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Abstract 

The US Army faces a significant burden in 
planning sustainment operations. Currently, 
logistics planners must manually evaluate 
potential emplacement sites to determine their 
terrain suitability. Sites subject to rainfall-runoff 
responses such as flooding are ill-suited for 
emplacements, but evaluating the likelihood of 
such responses requires significant time and 
expertise. To reduce the time and to ease the 
difficulty of logistics site selection we 
demonstrated a series of Terrain Impact Decision 
Extensions (TIDE) for use in logistics planning 
tools and processes. TIDE performs data-fusion 
over a variety of terrain and weather data sets 
using probabilistic relational models (PRMS), 
providing a high-performance alternative to 
physics-based hydrologic models. 

1. INTRODUCTION 
Maintaining a constant supply of water and fuel is critical 
to sustaining the US Army’s forces in the field. 
(Department of the Army, 2008). To provide access to 
these critical resources, logistics planners must deliver 
those resources with minimal failure to establish and 
maintain emplacements (e.g., tanks, fuel lines) capable of 
storing these crucial commodities. Water and fuel 
supplies must not be susceptible to disruption, damage, 
and contamination by water due to rainfall-runoff 
responses such as flooding, overland flow, and ponding 
(i.e., the temporary accumulation of surface water).  

Currently, the risks posed by rainfall-runoff responses to 
potential emplacement sites are manually evaluated, and 
require considerable expertise and time. Site evaluation is 
further complicated for areas lacking detailed data that 
describe terrain, soil properties, and subsurface conditions 
(e.g., the presence of aquifers).  This occurs due to the 

significant role played by terrain, soil, and subsurface 
factors in the effects of rainfall run-off on terrain. A 
decision aid capable of automatically evaluating the 
suitability of emplacement sites would reduce the time 
needed for evaluation by logistics planners and improve 
the quality of sites selected.  

To reduce the time and the difficulty of logistics site 
selection we designed and demonstrated a series of 
Terrain Impact Decision Extensions (TIDE) for logistics 
planning tools and processes. TIDE performs data-fusion 
over a variety of terrain and weather data sets, and uses 
probabilistic relational models (PRMs) to reason with 
uncertainty to evaluate the suitability of potential logistics 
sites against a series of expert rules for a variety of 
emplacement systems. By using PRMs to rank the 
severity of potential rainfall-runoff responses, TIDE was 
able to site determine suitability much faster than by 
rigorous physical simulation. Additionally, PRMs can 
reason with incomplete data (e.g., a lack of detailed soil 
information), making them useful even when evaluating 
data-poor regions.  

1.1 PROBLEM DESCRIPTION 

The rainfall-runoff response of landscapes is a 
fundamental problem in the field of hydrology (Singh, 
1988). The accumulation of water at a particular time-
space location on the Earth’s surface (i.e., terrain 
ponding) is the result of the confluence of many 
climatologic, hydrologic, and physical factors and 
parameters.  During a liquid precipitation event (e.g., 
rain), water is transported in three main ways: water can 
run-off/on in the form of overland flow; infiltrate into the 
soil and become ground water; or be transferred back into 
the atmosphere via evapotranspiration. Overland flow can 
in turn lead to the accumulation of surface water (e.g., 
flooding), which poses a risk to US Army emplacements. 

The terrain assessment model must account for multiple 
aspects of the area of interest. First, overall climatic 
conditions (i.e., arid, semi-arid, humid) have an important 
influence over the relative distribution of water in the 

31



 

three pathways. The model must account for uncertainty 
in weather predictions and climatologic predictions. 
Second, the model must account for local factors within 
the area of interest that influence the rainfall-runoff 
response. There are many such factors, including rainfall 
intensity and duration, slope of the land, land use and land 
cover characteristics (i.e., vegetation and impervious 
surfaces), soil and air temperature, soil hydraulic 
properties, and soil moisture conditions. The data sources 
for these factors may be incomplete or inaccurate, 
introducing additional uncertainty.  

The prediction of where, when, and how long water will 
accumulate on the land surface is reliant on constraining 
parameters that describe the above processes and 
conditions.  Fortunately, hydrologists have been 
developing tools to both quantify these factors and 
develop quantitative models for predicting rainfall-runoff 
response to precipitation events.  

These models are often based on solving complex 
equations that govern the physics of surface and 
subsurface water  (Abbott, Bathurst, Cunge et al., 1986; 
Panday & Huyakorn, 2004) or assign statistical values to 
terrain based on observation (Yoram, 2003). These 
models are not practical for US Army planning because 
they require complete data sets, are extremely time-
consuming to compute, and do not scale to the levels of 
detail and scope required by US Army logistics planners. 

