [56].

For a meaningful discussion, sustainability needs to ref-
erence a concrete system—such as an ecological system, a
human network, or even a specific software system [54].
Software Engineering for Sustainability (SE4S) has developed
as a current focus of research due to sustainability being
advocated as major objective for behaviour change on a global
scale [47], [48]. To denote an emphasis on environmental
sustainability, the attribute green is widely used. At the same
time, overall sustainability of our daily lives can only occur
when the environmental, social, and economic aspects are in
balance [59]]. This has to be reflected in the software systems
we create.

The term Green or Sustainable Software can be inter-
preted in two ways: (1) green in software: the software
code being sustainable, agnostic of purpose (as in [41]), or
(2) green through software: the software purpose being to
support sustainability goals, i.e. improving the sustainability
of humankind on our planet (as in [S8]). Ideally, both inter-
pretations coincide in a software system that contributes to

more sustainable living. Therefore, in our context, sustainable
software is energy-efficient, minimizes the environmental im-
pact of the processes it supports, and has a positive impact
on social and/or economic sustainability. These impacts can
occur directly (consumed resources), indirectly (mitigated by
service), or as systemic effect [23]].

Requirements Engineering (RE) is the early phase of soft-
ware engineering where we determine the exact scope of
the system and iteratively elaborate the stakeholders’ needs
and concerns [62], [42]]. Based on that definition, Require-
ments Engineering for Sustainability (RE4S) [50] denotes the
concept of using requirements engineering and sustainable
development techniques to improve the environmental, social,
and economic sustainability of software systems and their
direct and indirect effects on the surrounding business and
operational context. In order to develop such systems, we need
awareness (by education) and guidance (e.g., as in this paper),
and creativity (to find better solutions). Green Requirements
Engineering consequently denotes that same concept with a
specific focus on the direct and indirect environmental impacts
of systems. However, as sustainability is an encompassing
concept and one aspect of it cannot be strengthened without
considering the other dimensions, we will still discuss the
broader scope of it referring to all five dimensions.

Contribution: Instead of proposing a new framework
that might interfere with established practices and be negated
by software engineers, as sustainability is only one of many
objectives for a system, we are following an integrative ap-
proach. It has been achieved to integrate safety and security as
additional objectives into requirements engineering [12], [33],
and now we propose to do the same for sustainability [49].
We show that requirements engineering can accommodate the
new objective of improving the environmental sustainability of
software systems using its current techniques and incorporat-
ing simply a few more instantiations of known requirements
types. An extended version of this paper will be published in
a book chapter [7] but we consider it important to get further
feedback and stimulate discussion at the workshop.

Outline: We provide the background, related work and
foundation in Sec. [l elaborate how to systematically inte-
grate sustainability into RE in Sec. discuss the remaining
challenges in Sec.[[V] and conclude with an outlook in Sec.

II. BACKGROUND

We lay out the context from sustainability science and Infor-
mation and Communication Technology (ICT) & sustainabil-
ity, outline related work in RE, and describe the foundation for
this work: the sustainability dimensions, their requirements,
the reference model used for requirements documentation, and
the case study used for the running example.

A. Sustainability Science

In general, sustainability is the “capacity to endure”, but
interpreting this concept requires context. A popular definition
of sustainable development was given by the UN as “meeting
the needs of the present without compromising the ability of
future generations to meet their own needs” [59]. Although
it is not actionable, it is the most cited definition currently
in use. Ultimately, sustainability depends on the population
at large, so common conceptions of sustainability must be
acknowledged: “People sustain what they value, which can
only be derived from what they know.” [54] For that purpose,
Joseph Tainter has suggested that it is useful to pose the four
questions with regard to sustainability:

“Sustain what? For whom? How long? At what cost?” [55]]

More elaborate theoretic frameworks on the definition of
sustainability exist, e.g. [Sl], [8I, [L3], [S2], [2], [38], all
referring to systems thinking [37], but are more extensive than
adequate for the scope of this paper. Sustainability science
is currently discussing whether sustainability is limited by
ecological constraints or enabled by continuous innovation and
transformation [34] and software systems might help in either
direction.

B. ICT and Sustainability

The relevance of information and communication technolo-
gies for environmental sustainability is analyzed by Hilty, Arn-
falk, Erdmann et al. [23]]. On the basis of that, Hilty, Lohmann,
and Huang [20] provide an overview of the fields of ICT
in the service of sustainability: Environmental Informatics,
Green IT, and Sustainable Human-Computer Interaction. As
technological efficiency alone will not produce sustainability
(cf. Jevon’s paradoxon [29]), sustainable development requires
a combination of efficiency and sufficiency strategies, inter alia
by decoupling economic growth from environmental impacts
and from the use of natural resources.

Furthermore, the newly established conference on ICT for
Sustainability (ICT4S) [22] is establishing a research commu-
nity that emphasizes interdisciplinary research across various
domains.

C. Related Work: RE and Sustainability

The workshop series on Requirements Engineering for
Sustainable System{] [3], [46] has brought a number of
contributions on aspects like goal modeling, energy saving,
complexity, sustainability-enhancing application domains, user
participation, quality, and eco-aware design.

Uhttp://www.ics.uci.edu/~bpenzens/2014redsusy/

Furthermore, Naumann et al. [41] provide a framework for
sustainable software engineering. They investigate how web
pages can be developed with little environmental impact, i.e.,
energy-efficiently, and offer a respective guideline for web
developers. Gu et al. [17] propose a green strategy model
that provides decision makers with the information needed to
decide on whether to take “green” strategies and eventually
how to align them with their business strategies. In contrast to
the focus on energy-saving in both of these works, we consider
a much broader definition of sustainability.

Cabot et al. [6] report on a case study for sustainability as
a goal for the ICSE’09 conference with i*-models to support
decision making for future conference chairs. Stefan et al. [S3]]
extend that with quantitative goal modeling techniques. Both
works provide model instances for specific case studies while
the work at hand uses a generic model for reference.

Mahaux et al. [35] present a case study on a business
information system for an event management agency and
assessed how well some RE techniques support modeling of
specific sustainability requirements. In contrast, our aim is to
provide modelling means for integrating sustainability into any
software system as a major objective.

D. Dimensions of Sustainability for Software Systems

Sustainability is characterized by the three dimensions eco-
nomic, social, and environmental [59]. This characterization
is extended with a fourth dimension human (or individual) by
Goodland [16]], portraying individual development by every
human over their life time. When analyzing the sustainability
of IT systems, these four dimensions apply, and an additional
dimension, fechnical, supports better structuring of concerns
with respect to software systems. We are convinced that a
focus on environmental sustainability only makes sense when
in balance with the other dimensions of sustainability.

