
Do We Need to Teach Testing Skills in Courses on

Requirements Engineering and Modelling?

Gayane Sedrakyan

Dept. of Decision Sciences and Information Management

K.U. Leuven

Leuven, Belgium

gayane.sedrakyan@kuleuven.be

Monique Snoeck

Dept. of Decision Sciences and Information Management

K.U. Leuven

Leuven, Belgium

monique.snoeck@kuleuven.be

Abstract—It is commonly accepted that quality testing is the

integral part of system engineering. Recent research highlights

the need of shifting testing of a system to the earliest phases of

engineering in order to reduce the number of errors resulting

from miscommunicated and/or wrongly specified requirements.

Information and Computer Science education might need to

adapt to such needs. This paper explores the perspectives and

benefits of testing-based teaching of requirements engineering.

Model Driven Engineering (MDE) is known to promote the

early testing perspective through fast prototyping of a prospective

system contributing in this way to semantic validation of

requirements. Our previous research presents empirically

validated positive results on the learning effectiveness of model-

based requirements engineering in combination with adapted

MDE-prototyping method within an educational context to test

the requirements and to test the requirements testability. Despite

these positive results, our observation of the prototype testing

patterns of novice analysts suggest that combining this prototype-

based learning with the teaching of testing skills, such combined

approach can result in even better learning outcomes.

Index Terms—Requirements, analysis, conceptual modelling

quality, testing, validation, prototyping, feedback, technology-

enhanced learning.

I. INTRODUCTION

A. Problem domain

In the early project phases the functionality of the prospective

system is not yet understood precisely enough for

formalization, which makes the requirements elicitation not

only a refinement, but also a learning process. This process is

complicated by at least two problems present in natural

language: ambiguity and inaccuracy. Formalization of

requirements through models enables quality control at a level

that is impossible to reach with requirements articulated in

natural language. While experienced requirements engineers

manage to mentally picture the prospective system in their

mind when transforming requirements into formal models,

such ability to truly understand the consequences of modelling

choices can only be achieved through extensive experience.

However, the tacit knowledge expert have developed over time

is difficult to transfer to junior analysts. While teaching such

knowledge and skills to novice analysts is already a

challenging task considering that system analysis is by nature

an inexact skill, transferring the academic knowledge and skills

to real world businesses is yet another concern as the

classroom and real world situations are not identical [1]. In

their early careers the error-prone problem-solving patterns of

novices and their lack of capability to identify relevant triggers

for requirements verification lead to incomplete, inaccurate,

ambiguous, and/or incorrect specifications [2]. When detected

later in the engineering process such requirements errors can

be expensive and time-consuming to resolve [3]. This

significant gap between the knowledge and skills of novices

and experts triggers the question of how analysis skills can be

trained to facilitate the fast progression of novice analysts into

advanced levels of expertise.

B. Testing perspective contributes to improved knowledge

Testing is known as an integral part of software engineering.

Recent research highlights the need of shifting testing of a

system to the earliest phases of engineering [4]. The term early

testing is used to define a line in test research oriented to

enhance the systematic implementation of test cases based on

system requirements and business models [5]. Several

approaches (such as the V-model [6] or the Business Driven

Test Management [7]) focus on early testing of business

requirements within the system development process. Testing

of requirements includes the following perspectives: 1.

requirements must be tested and validated, 2. Test cases must

be defined early, 3. Requirements must be specified in a way to

be testable [8]. Teaching testing knowledge and skills is

however largely neglected from Requirements Engineering

courses. While testing is refined into a more exact discipline

using well-established standards, processes and document

artefacts to integrate software and requirements [9], knowledge

of requirements analysis is inexact by nature and is mostly

reliant on experience. This suggests that teaching requirements

engineering using a test-based approach may contribute to

improved requirements engineering skills.

C. Prototyping supports testing-based learning

Model Driven Engineering (MDE) [10] is known to

promote early testing of software requirements through fast

prototyping of a prospective system contributing in this way to

the semantic validation of requirements (see Fig. 1).

The learning context of prototyping as a type of simulation

(e.g. learning by experiencing [11], [12]) suggests that, when

adapted to the educational context, MDE prototyping can

support the testing-based teaching of requirements engineering

skills. In this work we explore the effectiveness of testing-

based teaching of requirements analysis and validation using

conceptual modeling and MDE prototyping method. We posit

that testing-based teaching of conceptual modeling can

contribute to improved skills of novice business analysts for

analysis, verification and validation of requirements. This then

mailto:monique.snoeck@kuleuven.be

raises the question of "how the testing perspective can be

integrated in the educational context?”.

analysis design development testing

(Prototyping-based)
requirements testing

functional errors

functional errors

non-functional errors

non-functional errors

a. Classical development cycle

b. Development cycle using requirements testing

functional errors

analysis design development testing

Fig. 1. Prototyping-based testing of requirements

II. EDUCATIONAL CONTEXT AND CONCEPTS

The proposed method (adapted MDE environment) has been

developed by the Management Informatics research group at

the faculty of Business and Economics, University of K.U.