2. APPROACH 
Given the potential incompleteness of input parameters 
(including terrain, soil and subsurface data), our approach 
uses a probability-based method to track the inferences 
made about data through the model. For TIDE to be 
useful, the system must infer terrain characteristics, soil 
properties, and subsurface conditions from limited data. 
While terrain elevation data is available for most of the 
world at varying levels of detail, soil data is less 
prevalent. Land use, land cover (e.g., vegetation), as well 
as the soil’s hydrologic properties and moisture 
conditions are all factors in predicting rainfall-runoff 
response. When this information is not directly available, 
it needs to be estimated or inferred. For example, soil 
properties for a given region within the United States may 
be well-known and stored in a Geographic Information 
System (GIS) database, but this data may be unknown for 
many rural regions around the world. An exhaustive 
geological survey of potential sites within that region is 
not possible given time and personnel constraints. Even 
when terrain, soil, and subsurface data are present, it may 
not be at resolutions high enough to be relevant to the 
emplacements (e.g., a map with soil data at a resolution of 
500m is of limited use when selecting a site for a fuel line 
less than a meter across). In cases where data describing 
terrain characteristics, soil properties, and subsurface 
conditions are absent, purely rule-based approaches are 
insufficient, as rules alone are poorly-suited to handling 
incomplete data. The system must be capable of reasoning 

with limited or incomplete data before executing any 
impact assessment rules. The PRM model developed 
under the TIDE effort is capable of reasoning with 
incomplete data and inferring data that may be absent. 
Additionally, while our initial model is very simple, 
further work may expand the model to be very complex. 
The object-oriented PRM approach is well-suited for such 
complexity. 

The PRM output is used to generate maps showing the 
likelihood for flow accumulation at a given location for a 
certain amount of time. We based our models on the 
Hortonian Infiltration and Runoff/On (HIRO2) model, 
which was originally developed for the USDA (Meng, 
Green, Salas et al., 2008). This model predicts rainfall-
runoff responses, including runoff channels (in which 
surface water flows) and the time until ponding occurs. 
The HIRO2 model performs well, but operates at larger 
scales than are useful to emplacement selection, generally 
being most accurate at scales of hundreds of meters. The 
HIRO2 model served as the basis for our model, but was 
modified to operate at higher levels of fidelity without 
significantly compromising performance.  

Bayesian modeling techniques have been used in the field 
of hydrology for decades (Vicens, Rodriguez-Iturbe, 
Schaake et al., 1975), but the majority of this work has 
different goals than TIDE. Bayesian modelling 
approaches generally take existing models that use direct 
measurements as inputs (e.g., rainfall) and predict specific 
hydrologic response values (e.g., runoff rate, groundwater 
level). Bayesian techniques are then used to calibrate the 
models parameters to improve their accuracy (Beven & 
Binley, 1992; Thiemann, Trosset, Gupta et al., 2001; 
Vrugt, Ter Braak, Clark et al., 2008).  

TIDE differs from past Bayesian hydrologic models in 
two fundamental ways. First, our model attempts to 
predict the impact of rainfall-runoff responses, not their 
precise values. Generally speaking, US Army logistics 
planners are not concerned about predicting the exact 
amount of surface water that may accumulate, but are 
instead primarily concerned about the impact on the 
mission. For example, the difference between 1.2 meters 
of standing water or 2.4 meters is irrelevant if either 
makes the mission impossible to complete.  

Second, the TIDE model must perform with reasonable 
accuracy in regions of the world that have little, if any, 
hydrologic data observations (e.g., hourly flow rates for a 
stream) that can be used to train or calibrate a model. 
Instrumenting and measuring rainfall-runoff responses in 
these areas may be too costly, logistically infeasible, or 
dangerous. As a consequence the TIDE model must rely 
on generally available data (e.g., elevation, land cover, 
weather).  

2.1 PROBABALISTIC RELATIONAL MODELS 

To represent our terrain and hydrologic models in a 
probabilistic form that allows us to determine the 
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suitability of an area of interest, we designed a 
probabilistic relational model (PRM) (Koller & Pfeffer, 
1998; Pfeffer, Koller, Milch et al., 1999; Friedman, 
Getoor, Koller et al., 1999). PRMs describe the world in 
terms of classes of objects, instances of those classes and 
relationships between them. Serving as a powerful 
extension of Bayesian Networks (BNs), PRMs use object-
oriented semantics that capture attribute, structural, and 
class uncertainty to overcome computational and storage 
complexity challenges faced by BNs.  

The design of PRMs has proven to be useful in 
representing a wide range of complex domains that 
involve uncertainty and require flexibility and reusability. 
In regard to complexity, PRMs capture the logical and 
relational structure of a domain. For example, PRMs 
specify how one attribute influences the value of another 
attribute. In our PRM, the value of the attribute, 
RankDrainageCapacity, is dependent on the values of 
attributes, LandCoverType and SoilType, from two other 
classes. Therefore, the model uses the values of 
RankDrainageCapacity’s dependent attributes, 
LandCoverType and SoilType, to infer the value of 
RankDrainageCapacity.  