Most concisely, the dimension of sustainability are char-
acterized as follows [45]]: Individual sustainability refers to
maintaining human capital (e.g., health, education, skills,
knowledge, leadership, and access to services). Social sus-
tainability aims at preserving the societal communities in
their solidarity and services. Economic sustainability aims at
maintaining capital and added value. Environmental sustain-
ability refers to improving human welfare by protecting the
natural resources: water, land, air, minerals and ecosystem
services. Technical sustainability refers to longevity of systems
and infrastructure and their adequate evolution with changing
surrounding conditions.

E. Requirements Types for the Dimensions of Sustainability

For general characteristics of sustainability requirements for
the respective dimensions, we have found the following sub-
types that are used in other requirements categorizations [S1]:

Environmental: Requirements with regard to resource flow,
including waste management, can be elicited and analyzed by
Life Cycle Analysis [[19], [1]. Furthermore, impact effects can
be analyzed by environmental impact assessment (EIA). The
challenge is that usually only first order impacts by a system

http://www.ics.uci.edu/~bpenzens/2014re4susy/

are considered, whereas second and third order impacts are
not yet accounted for.

Individual: Parts of individual sustainability are covered by
privacy, safety, security, HCI and usability as well as personal
health and well-being, which still needs to be made explicit in
requirements. An example for this could be that an application
suggests to take a break after a specific amount of working
time.

Social: A share of social sustainability can be treated via
computer supported collaborative work (CSCW [4]]) require-
ments, which reflect the interaction within user groups, via
ICT for development (ICT4D [18], [57]) requirements, and
via political, organizational, or constitutional requirements, as
in laws, policies, etc. Still missing are, for example, explicit
requirements for strengthening community building.

Economic: The economic sustainability is taken care of
in terms of budget constraints and costs as well as market
requirements and long-term business objectives that get trans-
lated or broken down into requirements for the system under
consideration. The economic concern lies at the core of most
industrial undertakings.

Technical: The technical sustainability requirements include
non-obsolescence requirements as well as the traditional qual-
ity characteristics of maintainability, supportability, reliability,
and portability, which all lead to the longevity of a sys-
tem. Furthermore efficiency, especially energy-efficiency and
(hardware-)sufficiency [21] is part of the technical sustainabil-
ity requirements.

Four of these five dimensions are already supported to a
considerable extent by traditional software quality character-
istics and requirements can be dealt with. The least support
exists for the environmental dimension. Consequently, we
especially need to consider second and third order impacts
in the environmental dimension of software systems.

F. AMDIRE: Artefact Model for Domain-independent Re-
quirements Engineering

The various influences on processes and application do-
mains make requirements engineering (RE) inherently com-
plex and difficult to implement. When it comes to defining
an RE reference model, we basically have two options: we
can establish an activity-based RE approach where we define
a blueprint of the relevant RE methods and description tech-
niques, or we can establish an artefact-based approach where
we define a blueprint of the RE artefacts rather than a blueprint
of the way of creating the artefacts. In the last six years, we
have established several artefact-based RE approaches, empiri-
cally underpinned the advantages of applying those approaches
in industry, and consolidated the different approaches and
established the AMDIRE approach, i.e. the Artefact Model
for Domain-independent Requirements Engineering. AMDIRE
includes a detailed artefact model that captures the basic
modelling concepts used to specify RE-relevant information,
tool support, and a tailoring guideline that guides the creation
of the artefacts [39]]. For the purpose of this paper, we use a

reduced version of the model as depicted in Fig. 2| For the
full AMDIRE model, please refer to [39].

Green requirements engineering may as well be applied with
an activity-based approach though—the choice was taken for
illustrative purposes, as the artefact-based approach provides
an overview that is explicitly structured according to the work
results. That way, the result excerpts can be seen in context
with other requirements engineering work results.

G. Running example: Car Sharing System

In a collaboration with BMW in 2012, we elaborated a
case study on the car sharing system DriveNow (partially
reported on in [14]). The elicitation was carried out in an
interview series with the DriveNow project leaders and by
performing additional background research on the domains of
hybrid cars, car sharing business models. The requirements
basis established in that case study was used for elaborating
the illustrative examples in the paper at hand.

The business model is commercial car sharing for registered
users with flexible drop-off points for the vehicles on public
parking lots. The car sharing system is composed of a web
application for registration, reservation and billing, a car fleet
maintained by a service partner where each car is equipped
with a meter and a transponder, and a central database.

III. INFUSING GREEN: ELABORATING GREEN
REQUIREMENTS

Guiding Questions for Green RE:

1. Does the system have an explicit sustainability purpose?

2. Which impact does the system have on the environment?

3. Is there a stakeholder for environmental sustainability?

4. What are the sustainability goals and constraints for the system?

Fig. 1. Guiding Questions for Green Requirements Engineering

Based on the concepts presented in Sec. [[l} we describe how
to elaborate green, sustainable requirements within a generic
requirements engineering approach. The guiding questions are
summarised in Figure [1]

[Q1] Does the system under consideration have an explicit
purpose towards environmental sustainability? If yes, this can
be analysed in depth. If no, it can be considered whether such
an aspect is desirable and feasible to add. If, again, that is not
the case, then the analysis details the potentials for greening
of that IT system (further explored in Q2) instead of greening
through 1T, but depending on the kind of system this might
still lead to considerable improvements of the environmental
impact of the system [43]. In case the system is widely used,
that is worth the effort.

[Q2] Does the system under consideration have an impact
on the environment? Any system has an impact on the envi-
ronment, as any system is applied in a real world context of
some kind, which is situated within our natural environment.
Consequently, it has to be analysed as to what are the direct
(first order), indirect (second order), and systemic as well

Context / Environment / Problem Domain

Requirements / System / Solution Domain

elicit
% Stakeholder Model sustainability .
objectives SPeC’fy Usage Model
AR sustainable
interaction O
% -X- 'X' S 'X' Objectives, :
& Goals | der e ®
find sustainability stakeholders sustainable
SJ_’ S‘tem System Vision
Business Process & \) ViSEl oo — "
Lifeche e Constraints\ _O @ (| eployment Requirements
@] ‘I = n & Rules O System Constraints
0’0 Quality Requirements
Domain Model
l;lxD ovo Process Requirements
oo @
Ii_l O’Dé elicit refine and deduce
sustainability sustainability

analyse sustainability of context constraints

requirements

Fig. 2. Overview of Content Items and Information Flow for Green Requirements Engineering

as potential rebound effects (third order). This potentially
includes a very large scope, especially for third order effects,
but systemic thinking [36] facilitates such an analysis process
and may lead to significant insights.