Leuven. The approach has been subsequently tested and

validated within the course “Architecture and Modeling of

Information Systems”
1
 over a 5-years period of teaching, with

participation and constant feedback from 500 students overall.

The course targets at master level students with heterogeneous

backgrounds from the Management Information Systems

program. The goal of the course is to familiarize the students

with modern methods and techniques of Object-Oriented

Analysis and Design for Enterprise Information Systems.

Within the course the specific focus is on functional

requirements. We motivate this choice by several reasons.

When propagated to the later stages of development,

requirements errors incur high cost to repair. Empirical studies

show that more than half the errors that occur during system

development are requirements errors [3]. Furthermore

requirements errors are the most common cause of failure of

development projects [3]. The software development process

involves the translation of information from one form to

another (e.g. from customer needs to requirements to

architecture to design to code). Because this process is human-

based, mistakes are likely to occur during the translation steps

[13]. Formalization of requirements through models enables

quality control at a level that is impossible to reach with

requirements articulated less formal in natural language.

Formalization of requirements includes transformation of

informally represented knowledge into a formal specification

that is a good example of a (transformation step) affecting all

three dimensions of requirements engineering: specification,

representation, agreement [14]. Because of targeting a high

level functional view on the prospective system, functional

requirements can be formalized by means of highly abstract

design representations – conceptual models. As a sub-

discipline of requirements engineering, conceptual modeling is

described as the process of formally describing a problem

1 The course’s page can be found on
http://onderwijsaanbod.kuleuven.be/syllabi/e/D0I71AE.htm

domain for the purpose of understanding and communicating

system requirements [15], thus making it easier to integrate

business domain and ICT expertise in the system design

process. In particular, conceptual models are an essential

instrument to capture and formalize the domain assumption

part of requirements [16]. Furthermore being a sub-discipline

of requirements engineering (communicating requirements)

and software engineering (providing a foundation for building

information systems) [17] makes conceptual models the

earliest formally testable artefact. Conceptual modeling also

supports the MDE approach, which, in addition to its testing

potential, brings forward additional requirements towards

models such as a sufficient level of preciseness and detail to

provide executable specifications, contributing in this way to

improved quality of design artefacts. Thus we focus on

conceptualization of functional requirements as a basis of

producing formally testable artefacts to facilitate the process of

domain understanding and requirements elicitation.

III. RELATED WORK

Despite the considerable amount of work devoted to simulation

methodologies and prototyping in particular, to our knowledge

no research publications have been written describing courses

that use prototyping in the context of requirements

engineering, nor empirically proven learning benefits have

been reported for a certain tool. The reason is that the existing

standards for simulation/prototyping technologies also

introduce a number of shortcomings. Among major reasons are

(1) being too complex and time consuming to achieve by

novice analysts whose technical expertise is limited, (2) the

difficulty of interpreting the simulation results. Among

different types of simulation, the method of prototyping is

capable of achieving the most concrete form of a prospective

system. In our previous works we proposed a lightweight

MDE-based prototyping method adapted to learning context.

The effectiveness of a prototype in a learning context was

enhanced by the use of textual and graphical feedback when

and why the execution of a triggered business event is refused,

thus making the links between a prototype and its model

explicit [18], [19], [20]. The methodology used (rapid

prototyping method enabled by executable conceptual models)

is based on the concepts of MERODE [21]. A sample screen

shot is shown in Fig. 3.

Fig. 2. Testing a prototype requires a skill

The prototyping method was also maximally adapted to novice

analysts whose technical expertise is limited. The effects of

feedback-enabled simulation on learning outcomes of novice

learners were observed by means of empirical studies.

Extensive experimental testing with participation of 114

students has demonstrated the positive effect of prototype-based

simulation on requirements analysis and validation skills of

junior modelers [19]. Despite the significant improvement of

learning outcomes, we also observed several difficulties in

students’ testing cycles (see the following chapters).