To handle uncertainty, PRMs use probability distributions 
encoded in the model to determine values of unknown 
variables. The value of LandCoverType and SoilType for 
a location are retrieved from data sources outside the 
model and then posted to the model. Therefore, there is 
little uncertainty in regard to these two attributes. 
Conversely, the value of RankDrainageCapacity is 
inferred inside the model using probability distributions. 
To overcome the uncertainty involved with this attribute, 
encoded in the model is a map of possible combinations 
of land cover and soil types to appropriate probability 
distributions. Relying on the team’s hydrologic expertise, 
we created initial distributions for each possible pair of 
land cover and soil types, as well as each land cover and 
soil type provided the other attribute was unknown. 
Similarly, using domain knowledge, we supplied 
distributions for each individual slope ranking, flow 
ranking, and drainage ranking assuming that the other two 
attributes were unknown. Given the increased number of 
combinations for RankRunoffPotential, to obtain 
distributions in the case that two or three attributes were 
known, we multiplied the probabilities of the known 
attributes for each of the five possible 
RankRunoffPotential values. The distributions for 
Suitability were much simpler to encode, as only five 
probability distributions that required no further 
calculations were necessary. While these initial 
distributions pass face validation, future work is needed to 
adjust the distributions to meet higher accuracy needs. 

To support flexibility and reusability, PRMs allow the 
reuse of the same class probability models for all 
instances of a class. New probabilistic models do not have 
to be constructed for each new situation. Instances of 
classes can be configured in any way desired for a given 

situation. The relationships that hold between these 
instances are captured by the PRM. For example, our 
PRM contains a class SiteModel that has one attribute, 
Suitability. The value of Suitability depends on the 
instance of the Runoff class’ attribute, 
RankRunoffPotential. To reason over this model, one 
must create instances of both the SiteModel and Runoff 
classes. 

The flexibility and reusability of PRMs grant us the 
ability to reason over millions of locations. For each 
location, the relevant set of known facts about specific 
attributes – the land cover type, soil type, rank of slope 
and rank of flow –must be provided to the instances of 
classes. As we transition to discuss our PRM in greater 
detail, it will become more evident that these four key 
features of PRMs – complexity, uncertainty, flexibility, 
and reusability – are crucial to obtaining successful 
results. Bayesian Networks could also apply to this 
problem, as the relational structure is fixed for every 
instance. Nevertheless, the object-oriented representation 
of PRMs were quite helpful in designing the model. 

2.2 PRM EDITOR 

We developed a PRM Editor that provides an intuitive 
graphical user interface (GUI) that allows users to create 
complex PRMs by defining classes of objects, adding 
attributes to those class definitions, creating instances of 
the classes, and specifying the relationships between 
them. 

Upon launching the PRM Editor, the user can navigate 
between three views: the global view, class view, and 
instance view. While these three views are initially blank, 
the panels become populated with information and 
graphical representations of the model. The global view 
allows a user to view the PRM as a whole in a folder 
format. Its top-level folder, named after the PRM, can be 
expanded to display three other folders, enums, classes, 
and instances. The enums and instances folders can 
further be expanded to show all enumerations and 
instances of classes in the model. Within the classes 
folder are additional folders for each class that can be 
expanded to view the attributes in that class.  

Unlike the global view, the class view displays a 
graphical representation of the PRM. Each class is 
represented by a box labeled with the class name. If 
applicable, arrows are automatically drawn between 
boxes indicating super and subclasses (parent-child 
relationships). The instance view also displays boxes that, 
rather than represent classes, represent the instances of 
classes in the model.  

To begin utilizing these three views, the user has the 
option to either load an existing model into the GUI or 
create a new PRM. After loading or initializing the model, 
the user can begin building the model by adding classes. 
When creating a class, the user must specify the name and 
parent class of the new class. In the case of our model, we 
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created six classes, none of which had parents, so this 
field remained blank. 

Adding an attribute requires more detail than adding a 
class. A user must specify the attribute name, type, and 
resolution. The user has the option to assign single or 
multi as the attribute’s type, as well as choose from a list 
of possible types. Possible types contained in this list 
include integer, real number, Boolean, type, nothing, as 
well as all of the classes and enumerations created by the 
user. If the attribute is of type enumeration, the user must 
have previously defined the appropriate enumeration. For 
example, in our model, the SiteModel class’ attribute, 
Suitability, is of type enumeration. The possible values 
for Suitability are VeryPoor, Poor, Medium, Well and 
VeryWell. Therefore, we created an enumeration called 
RankPoor, to represent an attribute with these five 
possible values. Before defining an attribute’s resolution, 
the user must create instances of other classes. By 
creating instances of classes, attributes in other classes 
can depend on the attributes of these instances. Figure 1 
shows the global and class relationship views after the six 
classes and their six respective instances have been 
created.  