[Q3] Is there an explicit stakeholder for sustainability? In
case there is an explicit stakeholder who advocates for envi-
ronmental sustainability, there is already a significant represen-
tative who issues objectives, constraints and considerations to
support that quality in the system under consideration. In case
there is no such advocate, it can be decided to establish such
a role. Otherwise, at the very least, a domain expert should be
established as a representative for sustainability for providing
information on applying environmental standards, legislation,
and regulations.

[Q4] What are the sustainability goals and constraints for
the system? Independent of whether the system has an explicit
purpose for supporting environmental sustainability or not,
there certainly are a number of objectives that pertain to
the different dimensions of sustainability that may be chosen
to apply. For example, a social network might not have an
explicit environmental purpose, but it certainly has objectives
supporting social sustainability. Furthermore, any system will
at least have some constraints with respect to the environment,
as stated in Q2.

For the description of how to elaborate green requirements,
we limit ourselves to a few concepts that are commonly agreed
on as content items or information elements for gathering and
refining requirements, all depicted in the overview in Fig.
These are Business Processes, Domain Models, Stakeholders,
Objectives, Constraints, System Vision, Usage Model, as well
as Quality Requirements, Process Requirements, Deployment
Requirements, and System Constraints. There are a number
of potential starting points for green requirements engineering
with related elicitation and analysis activities as illustrated in
Fig. [}

o In case there is a relation of the business process of the

system under consideration to sustainability or environ-
mental issues (see Q1), the Business Process Model is

the first piece of information that may explicitly include
green concerns in the form of supporting business pro-
cesses or services. If that is not the case, then there will
still be elements in the Domain Model that can be related
to sustainability concerns, due to the impacts caused by
the system (see Q2). This is denoted by the activity
analyse sustainability of context.

o If the business context and application domain lack
adequate root elements for a sustainability analysis, the
Stakeholder Model may be used as starting point (see
Q3), characterised by the activity find sustainability
stakeholders. Whichever the system under consideration,
the stakeholder model should include a sustainability
advocate, at least as representative for legal constraints.

o In either case — a system with an explicit sustainabil-
ity concern as well as without such a mission — the
Objectives & Goals should feature sustainability as one
major quality objective (see Q4). This objective should
be included in the general reference goal model of a
company used as a basis for instantiation for a particular
system and then refined according to the system specifics.
Apart from eliciting sustainability objectives from the
stakeholders, it is also necessary to elicit sustainability
constraints from the domain model for the Constraints
& Rules, which includes sustainability-related constraints
for any kind of systems, for example, environmental
standards.

From these different starting points, the sustainability re-
quirements and constraints are propagated throughout the con-
tent items in requirements engineering as illustrated in Fig. [2]
This includes the activites derive sustainable system vision,
specify sustainable interaction and refine and deduce sus-
tainability requirements. The following sections walk through
these stages and describe the development of the respective
content items.

In the example of the car sharing system, the business
model aims at promoting cars as a service (as opposed to an
owned vehicle), but also includes the objective of reducing

environmental impacts by focusing on hybrid cars and by
providing a car sharing service.

A. Analyse Sustainability of Context

Whenever we are faced with a system that has an explicit
contribution to sustainability by either improving our ways
to analyse the environment and reporting feedback, or by
enabling and incentivising sustainable behaviour in its users,
we can analyse the contextual elements this related to in
the Business Processes and the Domain Model. Examples
for such systems are the Carbon Footprint CalculatotEl, the
Story of Stuff PrOJecﬂ or car sharing systems like lecaIE] or
DrlveNovxﬂ If there is no explicit purpose for environmental
sustainability, there might still be a purpose for social sustain-
ability, for example different types of local community tools or
social networks. Either way the system will cause some kind
of impact on the environment, which can span from first order
impacts to third order impacts. The system environment and
wider context are usually analysed using a Domain Model.
This can also serve as the basis for a life-cycle analysis [30]
of the system under consideration.

For the car sharing system, first order effects are the
resources that the system itself (the application on different
devices and the database) consume. The second order effects
are the resources the car sharing system triggers in its applica-
tion domain, i.e. the cars that are being shared on the road and
that do consume a considerable amount of resources, but at
the same time decrease the overall consumption of resources
through more cars (which would have been used otherwise).
The third order effects might be a decrease in the number
of individually owned cars, less parking space shortage, and
eventually less cars, which would lead to better air quality, but
this remains to be observed in the long run.

B. Find Sustainability Stakeholders

Stakeholders are the basis for requirements engineering.
They pursue goals, include the users of the system under
development, and issue constraints [[15]. In the context of green
requirements engineering, the goal is to elicit stakeholders
that advocate for sustainability and that are domain experts
for life cycle analysis, environmental concerns, legislation for
environmental regulations, or environmental standards.

There are different possible approaches to identifying stake-
holders for sustainability [435]:

1) Reference list: Instantiating generic reference lists of
stakeholders for the concrete project context (see [45]
for a generic list of sustainability stakeholders).

2) Context: Inspecting the business and operational context
of the system under development, and understanding
which concrete roles are involved.

3) Goals: Iteratively analysing and refining a generic sus-
tainability model [44] and deducing the related roles.

Zhttp://coolclimate.berkeley.edu/carboncalculator
3http://storyofstuff.com/
4http://www.zipcar.com/
Shttp://www.drive-now.com/

This is especially helpful for finding passive stakehold-
ers who do not have an active interest in issuing own
goals, but whose constraints have to be adhered to, for
example legislative representatives.

The example in Fig. [3] illustrates and excerpt of the stake-
holder model for the car sharing system, including the ones
that advocate sustainability or serve as domain experts on its
various aspects.

ﬁ |
)
constrains '
|
| Réglla i
syblain ;i |
abilhy \WM SHaring tors i
consult System :
Owner AN
isla
produces fo tﬂm 1
manages f :
|
provides develoRs const ‘ councl |
Compe | f
N &
| b ' licy

|

competes

requests

i
N J
i
servlce ‘v : Develo

provider : ; Pe's

Elu(sln:S

titors

I
1
Manuia makers;

cturer

%%

Expens

‘
CRM “

‘

:

Ok |
engine | |
dev.