IV. TEACHING EXPERIENCES WITH FEEDBACK-ENABLED

PROTOTYPING

Throughout the semester testing-based analysis and validation

cycles are stimulated by a problem-based learning method. In

parallel with theoretical sessions students are requested to

participate in computer lab exercise sessions in which they are

given analysis tasks such as validating a given conceptualized

specifications (usually a conceptual model solution of their

peers) against given business requirements. The proposed

solutions usually contain erroneous models which students

need to read, understand, validate against requirements and in

case design errors are detected propose improvements.

Validation cycles are supported by MDE-prototyping as

described in this paper. During the semester students are also

assigned a group project (a real-world case with approximately

5-15 pages requirements document). At the end of the semester

the solution is scored, and then students are interrogated to

determine the final score as a correction on the model score. In

the cohort of January 2012, students were asked to demonstrate

their solution by manually inspecting the model using a test

case provided by the teacher. Less than half of the students in

this cohort were able to identify mistakes in their solution, not

even when manually simulating it through a mental execution

with a given test scenario. In the cohort of January 2013, the

same type of evaluation was performed, but this time students

had to execute the given test scenario using the prototype. By

means of the dynamic testing approach in this cohort, more

than half of the students were not only able to see mistakes but

were also able to correct them. Although this result is positive,

we nevertheless observed student incapacities to develop their

own adequate test scenarios [19]. To assess the effectiveness of

the feedback-enabled simulation cycle on learning outcomes

Fig. 3. Validation through prototyping using feedback

of novice learners three studies were conducted in the context

of two master-level courses from two different study programs

spanning two academic years with participation of 104

students overall. During the experiments students were asked

to assess whether or not the model reflected a particular

requirement statement correctly by responding to a set of

true/false questions (requirements rephrased into test

questions), e.g. “in this model solution invoicing is required to

buy a retail product (TRUE/FALSE?)”. They were also asked

to motivate their answers. For each correct answer 1 point was

attributed, and 0 for each wrong answer. In total 8 questions

had to be answered (min. score = 0; max. score = 8). The

results were analyzed by comparing the test scores of students

using the simulated model in the process of validating the

proposed model solutions to the results of the tests in which

they did manual inspection. The results of the statistical

analysis showed significant improvement on students’

capabilities to validate conceptual specifications for given

requirements (relative advantage (positive correction) of

approximately 2.33 points on 8 was observed; without = 3.1,

with = 5.43, p = 0.000) [19]. The evaluation by students for the

improved tool extended with feedbacks in 2013 resulted in

average of 4,58 on perceived usefulness (for the prototyping

tool) and 4,52 (for the incorporated feedbacks) on a five-point

Likert scale.

A. Observations of testing patterns

As stated above while the findings of the experiments showed

a significant improvement in students’ model-based validation

capabilities when using feedback-enabled simulation, we still

observed difficulties in testing by students. In this work we

report on our findings on testing approaches of novice analysts

by exploring the wrong answers by students. Motivations to

the answers provided by students were qualitatively analyzed

and the scenarios that occurred more frequently were

generalized into patterns.

B. Testing patterns

Major problems generalized from students motivations

resulted in the following error patterns: (1) Omitted prototyping

cycle; (2) Partial testing with a use of prototype characterized

by incomplete testing scenarios. In their motivations for the

answer when a simulation cycle was omitted, students referred

to a modeling construct that according to them was already

obvious with manual inspection (e.g. relationship is optional),

failing to consider another constraint that resulted in a

mandatory relationship (e.g. cardinality constraint was

omitted). The following frequent patterns were found in the

motivations where a partial test was performed:

 Pattern 1: Confirmative rather than explorative

(approximately 20% of wrong answers)

Sample requirement : “Each request can be processed by

exactly one reviewer”.

Testing approach : The testing scenario is limited to

confirmation scenario. While the requirement is tested for

the positive case “can be viewed by a reviewer”, testing

the constraint “by not more than one” was omitted.

 Pattern 2: Insufficient examination of path dependencies to

identify related instances through transitive paths of

dependencies (approximately 50% of wrong answers)

Sample requirement : “Ordering is not required for sell-

ing Retail Products to Walk-in Customers”.

Testing approach : The testing scenario is limited to the

first level of dependency, e.g. the student’s motivation

refers to the need of creating an invoice line which only

requires an instance of invoice, thus rejecting the

dependency to order. Testing the next level dependency

between invoice and order was omitted (i.e. the creation of

invoice was not executed to discover the dependency).

A B

Fig. 4. Transitive path of dependencies

 Pattern 3: Insufficient examination of path dependencies to

identify related instances through parallel paths of

dependencies (approximately 30% of wrong answers)

Sample requirement : “If a business customer A orders

some products, then it is possible that business customer B

pays the invoice for these products.