  

Figure 1: Global View (left), Class Relationship View 
(right) 

To complete the implementation of the previously 
discussed attribute, Suitability, its resolution must be 
defined. The resolution of an attribute can be assigned as 
nothing, assignment, or dependency. Upon creating the 
attribute, the default choice is nothing. If the user updates 

the resolution to assignment, the user must enter the exact 
value of the attribute or its reference. For example, if the 
attribute were an integer, the user could indicate that 
value was 10. Alternatively, the reference could be set to 
an attribute of another class that was also an integer. The 
appropriate resolution for Suitability is dependency. 
Therefore, the user must specify the influencer, the 
attribute that Suitability depends on, as well as the 
conditions and their respective distributions. The 
conditions are the possible values of the influencer. Each 
possible value of the influencer is paired with a CPD 
indicating the likelihood of each possible value of the 
attribute. Suitability depends on the instance of the 
Runoff class’, RunoffInstance, attribute 
RankRunoffPotential. RankRunoffPotential has five 
possible values – VeryLow, Low, Medium, High, and 
VeryHigh. Therefore, Suitability will have five conditions 
and five distributions that indicate the probability of each 
of Suitability’s five possible values occurring given the 
value of RankRunoffPotential.  

 Having defined four enumerations, six classes, 
seven attributes, and six instances in our model using the 
PRM Editor, the model was saved to as a .prm file that 
could be used by the TIDE system. 

2.3 HYRDOLOGIC MODEL 

A PRM consists of a set of class probability models. The 
final version of our PRM (Figure 2) contains six classes – 
SiteModel, Runoff, Topography, DrainageCapacity, 
LandCover, and Soil. Each class has a set of attributes. 
Attributes are either simple or complex. Simple attributes 
are random variables that represent direct properties of an 
object, such as the type of land cover or type of soil, 
whereas complex attributes represent relationships to 
other objects. The attributes in our model are all simple. 

Logical relationships can be described between classes. 
The lines in Figure 2 represent these relationships. 
Assuming we have an instance of every class, an instance 
of LandCover is related to an instance of the 
DrainageCapacity class by the LandCoverType attribute. 

Each simple attribute is associated with a set of parents 
and a CPD. The parents are determined by the attributes 
that the attribute depends on. Attributes can depend on 
either other simple attributes of the same object or of 
related objects. An example of an attribute of an object 
depending on an attribute of a related object is the 
dependence of the RankDrainageCapacity on 
LandCoverType.  

Attributes of related objects are specified via attribute slot 
chains, such as the slot chain LandCoverInstance 
LandCoverType. This slot chain begins with the object 
representing the land cover of a location, and accesses the 
simple attribute indicating the type of land cover at this 
location. The model specifies that the 
RankDrainageCapacity attribute of the DrainageCapacity 
class has this slot chain as a parent. To reiterate, this 
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indicates that the RankDrainageCapacity depends 
probabilistically on the LandCoverType. The other slot 
chain parent of RankDrainageCapacity is 
SoilInstance.SoilType. It is important to emphasize that 
these parent relationships are general, meaning that the 
land cover or soil type may vary from scenario to 
scenario, but the probabilistic relationships hold for all 
scenarios (e.g., when a new area is investigated).  

 

Figure 2: Hydrologic PRM 

In our tree-structured PRM, the attributes in the classes 
directly below another class are parents to the attributes in 
the class above them. Therefore, the attributes in the three 
leaf classes, LandCover, Soil and Topography, do not 
have parents. The values of these attributes are derived 
outside the model and posted as evidence to the model. 
Conversely, the values of the attributes in the remaining 
classes, SiteModel, Runoff, and DrainageCapacity, are 
inferred from the data available within the model.  

Recall that the other information associated with a simple 
attribute is a CPD that specifies a distribution over values 
of an attribute given the values of its parents. In the case 
of Suitability, its parent is Runoff.RankRunoffPotential. 
Table 1 shows the code for the implementation of the 
SiteModel class, complete with its attribute, Suitability, 
specification of its parent, RankRunoffPotential, and CPD 
for every possible value of RankRunoffPotential. The 
bolded line specifies, in plain terms, that if the 
RankRunoffPotential is VeryLow then there is 10% 
likelihood Suitability is VeryPoor, 15% likelihood 
Suitability is Poor, 50% likelihood Suitability is Medium, 
15% likelihood Suitability is Well and 10% likelihood 
Suitability is VeryWell. 

Similar to how parent relationships are defined, the 
assigned CPD is general; it holds no matter what the 
specific related objects are.  