Analyst

]
\Efgihe
| ers
\

i
il i
"
I
\
i
'
\

!
(i ment
f
|

| ey ; |

| Testers | o / Jo
]

3

Fig. 3. Stakeholder Model of the Car Sharing System

C. Elicit Sustainability Objectives, Goals and Constraints

The next step is to elicit the sustainability objectives and
goals from the stakeholders and to deduce any sustainability
constraints from the business processes and/or the domain
model. A goal is an objective the system under consideration
should achieve [28]. They build a hierarchy, and they can
influence each other in terms of conflicts, constraints, or
support.

To facilitate goal elicitation, we distinguish three subcat-
egories that refer to different levels of abstraction in sys-
tems development: Business Goals are all business-relevant
(strategic) goals as well as goals with direct impact on the
system or project. Usage Goals are a direct relation to the
functional context and usage of the system (user perspective)
for behaviour modelling. System Goals are system-related
goals that determine or constrain system characteristics [39].
Each usage goal is related to a business goal and each system
goal to a usage goal.

In order to consider the sustainability perspective during
goal modelling, we consult a reference model for sustainabil-
ity, that represents the sustainability dimensions by sets of
values. Values are approximated by indicators, supported by
regulations, and contributed to by activities [44]].

Instantiating the generic sustainability model for a specific
system is feasible in a case whether sustainability is the major
purpose of the system under consideration. For most systems
sustainability will be one amongst a number of objectives,
therefore it is more suitable to develop one overall Goal Model

http://coolclimate.berkeley.edu/carboncalculator
http://storyofstuff.com/
http://www.zipcar.com/
http://www.drive-now.com/

for the system and to detail the submodel for the objective
of sustainability by using the sustainability dimensions and
the generic sustainability model as a reference. This means
to analyse the generic sustainability model and to decide for
each value within the dimensions whether it is applicable to
the system under development and, if so, to select those related
activities which can be operationalized as goals for the system.

<Business Goal>
Sustainable
mobility

<Business Goal>
[economic]

Long-term return

on investment

<Business Goal>
[environmental]
Minimize
environmental
impact

<Business Goal>
[social, economic]
Car as a service

<Usage Goal>

[environmental,
economic]

Save resources

<Usage Goal>
[individual]
Commute

<Usage Goal>
[economic]
Transparent

pricing model

<Usage Goal>
[economic,
technical]

<Usage Goal>
[individual]

Rent car
<Usage Goal>
[social]
Establish
community

<Usage Goal>
[social,economic]
Carpool

maintenance

<Usage Goal>
[technical,
individual]
Good
navigation

<Usage Goal>
feconomic,

individual]
Easy financial
control

<System Goal>

[environmental,
technical]

Use hybrid cars

<System Goal>
[technical]
High availability

<System Goal>
ftechnical]
Good coding
practices

<System Goal>
[technical, social]
Use crowd-
sourced traffic
data (.g. Waze)

<System Goal>
[social]
Provide user
forum

<System Goal>
feconomic,
technical]

Few variables

<System Goal>
[technical]

Clear interface

definitions

<System Goal>
[technical]
High reliabilty
of cars

Fig. 4. Sustainability Goals of the Car Sharing Case Study

In the car sharing example, the objectives in the three
categories were elicited by considering the dimensions of
sustainability and how they can be reflected with regard to the
system. Figure [4] depicts an excerpt of the goal model for the
car sharing system. The overall goal of Sustainable mobility
is broken down into subgoals (e.g. Minimize environmental
impact) and these are refined into usage goals (e.g. Save
resources), which are again broken down (e.g. Carpool) and/or
refined into system goals (e.g. High availability). The square
brackets denote the sustainability dimensions of the goal.

D. Derive Sustainable System Vision

The next step is to derive a sustainable System Vision,
a common vision of the system under consideration agreed
upon by all stakeholders that have an active interest in the
system. One frequently used method to create system visions
that are easy to communicate is Rich Pictures [40]. A rich
picture is a cartoon-like representation that identifies all the
stakeholders, their concerns, and some of the structural and
conceptual elements in the surrounding work context. The
choice of an easy to understand medium instead of a more
formal and detailed one arises from the need that stakeholders
of various domains and disciplines have to understand the
vision. The system vision is usually coupled to a milestone
with the scope of an early draft of a common idea of the
system. It can be used as an early basis for estimations and
planning of the subsequent development process. Furthermore,
it is a detection basis for moving targets. In case the purpose of
the system is closely linked to sustainability, this shall become

very clear in the vision. In case it is a minor aspect, it may
still be expressed as one of the concerns.

The system vision defines the system scope and com-
prehends the system context (business context as well as
operational context), which is intended to realise a number of
Features. A feature is, in our understanding, a prominent or
distinctive user-recognisable aspect, quality, or characteristic
of a system that is related to a specific set of requirements,
whose realisation enable the feature [9]. Furthermore, it de-
notes the most important stakeholders and their concerns, in
order to serve as communication basis with all stakeholders,
including non-technical ones. As example, the system vision
for the car sharing system is depicted in Fig. [5] It was
elaborated in discussion with various stakeholders from the
respective industry domains (car manufacturer, fleet operator).

= = = e e

X S; CRM customer ,' Save costs

’ enquiries. _/ % energy
Car pool

| want to
minimize my
environmental

Available

t O sh —
\ I want to (&)

drive from
AtoB.

%)
Register; Participate
-
N,
WebApp \\
[»:—x”

0 sustainable mobilit

——————————

We want to contribute
Car Sharing Community

Sustainability?
Profit?

’

Fill up gas)

-
Billing, clean,
N

Management Statistics \ repair \

C D'

Ge. OSRE: v

« L): availability

\\ mai"isn‘;"ce BT ,l Service team§
= Fleet management

~ I 4
________ ~\A\dmlnlstratloﬁ_a

Operational conte;
Business context Operational context

Fig. 5. The Car Sharing System Vision

E. Usage Model

With the system vision established, the next step is to derive
the interaction with the user. The content item Usage Model
details a Use Case Overview in its Use Cases and Scenarios.
We distinguish Services and Use Cases. Both concepts are
means to describe (black box) system behaviour. Use Cases
describe sequences of interaction between Actors (realising
user groups) and the system as a whole. More precisely, a
use case represents a collection of interaction scenarios, each
defining a set of interrelated actions that either are executed by
an actor or by the system under consideration [10]]. For each
use case, there is at least one Functional Scenario in which
Actors participate. Use Cases and Scenarios can be represented
in the form of structured text (for example, the Cockburn
template [10]), in UML use case diagrams, in UML activity
diagrams, and in message sequence charts. For the car sharing
system we illustrate the example scenario of a commuter user
who wants to carpool.

Example Use Case and Scenario for Carpooling

Primary Actor: Commuter User

Goal in Context: The purpose of this feature is to enable users to carpool,
which saves all parties resources.

Preconditions: The user is already registered with the system.
Description:

1) The user logs into the system.

2) The system displays the user’s dashboard with statistics, offers,
billing, and profile data.

3) The user clicks on the carpool button from the homepage of the
system.

4) The system prompts him with a form for entering the carpool
requirements.

5) The user enters his home address, destination, and date & time for
the desired ride.

6) The system displays either the option to select from possible rides
he could add to as a passenger or to offer this ride as a separate
new carpooling option.

7) The user selects the best available option to add on to an existing
ride as a passenger.

8) The system confirms the ride and informs the driver.

Variations:

7a) The user selects to offer a new ride as carpool.

7b) The system acknowledges the new ride and informs the user that the
ride will be offered for passengers until 3 hours before departure time.

F. Refine and Deduce Sustainability Requirements

Finally, detailed sustainability requirements and constraints
are refined and deduced in four categories: Process Require-
ments, Deployment Requirements, System Constraints, and
Quality Requirements. Further concerns for the system or the
project may be managed in a Risk List.

Process Requirements denote demands with regards to the
conducted development, for example using a green software
engineering process. They constrain the content and / or
structure of selected artefact types and the process model, i.e.,
the definition of the milestones regarding time schedules, used
infrastructure like mandatory tools, and compliance to selected
standards and approaches like to the V-Modell XT. They are
mostly described in natural language text.

Example Process Requirement for the car sharing system

e Develop the system according to the guidance provided by Software
Engineering for Sustainability (SE4S) and as described in the book
“Green Software Engineering”.

Deployment Requirements specify demands with respect to
the installation of the system and launching it into operation,
for example the migration of the data of the legacy system to
the green data center used for the system under development.

Example Deployment Requirement for the car sharing system

o The testing period with the pilot users will be carried out on the
server in the Munich Green Data Center.

System Constraints detail restrictions on a system’s tech-
nical components and architecture as well as related quality
attributes, for example hardware sufficiency, i.e. that the sys-
tem shall run on the old hardware without resource-intensive
upgrades. They describe its functionality by means of single
atomic actions, and its quality by means of assessable system
quality requirements. We consider concepts that describe the
transition to logical and technical architecture layers according

to [60]. Hence, we see a system as a grey box rather than
as a glass box, since we restrict systems’ internals, but do
not consider their logical structure by interacting components,
interface specifications, and functions. They are usually de-
scribed in natural language text.

Example System constraint for the car sharing system

o The web application shall use Waze as navigation system on
handheld devices.

Quality Requirements describe the demands for individual
quality attributes across a system’s functionality, the sat-
isfaction criteria of those requirements, the qualitative or
quantitative metrics, and how the metric will be evaluated.
They characterise the attributes of the system either coupled
to a specific functionality or as a cross cutting concern.
They are usually represented in the form of natural text.
Quality requirements are assessed by Measurements that can
be either a Normative Reference (e.g. a GUI style guide) or
a Metric. Quality Requirements constrain System Actions and
can be satisfied by Generic Scenarios. We make use of quality
definition models as by Deissenbdck et al. [11]].

Example High-priority quality requirements for the car sharing system
e High availability (economic, individual and social sustainability)
e High usability, easy to use (individual and social sustainability)
o Affordable (individual and economic sustainability)

The Risk List includes a description of all risks that are
related to project-specific requirements, usually in the form of
natural language text. The conceptualisation of requirements
risks is considered on the basis of an artefact model [26]], [27].
The risks are implied by the various types of requirements and
we use the risk list as an interface to risk management.

Example Risk List for the car sharing system

e Peak times and commuting might lead to an accumulation of cars
in specific areas, leading to low availability in other areas.

e Excessive usage could cause high energy demands with peaks that
cannot be satisfied by renewable energy. In that case, more gas
would have to be used.

e Users are not active enough, therefore no community would be
established, and consequently there is no contribution to social
sustainability.

By going through these steps, we have obtained detailed
sustainability requirements that can be traced back to their
respective origins in the Business Process, the Domain Model,
the Stakeholder Model, or the Goal Model. From here on, the
responsibility for ensuring that the requirements are designed
into the system and eventually implemented moves on from
the requirements engineer to the system architect and the
designers.

IV. DISCUSSION

In this section, we reflect on the mapping of sustainability
dimensions to content items, and discuss requirements con-
flicts, cost modeling, legal constraints, and risk management.

A. Which Dimensions Appear in which Content Items?

Independent of the applied artefact model, it is interesting
to take a look at the mapping of sustainability dimensions
to content items. Table [I| gives a coarse-grained mapping of
requirements content items to the sustainability dimensions
that they contain information from. For example, a system
vision will generally include mainly environmental and social
sustainability aspects (as it abstracts from technical details),
the system constraints will feature many constraints from
the environmental and technical sustainability dimensions,
and the process requirements will include demands from the
environmental, social, and technical dimension.

TABLE I
REQUIREMENTS CONTENT ITEMS AND THEIR SUSTAINABILITY
DIMENSIONS

Content Item Sustainability Dimension
Stakeholder Model all

Goals all

System Vision mainly environmental and social
Usage Model social and economic

Quality Requirements technical

Deployment Requirements | technical

System Constraints environmental and technical
Process Requirements environmental, social and technical
Risk List all

B. Sustainability Requirements Conflicts

In traditional qualities considered during software engi-
neering we already face a number of potential conflicts, for
example between code maintenance and code performance, or
between the development time and the desired quality of a
software system. Consequently, the question arises what kinds
of conflicts exists between the five dimensions of sustainability
and their related goals.

The economic dimension aligns with the environmental one
in terms of resource savings (energy, materials, waste), but
they may conflict when it comes to additional certifications,
building a (environmentally and socially) sustainable supply
chain, and turning to more expensive alternative solutions in
case they are more environmentally friendly. The reason for
that is mainly that up to now, the negative environmental
impacts that are caused by our economy are hardly charged.
Therefore, the goal of environmental sustainability does not
get assigned monetary value but only image value, which is
likely to be ranked secondly. These conflicts are also discussed
in [44].

Another potential conflict, at least for some systems, is a
trade-off between energy efficiency and dangerous materials.
This is one potential goal conflict in case energy efficiency
would require using more dangerous material. Although not a
software system in itself, a lightbulb might serve as example:
New energy-saving lamps are much more energy-efficient than
the old light bulbs, but at the same time contain toxic mercury
that imposes a threat when a lamp breaks as well as phenol,
naphthalene and styrene. In the case at hand, considerate users
will make sure the lamp is not in close proximity to their

heads, but as legislation has banned the old lightbulbs already
in some countries, they will have to be used for now. Resolving
such a conflict for a particular case means to assign weights
to each of the goals and prioritise whether the energy saving
is greater or whether the risk and long-term negative impacts
of the dangerous materials are greater.

C. Cost Modelling

Another aspect worth discussing is the connection between
stakeholders, goals, and cost modelling. The stakeholders are
made explicit in the goal model by tracing back to the rationale
of a goal, as the information source (e.g. a domain expert) or
the issuer of a goal. With respect to assigning costs to the goals
there is a limitation, as this only makes sense for business
goals, but not for values that cannot be expressed in return on
investment. Some goals, for example the protection of the en-
vironment, do not have monetary value in themselves and their
qualitative value is hard to measure. At the same time, it is
important to define measures to ensure the realization of these
goals and to show that the approach can make a difference in
those resulting measures. Consequently, instead of assigning
costs to the sustainability goals, their contribution to higher
causes must be made explicit, for example the contribution
to objectives commonly agreed on by governments like the
sustainable development goals from Ri0+2qﬂ, or the Vision
2050 [el1].

D. Legal Constraints

As a consequence of the fact that environmental goals have
not yet been prioritized sufficiently by the economy, legislation
has established a number of environmental regulations that
companies have to adhere to. These regulations will still
be extended in the future, which makes legislation probably
the most important stakeholder representing environmental
sustainability in particular. Individual and social sustainability
are also taken care of by law, for example by worker’s rights,
which are supported and represented by worker unions.

It would be interesting to see at which point we need new
laws and a different legislation to make sure that important
questions of sustainability are incorporated into IT systems.
Furthermore, it would be interesting to look at other examples
such as functional safety and also to a certain extent security,
where such laws exist.

E. Risk Management and Environmental Sustainability

Risks, safety and security all strongly relate to sustainability:
risks need to be managed in order to enable sustainability, and
safety and security are part of sustainability.

Safety is part of individual and social sustainability for
preserving human life (no injuries) and environmental (no
chemical or other hazardous accidents), but also has aspects
in economic sustainability (a product that is not safe will not
let a company reach long-term economic goals).

Security is also part of various dimensions, the technical
one as it is a standard quality attribute for systems, then

Shttp://www.uncsd2012.org/

http://www.uncsd2012.org/

individual and social (as the users shall be protected), and as
a consequence of that also the economic dimension (insecure
systems will not have market success).

Both of these quality aspects have not been around forever,
but they were introduced as explicit qualities for software sys-
tems after the first safety hazards and the first security threats
occurred. Consequently, we can learn from this development
for systematically incorporating sustainability into software
engineering [49]].

V. CONCLUSION

This paper provided an overview of how green requirements
engineering may be conducted within the scope of general
purpose requirements engineering by asking guiding questions
along the way and providing plugs for additional analysis
activities that inform the development of environmental issues
that should be considered. This approach was supported by
illustrating examples and a discussion on different types of
conflicts and traceability of information across different re-
quirements engineering content items.

The impact of our contribution is mainly determined by
the question how much difference the consideration of sus-
tainability actually makes in requirements engineering. If we
can make a sustainability purpose explicit in a system, then
the difference is significant. If such a purpose is not given,
secondary influence can be achieved by adding sustainability
objectives and greening the system itself. The latter has less
impact on the environment but is still feasible, the more the
bigger the user community of a system. In the long run, the
author’s hypothesis is that we will not be able to end resource
depletion by greening existing systems but only by disruptive
change and completely transforming our systems [32]. Creat-
ing the mindset for that starts with acknowledging the need for
incorporating sustainability as an explicit objective in systems
development.

Another way to ensure prioritizing environmental sustain-
ability is to enforce policies based on the compliance-driven
economy. One open issue is the standardisation of (environ-
mental and general) sustainability as explicit quality objective
in software development, for example within the IEEE 830
Recommendation for Software Requirements Specifications
and the ISO 25000 on software quality, informed by the
ISO standard families on environmental management [24]] and
social responsibility [25].

The path towards software engineering for sustainability[]
requires a mindset of awareness (by business analysts and
developers) and methodical guidance (as provided in this
paper), and creative confidence (as in [31]]). If sustainability
policies and standards are put in place, and software engineers
prioritize them in the systems they develop, future software
systems may significantly contribute to indirectly influencing
the behaviour of users who interact with those systems and
enable us to move towards a more sustainable global society
as illustrated in the Vision 2050 [61]].

Thttp://www.seds.org

ACKNOWLEDGEMENTS

I would like to thank Ankita Raturi, Debra Richard-
son, Daniel Mendez, Henning Femmer, Alejandra Rodriguez,
Oliver Feldmann, Susanne Klein, Manfred Broy, Daniel
Pargman, Joseph Tainter, Lorenz Hilty, Bill Tomlinson, Juliet
Norton, Marcel Pufal, Coral Calero, Xavier Franch, Wolfgang
Lohmann, Martin Mauhaux, and Beth Karlin for helpful and
inspiring discussions as well as Joachim Kolling from BMW
for supporting the case study. This work is part of the DFG
EnviroSiSE project under grant number PE2044/1-1.

REFERENCES

[1] Henrikke Bauman and Anne-Marie Tillman. The Hitch Hiker’s Guide
to LCA: An Orientation in Life Cycle Assessment Methodology and
Applications. Professional Pub Serv, 2004.

[2] Simon Bell and Stephen Morse. Sustainability indicators: measuring
the immeasurable? Earthscan, 2008.

[3] Berntsson Svensson, R. et al. 18th Intl Working Conf on Requirements
Engineering: Foundation for Software Quality. Proc of the Workshops
RE4SuSy, REEW, CreaRE, RePriCo, IWSPM and the Conference
Related Empirical Study, Empirical Fair and Doctoral Symposium. ICB
Research Reports 52, University Duisburg-Essen, Institute for Computer
Science and Business Information Systems (ICB), 2012.

[4] Uwe M Borghoff and Johann H Schlichter. Computer-supported coop-
erative work. Springer, 2000.

[5] Paul Burger and Marius Christen. Towards a capability approach of
sustainability. Journal of Cleaner Production, 19:787-795, 2001.

[6] J. Cabot, S. Easterbrook, J. Horkoff, L. Lessard, S. Liaskos, and J.-
N. Mazon. Integrating sustainability in decision-making processes: A
modelling strategy. In Software Engineering - Companion Volume, 2009.
ICSE-Companion 2009. 31st International Conference on, pages 207 —
210, May 2009.

[7] Coral Calero and Marco Piattini, editors. Green in Software Engineering.
Springer, to be published 2014.

[8] Marius Christen and Stephan Schmidt. A formal framework for con-
ceptions of sustainability — a theoretical contribution to the discourse
in sustainable development. Sustainable Development, page DOI:
10.1002/sd.518, 2011.

[9]1 A. Classen, P. Heymans, and P.-Y. Schobbens. What’s in a Feature : A

Requirements Engineering Perspective. In J. Fiadeiro and P. Inverardi,

editors, Proceeding of the 11th International Conference on Fundamen-

tal Approaches to Software Engineering (FASE 08) in Conjunction with

ETAPS 08, number 4961 in FASE/ETAPS, pages 16-30. Springer-Verlag

Berlin, 2008.

A. Cockburn. Writing Effective Use Cases. Number ISBN-13: 978-

0201702255. Addison-Wesley Longman Publishing Co., Inc., 2000.

F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner. Software

Quality Models: Purposes, Usage Scenarios and Requirements. In

Proceedings of the 7th international workshop on Software Quality

(WoSQ 09), page N/A. IEEE Computer Society Press, 2009.

Premkumar T. Devanbu and Stuart Stubblebine. Software engineering

for security: a roadmap. In The future of software engineering, pages

227-239. ACM Press, 2000.

Andrew Dobson. Environment sustainabilities: An analysis and a

typology. Environmental Politics, 5:401-428, 1996.

Oliver Feldmann. Sustainability Aspects in Specifying a Car Sharing

Platform. Bachelor’s thesis, Technische Universitit Miinchen, 2012.

Martin Glinz and Roel J. Wieringa. Guest editors’ introduction:

Stakeholders in requirements engineering. IEEE Software, 24(2):18-20,

2007.

R. Goodland. Encyclopedia of Global Environmental Change, chapter

Sustainability: Human, Social, Economic and Environmental. Wiley and

Sons, 2002.

Qing Gu, Patricia Lago, and Simone Potenza. Aligning economic

impact with environmental benefits: A green strategy model. In First

International Workshop on Green and Sustainable Software, 2012.

Richard Heeks. Ict4d 2.0: The next phase of applying ict for international

development. Computer, 41(6):26-33, 2008.

[10]

(11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

http://www.se4s.org

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[36]

(37]
[38]

[39]

[40]

[41]

Lorenz Hilty, Roland Hischier, Thomas F. Ruddy, and Claudia Som. In-
formatics and the Life Cycle of Products. In iEMSs 2008: International
Congress on Environmental Modelling and Software, 2008.

Lorenz Hilty, Wolfgang Lohmann, and Elaine Huang. Sustainability and
ICT — an overview of the field. In Proceedings of the Envirolnfo 2011,
2011.

Lorenz Hilty, Wolfgang Lohmann, and Elaine Huang. Sustainability and
ict—an overview of the field. POLITEIA, 27(104):13-28, 2011.
Lorenz M. Hilty, Bernard Aebischer, Goran Andersson, and Wolfgang
Lohmann, editors. ICT4S 2013. Proceedings of the First International
Conference on Information and Communication Technologies for Sus-
tainability, ETH Zurich, February 14-16. ETH Zurich, University of
Zurich and Empa, Swiss Federal Laboratories for Materials Science and
Technology, 2013.

Lorenz M Hilty, Peter Arnfalk, Lorenz Erdmann, James Goodman, Mar-
tin Lehmann, and Patrick A Wiiger. The relevance of information and
communication technologies for environmental sustainability. Environm.
Modelling & Software, 21(11):1618 — 1629, 2006.

International Standardization Organization. ISO 14000 - Environ-
mental management, 2004. |http://www.iso.org/iso/home/standards/
management-standards/iso14000.htm.

International Standardization Organization. ISO 26000 Guidance
on social responsibility, 2010. |http://www.iso.org/iso/home/standards/
15026000.htm.

S. Islam. Software Development Risk Management Model - A Goal
Driven Approach. In Proceedings of the 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundation of Software Engineering (ESEC / FSE),
pages 5-8, New York, NY, USA, 2009. ACM Press.

S. Islam, S. Houmb, D. Mendez Fernandez, and M. Joarder. Offshore-
Outsourced Software Development Risk Management Model. In Pro-
ceedings of the 12th IEEE International Conference on Computer and
Information Technology (ICCIT 09), pages 514-519, 2009.

Michael Jackson. Software Requirements and Specifications: A Lexicon
of Practice, Principles and Prejudices. Addinson-Wesley, 1995.
William Stanley Jevons. The coal question. Macmillan and Co. London,
2nd edition, 1866.

Bjorn Johansson, Anders Skoogh, Mahesh Mani, and Swee Leong.
Discrete event simulation to generate requirements specification for
sustainable manufacturing systems design. In Proceedings of the 9th
Workshop on Performance Metrics for Intelligent Systems, PerMIS 09,
pages 38-42, New York, NY, USA, 2009. ACM.

Tom Kelley and David Kelley. Creative Confidence: Unleashing the
Creative Potential Within Us All. Crown Business, 2013.

Susan Krumdieck. The Survival Spectrum: The key to Transition Engi-
neering of complex systems. In Proceedings of the ASME International
Mechanical Engineering Congress & Exposition, 2011.

Robyn Lutz. Software engineering for safety: a roadmap. In Proceedings
of the Conference on The Future of Software Engineering, pages 213—
226. ACM, 2000.

Georgina Mace. The Limits to Sustainability Science: Ecological
Constraints or Endless Innovation? PLoS Biol, 10(6), 2012.

Martin Mahaux, Patrick Heymans, and Germain Saval. Discovering
Sustainability Requirements: an Experience Report. In [7th Interna-
tional Working Conference on Requirements Engineering: Foundation
for Software Quality, 2011.

Donella Meadows. Leverage points — places to intervene in a
system. http://www.donellameadows.org/wp-content/userfiles/Leverage_|
Points.pdf, 1999. A shorter version of this paper appeared in Whole
Earth, winter 1997.

Donella H. Meadows. Thinking in Systems - A primer. Earthscan, 2008.
Desta Mebratu. Sustainability and sustainable development: histori-
cal and conceptual review. Environmental impact assessment review,
18(6):493-520, 1998.

Daniel Mendez and Birgit Penzenstadler. Artefact-based Requirements
Engineering: The AMDIRE Approach. Requirements Engineering Jour-
nal, to appear 2014.

Andrew Monk and Steve Howard. Methods & tools: the rich picture: a
tool for reasoning about work context. interactions, 5(2):21-30, 1998.
Stefan Naumann, Markus Dick, Eva Kern, and Timo Johann. The
greensoft model: A reference model for green and sustainable software
and its engineering. Sustainable Computing: Informatics and Systems,
1(4):294 — 304, 2011.

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]
[56]
(571

(58]
[59]

[60]

[61]

[62]

B. Nuseibeh and S. Easterbrook. Requirements Engineering: A
Roadmap. In Proceedings of the Conference on the Future of Software
Engineering, pages 35-46, New York, NY, USA, 2000. ACM.

Birgit Penzenstadler. Supporting sustainability aspects in software
engineering. In 3rd International Conference on Computational Sus-
tainability (CompSust), 2012.

Birgit Penzenstadler and Henning Femmer. A Generic Model for
Sustainability with Process- and Product-specific Instances. In First Intl.
Workshop on Green In Software Engineering and Green By Software
Engineering, 2013.

Birgit Penzenstadler, Henning Femmer, and Debra Richardson. Who
Is the Advocate? Stakeholders for Sustainability. In 2nd International
Workshop on Green and Sustainable Software (GREENS, at ICSE, San
Francisco, USA), 2013.

Birgit Penzenstadler, Martin Mahaux, and Camille Salinesi, editors.
Second International Workshop on Requirements Engineering for Sus-
tainable Systems (RE4SuSy), 2013. http://ceur-ws/vol-995.

Birgit Penzenstadler, Ankita Raturi, Debra Richardson, Coral Calero,
Henning Femmer, and Xavier Franch. Systematic Mapping Study on
Software Engineering for Sustainability (SE4S). In 18th Intl. Conf. on
Evaluation and Assessment in Software Engineering, 2014.

Birgit Penzenstadler, Ankita Raturi, Debra Richardson, Coral Calero,
Henning Femmer, and Xavier Franch. Systematic Mapping Study on
Software Engineering for Sustainability (SE4S) — Protocol and Re-
sults. Technical Report UCI-ISR-14-1, Institute for Software Research,
University of California, Irvine, 2014. http://isr.uci.edu/publications}
Birgit Penzenstadler, Ankita Raturi, Debra Richardson, and Bill Tomlin-
son. Safety, security, now sustainability: The non-functional requirement
of the 21st century. IEEE Software Special Issue on Green Software,
2014.

Birgit Penzenstadler, Bill Tomlinson, and Debra Richardson. Red4s:
Support environmental sustainability by requirements engineering. In
International Workshop on Requirements Engineering for Sustainable
Systems, 2012.

Ankita Raturi, Birgit Penzenstadler, Bill Tomlinson, and Debra Richard-
son. Developing a sustainability non-functional requirements framework.
In accepted for GREENS’14, 2014.

K.-H. Robert, B. Schmidt-Bleek, J. Aloisi de Larderel, G. Basile,
J.L. Jansen, R. Kuehr, P. Price Thomas, M. Suzuki, P. Hawken, and
M. Wackernagel. Strategic sustainable development — selection, design
and synergies of applied tools. Journal of Cleaner Production, 10:197—
214, 2002.

David Stefan, Mark Barrett, Emmanuel Letier, and Mark Stella-Sawicki.
Goal-oriented system modelling for managing environmental sustain-
ability. In International Workshop on Software Research and Climate
Change (WSRCC), 2010.

Joseph Tainter. Social complexity and sustainability.
Ecological Complexity, 3:91-103, 2006.

Joseph Tainter. Sustainability. Personal communication, February 14,
2014.

The Club of Rome. 40 years ‘limits to growth’. http://www.clubofrome.
org/7p=326, 2012.

Mark Thompson. Ict and development studies: Towards development
2.0. Journal of International Development, 20(6):821-835, 2008.

Bill Tomlinson. Greening through IT. MIT Press Association, 2010.
United Nations. Report: Our Common Future. In Conference on
Environment and Development, 1987.

K. Wiegers. Software Requirements. Number ISBN-13: 978-
0735618794. Microsoft Press, Redmond, WA, USA, 2nd edition, 2003.
World Business Council for Sustainable Development. Vision 2050:
A New Agenda for Business. http://www.wbcsd.org/WEB/PROJECTS/
BZROLE/VISION2050-FULLREPORT_FINAL.PDEF, 2010.

Pamela Zave. Classification of research efforts in requirements engi-
neering. ACM Computing Surveys, 29(4):315-321, 1997.

Journal of

http://www.iso.org/iso/home/standards/management-standards/iso14000.htm
http://www.iso.org/iso/home/standards/management-standards/iso14000.htm
http://www.iso.org/iso/home/standards/iso26000.htm
http://www.iso.org/iso/home/standards/iso26000.htm
http://www.donellameadows.org/wp-content/userfiles/Leverage_Points.pdf
http://www.donellameadows.org/wp-content/userfiles/Leverage_Points.pdf
http://isr.uci.edu/publications
http://www.clubofrome.org/?p=326
http://www.clubofrome.org/?p=326
http://www.wbcsd.org/WEB/PROJECTS/BZROLE/VISION2050-FULLREPORT_FINAL.PDF
http://www.wbcsd.org/WEB/PROJECTS/BZROLE/VISION2050-FULLREPORT_FINAL.PDF

	Introduction: What is Green Requirements Engineering?
	Background
	Sustainability Science
	ICT and Sustainability
	Related Work: RE and Sustainability
	Dimensions of Sustainability for Software Systems
	Requirements Types for the Dimensions of Sustainability
	AMDiRE: Artefact Model for Domain-independent Requirements Engineering
	Running example: Car Sharing System

	Infusing Green: Elaborating Green Requirements
	Analyse Sustainability of Context
	Find Sustainability Stakeholders
	Elicit Sustainability Objectives, Goals and Constraints
	Derive Sustainable System Vision
	Usage Model
	Refine and Deduce Sustainability Requirements

	Discussion
	Which Dimensions Appear in which Content Items?
	Sustainability Requirements Conflicts
	Cost Modelling
	Legal Constraints
	Risk Management and Environmental Sustainability

	Conclusion
	References