Testing approach : Testing scenario is limited to one of

the parallel paths, e.g. when a direct relationship between

invoice and a customer was examined, the examination of

a hidden relationship through order object linked both to

invoice and customer objects was omitted.

A

B

Fig. 5. Parallel paths of dependencies

V. PROPOSED SOLUTION: BORROWING TESTING ARSENAL

An example of testing an erroneous model is shown in Fig. 3

by means of a model about (mobile phone) services which

customers can subscribe to, and for which promotion packages

are offered regularly. Testing the prototype reveals a semantic

mismatch (design error): trying to subscribe to a service results

in execution failure due to a sequence constraint violation (the

state of the “promotionPackage” object to which the chosen

service is associated is “suspended”). The scenario fails

because of a behavioral constraint, but it actually reveals a

wrong hidden dependency from “service” to

“promotionPackage”: it seems a service depends on the

availability of a promotion, which is incorrect. The explanation

can be extended with graphical visualization linking to the

specific part of the model that causes the error.

While in the example above the testing results can be inter-

preted subjectively by students depending on their analytical

skills, teaching a more systematic testing approach would bene-

fit to improved skills for verification. To stimulate test-based

requirements validation we propose borrowing the concept of

acceptance test, the goal of which is to ensure the testability of

requirements [6]. This requires teaching knowledge of how to

write/reformulate requirements as tests with the use of testing

artifacts such as Test Case (purpose, assumptions, pre-

conditions, steps, expected outcome, actual outcome, post-

conditions) and Test Scenario (process flows, i.e. sequence of

executing test cases). Next, the concept of coverage testing can

be including to ensure the completeness of execution (each

requirement should be exercised at least once). To ensure bet-

ter results peer expertise can be exploited by peer reviews of

group projects in which one group of students would act as

testers for another group. A simple example demonstrating an

improved validation cycle for an erroneous model (see Fig. 6)

with the use of a testing artefact is presented below.

Fig. 6. Sample erroneous model

For the requirement statement “Ordering is not required for

selling Retail Products to Walk-in Customers” a student would

have to specify a test scenario (in the model solution of a stu-

dent selling requires registering an invoice) … In random, blind

verification of this requirement, a student's attempt to create an

invoice line will reveal the need for an invoice first: a popup

window of a prototype would suggest creating an instance of

invoice (or choosing from existing instances) to be associated

with a newly created instance of invoice line. This will lead to

the conclusion that invoicing is required (but not ordering) and

hence to the erroneous conclusion that the requirement is satis-

fied. A systematic approach to test plan development would

stipulate defining a complete test scenario, including the crea-

tion of the invoice which would then reveal a dependency from

invoice to the order object (a popup window of a prototype

requiring a creation or choice of an existing order instance) to

be associated with an instance of invoice, leading to the con-

clusion that the above requirement is not satisfied.

Furthermore, teaching regression testing knowledge can

benefit to improved skills for integrating changes in require-

ments (identifying the test scenarios to be repeated because of a

change). To stimulate such analytical skills assignments for

integrating modifications in requirements can be used.

VI. CONCLUSIONS

We compared the results of oral examination with and without

testing scenarios provided by the teacher. Two conclusions

were obtained from this comparison: 1. the results demonstrate

that the testing by means of a working prototype improves

model understanding compared to a paper exercise by 2.33

points on 8. The paper exercises limit the scope of

understanding to a static view of a model, whereas dynamic

testing fosters a more thorough understanding; 2. Validation

cycles supported with test scenarios provided by the teacher

resulted in better model understanding indicators than

unassisted testing cycles. The results of experiments from our

previous studies also confirmed the effectiveness of testing-

based learning of analysis and validation of requirements over

traditional methods of learning allowing a student to build a

deeply understood knowledge that is developed from own

practice. The observations of testing patterns of students also

suggest that when combined with teaching high level testing

knowledge and skills the method will result in even better

learning outcomes. The results of this work contribute to

innovative teaching practices by means of computer-enhanced

learning [22] in the domain of requirements engineering thus

promoting to better skill preparedness of novice analysts.

The work presented in this paper can be extended in several

ways. One direction would be related to data collection by

means of the logs of the prototyping tool that might provide

new insights on testing approaches and patterns of novices.

While our observations were limited to a single prototyping

cycle within the context of oral exams and experiments, anoth-

er possibility could be the investigation of testing patterns ex-

tended to longer periods of observations, e.g. prototyping logs

of testing activities for group projects. Examination of testing

patterns where a combination of structural and behavioral con-

straints are involved could be interesting as well. Based on the

findings a tool support to enable automated assistance or gen-

eration of test scenarios can be investigated as well.