 

Table 1: SiteModel Class Implementation 

class SiteModel =  { 
     Suitability: single RankPoor depends on 
[RunoffInstance.RankRunoffPotential] 
     case [VeryLow] =>  

(0.1 -> VeryPoor, 0.15 -> Poor, 0.5 -> Med, 0.15 -> Well, 
0.1 -> VeryWell) 
     case [Low] =>  

(0.7 -> VeryPoor, 0.1 -> Poor, 0.1 -> Med, 0.05 -> Well, 
0.05 -> VeryWell) 
     case [Med] =>  

(0.05 -> VeryPoor, 0.1 -> Poor, 0.7 -> Med, 0.1 -> Well, 
0.05 -> VeryWell) 
     case [High] =>  

(0.05 -> VeryPoor, 0.05 -> Poor, 0.1 -> Med, 0.7 -> Well, 
0.1 -> VeryWell) 
     case [VeryHigh] =>  

(0.05 -> VeryPoor, 0.05 -> Poor, 0.1 -> Med, 0.1 -> Well, 
0.7 -> VeryWell) 
     case [_] =>  

(0.2 -> VeryPoor, 0.2 -> Poor, 0.2 -> Med, 0.2 -> Well, 0.2 
-> VeryWell) 

  } 
 

With a clear understanding of how relationships and 
CPDs are specified in the model, we can discuss how 
inference ultimately determines if a location is suitable. 
The basic order of how the model performs inference is: 
once the values of an attribute’s parents are known, the 
value of that attribute can be inferred. Therefore, the 
process begins by posting evidence to the leaf classes. 
First, the LandCoverType, SoilType, RankSlope, and 
RankFlow evidence is posted to the model. Next, the 
model can infer the value of RankDrainageCapacity from 
the land cover and soil data. For example, if the 
LandCoverType is Shrub and the SoilType is Vertisols, 
the probability distribution encoded in the model for 
RankDrainageCapacity given this evidence is: case 
[Shrub,Vertisols] => (0.7 -> VeryPoor, 0.3 -> Poor, 0.0 -> 
Med, 0.0 -> Well, 0.0 -> VeryWell). Again, this 
distribution can be interpreted as: If LandCoverType is 
Shrub and SoilType is Vertisols, there is 70% likelihood 
the RankDrainageCapacity is VeryPoor and 30% 
likelihood the rank of drainage capacity is Poor. Once the 
CPD of RankDrainageCapacity is determined, the 
distribution can be used in conjunction with the 
Topography evidence to infer the value of the 
RankRunoffPotential. This process propagates up the 
model, as RankRunoffPotential influences the value of 
Suitability.  

To determine a site’s suitability, the model uses all 
available data. While accuracy increases with amount of 
available data, our model is capable of reasoning with 
incomplete or no data. In the case that data is unavailable 
or unknown for the four inputs – LandCoverType, 
SoilType, RankSlope, and RankFlow – the probability is 
evenly distributed over all possible values. 

Our PRM Editor utilizes the open source Figaro 
probabilistic programming language (PPL) 
(www.cra.com/figaro) to perform inference. PPLs provide 
a powerful and flexible way to represent probabilistic 
models using the power of programming languages. In 
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addition, PPLs offer general-purpose reasoning 
algorithms for inference and machine learning. Our 
implementation utilizes the Metropolis-Hastings 
reasoning algorithm, capped with a runtime of 5,000 
milliseconds per inference.  

2.4 INTEGRATION 

Our PRM used data from the following data sources. 

2.4.1 SRTMVF2 

 The Shuttle Radar Topography Mission (SRTM) was a 
joint project between NASA and the National Geospatial-
Intelligence Agency (NGA) to create high-resolution land 
surface data for much of the world (roughly 80% of the 
Earth’s land surface is covered). The SRTM Void-Filled 2 
(SRTMVF2) data set is at 1-arc-second (approximately 
30-meter) resolution data, with many gaps in data void-
filled using interpolation techniques (Dowding, Kuuskivi, 
Li et al., 2004). The SRTMVF2 dataset serves as our 
primary elevation data source, as our hydrologic model is 
heavily dependent on accurate, high-resolution elevation 
data. However, we have identified that there are gaps 
within the SRTMVF2 elevation data. In areas where no 
SRTMVF2 data can be found, we can fall back to lower 
resolution DTED data, including the SRTMVF1 and 
SRTMVF0 data sets. Elevation is used to determine 
inputs to our model, slope and water flow. Slope and flow 
implicitly capture the spatial relationships of each DTED 
point with its neighbors, allowing the PRM to reason 
about each point’s data independently. 

Slope 

Slope is determined using the elevation dataset. For the 
initial effort, we used a simple algorithm that iterates 
across each elevation point. For each point, the relative 
change, dE, in elevation is calculated for each adjacent 
point (excluding diagonally adjacent points.)  The dE 
value with the greatest magnitude is selected, and the 
distance between points (1 arc-second in the case of the 
SRTMVF2 dataset) is used to calculate the angle of the 
WHUUDLQ¶V�VXUIDFH��Ԧ��7KLV�YDOXH�FDQ�UDQJH�IURP���GHJUHHV�
(i.e., perfectly flat) to 90 degrees (which would be a 
perfectly vertical surface.) While there are more elaborate 
methods for determining slope that provide more accurate 
results, this technique can process millions of points in a 
matter of minutes, and yields sufficient accuracy for the 
needs of the terrain assessment model. 

Once the slope angles have been calculated using the 
algorithm described above, they are translated from a 
continuum of [0, 90) to five discrete values, which are 
used as inputs for the terrain model. Table 2 shows how 
angle ranges are mapped to model inputs. 

Table 2: Mapping terrain slope angles to model inputs 

Angle Range Rank of Slope 

����Ϊ ���� Very Low 

10 < Ϊ ���� Low 

20 < Ϊ ���� Medium 

30 < Ϊ ���� High 

Ϊ > 60 Very High 

Flow 

The elevation dataset is used to predict flow channels – 
that is, paths that surface water is likely to take in the 
event of rainfall. A greater amount of flow indicates a risk 
of surface water accumulation. To calculate flow, we 
relied on the TopoToolbox (Schwanghart & Kuhn, 2010). 
The toolbox includes techniques for predicting flow 
estimation.  The flow values predicted can vary wildly. In 
the case of our AOI, estimated flow varied between 0 and 
over 3,300. To normalize the dataset, we first transformed 
the flows to a logarithmic scale (changing the range from 
1 to ~9.7) and then normalized the results to [0, 1]. 

Table 3: Mapping Flow to Model Inputs 

Flow Range Rank of Flow 

flow is exactly 0 Very Low 

0 < flow � 0.1 Low 

0.1 < flow ����� Medium 

0.2 < flow ����� High 

flow > 0.5 Very High 

 

As shown in Table 3, these values are then translated into 
five discrete inputs for the terrain assessment model 
(same as the slope). As with the slope values, the process 
of mapping flows to discrete ranking values is 
independent from the flow calculations. This means that 
calculating the flows (a process that took roughly two 
hours for the Demonstration Scenario’s AOI) need only 
be run once per AOI, even if we adjust model values or 
how flow values are mapped to model inputs. 

2.4.2 GeoCover 

Earth Satellite Corporation (EarthSat) developed the 
GeoGover data set, a global landcover database. The 
GeoCover dataset consists of 13 land cover classes and is 
available for much of the world (Cunningham, Melican, 
Wemmelmann et al., 2002). Classes of land cover include 
grasslands, agriculture areas (i.e., farmland), wetlands, 
and water/ice. This data will serve as additional inputs to 
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our terrain models so we can more accurately assess 
rainfall-runoff response. The GeoCover dataset will also 
enable TIDE to identify bodies of water.  

2.4.3 Harmonized World Soil Database 

The Harmonized World Soil Database (HWSD) was 
produced by the European Union’s European Commission 
Joint Research Centre (more specifically, the Land 
Management Unit of the Institute for Environment and 
Sustainability.) The HWSD is a 30 arc-second 
(approximately 90-meter) resolution that contains detailed 
information about the top soil and subsoil properties. It 
was created by merging data from four different soil 
databases (Nachtergaele, Van Velthuizen, Verelst et al., 
2008).   

This data allows the model to more accurately predict 
how terrain will respond to surface water (for example, 
how quickly water will be absorbed into the soil.) This 
dataset’s low resolution means that some terrain 
boundaries (such as coasts) and geographical features 
(such as bodies of water) are of low accuracy compared to 
the other data sets. 

2.5 MISSION DECISION RULES 

The system must provide a set of logistic system-specific 
terrain assessment rules for a variety of systems and 
purposes (e.g., Tactical Water Distribution System, 
Assault Hose Line System). Terrain suitability may vary 
from system to system—for example, a suspended hose 
may be unaffected by some types of standing water while 
a ground-level hose could be at risk for contamination. 
Rule sets for individual systems will need to account for 
these differences, allowing planners to choose the 
appropriate system given the characteristics of a 
prospective emplacement site. Additionally, logistics 
planners must be able to easily modify and expand these 
rules as new systems are introduced, and as mission 
requirements change. (For example, different rules would 
be used for route planning than well placement.) 

In our initial effort, we have implemented some basic 
rules that filter terrain suitability for a hypothetical fuel 
line. The fuel line has two requirements: (1) it must be 
installed on flat land (so the pumps can function 
properly); and (2) the fuel lines cannot be placed in 
standing water (to prevent contamination), which includes 
bodies of water (such as lakes) and areas that are prone to 
flooding. 

To determine suitability for the fuel lines, we take slope, 
land coverage, and hydrologic suitability as inputs. We 
then apply a set of rules as described in Table 4. The rules 
transform the hydrologic suitability into mission 
suitability. These rules favor flat land over sloped land. 

Table 4: Mission Rules 

Condition Effect 

If the point is a body of water Mission suitability is Very Poor 

If slope is ranked as “Low” or 
“Very Low” and hydrologic 
suitability is “Medium” 

Mission suitability is High 

If slope is ranked as “Low” or 
“Very Low” and hydrologic 
suitability is not “Medium” 

Mission suitability is equal to 
hydrologic suitability 

If slope is ranked as “Medium” 
and hydrologic suitability is 
“High” or “Very High” 

Mission suitability is Medium 

If slope is ranked as “Medium” 
and hydrologic suitability is not 
“High” or “Very High” 

Mission suitability is equal to 
hydrologic suitability 

If slope is “High” or “Very 
High” 

Mission suitability is Very Poor 

 

Currently, rules are distinct from the PRM model, so that 
custom rules can be written for different operational needs 
while using the same PRM model. For example, while the 
PRM output is constant, the mission requirements for a 
long fuel pipeline may be very different than the mission 
requirements for a convoy. The fuel line would have a 
very low tolerance for changes in elevation (as the pumps 
cannot handle the increased workload) and would be 
susceptible to contamination from standing water. The 
convoy, while still limited by severe terrain or flooding, 
would be much more resilient to water and slopes. 

 A standard rules engine and associated rules language, 
such as that provided by JBoss, would allow mission 
experts to author rules for the TIDE system without 
requiring them to understand the PRM or hydrology.  

2.6 VISUALIZATION 

Outputs of the PRM and the rules engine, as well as the 
data sources themselves, were rendered within NASA 
WorldWind. WorldWind can accept a variety of GIS data 
formats and is easily customizable. Using the open-source 
the Geospatial Data Abstraction Library (GDAL), we 
wrote custom modules to render the HWSD and 
GeoCover data sets, while the SRTMVF2 data was loaded 
in using built-in WorldWind methods. Model output and 
rules output were rendered as textures which were then 
projected onto the WorldWind globe at the appropriate 
coordinates, but the data could easily be written to a 
variety of GIS formats. 

The hydrologic suitability is presented as belief values in 
five categories: {Very Poor, Poor, Medium, High, Very 
High}. Related military impact assessment (e.g., weather 
impact assessment) is done at three intervals (e.g., low 
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risk, medium risk, and high risk.) We expanded our model 
to use five intervals instead of three to present additional 
granularity in the model’s output. Further work is needed 
to determine the best number of intervals and their 
thresholds.  

For the initial effort, the category with the highest belief 
value is selected as the ‘correct’ suitability value. These 
categories are then color-mapped for visualization: {Red, 
Orange, Yellow, Green, Blue}. The same categories and 
colors are used for the rules output. 

3. DISCUSSION 
For our area of interest and the 1 arc-second SRTMFV2 
set, there are 25,934,402 points to process. Executing the 
entire PRM for each point would be unnecessarily 
complex – instead, we store each unique combination of 
{soil type, land cover, rank slope, rank flow} and store 
the associated beliefs. This means we can simply look up 
the correct PRM output for each unique combination of 
inputs, which need only be run through the PRM once. As 
a result, we are able to process all 25.9 million points in 
only two hours. (Further updates to the Figaro library 
should increase runtime performance as well.) In a full-
scale TIDE system, the PRM values for all combinations 
could be calculated once and only once, and then stored in 
a database for quick reference. This database would only 
need to be updated when the PRM is updated. 

 

Figure 3: PRM Model Output 

Figure 3 shows the output of the model. (Figures 3 and 4 
are best viewed in color.) The output of the model is very 
grainy as each point in the elevation set can have a 
distinct rank. Of note are the red regions running across 

the central region of the image – these are riverbeds and 
their surrounding valleys, which were detected despite 
those bodies of water not being explicitly present within 
our GeoCover or HWSD data sets. 

Figure 4 shows the output of our rules engine (and a 
region slightly larger than the figure above). While these 
rules are very simple, they demonstrate how rules can 
transform the high-density output of the models (Figure 3, 
above). The model output scores each point in the 
elevation grid (approximately a 30 by 30 meter square 
when using the SRTMVF2 data set), producing a very 
dense output. Rules can be used to simplify the models’ 
output into easier-to-interpret regions. With these simple 
rules, we were able to execute rules across the entire 
region in five minutes. Figure 4 shows the same riverbeds 
as in Figure 3, but the view is expanded to show a large 
lake to the west, which has been appropriately flagged as 
having very poor mission suitability. Unlike the riverbeds 
(which were predicted by the PRM), this body of water is 
present within both the GeoCover and HWSD data sets 
(at differing levels of precision). 

 

Figure 4: Rules Output 

4. FUTURE WORK 

4.1 TERRAIN AND HYDROLOGIC MODELS 

Future improvements to the model begin by incorporating 
more data. The more information captured by the model, 
the more accurate the inferences will be. The next data 
source to integrate is precipitation data. Depending on the 
duration of the mission, weather or climate data would be 
used. For example, missions spanning from zero to four 
months would heavily rely on weather information, 
missions spanning from four to eight months would 
integrate both weather and climate data, and missions 
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lasting longer than eight months would incorporate 
climate data. We will also work to quantitatively evaluate 
the performance and applicability of our models.  

Our approach to testing and verifying the accuracy of our 
models is two-fold. First, we will compare the outputs of 
our models to those of existing, alternative hydrologic 
models. These models are often based on solving complex 
equations that govern the physics of surface and 
subsurface water (Abbott et al., 1986; Panday & 
Huyakorn, 2004) or assign statistical values to terrain 
based on observation (Yoram, 2003). These models are 
not practical for US Army planning because they require 
complete data sets, are extremely time-consuming to 
compute, and do not scale to the levels of detail and scope 
required by US Army logistics planners. However, their 
outputs have been validated when tested on carefully 
monitored and measured regions of terrain, typically 
within the US. By running the TIDE models on the same 
regions and comparing its output to that of the established 
models, we can confirm that the TIDE models are 
functioning correctly. 

Second, we will gather existing data sources of rainfall-
runoff responses. Several regions within the United States 
have had their rainfall-runoff responses measured at 
various degrees of fidelity. For example, the Leaf River 
basin in Mississippi has over forty years of time series 
data that includes precipitation and runoff (Yapo, Gupta, 
Sorooshian et al., 1996). Additional data sources could be 
built from flood records and high water level records. 
These data sets will serve to validate the PRM models 
used by TIDE. They may also serve as training data to 
calibrate the model to more accurately predict the severity 
of rainfall run-off responses (e.g., flooding). 

4.2 DATA FUSION MODEL 

Our basic solution for handling cases of limited or 
missing data assumes that each value is equally likely if 
no evidence is posted to the model. Under this 
assumption, the accuracy of our inferences declines with 
limited or no data. The inferences are only as strong as the 
data known and evidence provided.  

 Future improvements for how to reason with 
incomplete or no data involve adjusting the prior 
distributions. Although the prior distributions in our 
current model assume that all values of an attribute are 
equally likely if no data is available, one would argue this 
is not representative of the real world. We plan to explore 
the possibilities of more representative prior distributions. 
For example, the prior distribution for land cover type 
could reflect that fact that over 70% of the earth’s surface 
is covered in water, making it the most likely of the seven 
values. 

This being said, the most dramatic mitigation of 
consequences due to incomplete data or unknown values 
will result from future improvements to the model itself 
rather than the dependencies. As we integrate more data 

sources into the model, the number of attributes and 
dependencies will increase, resulting in more accurate 
inferences. Existing data can also be used to infer missing 
data. For example, using higher-resolution data (such as 
elevation data or land cover data) we can easily determine 
that the HSWD fails to cover the coastlines. We can then 
predict the missing values using spatial relationships. 
Ambiguous areas could be assigned multiple values with 
different confidence values. Figure 5 shows how the two 
HSWD regions could be used to infer the values for the 
missing regions.  

Point A, to the north, would be assigned a high 
probability of having luvisols as the dominate soil type. 
Point B would be assigned near equal probabilities of 
being either luvisols or vertisols. Point C, to the south, 
would be assigned a high probability of vertisols as the 
dominate soil type. The inference used for point B could 
be assigned to any region near the boundaries of low-
resolution data sets – for example, point D could also be 
assigned a probability of being either vertisols or luvisols; 
even though the data set classifies it as vertisols, the 
resolution is low enough that the point could be a 
misclassification. The assigned probabilities, along with 
the soil types themselves, would serve as inputs to the 
PRM models.. For example, the soil type input to our 
PRMs for Point D could be “{Vertisols-50%, Luvisols-
50%} instead of simply {Vertisols}. 

 

Figure 5: Reasoning about incomplete data 

5. CONCLUSIONS 
Flooding, and other terrain rainfall-runoff responses, pose 
significant risk and cost to US Army operations. 
Assessing the magnitude of flood risk and the impact it 
will have on a mission requires both time and expertise 
that may not always be available. An automated system 
for predicting the likelihood and impact of flooding and 
surface water accumulation would be of great benefit to 
logistics planners and the US Army at large.  

During our initial effort, we demonstrated the feasibility 
of Terrain Impact Decision Extensions to predict rainfall-
runoff response. We have identified key data sources 
required for predicting flooding and have developed an 
initial set of models that are capable of identifying regions 
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that are at high risk of flooding. These models are capable 
of processing millions of data points per hour, allowing 
them to process thousands of square kilometers. We feel 
these models and their performance indicate our approach 
is sound, and future work will refine and validate the 
models’ performance. 
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