REFERENCES

[1] Damassa, D. A., & Sitko, T. (2010). Simulation Technologies in

Higher Education: Uses, Trends, and Implications. EDUCAUSE

Center for Analysis and Research (ECAR), Research Bulletins.

[2] Schenk, K. D., Vitalari, N. P., & Davis, K. S. (1998).

Differences between Novice and Expert Systems Analysts: What

Do We Know and What Do We Do? Journal of Management

Information Systems, 15(1), 9-50.

[3] A. Enders, H.D. Rombach. (2003). A Handbook of Software and

Systems Engineering: Empirical Observations, Laws and

Theories Addison-Wesley, Reading, MA, USA

[4] Robertson, S. (2000). Requirements testing: Creating an

effective feedback loop. FEAST 2000.

[5] Gutiérrez, J.J., Escalona, M.J., Mejías, M., Torres, J. Generation

of test cases from functional requirements A survey, 4th

Workshop on System Testing and Validation, Potsdam,

Germany (2006)

[6] V-Model Lifecycle Process Model. http://v-modell.iabg.de/

[7] Roodenrijs, E., van der Aalst, L., Baarda, R., Visser, B., Vink,

J., (2008) TMAP NEXT® - Business Driven Test Management,

UTN, ISBN 9789072194930

[8] Pohl, K. (2010). Requirements Engineering: Fundamentals,

Principles, and Techniques, Berlin, ISBN 978-3-642-12577-5

[9] ANSI/IEEE Std 829-1983, IEEE Standard for Software Test

Documentation

[10] OMG. Model-Driven Architecture. http://www.omg.org/mda/

[11] Kluge, A. (2007). Experiential Learning Methods, Simulation

Complexity and their Effects on Different Target Groups.

Journal of Educational Computing Research, 3(36), 323-349.

[12] Barjis, J., Gupta, A., Sharda, R., Bouzdine-Chameeva, T., Lee,

P. D., & Verbraeck, A. (2012). Innovative Teaching Using

Simulation and Virtual Environments. Interdisciplinary Journal

of Information, Knowledge, and Management, 7, 237-255.

[13] Walia, G., Carver, J. (2009). A systematic literature review to

identify and classify software requirement errors, Information

and Software Technology, Volume 51, Issue 7, pp.1087-1109,

ISSN 0950-5849

[14] Pohl, K. (1994). The three dimensions of requirements

engineering: A framework and its applications, Information

Systems, Volume 19, Issue 3, pp. 243-258, ISSN 0306-4379,

http://dx.doi.org/10.1016/0306-4379(94)90044-2

[15] Siau, K. (2004). Informational and computational equivalence in

comparing information modeling methods. Journal of Database

Management (JDM), 15(1), 73-86.

[16] Jureta I.J., Mylopoulos J., Faulkner S. (2008). Revisiting the

Core Ontology and Problem in Requirements Engineering, IEEE

International Requirements Engineering Conference, 71-80

[17] Moody D. L., Theoretical and practical issues in evaluating the

quality of conceptual models: current state and future directions,

Data & Knowledge Engineering, Volume 55, Issue 3, December

2005, pp. 243-276, ISSN 0169-023X.

[18] Sedrakyan, G., & Snoeck, M. (2013). A PIM-to-Code

requirements engineering framework. In Proceedings of

Modelsward 2013-1st International Conference on Model-driven

Engineering and Software Development-Proceedings, 163-169.

[19] Sedrakyan, G., & Snoeck, M. (2013). Feedback-enabled MDA-

prototyping effects on modeling knowledge. In Enterprise,

Business-Process and Information Systems Modeling (pp. 411-

425): Springer.

[20] Sedrakyan, G., Snoeck, M., Poelmans, S. (2014). “Assessing the

effectiveness of feedback enabled simulation in teaching

conceptual modeling”, Computers & Education (accepted).

[21] Snoeck, M., Dedene, G., Verhelst, M., Depuydt, A.: Object-

oriented enterprise modelling with MERODE, Leuvense

Universitaire Pers, Leuven (1999)

[22] EuropeanCommission. (2013). Opening up education:

Innovative teaching and learning for all through new

technologies and open educational resources, http://eur-

lex.europa.eu/legal-content/EN/TXT/?qid=1389115469384

&uri=CELEX:52013DC0654

http://www.v-modell.iabg.de/kurzb/vm/k_vm_e.doc
http://v-modell.iabg.de/
http://www.omg.org/mda/
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid

