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Abstract

Mixture models form an important class of
models for unsupervised learning, allowing
data points to be assigned labels based on
their values. However, standard mixture
models procedures do not deal well with rare
components. For example, pause times in
student essays have di↵erent lengths depend-
ing on what cognitive processes a student
engages in during the pause. However, in-
stances of student planning (and hence very
long pauses) are rare, and thus it is dif-
ficult to estimate those parameters from a
single student’s essays. A hierarchical mix-
ture model eliminates some of those prob-
lems, by pooling data across several of the
higher level units (in the example students)
to estimate parameters of the mixture com-
ponents. One way to estimate the parame-
ters of a hierarchical mixture model is to use
MCMC. But these models have several issues
such as non-identifiability under label switch-
ing that make them di�cult to estimate just
using o↵-the-shelf MCMC tools. This paper
looks at the steps necessary to estimate these
models using two popular MCMC packages:
JAGS (random walk Metropolis algorithm)
and Stan (Hamiltonian Monte Carlo). JAGS,
Stan and R code to estimate the models and
model fit statistics are published along with
the paper.
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1 Introduction

Mixture models (McLachlan & Peel, 2000) are a fre-
quently used method of unsupervised learning. They
sort data points into clusters based on just their val-
ues. One of the most frequently used mixture models
is a mixture of normal distributions. Often the mean
and variance of each cluster is learned along with the
classification of each data point.

As an example, Almond, Deane, Quinlan, Wagner, and
Sydorenko (2012) fit a mixture of lognormal distribu-
tions to the pause time of students typing essays as
part of a pilot writing assessment. (Alternatively, this
model can be described as a mixture of normals fit to
the log pause times.) Almond et al. found that mix-
ture models seems to fit the data fairly well. The mix-
ture components could correspond to di↵erent cogni-
tive process used in writing (Deane, 2012) where each
cognitive process takes di↵erent amounts of time (i.e.,
students pause longer when planning, than when sim-
ply typing).

Mixture models are di�cult to fit because they dis-
play a number of pathologies. One problem is com-
ponent identification. Simply swapping the labels of
Components 1 and 2 produces a model with identical
likelihoods. Even if a prior distribution is placed on
the mixture component parameters, the posterior is
multimodal. Second, it is easy to get a pathological
solution in which a mixture component consists of a
single point. These solutions are not desirable, and
some estimation tools constrain the minimum size of
a mixture component (Gruen & Leisch, 2008). Fur-
thermore, if a separate variance is to be estimated for
each mixture component, several data points must be
assigned to each component in order for the variance
estimate to have a reasonable standard error. There-
fore, fitting a model with rare components requires a
large data size.

Almond et al. (2012) noted these limitations in
their conclusions. First, events corresponding to the
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highest-level planning components in Deane (2012)’s
cognitive model would be relatively rare, and hence
would lumped in with other mixture components due
to size restrictions. Second, some linguistic contexts
(e.g., between Sentence pauses) were rare enough that
fitting a separate mixture model to each student would
not be feasible.

One work-around is a hierarchical mixture model. As
with all hierarchical models, it requires units at two
di↵erent levels (in this example, students or essays
are Level 2 and individual pauses are Level 1). The
assumption behind the hierarchical mixture model is
that the mixture components will look similar across
the second level units. Thus, the mean and variance of
Mixture Component 1 for Student 1 will look similar
to those for Student 2. Li (2013) tried this on some of
the writing data.

One problem that frequently arises in estimating mix-
ture models is determining how many mixture compo-
nents to use. What is commonly done is to estimate
models for K = 2, 3, 4, . . . up to some small maximum
number of components (depending on the size of the
data). Then a measure of model–data fit, such as AIC,
DIC or WAIC (see Gelman et al., 2013, Chapter 7), is
calculated for each model and the model with the best
fit index is chosen. These methods look at the deviance
(minus twice the log likelihood of the data) and adjust
it with a penalty for model complexity. Both DIC and
WAIC require Markov chain Monte Carlo (MCMC) to
compute, and require some custom coding for mixture
models because of the component identification issue.

This paper is a tutorial for replicating the method used
by Li (2013). The paper walks through a script writ-
ten in the R language (R Core Team, 2014) which per-
forms most of the steps. The actual estimation is done
using MCMC using either Stan (Stan Development
Team, 2013) or JAGS (Plummer, 2012). The R scripts
along with the Stan and JAGS models and some sam-
ple data are available at http://pluto.coe.fsu.edu/
mcmc-hierMM/.

2 Mixture Models

Let i 2 {1, . . . , I} be a set of indexes over the sec-
ond level units (students in the example) and let
j 2 {1, . . . , Ji} be the first level units (pause events
in the example). A hierarchical mixture model is by
adding a Level 2 (across student) distribution over the
parameters of the Level 1 (within student) mixture
model. Section 2.1 describes the base Level 1 mixture
model, and Section 2.2 describes the Level 2 model.
Often MCMC requires reparameterization to achieve
better mixing (Section 2.3). Also, there are certain pa-
rameter values which result in infinite likelihoods. Sec-

Figure 1: Non-hierarchical Mixture Model

tion 2.4 describes prior distributions and constraints
on parameters which keep the Markov chain away from
those points.

2.1 Mixture of Normals

Consider a collection observations, Yi =
(Yi,1, . . . , Yi,Ji) for a single student, i. Assume
that the process that generated these data is a mix-
ture of K normals. Let Zi,j ⇠ cat(⇡i) be a categorical
latent index variable indicating which component Ob-
servation j comes from and let Y

⇤
i,j,k ⇠ N (µi,k,�i,k)

be the value of Yi,j which would be realized when
Zi,j = k.

Figure 1 shows this model graphically. The plates in-
dicate replication over categories (k), Level 1 (pauses,
j) and Level 2 (students, i) units. Note that there is
no connection across plates, so the model fit to each
Level 2 unit is independent of all the other Level 2
units. This is what Gelman et al. (2013) call the no
pooling case.

The latent variables Z and Y

⇤ can be removed from
the likelihood for Yi,j by summing over the possible
values of Z. The likelihood for one student’s data, Yi,
is

Li(Yi|⇡i,µi,�i) =
JiY

j=1

KX

k=1

⇡i,k�(
Yi,j � µi,k

�i,k
) (1)

where �(·) is the unit normal density.

Although conceptually simple, there are a number of
issues that mixture models can have. The first is-
sue is that the component labels cannot be identified
from data. Consider the case with two components.
The model created by swapping the labels for Compo-
nents 1 and 2 with new parameters ⇡0

i = (⇡i,2,⇡i,1),
µ0

i = (µi,2, µi,1), and �0
i = (�i,2,�i,1) has an identical
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likelihood. For the K component model, any permu-
tation of the component labels produces a model with
identical likelihood. Consequently, the likelihood sur-
face is multimodal.

A common solution to the problem is to identify the
components by placing an ordering constraint on one
of the three parameter vectors: ⇡, µ or �. Section 4.1
returns to this issue in practice.

A second issue involves degenerate solutions which
contain only a single data point. If a mixture com-
ponent has only a single data point, its standard devi-
ation, �i,k will go to zero, and ⇡i,k will approach 1/Ji,
which is close to zero for large Level 1 data sets. Note
that if either ⇡i,k ! 0 or �i,k� > 0 for any k, then the
likelihood will become singular.

Estimating �i,k requires a minimum number of data
points from Component k (⇡i,kJi > 5 is a rough mini-
mum). If ⇡i,k is believed to be small for some k, then a
large (Level 1) sample is needed. As K increases, the
smallest value of ⇡i,k becomes smaller so the minimum
sample size increases.

2.2 Hierarchical mixtures

Gelman et al. (2013) explains the concept of a hier-
archical model using a SAT coaching experiment that
took place at 8 di↵erent schools. Let Xi ⇠ N (µi,�i)
be the observed e↵ect at each school, where the school
specific standard error �i is known (based mainly on
the sample size used at that school). There are three
ways to approach this problem: (1) No pooling. Es-
timate µi separately with no assumption about about
the similarity of µ across schools. (2) Complete pool-
ing. Set µi = µ

0

for all i and estimate µ

0

(3) Par-
tial pooling. Let µi ⇠ N (µ

0

, ⌫) and now jointly es-
timate µ

0

, µ

1

, . . . , µ

8

. The no pooling approach pro-
duces unbiased estimates for each school, but it has
the largest standard errors, especially for the smallest
schools. The complete pooling approach ignores the
school level variability, but has much smaller standard
errors. In the partial pooling approach, the individual
school estimates are shrunk towards the grand mean,
µ

0

, with the amount of shrinkage related to the size of
the ratio ⌫

�2

/(⌫�2+�

�2

i ); in particular, there is more
shrinkage for the schools which were less precisely mea-
sured. Note that the higher level standard deviation,
⌫ controls the amount of shrinkage: the smaller ⌫ is
the more the individual school estimates are pulled to-
wards the grand mean. At the limits, if ⌫ = 0, the par-
tial pooling model is the same as the complete pooling
model and if ⌫ = 1 then the partial pooling model is
the same as the no pooling model.

Li (2013) builds a hierarchical mixture model for
the essay pause data. Figure 1 shows the no pool-

Figure 2: Hierarchical Mixture Model

ing mixture model. To make the hierarchical model,
add across-student prior distributions for the student-
specific parameters parameters, ⇡i, µi and �i. Be-
cause JAGS parameterizes the normal distribution
with precisions (reciprocal variances) rather than stan-
dard deviations, ⌧ i are substituted for the standard
deviations �i. Figure 2 shows the hierarchical model.

Completing the model requires specifying distributions
for the three Level 1 (student-specific) parameters. In
particular, let

⇡i = (⇡i,1, . . . ,⇡i,K) ⇠ Dirichlet(↵
1

, . . . ,↵k) (2)

µi,k ⇠ N (µ
0,k,�0,k) (3)

log(⌧i,k) ⇠ N (log(⌧
0,k), �0,k) (4)

This introduces new Level 2 (across student) param-
eters: ↵, µ

0

, �
0

, ⌧
0

, and �
0

. The likelihood for a
single student, Li(Yi|⇡i,µi, ⌧ i) is given (with a suit-
able chance of variable) by Equation 1. To get the
complete data likelihood, multiply across the students
units (or to avoid numeric overflow, sum the log likeli-
hoods). If we let ⌦ be the complete parameter (⇡i,µi,
⌧ i for each student, plus ↵, µ

0

, �
0

, ⌧
0

, and �
0

), then

L(Y|⌦) =
IX

i=1

logLi(Yi|⇡i,µi, ⌧ i) . (5)

Hierarchical models have their own pathologies which
require care during estimation. If either of the stan-
dard deviation parameters, �

0,k or �
0,k, gets too close

to zero or infinity, then this could cause the log poste-
rior to go to infinity. These cases correspond to the no
pooling and complete pooling extremes of the hierar-
chical model. Similarly, the variance of the Dirichlet
distribution is determined by ↵N =

PK
k=1

↵k. If ↵N

is too close to zero, this produces no pooling in the
estimates of ⇡i and if ↵N is too large, then there is

3



nearly complete pooling in those estimates. Again,
those values of ↵N can cause the log posterior to be-
come infinite.

2.3 Reparameterization

It is often worthwhile to reparameterize a model in or-
der to make MCMC estimation more e�cient. Both
random walk Metropolis (Section 3.2) and Hamilto-
nian Monte Carlo (Section 3.3) work by moving a point
around the parameter space of the model. The geom-
etry of that space will influence how fast the Markov
chain mixes, that is, moves around the space. If the
geometry is unfavorable, the point will move slowly
through the space and the autocorrelation will be high
(Neal, 2011). In this case a very large Monte Carlo
sample will be required to obtain reasonable Monte
Carlo error for the parameter estimates.

Consider once more the Eight Schools problem where
µi ⇠ N (µ

0

, ⌫). Assume that we have a sampler that
works by updating the value of the µi’s one at a time
and then updating the values of µ

0

and ⌫. When up-
dating µi, if ⌫ is small then values of µi close to µ

0

will
have the highest conditional probability. When updat-
ing ⌫ if all of the values of µi are close to µ

0

, then small
values of ⌫ will have the highest conditional probabil-
ity. The net result is a chain in which the movement
from states with small ⌫ and the µi’s close together
to states with large ⌫ and µi’s far apart takes many
steps.

A simple trick produces a chain which moves much
more quickly. Introduce a series of auxiliary variables
✓i ⇠ N (0, 1) and set µi = µ

0

+ ⌫✓i. Note that the
marginal distribution of µi has not changed, but the
geometry of the ✓, µ

0

, ⌫ space is di↵erent from the ge-
ometry of the µ, µ

0

, ⌫ space, resulting in a chain that
moves much more quickly.

A similar trick works for modeling the relationships
between ↵ and ⇡i. Setting ↵k = ↵

0,k ⇤ ↵N , where
↵

0

has a Dirichlet distribution and ↵N has a gamma
distribution seems to work well for the parameters ↵ of
the Dirichlet distribution. In this case the parameters
have a particularly easy to interpret meaning: ↵

0

is
the expected value of the Dirichlet distribution and ↵N

is the e↵ective sample size of the Dirichlet distribution.

Applying these two tricks to the parameters of the
hierarchical model yields the following augmented pa-
rameterization.

↵k = ↵

0,k ⇤ ↵N (6)

µi,k = µ

0,k + ✓i,k�0,k (7)

✓i,k ⇠ N (0, 1) (8)

log(⌧i,k) = log(⌧
0,k) + ⌘i,k�0,k (9)

⌘i,k ⇠ N (0, 1) (10)

2.4 Prior distributions and parameter
constraints

Rarely does an analyst have enough prior informa-
tion to completely specify a prior distribution. Usu-
ally, the analyst chooses a convenient functional form
and chooses the hyperparameters of that form based
on available prior information (if any). One popular
choice is the conjugate distribution of the likelihood.
For example, if the prior for a multinomial probability,
⇡i follows a Dirichlet distribution with hyperparame-
ter, ↵, then the posterior distribution will also be a
Dirichlet with a hyperparameter equal to the sum of
the prior hyperparameter and the data. This gives the
hyperparameter of a Dirichlet prior a convenient in-
terpretation as pseudo-data. A convenient functional
form is one based on a normal distribution (sometimes
on a transformed parameter, such as the log of the
precision) whose mean can be set to a likely value of
the parameter and whose standard deviation can be
set so that all of the likely values for the parameter
are within two standard deviations of the mean. Note
that for location parameters, the normal distribution
is often a conjugate prior distribution.

Proper prior distributions are also useful for keeping
parameter values away from degenerate or impossible
solutions. For example, priors for standard deviations,
�

0,k and �

0,k must be strictly positive. Also, the group
precisions for each student, ⌧ i, must be strictly pos-
itive. The natural conjugate distribution for a preci-
sion is a gamma distribution, which is strictly positive.
The lognormal distribution, used in Equations 4 and 9,
has a similar shape, but its parameters can be inter-
preted as a mean and standard deviation on the log
scale. The mixing probabilities ⇡i must be defined
over the unit simplex (i.e., they must all be between 0
and 1 and they must sum to 1), as must the expected
mixing probabilities ↵

0

; the Dirichlet distribution sat-
isfies this constraint and is also a natural conjugate.
Finally, ↵N must be strictly positive; the choice of the
chi-squared distribution as a prior ensures this.

There are other softer restraints on the parameters. If
�

0,k or �

0,k gets too high or too low for any value of
k, the result is a no pooling or complete pooling so-
lution on that mixture component. For both of these
parameters (.01, 100) seems like a plausible range. A
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lognormal distribution which puts the bulk of its prob-
ability mass in that range should keep the model away
from those extremes. Values of ⌧i,k that are too small
represent the collapse of a mixture component onto
a single point. Again, if ⌧

0,k is mostly in the range
(.01, 100) the chance of an extreme value of ⌧i,k should
be small. This yields the following priors:

log(�
0k) ⇠ N (0, 1) (11)

log(�
0k) ⇠ N (0, 1) (12)

log(⌧
0k) ⇠ N (0, 1) (13)

High values of ↵N also correspond to a degenerate so-
lution. In general, the gamma distribution has about
the right shape for the prior distribution of ↵N , and we
expect it to be about the same size as I, the number
of Level-2 units. The choice of prior is a chi-squared
distribution with 2 ⇤ I degrees of freedom.

↵N ⇠ �

2(I ⇤ 2) (14)

The two remaining parameters we don’t need to con-
strain too much. For µ

0,k we use a di↵use normal
prior (one with a high standard deviation), and for ↵

0

we use a Je↵rey’s prior (uniform on the logistic scale)
which is the Dirichlet distribution with all values set
to 1/2.

µ

0,k ⇠ N(0, 1000) (15)

↵
0

⇠ Dirichlet(0.5, . . . , 0.5) (16)

The informative priors above are not su�cient to al-
ways keep the Markov chain out of trouble. In partic-
ular, it can still reach places where the log posterior
distribution is infinite. There are two di↵erent places
where these seem to occur. One is associated with high
values of ↵N . Putting a hard limit of ↵N < 500 seems
to avoid this problem (when I = 100). Another possi-
ble degenerate spot is when ↵k ⇡ 0 for some k. This
means that ⇡i,k will be essentially zero for all students.
Adding .01 to all of the ↵k values in Equation 2 seems
to fix this problem.

⇡i = (⇡i,1, . . . ,⇡i,K) ⇠ Dirichlet(↵
1

+.01, . . . ,↵k+.01)

3 Estimation Algorithms

There are generally two classes of algorithms used
with both hierarchical and mixture models. The ex-
pectation maximization (EM) algorithm (Section 3.1)
searches for a set of parameter values that maximizes
the log posterior distribution of the data (or if the prior
distribution is flat, it maximizes the log likelihood). It

comes up with a single parameter estimate but does
not explore the entire space of the distribution. In con-
trast, MCMC algorithms explore the entire posterior
distribution by taking samples from the space of possi-
ble values. Although the MCMC samples are not inde-
pendent, if the sample is large enough it converges in
distribution to the desired posterior. Two approaches
to MCMC estimation are the random walk Metropolis
algorithm (RWM; used by JAGS, Section 3.2) and the
Hamiltonian Monte Carlo algorithm (HMC; used by
Stan, Section 3.3).

3.1 EM Algorithm

McLachlan and Krishnan (2008) provides a review of
the EM algorithm with emphasis on mixture models.
The form of the EM algorithm is particularly simple
for the special case of a non-hierarchical mixture of
normals. It alternates between an E-step where the
p(Zi,j = k) = pi,j,k is calculated for every observation,
j, and every component, k and an M-step where the
maximum likelihood values for ⇡i,k, µi,k and �i,k are
found by taking moments of the data set Yi weighted
by the component probabilities, pi,j,k.

A number of di↵erent problems can crop up with using
EM to fit mixture models. In particular, if ⇡i,k goes to
zero for any k, that component essentially disappears
from the mixture. Also, if �i,k goes to zero the mix-
ture component concentrates on a single point. Fur-
thermore, if µi,k = µi,k0 and �i,k = �i,k0 for any pair
of components the result is a degenerate solution with
K � 1 components.

As the posterior distribution for the mixture model is
multimodal, the EM algorithm only finds a local max-
imum. Running it from multiple starting points may
help find the global maximum; however, in practice it
is typically run once. If the order of the components
is important, the components are typically relabeled
after fitting the model according to a predefined rule
(e.g., increasing values of µi,k).

Two packages are available for fitting non-hierarchical
mixture models using the EM algorithm in R (R Core
Team, 2014): FlexMix (Gruen & Leisch, 2008) and
mixtools (Benaglia, Chauveau, Hunter, & Young,
2009). These two packages take di↵erent approaches
to how they deal with degenerate solutions. FlexMix

will combine two mixture components if they get too
close together or the probability of one component gets
too small (by default, if ⇡i,k < .05). Mixtools, on the
other hand, retries from a di↵erent starting point when
the the EM algorithm converges on a degenerate so-
lution. If it exceeds the allowed number of retries, it
gives up.

Neither mixtools nor FlexMix provides standard er-
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rors for the parameter estimates. The mixtools pack-
age recommends using the bootstrap (resampling from
the data distribution) to calculate standard errors, and
provides a function to facilitate this.

3.2 Random-walk Metropolis Algorithm
(RWM; used by JAGS)

Geyer (2011) gives a tutorial summary of MCMC. The
basic idea is that a mechanism is found for construct-
ing a Markov chain whose stationary distribution is the
desired posterior distribution. The chain is run until
the analyst is reasonably sure it has reach the station-
ary distribution (these early draws are discarded as
burn-in). Then the the chain is run some more until it
is believed to have mixed throughout the entire poste-
rior distribution. At this point it has reached pseudo-
convergence (Geyer calls this pseudo-convergence, be-
cause without running the chain for an infinite length
of time, there is no way of telling if some part of the
parameter space was never reached.) At this point
the mean and standard error of the parameters are
estimated from the the observed mean and standard
deviation of the parameter values in the MCMC sam-
ple.

There are two sources of error in estimates made from
the MCMC sample. The first arises because the ob-
served data are a sample from the universe of potential
observations. This sampling error would be present
even if the posterior distribution could be computed
exactly. The second is the Monte Carlo error that
comes from the estimation of the posterior distribu-
tion with the Monte Carlo sample. Because the draws
from the Markov chain are not statistically indepen-
dent, this Monte Carlo error does not fall at the rate
of 1/

p
R (where R is the number of Monte Carlo sam-

ples). It is also related to the autocorrelation (corre-
lation between successive draws) of the Markov chain.
The higher the autocorrelation, the lower the e↵ective
sample size of the Monte Carlo sample, and the higher
the Monte Carlo error.

Most methods for building the Markov chain are based
on the Metropolis algorithm (see Geyer, 2011, for de-
tails). A new value for one or more parameter is pro-
posed and the new value is accepted or rejected ran-
domly according to the ratio of the posterior distribu-
tion and the old and new points, with a correction fac-
tor for the mechanism used to generate the new sam-
ple. This is called a Metropolis or Metropolis-Hastings
update (the latter contains a correction for asymmet-
ric proposal distributions). Gibbs sampling is a special
case in which the proposal is chosen in such a way that
it will always be accepted.

As the form of the proposal distribution does not mat-

ter for the correctness of the algorithm, the most com-
mon method is to go one parameter at a time and add
a random o↵set (a step) to its value, accepting or re-
jecting it according to the Metropolis rule. As this
distribution is essentially a random walk over the pa-
rameter space, this implementation of MCMC is called
random walk Metropolis (RWM). The step size is a
critical tuning parameter. If the average step size is
too large, the value will be rejected nearly every cycle
and the autocorrelation will be high. If the step size
is too small, the chain will move very slowly through
the space and the autocorrelation will be high. Gibbs
sampling, where the step is chosen using a conjugate
distribution so the Metropolis-Hastings ratio always
accepts, is not necessarily better. Often the e↵ective
step size of the Gibbs sampler is small resulting in high
autocorrelation.

Most packages that use RWM do some adaptation on
the step size, trying to get an optimal rejection rate.
During this adaptation phase, the Markov chain does
not have the correct stationary distribution, so those
observations must be discarded, and a certain amount
of burn-in is needed after the adaptation finishes.

MCMC and the RWM algorithm were made popular
by their convenient implementation in the BUGS soft-
ware package (Thomas, Spiegelhalter, & Gilks, 1992).
With BUGS, the analyst can write down the model
in a form very similar to the series of equations used
to describe the model in Section 2, with a syntax de-
rived from the R language. BUGS then compiles the
model into pseudo-code which produces the Markov
chain, choosing to do Gibbs sampling or random walk
Metropolis for each parameter depending on whether
or not a convenient conjugate proposal distribution
was available. The output could be exported in a
form that could be read by R, and the R package coda
(Plummer, Best, Cowles, & Vines, 2006) could be used
to process the output. (Later, WinBUGS would build
some of that output processing into BUGS.)

Although BUGS played an important role in encourag-
ing data analysts to use MCMC, it is no longer actively
supported. This means that the latest developments
and improvements in MCMC do not get incorporated
into its code. Rather than use BUGS, analysts are
advised to use one of the two successor software pack-
ages: OpenBUGS (Thomas, O’Hara, Ligges, & Sturtz,
2006) or JAGS (just another Gibbs sampler; Plummer,
2012). The R package rjags allows JAGS to be called
from R, and hence allows R to be used as a scripting
language for JAGS, which is important for serious an-
alytic e↵orts. (Similar packages exist for BUGS and
OpenBUGS.)
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3.3 Hamiltonian Monte Carlo (HMC; used
by Stan)

Hamiltonian Monte Carlo (HMC) (Neal, 2011) is a
variant on the Metropolis Algorithm which uses a dif-
ferent proposal distribution than RWM. In HMC, the
current draw from the posterior is imagined to be a
small particle on a hilly surface (the posterior distri-
bution). The particle is given a random velocity and is
allowed to move for several discrete steps in that direc-
tion. The movement follows the laws of physics, so the
particle gains speed when it falls down hills and loses
speed when it climbs back up the hills. In this manner
a proposal is generated that can be a great distance
from the original starting point. The proposed point is
then accepted or rejected according to the Metropolis
rule.

The software package Stan (Stan Development Team,
2013) provides support for HMC. As with BUGS and
JAGS, the model of Section 2 is written in pseudo-
code, although this time the syntax looks more like
C++ than R. Rather than translate the model into
interpreted code, Stan translates it into C++ then
compiles and links it with existing Stan code to run
the sampler. This has an initial overhead for the com-
pilation, but afterwards, each cycle of the sampler runs
faster. Also, as HMC generally has lower autocorrela-
tion than random walk Metropolis, smaller run lengths
can be used, making Stan considerably faster than
JAGS in some applications. A package rstan is avail-
able to link Stan to R, but because of the compilation
step, it requires that the user have the proper R de-
velopment environment set up.

HMC has more tuning parameters than random walk
Metropolis: the mass of the particle, the distribution
of velocities and the number of steps to take in each
direction must be selected to set up the algorithm.
Stan uses a warm-up phase to do this adaptation. The
recommended procedure is to use approximately 1/2
the samples for warm-up as a longer warm-up produces
lower autocorrelations when actively sampling.

Stan has some interesting features that are not present
in BUGS or JAGS. For one, it does not require every
parameter to have a proper prior distribution (as long
as the posterior is proper). It will simply put a uni-
form prior over the space of possible values for any
parameter not given a prior distribution. However,
using explicit priors has some advantages for the ap-
plication to student pause data. In particular, when
data for a new student become available, the poste-
rior parameters for the previous run can be input into
Stan (or JAGS) and the original calibration model can
be reused to estimate the parameters for new student
(Mislevy, Almond, Yan, & Steinberg, 1999).

3.4 Parallel Computing and Memory Issues

As most computers have multiple processors, paral-
lel computing can be used to speed up MCMC runs.
Often multiple Markov chains are run and the results
are compared to assess pseudo-convergence and then
combined for inference (Gelman & Shirley, 2011). This
is straightforward using the output processing package
coda. It is a little bit trickier using the rstan package,
because many of the graphics require a full stanfit
object. However, the conversion from Stan to coda
format for the MCMC samples is straightforward.

In the case of hierarchical mixture models, there is
an even easier way to take advantage of multiple pro-
cesses. If the number of components, K, is unknown,
the usual procedure is to take several runs with dif-
ferent values of K and compare the fit. Therefore, if
4 processors were available, one could run all of the
chains for K = 2, one for K = 3, and one for K = 4,
leaving one free to handle operating system tasks.

In most modern computers, the bottleneck is usually
not available CPU cycles, but available memory. For
running 3 chains with I = 100 students and R = 5000
MCMC samples in each chain, the MCMC sample can
take up to 0.5GB of memory! Consequently, it is crit-
ically important to monitor memory usage when run-
ning multiple MCMC runs. If the computer starts re-
quiring swap (disk-based memory) in addition to phys-
ical memory, then running fewer processes will proba-
bly speed up the computations.

Another potential problem occurs when storing the re-
sult of each run between R sessions in the .RData file.
Note that R attempts to load the entire contents of
that data file into memory when starting R. If there
are the results of several MCMC runs in there, the
.RData file can grow to several GB in size, and R can
take several minutes to load. (In case this problem
arises, it is recommended that you take a make a copy
of the .RData after the data have been cleaned and all
the auxiliary functions loaded but before starting the
MCMC runs, and put it someplace safe. If the .RData
file gets to be too large it can be simply replaced with
the backup.)

In order to prevent the .RData file from growing
unmanageably large, it recommended that the work
space not be saved at the end of each run. Instead,
run a block of code like this

assign(runName,result1)

outfile <-

gzfile(paste(runName,"R","gz",sep="."),

open="wt")

dump(runName,file=outfile)

close(outfile)
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after all computations are completed. Here result1

is a variable that gathers together the portion of the
results to keep, and runName is a character string that
provides a unique name for the run.

Assume that all of the commands necessary to perform
the MCMC analysis are in a file script.R. To run this
from a command shell use the command:

R CMD BATCH --slave script.R

This will run the R code in the script, using the .RData
file in the current working directory, and put the out-
put into script.Rout. The --slave switch performs
two useful functions. First, it does not save the .RData
file at the end of the run (avoiding potential memory
problems). Second, it suppresses echoing the script to
the output file, making the output file easier to read.
Under Linux and Mac OS X, the command

nohup R CMD BATCH --slave script.R &

runs R in the background. The user can log out of the
computer, but as long as the computer remains on, the
process will continue to run.

4 Model Estimation

A MCMC analysis always follows a number of similar
steps, although the hierarhical mixture model requires
a couple of additional steps. Usually, it is best to write
these as a script because the analysis will often need
to be repeated several times. The steps are as follows:

1. Set up parameters for the run. This includes
which data to analyze, how many mixture compo-
nents are required (i.e., K), how long to run the
Markov chain, how many chains to run, what the
prior hyperparameters are.

2. Clean the data. In the case of hierarchical mixture
models, student data vectors which are too short
should be eliminated. Stan does not accept miss-
ing values, so NAs in the data need to be replaced
with a finite value. For both JAGS and Stan the
data are bundled with the prior hyperparameters
to be passed to the MCMC software.

3. Set initial values. Initial values need to be chosen
for each Markov chain (see Section 4.2).

4. Run the Markov Chain. For JAGS, this consists
of four substeps: (a) run the chain in adaptation
mode, (b) run the chain in normal mode for the
burn-in, (c) set up monitors on the desired param-
eters, and (d) run the chain to collect the MCMC
sample. For Stan, the compilation, warm-up and
sampling are all done in a single step.

5. Identify the mixture components. Ideally, the
Markov chains have visited all of the modes of the
posterior distribution, including the ones which
di↵er only by a permutation of the component la-
bels. Section 4.1 describes how to permute the
component labels are permuted so that the com-
ponent labels are the same in each MCMC cycle.

6. Check pseudo-convergence. Several statistics and
plots are calculated to see if the chains have
reached pseudo-convergence and the sample size
is adequate. If the sample is inadequate, then ad-
ditional samples are collected (Section 4.3).

7. Draw Inferences. Summaries of the posterior dis-
tribution for the the parameters of interest are
computed and reported. Note that JAGS o↵ers
some possibilities here that Stan does not. In par-
ticular, JAGS can monitor just the cross-student
parameters (↵

0

, ↵N , µ
0

, �
0

, log(⌧
0

), and �
0

) for
a much longer time to check pseudo-convergence,
and then a short additional run can be used to
draw inferences about the student specific param-
eters, ⇡i, µi and ⌧ i (for a considerable memory
savings).

8. Data point labeling. In mixture models, it is some-
times of interest to identify which mixture com-
ponent each observation Yi,j comes from (Sec-
tion 4.5).

9. Calculate model fit index. If the goal is to compare
models for several di↵erent values of K, then a
measure of model fit such as DIC or WAIC should
be calculated (Section 5).

4.1 Component Identification

The multiple modes in the posterior distribution for
mixture models present a special problem for MCMC.
In particular, it is possible for a Markov chain to get
stuck in a mode corresponding to a single component
labeling and never mix to the other component la-
belings. (This especially problematic when coupled
with the common practice of starting several paral-
lel Markov chains.) Früthwirth-Schnatter (2001) de-
scribes this problem in detail.

One solution is to constrain the parameter space to fol-
low some canonical ordering (e.g., µi,1  µi,2  · · · 
µi,K). Stan allows parameter vectors to be specified
as ordered, that is restricted to be in increasing order.
This seems tailor-made for the identification issue. If
an order based on µ

0

is desired, the declaration:

ordered[K] mu0;

enforces the ordering constraint in the MCMC sam-
pler. JAGS contains a sort function which can achieve
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a similar e↵ect. Früthwirth-Schnatter (2001) rec-
ommends against this solution because the resulting
Markov chains often mix slowly. Some experimenta-
tion with the ordered restriction in Stan confirmed this
finding; the MCMC runs took longer and did not reach
pseudo-convergence as quickly when the ordered re-
striction was not used.

Früthwirth-Schnatter (2001) instead recommends let-
ting the Markov chains mix across all of the possi-
ble modes, and then sorting the values according to
the desired identification constraints post hoc. JAGS
provides special support for this approach, o↵ering a
special distribution dnormmix for mixtures of normals.
This uses a specially chosen proposal distribution to
encourage jumping between the multiple modes in the
posterior. The current version of Stan does not pro-
vide a similar feature.

One result of this procedure is that the MCMC sample
will have a variety of orderings of the components; each
draw could potentially have a di↵erent labeling. For
example, the MCMC sample for the parameter µi,1

will in fact be a mix of samples from µi,1, . . . , µi,K .
The average of this sample is not likely to be a good
estimate of µi,1. Similar problems arise when looking
at pseudo-convergence statistics which are related to
the variances of the parameters.

To fix this problem, the component labels need to be
permuted separately for each cycle of the MCMC sam-
ple. With a one-level mixture model, it is possible
to identify the components by sorting on one of the
student-level parameters, ⇡i,k, µi,k or ⌧i,k. For the
hierarchical mixture model, one of the cross-student
parameters, ↵

0,k, µ0,k, or ⌧

0,k, should be used. Note
that in the hierarchical models some of the student-
level parameters might not obey the constraints. In
the case of the pause time analysis, this is acceptable
as some students may behave di↵erently from most of
their peers (the ultimate goal of the mixture modeling
is to identify students who may benefit from di↵erent
approaches to instruction). Choosing an identification
rule involves picking which parameter should be used
for identification at Level 2 (cross-student) and using
the corresponding parameter is used for student-level
parameter identification.

Component identification is straightforward. Let ! be
the parameter chosen for model identification. Fig-
ure 3 describes the algorithm.

4.2 Starting Values

Although the Markov chain should eventually reach
its stationary distribution no matter where it starts,
starting places that are closer to the center of the dis-
tribution are better in the sense that the chain should

for each Markov chain c: do
for each MCMC sample r in Chain c: do
Find a permutation of indexes k

0
1

, . . . , k

0
K so

that !c,r,k0
1
 · · ·  !c,r,k0

1
.

for ⇠ in the Level 2 parameters
{↵

0

,µ
0

,�
0

, ⌧
0

,�
0

}: do
Replace ⇠c,r with (⇠c,r,k0

1
, . . . , ⇠c,r,k0

K
).

end for{Level 2 parameter}
if inferences about Level 1 parameters are de-
sired then
for ⇠ in the Level 1 parameters {⇡,µ, ⌧ , }
do

for each Level 2 unit (student), i do
Replace ⇠c,r,i with
(⇠c,r,i,k0

1
, . . . , ⇠c,r,i,k0

K
).

end for{Level 1 unit}
end for{Level 1 parameter}

end if
end for{Cycle}

end for{Markov Chain}

Figure 3: Component Identification Algorithm

reach convergence more quickly. Gelman et al. (2013)
recommend starting at the maximum likelihood esti-
mate when that is available. Fortunately, o↵-the shelf
software is available for finding the maximum likeli-
hood estimate of the individual student mixture mod-
els. These estimates can be combined to find starting
values for the cross-student parameters. The initial
values can be set by the following steps:

1. Fit a separate mixture model for students using
maximum likelihood. The package mixtools is
slightly better for this purpose than FlexMix as
it will try multiple times to get a solution with
the requested number of components. If the EM
algorithm does not converge in several tries, set
the values of the parameters for that student to
NA and move on.

2. Identify Components. Sort the student-level pa-
rameters, ⇡i, µi, �i and ⌧ i according to the de-
sired criteria (see Section 4.1.

3. Calculate the Level 2 initial values. Most of the
cross-student parameters are either means or vari-
ances of the student-level parameters. The initial
value for ↵

0

is the mean of ⇡i across the students
i (ignoring NAs). The initial values for µ

0

and �
0

are the mean and standard deviation of µi. The
initial values for log(⌧

0

) and �
0

are the mean and
standard deviation of log(⌧ i).

4. Impute starting values for maximum likelihood es-
timates that did not converge. These are the NAs
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from Step 1. For each student i that did not
converge in Step 1, set ⇡i = ↵

0

, µi = µ
0

and
⌧ i = ⌧

0

.

5. Compute initial values for ✓i and ⌘i. These can
be computed by solving Equations 7 and 9 for ✓i

and ⌘i.

6. Set the initial value of ↵N = I. Only one param-
eter was not given an initial value in the previous
steps, that is the e↵ective sample size for ↵. Set
this equal to the number of Level 2 units, I. The
initial values of ↵ can now be calculated as well.

This produces a set of initial values for a single chain.
Common practice for checking for pseudo-convergence
involves running multiple chains and seeing if they ar-
rive the same stationary distribution. Di↵erent start-
ing values for the second and subsequent chains can
be found by sampling some fraction � of the Level 1
units from each Level 2 unit. When Ji is large, � = .5
seems to work well. When Ji is small, � = .8 seems
to work better. An alternative would be to take a
bootstrap sample (a new sample of size Ji drawn with
replacement).

4.3 Automated Convergence Criteria

Gelman and Shirley (2011) describe recommended
practice for assessing pseudo-convergence of a Markov
chain. The most common technique is to run several
Markov chains and look at the ratio of within-chain
variance to between-chain variance. This ratio is called
b
R, and it comes in both a univariate (one parameter
at a time) and a multivariate version. It is natural to
look at parameters with the same name together (e.g.,
µ

0

, �
0

, ⌧
0

, and �
0

). Using the multivariate version of
b
R with ↵

0

and ⇡i requires some care because calcu-
lating the multivariate b

R involves inverting a matrix
that does not have full rank when the parameters are
restricted to a simplex. The work-around is to only
look at the first K � 1 values of these parameters.

The other commonly used test for pseudo-convergence
is to look at a trace plot for each parameter: a time
series plot of the sampled parameter value against the
MCMC cycle number. Multiple chains can be plot-
ted on top of each other using di↵erent colors. If the
chain is converged and the sample size is adequate, the
traceplot should look like white noise. If this is not
the case, a bigger MCMC sample is needed. While
it is not particularly useful for an automated test of
pseudo-convergence, the traceplot is very useful for di-
agnosing what is happening when the chains are not
converging. Some sample traceplots are given below.

Even if the chains have reached pseudo-convergence,

the size of the Monte Carlo error could still be an is-
sue. Both rstan and coda compute an e↵ective sample
size for the Monte Carlo sample. This is the size of
a simple random sample from the posterior distribu-
tion that would have the same Monte Carlo error as
the obtained dependent sample. This is di↵erent for
di↵erent parameters. If the e↵ective sample size is too
small, then additional samples are needed.

Note that there are K(3I + 5) parameters whose con-
vergence needs to be monitored. It is di�cult to
achieve pseudo-convergence for all of these parame-
ters, and exhausting to check them all. A reasonable
compromise seems to be to monitor only the 5K cross-
student parameters, ↵, µ

0

, �
0

, log(⌧
0

) and �
0

. JAGS
makes this process easier by allowing the analyst to
pick which parameters to monitor. Using JAGS, only
the cross-student parameters can be monitored dur-
ing the first MCMC run, and then a second shorter
sample of student-level parameters can be be obtained
through an additional run. The rstan package always
monitors all parameters, including the ✓i and ⌘i pa-
rameters which are not of particular interest.

When I and Ji are large, a run can take several hours
to several days. As the end of a run might occur dur-
ing the middle of the night, it is useful to have a au-
tomated test of convergence. The rule I have been
using is to check to see if all b

R are less than a certain
maximum (by default 1.1) and if all e↵ective sample
sizes are greater than a certain minimum (by default
100) for all cross-student parameters. If these criteria
are not met, new chains of twice the length of the old
chain can be run. The traceplots are saved to a file for
later examination, as are some other statistics such
as the mean value of each chain. (These traceplots
and outputs are available at the web site mentioned
above.) It is generally not worthwhile to restart the
chain for a third time. If pseudo-convergence has not
been achieved after the second longer run, usually a
better solution is to reparameterize the model.

It is easier to extend the MCMC run using JAGS than
using Stan. In JAGS, calling update again samples
additional points from the Markov chain, starting at
the previous values, extending the chains. The current
version of Stan (2.2.0)1 saves the compiled C++ code,
but not the warm-up parameter values. So the sec-
ond run is a new run, starting over from the warm-up
phase. In this run, both the warm-up phase and the
sampling phase should be extended, because a longer

1
The Stan development team have stated that the abil-

ity to save and reuse the warm-up parameters are a high

priority for future version of Stan. Version 2.3 of Stan was

released between the time of first writing and publication

of the paper, but the release notes do not indicate that the

restart issue was addressed.
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warm-up may produce a lower autocorrelation. In ei-
ther case, the data from both runs can be pooled for
inferences.

4.4 A simple test

To test the scripts and the viability of the model, I
created some artificial data consistent with the model
in Section 2. To do this, I took one of the data sets
use by Li (2013) and ran the initial parameter algo-
rithm described in Section 4.2 for K = 2, 3 and 4.
I took the cross-student parameters from this exer-
cise, and generated random parameters and data sets
for 10 students. This produced three data sets (for
K = 2, 3 and 4) which are consistent with the model
and reasonably similar to the observed data. All
three data sets and the sample parameters are avail-
able on the web site, http://pluto.coe.fsu.edu/

mcmc-hierMM/.

For each data set, I fit three di↵erent hierarchical mix-
ture models (K 0 = 2, 3 and 4, where K

0 is the value
used for estimation) using three di↵erent variations
of the algorithm: JAGS (RWM), Stan (HMC) with
the cross-student means constrained to be increasing,
and Stan (HMC) with the means unconstrained. For
the JAGS and Stan unconstrained run the chains were
sorted (Section 4.1) on the basis of the cross-students
means (µ

0

) before the convergence tests were run. In
each case, the initial run of 3 chains with 5,000 ob-
servations was followed by a second run of 3 chains
with 10,000 observations when the first one did not
converge. All of the results are tabulated at the web
site, including links to the complete output files and
all traceplots.

Unsurprisingly, the higher the value of K 0 (number of
components in the estimated model), the longer the
run took. The runs for K 0 = 2 to between 10–15 min-
utes in JAGS and from 30–90 minutes in Stan, while
the runs for K 0 = 4 too just less than an hour in JAGS
and between 2–3 hours in Stan. The time di↵erence
between JAGS and Stan is due to the di↵erence in
the algorithms. HMC uses a more complex proposal
distribution than RWM, so naturally each cycle takes
longer. The goal of the HMC is to trade the longer
run times for a more e�cient (lower autocorrelation)
sample, so that the total run time is minimized. The
constrained version of Stan seemed to take longer than
the unconstrained.

In all 27 runs, chain lengths of 15,000 cycles were not
su�cient to reach pseudo-convergence. The maximum
(across all cross-student parameters) value for b

R varied
between 1.3 and 2.2, depending on the run. It seemed
to be slightly worse for cases in which K (number of
components for data generation) was even and K

0 (es-

timated number of components) was odd or vice versa.
The values of b

R for the constrained Stan model were
substantially worse, basically confirming the findings
of Früthwirth-Schnatter (2001).

The e↵ective sample sizes were much better for Stan
and HMC. For the K

0 = 2 case, the smallest e↵ective
sample size ranged from 17–142, while for the uncon-
strained Stan model it ranged from 805–3084. Thus,
roughly 3 times the CPU time is producing a 5-fold
decrease in the Monte Carlo error.

The following graphs compare the JAGS and Stan
(Unconstrained model) outputs for four selected cross-
student parameters. The output is from coda and pro-
vides a traceplot on the left and a density plot for the
corresponding distribution on the right. Recall that
the principle di↵erence between JAGS and Stan is the
proposal distribution: JAGS uses a random walk pro-
posal with a special distribution for the mixing param-
eters and Stan uses the Hamiltonian proposal. Also,
note that for Stan the complete run of 15,000 samples
is actually made up of a sort run of length 5,000 and
a longer run of length 10,000; hence there is often a
discontinuity at iteration 5,000.

Although not strictly speaking a parameter, the de-
viance (twice the negative log likelihood) can easily
be monitored in JAGS. Stan does not o↵er a deviance
monitor, but instead monitors the log posterior, which
is similar. Both give an impression of how well the
model fits the data. Figure 4 shows the monitors for
the deviance or log posterior. This traceplot is nearly
ideal white noise, indicating good convergence for this
value. The value of b

R is less than the heuristic thresh-
old of 1.1 for both chains, and the e↵ective sample size
is about 1/6 of the 45,000 total Monte Carlo observa-
tions.

Figure 5 shows the grand mean of the log pause times
for the first component. The JAGS output (upper
row) shows a classic slow mixing pattern: the chains
are crossing but moving slowly across the support of
the parameter space. Thus, for JAGS even though
the chains have nearly reached pseudo-convergence ( bR
is just slightly greater than 1.1), the e↵ective sample
size is only 142 observations. A longer chain might
be needed for a good estimate of this parameter. The
Stan output (bottom row) looks much better, and the
e↵ective sample size is a respectable 3,680.

The Markov chains for ↵

0,1 (the proportion of pause
times in the first component) have not yet reached
pseudo convergence, but they are close (a longer run
might get them there). Note the black chain often
ranges above the values in the red and green chains
in the JAGS run (upper row). This is an indication
that the chains may be stuck in di↵erent modes; the
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Figure 4: Deviance (JAGS) and Log Posterior (Stan) plots
Note: To reduce the file size of this paper, this is a bitmap picture of the traceplot. The original pdf version is
available at http://pluto.coe.fsu.edu/mcmc-hierMM/DeviancePlots.pdf.
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Figure 5: Traceplots and Density plots for µ
0,1

Note: To reduce the file size of this paper, this is a bitmap picture of the traceplot. The original pdf version is
available at http://pluto.coe.fsu.edu/mcmc-hierMM/mu0Plots.pdf.
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Figure 6: Traceplots and Density plots for ↵
0,1

Note: To reduce the file size of this paper, this is a bitmap picture of the traceplot. The original pdf version is
available at http://pluto.coe.fsu.edu/mcmc-hierMM/alpha0Plots.pdf.
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shoulder on the density plot also points towards mul-
tiple modes. The plot for Stan looks even worse, after
iteration 5,000 (i.e., after the chain was restarted), the
red chain has moved into the lower end of the support
of the distribution. This gives a large shoulder in the
corresponding density plot.

The chains for the variance of the log precisions for the
first component, �

0,1 (Figure 7), are far from pseudo-

convergence with b
R = 1.73. In the JAGS chains (top

row) the black chain seems to prefer much smaller val-
ues for this parameter. In the Stan output, the green
chain seems to be restricted to the smaller values in
both the first and second run. However, between the
first and second run the black and red chains swap
places. Clearly this is the weakest spot in the model,
and perhaps a reparameterization here would help.

Looking at Figures 6 and 7 together, a pattern
emerges. There seems to be (at least) two distinct
modes. One mode (black chain JAGS, green chain in
Stan) has higher value for ↵

0,1 and a lower value for
�

0,1, and the other one has the reverse pattern. This
is an advantage of the MCMC approach over an EM
approach. In particular, if the EM algorithm was only
run once from a single starting point, the existence of
the other mode might never be discovered.

4.5 Data Point Labeling

For some applications, the analysis can stop after es-
timating the parameters for the students units, ⇡i, µi

and ⌧ i (or �i as desired). In other applications it is
interesting to assign the individual pauses to compo-
nents, that is, to assign values to Zi,j .

When ⇡i, µi and �i are known, it is simple to calculate

pi,j,k = Pr(Zi,j = k). Let ⇡(c,r)
i , µ(c,r)

i and �(c,r)
i be

the draws of the Level 1 parameters from Cycle r of
Chain c (after the data have been sorted to identify
the components). Now define,

q

(c,r)
i,j,k = ⇡

(c,r)
i,k �(

Yi,j � µ

(c,r)
i,k

�

(c,r)
i,k

), (17)

and set Q(c,r)
i,j =

PK
k=1

q

(c,r)
i,j,k . The distribution for Zi,j

for MCMC draw (c, r) is then p

(c,r)
i,j,k = q

(c,r)
i,j,k /Q

(c,r)
i,j .

The MCMC estimate for pi,j,k is just the aver-

age over all the MCMC draws of p

(c,r)
i,j,k , that is

1

CR

PC
c=1

PR
r=1

p

(c,r)
i,j,k .

If desired, Zi,j can be estimated as the maximum over
k of pi,j,k, but for most purposes simply looking at the
probability distribution pi,j provides an adequate, if
not better summary of the available information about
the component from which Yi,j was drawn.

4.6 Additional Level 2 Units (students)

In the pause time application, the goal is to be able
to estimate fairly quickly the student-level parameters
for a new student working on the same essay. As the
MCMC run is time consuming, a fast method for an-
alyzing data from new student would be useful.

One approach would be to simply treat Equations 2,
3 and 4 as prior distributions, plugging in the point
estimates for the cross-student parameters as hyper-
parameters, and find the posterior mode of the ob-
servations from the new data. There are two problems
with this approach. First, the this method ignores any
remaining uncertainty about the cross-student param-
eters. Second, the existing mixture fitting software
packages (FlexMix and mixtools) do not provide any
way to input the prior information.

A better approach is to do an additional MCMC run,
using the posterior distributions for the cross-student
parameters from the previous run as priors from the
previous run (Mislevy et al., 1999). If the hyperpa-
rameters for the cross-student priors are passed to
the MCMC sampler as data, then the same JAGS or
Stan model can be reused for additional student pause
records. Note that in addition to the MCMC code
Stan provides a function that will find the maximum
of the posterior. Even if MCMC is used at this step,
the number of Level 2 units, I, will be smaller and the
chains will reach pseudo-convergence more quickly.

If the number of students, I, is large in the original
sample (as is true in the original data set), then a
sample of students can be used in the initial model
calibration, and student-level parameters for the oth-
ers can be estimated later using this method. In par-
ticular, there seems to be a paradox estimating mod-
els using large data sets with MCMC. The larger the
data, the slower the run. This is not just because
each data point needs to be visited within each cycle
of each Markov chain. It appears, especially with hi-
erarchical models, that more Level 2 units cause the
chain to have higher autocorrelation, meaning larger
runs are needed to achieve acceptable Monte Carlo er-
ror. For the student keystroke logs, the “initial data”
used for calibration was a sample of 100 essays from
the complete collection. There is a obvious trade-o↵
between working with smaller data sets and being able
to estimate rare events: I = 100 seemed like a good
compromise.

5 Model Selection

A big question in hierarchical mixture modeling is
“What is the optimal number of components, K?”
Although there is a way to add a prior distribution
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Figure 7: Traceplots and Density plots for �
0,1

Note: To reduce the file size of this paper, this is a bitmap picture of the traceplot. The original pdf version is
available at http://pluto.coe.fsu.edu/mcmc-hierMM/gamma0Plots.pdf.
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over K and learn this as part of the MCMC pro-
cess, it is quite tricky and the number of parameters
varies for di↵erent values ofK. (Geyer, 2011, describes
the Metropolis-Hastings-Green algorithm which is re-
quired for variable dimension parameter spaces). In
practice, analysts often believe that the optimal value
of K is small (less than 5), so the easiest way to de-
termine a value of K is to fit separate models for
K = 2, 3, 4, . . . and compare the fit of the models.

Note that increasing K should always improve the fit
of the model, even if the extra component is just used
to trivially fit one additional data point. Consequently,
analysts use penalized measures of model fit, such as
AIC to chose among the models.

Chapter 7 of Gelman et al. (2013) gives a good
overview of the various information criteria, so the
current section will provide only brief definitions. Re-
call Equation 5 that described the log likelihood of
the complete data Y as a function of the complete
parameter ⌦. By convention, the deviance is twice
the negative log likelihood: D(⌦) = �2L(Y|⌦). The
lower the deviance, the better the fit of the data to the
model, evaluated at that parameter. As students are
independent given the cross-student parameters, and
pause times are independent given the student-level
parameters, D(e⌦), for some value of the parameters
e⌦ can be written as a sum:

D(e⌦) =
IX

i=1

JiX

j=1

logQi,j(e⌦) , (18)

where Qi,j(e⌦) is the likelihood of data point Yi,j , that
is:

Q

i,j(e⌦) =
kX

k=1

g⇡i,k�(
Yi,j � gµi,k

g�i,k
). (19)

Note that the cross-student parameters drop out of
these calculations.

The Akaike information criterion (AIC) takes the de-
viance as a measure of model fit and penalizes it for
the number of parameters in the model. Let b⌦ be the
maximum likelihood estimate of the parameter. Then
AIC is defined as:

AIC = D(b⌦) + 2 ⇤m (20)

where m = K(2IK + 4) + (K � 1)(I + 1) + 1 is the
number of free parameters in the model. Note that
the MCMC run does not provide a maximum likeli-
hood estimate. A pseudo-AIC can be computed by
substituting ⌦, the posterior mean of the parameters
⌦. Note that ⌦ must be calculated after the parame-
ters in each MCMC cycle are permuted to identify the
components.

Gelman et al. (2013) advocate using a new measure of
model selection called WAIC. WAIC makes two sub-
stitutions in the definition of AIC above. First, it uses
D(⌦) in place of D(⌦). Second, it uses a new way of
calculating the dimensionality of the model. There are
two possibilities:

pWAIC1
= 2

IX

i=1

JiX

j=1

(logE[Qi,j(⌦)]� E[logQi, j(⌦)]) ,

(21)

pWAIC2
= 2

IX

i=1

JiX

j=1

Var(Qi,j(⌦)) . (22)

The expectation and variance are theoretically defined
over the posterior distribution and are approximated
using the MCMC sample. The final expression for
WAIC is:

WAIC = D(⌦) + 2 ⇤mWAIC . (23)

For all of the model fit statistics discussed here: AIC,
WAIC

1

and WAIC
2

, the model with the lowest value
is the best. One way to chose the best value of K is to
calculate all of these statistics for multiple values of K
and choose the value of K which has the lowest value
for all 5 statistics. Hopefully, all of the statistics will
point at the same model. If there is not true, that is
often evidence that the fit of two di↵erent models is
too close to call.

In the 27 runs using the data from known values of K,
simply using the lowest WAIC value was not su�cient
to recover the model. As the Markov chains have not
yet reached pseudo-convergence, the WAIC values may
not be correct, but there was fairly close agreement on
both WAIC

1

and WAIC
2

for both the JAGS and Stan
(unconstrained) models. However, the values of both
WAIC

1

and WAIC
2

were also fairly close for all values
ofK 0 (number of estimated components). For example
when K = 2 the WAIC

1

value was 1132, 1132 and
1135 for K 0 = 2, 3 and 4 respectively when estimated
with JAGS and 1132, 1131, and 1132 when estimated
with Stan. The results for WAIC

2

were similar. It
appears as if the common practice of just picking the
best value of WAIC to determine K is not su�cient.
In particular, it may be possible to approximate the
data quite well with a model which has an incorrect
value of K.

6 Conclusions

The procedure described above is realized as code in
R, Stan and JAGS and available for free at http://

pluto.coe.fsu.edu/mcmc-hierMM/. Also available,
are the simulated data for trying out the models.
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These scripts contain the functions necessary to auto-
matically set starting parameters for these problems,
identify the components, and to calculate WAIC model
fit statistics.

The scripts seem to work fairly well for a small number
of students units (5  I  10). With this sample size,
although JAGS has the faster run time, Stan has a
larger e↵ective sample size. Hamiltonian Monte Carlo.
With large sample sizes I = 100, Ji ⇡ 100 even the
HMC has high autocorrelation and both JAGS and
Stan are extremely slow. Here the ability of JAGS to
allow the user to selectively monitor parameters and
to extend the chains without starting over allows for
better memory management.

The code supplied at the web site solves two key tech-
nical problems: the post-run sorting of the mixture
components (Früthwirth-Schnatter, 2001) and the cal-
culation of the WAIC model-fit indexes. Hopefully,
this code will be useful for somebody working on a
similar application.

The model proposed in this paper has two problems,
even with data simulated according to the model. The
first is the slow mixing. This appears to be a prob-
lem with multiple modes, and indicates some possible
non-identifiability in the model specifications. Thus,
further work is needed on the form of the model. The
second problem is that the WAIC test does not ap-
pear to be sensitive enough to recover the number of
components in the model. As the original purpose of
moving to the hierarchical mixture model was to dis-
cover if there were rare components that could not be
detected in the single-level hierarchical model, the cur-
rent model does not appear to be a good approach for
that purpose.

In particular, returning to the original application of
fitting mixture models to student pauses while writing,
the hierarchical part of the model seems to be creat-
ing as many problems as it solves. It is not clearly
better than fitting the non-hierarchical mixture model
individually to each student. Another problem it has
for this application is the assumption that each pause
is independent. This does not correspond with what
is known about the writing process: typically writ-
ers spend long bursts of activities simply doing tran-
scription (i.e., typing) and only rarely pause for higher
level processing (e.g., spelling, grammar, word choice,
planning, etc). In particular, rather than getting this
model to work for this application, it may be better to
look at hidden Markov models for individual student
writings.2

The slow mixing of the hierarchical mixture model

2
Gary Feng and Paul Deane, private communication.

for large data sets indicates that there may be addi-
tional transformation of this model that are necessary
to make it work properly. Hopefully, the publication of
the source code will allow other to explore this model
more fully.
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Abstract

We present an unsupervised, comprehensive
methodology for the construction of financial
risk models. We o↵er qualitative comments
on incremental functionality and quantitative
measures of superior performance of compo-
nent and mixture dynamic linear models rel-
ative to alternative models. We apply our
methodology to a high dimensional stream of
daily closing prices for approximately 7,000
US traded stocks, ADRs, and ETFs for the
most recent 10 years. Our methodology au-
tomatically extracts an evolving set of ex-
planatory time series from the data stream;
maintains and updates parameter distribu-
tions for component dynamic linear models
as the explanatory time series evolve; and,
ultimately specifies time-varying asset spe-
cific mixture models. Our methodology uti-
lizes a hierarchical Bayesian approach for the
specification of component model parameter
distributions and for the specification of the
mixing weights in the final model. Our ap-
proach is insensitive to the exact number of
factors, and “e↵ectively” sparse, as irrelevant
factors (time series of pure noise) yield pos-
terior parameter distributions with high den-
sity around zero. The statistical models ob-
tained serve a variety of purposes, including:
outlier detection; portfolio construction; and
risk forecasting.

1 INTRODUCTION

We propose a time varying Bayesian statistical model
for individual stock returns depicted in Figure 1.
Our goal is to accurately model the high dimensional
probability distribution underlying stock returns. We
demonstrate success by constructing better perform-

ing investment portfolios, where the performance goal
is to minimize the standard deviation of returns. In-
vestment professionals seek to minimize the variation
in investment outcomes because doing so results in
higher economic utility for their clients. To illus-
trate this point, consider which of two pension scenar-
ios with equal expected value is preferred: one that
pays 80% salary with probability 1; or, the other that
pays 120% salary with probability 1/2 (if things “go
well”) and pays 40% salary with probability 1/2 (if
things “go poorly”). The economic concept of declin-
ing marginal utility, expressed mathematically with
concave utility functions U(E(x)) > E(U(x)), implies
that given investment scenarios with equal expected
return, individuals prefer the scenario with lowest vari-
ation. Portfolio managers are concerned with gener-
ating acceptable returns with minimal risk; and, risk
managers monitor the portfolio managers, verifying fi-
nancial risks remain within authorized limits. Risk
models, defining the n ⇥ n asset covariance matrix ⌃
and precision matrix ⌃�1, are used by portfolio man-
agers in conjunction with expected return vectors ↵↵↵ to
construct optimal portfolios weights ⌃�1

↵; and, are
used by risk managers given portfolio weights w to
forecast portfolio variance wT⌃w.

We describe the construction of a set of Bayesian
switching state-space models and qualitatively analyze
the on-line behavior of the various component models
and mixture models. We focus our discussion on the
qualitative aspects then conclude by providing quan-
titative measures of our model’s superior performance
relative to competing models. We look at the tradeo↵
of adaption rate and stability of parameter estimates,
evaluating model responsiveness with both synthetic
and real data series. We show that dynamic linear
models are robust 1 with respect to pure noise ex-
planatory variables, appropriately generating param-

1We use the term robust to describe a desirable trait
where an estimation method is stable in the presence of
outlier observations and irrelevant explanatory variables
(noise).
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eter distributions very concentrated around zero. We
comment on the behavior of component models rela-
tive to the mixture consensus. We illustrate compo-
nent and mixture response to outlier observations. In
periods with ambiguous posterior model probabilities,
we describe the di↵usive impact to the mixture dis-
tribution; and, we note surprisingly distinct behavior
when an outlier component is selected with near cer-
tainty. We find unexpectedly similar updating behav-
ior across a range of component models, bringing into
question the necessity of more than two components.
We inspect the impact of implementing intervention
in the estimation process by greatly inflating the vari-
ance of a stock’s posterior distribution subsequent to
a merger event. The intervention is shown to result in
extremely rapid convergence to new dynamics, while
the same model without intervention is shown to main-
tain bias for an unacceptably long period. Lastly, we
compare our two component mixture model against
several alternatives. Analyzing results in Table 1, we
show the positive impact of regularization provided by
the Bayesian framework relative to PCA, and further
improvement of the mixture model as compared to the
single process model.

2 BACKGROUND

2.1 RISK MODELS

High dimensional statistical models, central to mod-
ern portfolio management, present significant techni-
cal challenge in their construction. There is extensive
literature on the topic of constructing factor models

or risk models as they are interchangeably known by
practitioners. Consider a matrix of observations

X =

2

6

4

r1,1 · · · r1,t
...

. . .
...

rn,1 · · · rn,t

3

7

5

, (1)

representing log price returns

ri,j = log

✓

pi,j

pi,j�1

◆

, (2)

for assets i 2 1 . . . n, trading days j 2 1 . . . t, and end of
day prices pi,j . The general approach to financial risk
modeling specifies the covariance of asset returns as a
structured matrix. A factor model with p explanatory
time series is specified for the n ⇥ t matrix X with
an n⇥ p matrix of common factor loadings L, a p⇥ t

matrix of common factor returns time series F, and an
n⇥ t matrix of residual error time series ✏✏✏:

X = LF+ ✏

✏

✏ . (3)

An orthogonal factor model (Johnson and Wichern,
1998, Ch. 9) implies diagonal covariance matrices

✓

✓

✓n,t

Yn,t

✓

✓

✓n,t�1

vn,t

wn,t

W

Ft

Vn,t

Gt

↵n,t

⇡

⇡

⇡↵

�n,t�n,t�1

@�n,t

A

N

T

Figure 1: Our final two process Bayesian switch-
ing state-space model for log price returns Yn,t =
log (pn,t/pn,t�1) for asset n in time period t. We spec-
ify the prior probabilities ⇡↵ of the switch variable
↵n,t that controls the observation variance: Vn,t = 1
if ↵n,t = {regular model} and Vn,t = 100 if ↵n,t =
{outlier model}. In our final model, we specify the
evolution variance W. Other variables are obtained
or inferred from the data in an unsupervised manner.
The return of an individual asset is modeled as a time
varying regression, with regression coe�cient vector
✓

✓

✓n,t, common factor explanatory vector Ft, and noise:
Yn,t = ✓

✓

✓

T
n,tFt+�n,tvn,t, vn,t ⇠ N(0, Vn,t). The regres-

sion coe�cients are a hidden state vector, evolving as
a Markov chain: ✓✓✓n,t = Gt✓✓✓n,t�1 + �n,twn,t, wn,t ⇠

N(0,W). Gt captures rotation and scaling of the ex-
planatory vector Ft over time, permitting computation
of prior distributions for ✓✓✓n,t from posterior distribu-
tions for ✓✓✓n,t�1. �n,t is an asset and time specific scale
factor applied to both the observation noise vn,t and
the state evolution noise wn,t.
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Cov(F) = I and Cov(✏✏✏) =  . In an orthogonal factor
model, the covariance of the observation matrix X is
simply:

Cov(X) = LLT + . (4)

By construction, risk models based on principal com-
ponent and singular value decomposition (Wall et al.,
2003), including ours, possess this simple structure of
orthogonal common factors and residual errors.

2.2 COMMON FACTORS

In pursing an unsupervised methodology, we utilize an
SVD based approach to identifying characteristic time
series. SVD identifies common variation, both row-
wise and column-wise, in a matrix of data (Wall et al.,
2003). SVD decomposes a rectangular matrix, such as
the returns X, into two orthogonal matrices U and V;
and, a diagonal matrix D:

X = UDVT
. (5)

Given the format of the n ⇥ t returns matrix X in
Equation 3, the mutually orthogonal, unit-length right
singular vectors comprising matrix V that represent
common variation across the columns (t trading days)
are the characteristic time series; the mutually orthog-
onal, unit-length left singular vectors comprising ma-
trix U that represent common variation across rows
(n assets) are the characteristic portfolios; and, the
diagonal singular values matrix D captures scale. The
entries of D are ordered by magnitude, therefore a p-
factor model would use the first p-rows of VT for the
factor return time series.

We exploit the fact that SVD methodically extracts
common variation, ordered by magnitude. The intu-
ition is that “pervasive” sources of return important
to modeling portfolio level return characteristics will
be reliably captured in the first several factors. Points
of concern for some practitioners with regards to the
use of SVD or PCA include:

1. the factors are not readily identifiable (to the hu-
man analyst);

2. the factors can be permuted in order and sign for
data samples adjacent in time; and

3. it’s not clear how many factors to “keep”.

With respect to the first concern of (human) identifia-
bility, we reiterate our goal is an unsupervised process
yielding a high dimensional statistical model with ad-
equate explanatory power as opposed to semantically
meaningful groupings. Examination of assets with sig-
nificant weight in the characteristic portfolios typi-
cally yields meaningful portfolio themes (Johnson and

Wichern, 1998, Ex. 8.5). With respect to the second
concern, the rotation and scaling of factors in di↵er-
ent sample periods, our application incorporates the
method of (Keane and Corso, 2012) to identify these
rotations and maintain parameter distributions in the
presence of rotation and scaling. Although much dis-
cussion surrounds the third concern, the identification
of the “correct” number of factors (Roll and Ross,
1980; Trzcinka, 1986; Connor and Korajczyk, 1993;
Onatski, 2010), we find the regularization provided by
Bayesian dynamic linear models results in regression
coe�cients densely centered around zero for factors
that are pure noise. The functioning of our process
in this regard is analogous to regularized least squares
(RLS) (Bishop, 2006, Ch. 3) and the ability of RLS to
successfully estimate regression coe�cients when con-
fronted with a large number of candidate explanatory
variables.

2.3 DYNAMIC LINEAR MODELS

The Bayesian dynamic linear model (DLM) frame-
work elegantly addresses our need to process streams

of data. DLMs are state space models very similar to
Kalman filters (Kalman, 1960) and linear dynamical
systems (Bishop, 2006, Ch. 13). We summarize the
matrix variate notation and results from (West and
Harrison, 1997, Ch. 16.4). Define t the time index, p
the number of common factors, and n the number of
assets. The observations Yt are generated by matrix
variate dynamic linear models characterized by four
time varying parameters,

�

Ft,Gt, Vt,Wt

 

that define
the observation and state evolution equations. We now
define and comment on the DLM parameters as they
pertain to our application:

• Yt =
⇥

Yt,1, . . . , Yt,n

⇤T
, log price returns at time t,

common to all component DLMs;

• Ft a p ⇥ 1 dynamic regression vector, factor re-
turns at time t, common to all component DLMs;

• Gt a p ⇥ p state evolution matrix, accounts for
rotation and scaling of factor return time series
at time t, common to all component DLMs;

• Vt an observational variance scalar, individually
specified for each component DLM, greatly in-
flated in the DLMs generating “outliers” at time
t;

• Wt an evolution variance matrix, individually
specified for each component DLM, controls rate
of change in factor loadings at time t;

• ⌃t =

2

6

4

�

2
t,1

. . .
�

2
t,n

3

7

5

, unknown diagonal ma-
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trix composed of n-asset specific variance scales
at time t;

• ⌫

⌫

⌫t, n⇥ 1 vector of unknown observation errors at
time t;

• ⇥t =
⇥

✓t,1, . . . , ✓t,n

⇤

, a p⇥n unknown state matrix
whose columns are factor loadings of individual
assets on common factor returns at time t; and,

• ⌦t =
⇥

!t,1, . . . ,!t,n

⇤

, a p ⇥ n unknown evolution
errors matrix applied to the state matrix at time
t.

We specify our model variances in scale free form
(West and Harrison, 1997, Ch. 4.5), implying multipli-
cation by asset specific scales �2

t,i in univariate DLMs:

Ct = �

2
t,iC

⇤
t , Vt = �

2
t,iV

⇤
t , and Wt = �

2
t,iW

⇤
t . When

using matrix variate notation, ⌃t is a right variance
parameter, discussed below, scaling the n columns of
the matrix on which it operates. When we specify
models in § 3.5, we will specify scale free parameters
V

⇤
t 2

�

1, 100
 

and W⇤
t 2

�

.00001, .001, .1
 

. For sim-
plicity, we shall omit scale free notation.

The observation equation is:

Yt = ⇥T
t Ft + ⌫

⌫

⌫t, ⌫

⌫

⌫t ⇠ N[0, Vt⌃t] . (6)

The distribution of the observation errors ⌫

⌫

⌫t is mul-
tivariate normal, with mean vector 0 and unknown
variance Vt⌃t.

The state evolution is:

⇥t = Gt⇥t�1 +⌦t, ⌦t ⇠ N[0,Wt,⌃t] . (7)

The distribution of the state matrix evolution errors
⌦t is matrix normal (Dawid, 1981), with mean ma-
trix 0, left variance matrix Wt controlling variation
across rows (factors) of ⇥t, and right variance matrix
⌃t controlling variation across columns (assets) of ⇥t.
As our implementation uses diagonal matrices for both
Wt and ⌃t, we implicitly assume independence in the
evolution of factor loadings across the factors i 2 1 . . . p
and across the assets j 2 1 . . . n.

Mapping factor model notation of (Johnson and Wich-
ern, 1998) in Equation 3 to DLM notation of (West
and Harrison, 1997) in Equation 6: X !

⇥

Y1 . . .Yt

⇤

;

L ! ⇥T
t ; F !

⇥

F1 . . .Ft

⇤

; and, ✏✏✏ !

⇥

⌫

⌫

⌫1 . . .⌫⌫⌫t

⇤

. The
crucial change in perspective involves the regression
coe�cients, L ! ⇥T

t . Where as the other matrices in
Equation 3 are simply collections of columns present
in Equation 6, the static regression coe�cients L now
evolve with time in Equation 7 as ⇥T

t .

As typical with a Bayesian approach, our process
begins with a prior distribution reflecting our belief

about the unknown state parameter matrix ⇥0 and
the unknown variance scale matrix ⌃0 before data ar-
rives. Our initial belief is expressed as a matrix nor-

mal/inverse Wishart distribution:

(⇥0,⌃0) ⇠ NW�1
�0

[m0,C0,S0] , (8)

with mean matrix m0, left variance matrix C0, right
variance matrix S0, and degrees of freedom �0. We al-
low our estimate of observational variance to vary over
time by decaying our sample variance degrees of free-
dom parameter �t�1 immediately before computation
of the prior distribution Equation 10.

The marginal distribution for the state matrix ⇥0 is a
matrix T distribution:

⇥0 ⇠ T�0 [m0,C0,S0] . (9)

LetDt =
⇥

Yt . . .Y0

⇤

refer to the information available
subsequent to observing Yt. The conjugate parameter
distributions are updated as follows.

Prior distribution at t:

(⇥t,⌃t|Dt�1) ⇠ NW�1
�t�1

[at,Rt,St�1] , (10)

where at = Gtmt�1 and Rt = GtCt�1G
T
t +Wt.

Forecast distribution at t given the dynamic regression
vector Ft:

(Yt|Dt�1) ⇠ T�t�1 [ft, QtSt�1] , (11)

where ft = aTt Ft and Qt =
�

Vt + FT
t RtFt

 

.

In our application, Ft is not available until Yt

is observed. Therefore, we accommodate ran-
dom regression vectors Ft (Wang et al., 2011,
§ 7). Define µFt = E(Ft|Dt�1) and ⌃Ft =
Cov(Ft|Dt�1). The forecast distribution with Ft un-
known is (Yt|Dt�1) ⇠ T�t�1 [f̂t, Q̂tSt�1], where the
moment parameters of the multivariate T forecast
distribution are now f̂t = aTt µFt and Q̂tSt�1 =
�

Vt + µ

T
Ft
RtµFt + tr (Rt⌃Ft)

 

St�1 + aTt ⌃Ftat.

Posterior distribution at t:

(⇥t,⌃t|Dt) ⇠ NW�1
�t

[mt,Ct,St] , (12)

with mt = at + Ate
T
t , Ct = Rt � AtA

T
t Qt, �t =

�t�1 + 1 and St = �

�1
t

⇥

�t�1St�1 + ete
T
t /Qt

⇤

where
At = RtFt/Qt and et = Yt � ft.

2.4 UNIVARIATE DLMS

In § 2.3, we summarized results for matrix variate
DLMs. Setting the number of assets n = 1, results
for univariate DLMs immediately follow.
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2.5 MULTI-PROCESS MODELS

(West and Harrison, 1997, Ch. 12) define multi-process
models composed of component DLMs. Consider a
set of DLMs A =

�

A1, . . . ,Ak

 

. Let ↵t reference
the component DLM realized at time t, A↵t 2 A. If
the observations Yt are generated with one unknown
DLM ↵t = ↵ for all time, the observations are said
to follow a multi-process, class I model. If at di↵erent
times s 6= t, the observations are generated by distinct
DLMs ↵s 6= ↵t, the observations are said to follow a
multi-process, class II model. In an unsupervised mod-
eling process, we need to accommodate the arrival of
both typical and outlier observations. We accomplish
this with a multi-process class II model, where various
component DLMs are appropriate for various subsets
of the observations. We assume fixed model selection
probabilities, ⇡t(A↵) = ⇡(A↵).

With class II models, there are |A|

t potential model
histories for each asset. We avoid this explosion in
model sequences by considering only two periods, t�1
and t, thereby limiting distinct model sequences in our
mixtures to |A|

2. As each asset has its own history,
no longer sharing common scale free posterior variance
Ct, our mixture models are asset specific, forcing the
use of univariate component DLMs. Parameters 1⇥ 1
in univariate DLMs are now displayed with scalar no-
tation. To avoid clutter, we omit implicit asset sub-
scripts.

Inference with multi-process models is based upon
manipulation of various model probabilities: the
posterior model probabilities for the last model
pt�1(↵t�1); the prior model probabilities for the cur-
rent model ⇡(↵t); and, the model sequence likelihoods
p(Yt|↵t,↵t�1, Dt�1). Posterior model sequence proba-
bilities for current model ↵t and last model ↵t�1 upon
observing Yt are:

pt(↵t,↵t�1) = Pr[↵t,↵t�1|Dt]

/ pt�1(↵t�1)⇡(↵t)p(Yt|↵t,↵t�1, Dt�1) .

(13)

The unconditional posterior parameter distributions
are computed as mixtures of the |A|

2 component DLM
sequences

p(✓✓✓t|Dt) =
k
X

↵t=1

k
X

↵t�1=1

pt(✓✓✓t|↵t,↵t�1, Dt)pt(↵t,↵t�1) .

(14)
The posterior model probabilities are

pt(↵t) = Pr[↵t|Dt] =
k
X

↵t�1=1

pt(↵t,↵t�1) . (15)

The posterior probabilities for the last model ↵t�1

given the current model ↵t and information Dt are

Pr[↵t�1|↵t, Dt] =
pt(↵t,↵t�1)

pt(↵t)
. (16)

After each time step, the posterior mixture distribu-
tion for each component DLM is approximated with
an analytic distribution using the methodology de-
scribed in (West and Harrison, 1997, Ch. 12.3.4). The
Kullback-Leibler directed divergence between the ap-
proximation and the mixture is minimized in the pa-
rameters: mt(↵t), Ct(↵t), St(↵t), and �t(↵t). Let
St(↵t,↵t�1) refer to the variance scale estimate ob-
tained with the DLM sequence ↵t�1, ↵t. The param-
eters of the approximating distributions are as follows.
The variance scale estimates St(↵t) are:

St(↵t)
�1 =

1

pt(↵t)

k
X

↵t�1=1

pt(↵t,↵t�1)

St(↵t,↵t�1)
. (17)

The weights for computing the moments of the KL
divergence minimizing approximation to the posterior
distribution are:

p

⇤
t (↵t�1) =

St(↵t)

pt(↵t)

pt(↵t,↵t�1)

St(↵t,↵t�1)
. (18)

The mean vector mt(↵t) for DLM ↵t is:

mt(↵t) =
k
X

↵t�1=1

p

⇤
t (↵t�1)mt(↵t,↵t�1) . (19)

The variance matrix Ct(↵t) for DLM ↵t is:

Ct(↵t) =
k
X

↵t�1=1

p

⇤
t (↵t�1)

n

Ct(↵t,↵t�1) +

[mt(↵t)�mt(↵t,↵t�1)] ⇥

[mt(↵t)�mt(↵t,↵t�1)]
T
o

. (20)

The degrees of freedom parameter, �t(↵t) is important
to the KL minimization. Intuitively, if the component
DLMs are in discord, the resulting mixture may be
described as “fat-tailed”, and the precision of the un-
known variance scale parameter reduced. We compute
�t(↵t) using the procedure described by (West and
Harrison, 1997, Ex. 12.7), with a further correction
term. The approximation West and Harrison utilize,
based upon an algorithm for computing the digamma
function �(x) discussed in (Bernardo, 1976), is appro-
priate when x ! 1. However, when estimating the
reciprocal of the KL minimizing �t(↵t), we find the er-
ror in the approximation remains rather constant, and
we apply a correction to eliminate this constant.
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(a) Synthetic scenario 1: abrupt increase in factor loading
✓t, units are percent per annum. Observations Yt are syn-
thesized returns using SPY (S&P 500 ETF) until March
30, 2012; and, 2⇥SPY thereafter. Note “true” factor load-
ing doubles from approximately 10 to 20.
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(b) Synthetic scenario 2: abrupt decrease in factor load-
ing ✓t, units are percent per annum. Observations Yt are
synthesized returns using SPY until March 30, 2012; and,
AGG (Barclays Aggregate Bond ETF) thereafter. Note
“true” factor loading drops from approximately 10 to 0.

Figure 2: Unmonitored mixture models responding to abrupt change. Black line is true value of latent state
variable ✓1,t. Other lines are the posterior mean m1,t (first common factor loading) obtained with three di↵erent
mixture models discussed in § 3.5. None of the three above models responded quickly enough to the dramatic
change in dynamics. A method of intervention to improve responsiveness is discussed in § 4.5.

3 APPLICATION DESIGN

3.1 END USERS

Our application enables a proprietary trading group
at a financial services firm to better understand the
aggregate behavior of stock portfolios. The models
provide a statistical framework required for construct-
ing portfolios, assessing portfolio risk, and clustering
assets. The assets of primary interest are the common
shares of the largest 1000 - 2000 companies in the US
stock market. The group focuses on larger companies
because the liquidity of larger stocks generally makes
them cheaper and easier to transact. The group’s
strategies include short selling: borrowing stock, sell-
ing borrowed shares; and, attempting to profit by re-
purchasing the shares at a lower price. Larger stocks
are generally easier to borrow.

3.2 BIAS-VARIANCE TRADEOFF

In implementing our application, one of the first issues
encountered is a machine learning classic, the bias-
variance tradeo↵ [Ch. 2.9](Hastie et al., 2009). With
respect to DLMs, a trade o↵ is incurred in the e↵ec-
tive number of observations as the evolution variance
is varied. A model with greater evolution variance will
generate parameter distributions with greater variance
but lower bias. A model with lower evolution variance
will generate parameter distributions with lower vari-
ance but greater bias. A relatively smooth, lethar-
gic, slowly adapting model does not track evolving
dynamics as quickly as a rapidly adapting model; on

the other hand, the quickly adapting model delivers
a noisier sequence of parameter distributions. Out-
side our applied context, the loss function might be
specified as squared error or absolute error. In the
context of a risk model, the loss function should con-
sider a portfolio manager’s cost of over-trading due
to a model adapting excessively (variance); as well a
risk manager’s problems arising in a system adapt-
ing too slowly (bias). The appropriate loss function
depends critically on the intended end use. A quan-
titative trader constructing portfolios with quadratic
optimization tends to magnify errors in a model, as the
optimization process responds dynamically to param-
eter estimates (Muller, 1993). In contrast, a firm-wide
risk manager, who typically evaluates sums of individ-
ual asset exposures, but does not dynamically respond
to individual asset risk attributes, may prefer less bias
and more variance, as error in the factor loadings of
one asset may be o↵set by error in another asset in the
summation process. We construct a variety of mix-
tures along the bias-variance continuum as discussed
in § 3.5 and as illustrated in Figure 2.

3.3 UNIVERSE OF ASSETS

We identify two universes of assets: a relatively nar-
row set that will be used to construct explanatory time
series; and, an all inclusive set for which we will gen-
erate factor loading and residual volatility estimates.
It is desirable that the assets used to construct the
common factor returns trade frequently and with ad-
equate liquidity to minimize pricing errors. We also
avoid survivor bias, the methodological error of omit-
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ting companies no longer in existence at the time a
historical analysis is performed. We eliminate this haz-
ard by defining our common factor estimation universe
using daily exchange traded fund (ETF) create / re-
deem portfolios for the last 10 years. Brokers create

ETF shares (in units of 50,000 ETF shares) by deliv-
ering a defined portfolio of stock and cash in exchange
for ETF shares; or, they redeem ETF shares and re-
ceive the defined portfolio of stock and cash. Given the
create / redeem definitions that were used as the basis
for large transactions during the historical period, the
assets in an ETF portfolio represent an institutionally
held, survivor bias free, tradeable universe. Its likely
the component shares were readily available to borrow,
as the component shares were held by custodian banks
for the ETF shareholders. Our data base permits us
to obtain data for surviving and extinct stocks. The
ETF we select for our factor estimation universe is the
Vanguard Total Stock Market ETF (VTI) (Vanguard
Group, Inc., 2014). As of April 2014, including both
mutual fund and ETF share classes, the Vanguard To-
tal Stock Market fund size was approximately USD 330
billion. The VTI constituents closely approximates
our desired universe, with the number of component
stocks typically ranging from 1300 - 1800.

3.4 DATA PREPARATION

Data preparation involves constructing the artifacts
demanded by § 2.3: Yt, Ft, and Gt. Each trading day,
using price, dividend, and corporate action data for all
7000 - 8000 stocks, ADRs, and ETFs in our US pricing
data base (MarketMap Analytic Platform, 2014), we
construct dividend and split adjusted log price return
observation vectors Yt. For stocks in the VTI ETF
on that day, we construct a variance equalized histor-

ical returns matrix rt =
⇥

Yt�T+1 . . .Yt

⇤

⌃̂
� 1

2
t where

⌃̂t is the diagonal matrix of sample variance for the
period t� T +1 to T . Using (Keane and Corso, 2012,
§3.c), we compute Ft, from the first p right singular
vectors from a singular value decomposition of rt. As
the vectors are unit length, and we desire unit variance
per day, Cov(Ft) = I, we scale the right singular vec-
tors by

p

T . The scaled characteristic time series from

adjacent data windows, rt�1 =
⇥

Yt�T . . .Yt�1

⇤

⌃̂
� 1

2
t�1

and rt =
⇥

Yt�T+1 . . .Yt

⇤

⌃̂
� 1

2
t are then used to com-

pute Gt as described in (Keane and Corso, 2012, §3.e):

Gt =
�

FtF
T
t

��1
FtF

T
t�1 . (21)

We are a little flexible with the notation in Equa-
tion 21, where Ft and Ft�1 are p⇥(T�1) sub-matrices
representing time aligned subsets of two factor return
matrices, the scaled right singular vectors obtained
from the decomposition of rt�1 and rt. Elsewhere,

viz. Equation 11, Ft refers to a p⇥ 1 dynamic regres-
sion vector, the right most column of the transposed
and scaled right singular vectors, corresponding to the
desired vector of common factor returns for day t.

3.5 MODEL COMPONENTS

The component DLMs in our mixture model share ob-
servations Yt, common factor scores Ft, and state evo-
lution matrices Gt. The component DLMs are di↵er-
entiated by the variance parameters: the observational
variance scale Vt, and the evolution variance matrix
Wt. We construct a set of component DLMs following
the approach of (West and Harrison, 1997, Ch. 12.4).
For component DLMs that will accommodate “typ-
ical” observation variance, we set Vt = 1; for com-
ponent DLMs that will accommodate outlier observa-
tions, we set Vt = 100. For the evolution variance, we
similarly select a base rate of evolution Wt = .00001;
and, inflate Wt by a factor of 100 and 1002 to permit
increasingly rapid changes in the factor loadings.

3.6 OUTPUT

The format of the output risk model will be a n ⇥ p

factor loading matrix and a n ⇥ 1 residual volatility
vector. These p+1 numeric attributes for n stocks are
stored in various formats for subsequent use through-
out the organization.

4 EVALUATION
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Figure 3: Distribution of factor loadings for the Van-
guard Total Market Index portfolio on April 30, 2014.

Left axis is density,

Z

dx = 1.

4.1 NUMBER OF FACTORS

A Bayesian DLM updated with an “explanatory” se-
ries of pure noise is expected to generate posterior
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mixture model degrees of freedom �t (right), white line.

Figure 4: Multi-Process Models. See § 4.3 for discussion. Figure 4(a),(c),(e) units are percent per annum.
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regression parameter distributions densely surround-
ing zero given su�cient observations. Further, a
linear combination of independent DLMs is a DLM
(West and Harrison, 1997, Principle of Superposition,
p. 188). We use these two points to justify the in-
clusion of a relatively large number of independent
explanatory series. Given the regularization inherent
in Bayesian DLMs, we believe the risk of omitting a
common factor far exceeds the risk of including noise.
In our application, we focus on aggregate (portfolio
level) forecasts, therefore it is extremely important to
identify common sources of variation that may appear
insignificant at the individual asset level. (West and
Harrison, 1997, Ch. 16.3) discuss in detail the hazard
of omitted common factors in aggregate forecasts. In
Figure 3, we show the distribution of factor loadings
for the VTI constituents on April 30, 2014. The distri-
bution of factor loadings for the first five common fac-
tors obtained from our two component mixture model
are shown in comparison to the distribution of loadings
on Gaussian noise, Ft ⇠ N[0, 1]. Figure 3 is consis-
tent with our viewpoint, note the high density of zero
loadings for the noise series, and the relatively di↵use
factor loadings for the first five common factor series
extracted with SVD. The factor loadings on the noise
series have a mean loading µm = 0 bp2, and a stan-
dard deviation of � = 2 bp. In contrast, the loadings
on the first factor have a mean loading of µm = �82bp
and a standard deviation of �m = 21bp.

4.2 MIXTURE DYNAMICS

Figure 4 shows the price movement and model re-
sponse for IBM during the second half of 2013. In Fig-
ure 4(g), the price histories for IBM and the S&P 500
ETF SPY are displayed. Note the sharp drop in IBM’s
price on October 17, 2013 corresponding to an earnings
announcement. This event is helpful in understand-
ing the interaction of components in our multi-process
models. We construct three multi-process models, the
simplest of which is a two component mixture (the
“base model”), comprised of a standard component
DLM to handle the majority of the observations Yt,
and an outlier component DLM. We specify common
evolution variance Wt = .00001 I; observation vari-
ance Vt = 1 for the standard component; and observa-
tion variance Vt = 100 for the outlier component. The
base model and component estimates for the first fac-
tor loading m1,t appear in Figure 4(a) and magnified
in Figure 4(b). We specify a three component mixture
(the “adaptive model”) by adding a component DLM
with inflated evolution variance Wt = .001 I. The
adaptive model and component estimates for the first
factor loading m1,t appear in Figure 4(c) and magni-

2A basis point (bp) is 10, 000�1.

fied in Figure 4(d). Finally, we specify a four compo-
nent mixture (the “very adaptive model”) by adding
a component with further inflated evolution variance
Wt = .1 I. The very adaptive model and compo-
nent estimates for the first factor loading m1,t ap-
pear in Figure 4(e) and magnified in Figure 4(f). The
posterior component model probabilities for the very
adaptive model appear as a bar chart in Figure 4(h),
where the bottom bar corresponds to the probability
of the outlier component, the second bar corresponds
to the very adaptive component DLM, the third bar
corresponds to the adaptive component DLM, and the
top bar corresponds to the base component DLM. We
specified the fixed DLM selection (prior) probabili-
ties as

�

.01543, .00887, .0887, .887
 

for the components
{outlier, very adaptive, adaptive, base} respectively.
Note several occurrences where the posterior probabil-
ity of an outlier observation significantly exceeds the
DLM selection probability. The white line in Figure
4(h) corresponds to the degrees of freedom parameter
�t for the T-distribution that approximates the mix-
ture model’s posterior parameter distribution.

4.3 QUALITATIVE COMMENTS

To supplement the more analytically precise discussion
in § 2.5, we make the following qualitative comments
as to the interaction of the mixture components:

• the mixture in Figure 4(e) with larger evolution
variance adapts faster; the mixture in Figure 4(a)
with smaller evolution variance appears smoother;

• time t component posteriors are 1-period depar-
tures from the t � 1 consensus, see Figure 4(a),
(b), (c), (d), and (e);

• an outlier component “ignores” current observa-
tions Yt and forecast error |et|, responding to the
t � 1 posterior consensus mt�1, see Figure 4(b)
and (d);

• in periods of noise, the other components return
to the outlier component’s estimate with 1-period
lag, see left-hand side of Figure 4(b) and (d);

• in periods of level change, the outlier follows the
other components’ estimate with 1-period lag, see
right-hand side of Figure 4(b) and (d);

• when the posterior probability of the outlier com-
ponent spikes up, the degrees of freedom parame-
ter �t usually drops, reducing the precision of the
variance scale estimate St, see Figure 4(h);

• however, when the outlier component is selected
with very high probability, there is no impact to
�t as the observation is ignored, see October 17,
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Figure 5: In a deal announced April 15, 2013, Life Technologies Corporation was acquired by Thermo Fisher
Scientific Inc. for USD 14 billion. The change in price behavior is noticable in Figure 5a. The factor loading
estimates for two mixture models are compared in Figure 5b. One mixture model is unmonitored, the other
benefits from intervention subsequent to the news event. See discussion in § 4.5

2013 in Figure 4(h), noting that the white line
does not drop when Pr{ outlier } ⇡ 1;

• except for the very adaptive component, the re-
sponse does not vary with Wt, see Figure 4(d)
and (f), where W=.001 and W=.00001 responses
are nearly identical.

4.4 UNRESPONSIVENESS TO Wt

The phenomenon we find most surprising is the in-
sensitivity of the components to Wt below a cer-
tain threshold. Digging further into this phenomenon,
in a mixture, the various component models view of
the t � 1 posterior parameter distribution are very
similar. Thinking about univariate DLMs, and as-
suming for discussion F = 1 and G = 1, the
magnitude of the adaptive scalar At = Rt/Qt =
(Ct�1 +Wt) / (Ct�1 +Wt + Vt). When Wt ⌧ Ct�1,
as describes our situation, At ⇡ Ct�1/ (Ct�1 + Vt) as
seen in Figure 4(d) and (f). Only when Wt is signifi-
cant relative to Ct�1 does response vary noticeably.

4.5 INTERVENTION

Our discussion of IBM focused on the mixture mod-
els’ processing of unusual observations. We now ex-
plore an example where the data generating process
changes abruptly, similar to our synthetic illustrations
in Figure 2. In April 2013, the acquisition of Life
Technologies Corporation by Thermo Fisher Scientific
Inc. was announced. The stock’s sensitivity to the
market, as expressed in its first common factor load-
ing, dropped abruptly, as shown in Figure 5. While
our goal is an unsupervised estimation processes, the
Bayesian DLM framework facilitates structured inter-
vention when necessary. For one of the mixture models

in Figure 5b, we intervene and inflate the prior param-
eter variance following the April 15th announcement,
R++

t = Gt (Ct�1 + I)GT + Wt, where the identity
matrix reflects the increased uncertainty in the param-
eter distribution relative to the usual prior variance in
Equation 10. When subsequent updates occur, the
DLM with the inflated prior variance adapts to the
new dynamics rapidly and satisfactorily.

Table 1: Risk Model Performance

Volatility s.e. t-stat

GMV portfolio
PCA (1) 4.62 0.07 40.48
PCA (10) 3.41 0.05 29.87
DLM (10) 2.17 0.03 6.82
Mixture (10) 1.96 0.03

MSR portfolio
PCA (1) 4.07 0.06 49.38
PCA (10) 2.06 0.03 28.84
DLM (10) 1.30 0.02 4.39
Mixture (10) 1.22 0.02

Cap Weight 20.31 0.29
Equal Weight 24.62 0.35

4.6 RISK MODEL PERFORMANCE

To access the performance of our two component mix-
ture model, we construct daily portfolios from the VTI
universe for the most recent ten years, May 2004 to
April 2014. The number of trading days during this
period was 2,516. In Table 1, we report realized out-
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of-sample volatility and the standard error (se) of the
volatility measure for two strategies: global minimum
variance (GMV); and, maximum Sharpe ratio (MSR)
(Demey et al., 2010). We implement four risk models:
1-factor PCA; 10-factor PCA; 10-factor DLM; and, 10-
factor 2-component mixture model. We permit short
positions, and do not constrain position weights. The
PCA models are constructed using (Connor and Kora-
jczyk, 1988). The mixture model is the same model we
presented earlier, with noise “factor ten” present. For
each strategy, we report the t-statistics for the vari-
ous models’ realized volatility compared to the mixture
model’s realized volatility. For context on the ambient
volatility of the ten year period, we provide realized
volatility for two portfolios that are long only and do
not use a risk model: the capitalization weighted port-
folio; and the equal weighted portfolio.

5 CONCLUSION

The ability to integrate SVD with Bayesian methods
allows our application to process large data streams in
an unsupervised fashion. We demonstrate that a two
component multi-process model achieved better reduc-
tion in volatility than alternative models. The two
component model out-performed alternative models
including a single process model. We find the robust-
ness of Bayesian DLMs with respect to noise inputs
of great practical value, allowing us to favor inclusion
of factors, potentially capturing pervasive sources of
common movement important to aggregate forecast-
ing. The inclusion of an outlier model adds great
functionality, delivering robustness to the estimation
process. The insensitivity of the mixture models to
multiple evolution variance values leads us to favor
mixtures of just two components, a typical evolution
variance value for both components, and an inflated
observation variance in the outlier component. We
would recommend generating several models of vary-
ing adaptiveness, evaluating the variance-bias tradeo↵
in light of a user’s specific situation. We favor the ju-
dicious use of intervention for events such as mergers.
We would like to explore using news feeds to system-
atically intervene for events known to impact an assets
dynamics.

References

J.M. Bernardo. Psi (digamma) function. Applied

Statistics, 25(3):315–317, 1976.

C.M. Bishop. Pattern recognition and machine learn-

ing. Springer, 2006.

G. Connor and R.A. Korajczyk. Risk and return in an

equilibrium APT. Journal of Financial Economics,
21(2):255–289, 1988.

G. Connor and R.A. Korajczyk. A test for the num-
ber of factors in an approximate factor model. The
Journal of Finance, 48(4):1263–1291, 1993.

A.P. Dawid. Some matrix-variate distribution theory:
notational considerations and a Bayesian applica-
tion. Biometrika, 68(1):265, 1981.

P. Demey, S. Maillard, and T. Roncalli. Risk based
indexation. Technical report, Lyxor Asset Manage-
ment, Paris, 2010.

T. Hastie, R. Tibshirani, and J. Friedman. The el-

ements of statistical learning, volume 2. Springer,
2009.

R.A. Johnson and D.W. Wichern. Applied multivariate

statistical analysis, volume 4. Prentice Hall, 1998.

R.E. Kalman. A new approach to linear filtering and
prediction problems. Journal of Basic Engineering,
82(1):35–45, 1960.

K.R. Keane and J.J. Corso. Maintaining prior distri-
butions across evolving eigenspaces. In International

Conference on Machine Learning and Applications.
IEEE, 2012.

MarketMap Analytic Platform. North American Pric-

ing. SunGard Data Systems, Inc., 2014.

P. Muller. Empirical tests of biases in equity portfo-
lio optimization. In S.A. Zenios, editor, Financial
optimization. Cambridge University Press, 1993.

A. Onatski. Determining the number of factors from
empirical distribution of eigenvalues. The Review of

Economics and Statistics, 92(4):1004–1016, 2010.

R. Roll and S.A. Ross. An empirical investigation of
the arbitrage pricing theory. The Journal of Fi-

nance, 35(5):1073–1103, 1980.

C. Trzcinka. On the number of factors in the arbitrage
pricing model. the Journal of Finance, 41(2):347–
368, 1986.

The Vanguard Group, Inc. Prospectus. Vanguard To-
tal Stock Market ETF. https://www.vanguard.

com, 2014.

M.E. Wall, A. Rechtsteiner, and L.M. Rocha. Singular
value decomposition and principal component anal-
ysis. In D.P. Berrar, W. Dubitzky, and M. Granzow,
editors, A practical approach to microarray data

analysis. Springer, 2003.

H. Wang, C. Reeson, and C. Carvalho. Dynamic finan-
cial index models: Modeling conditional dependen-
cies via graphs. Bayesian Analysis, 6(4):639–664,
2011.

M. West and J. Harrison. Bayesian forecasting and

dynamic models. Springer Verlag, 1997.

30

https://www.vanguard.com
https://www.vanguard.com


 

Hydrologic Predictions using Probabilistic Relational Models 

Max Metzger 
Charles River Analytics. 

625 Mt. Auburn St. 
Cambridge, MA 02138 

Alison O’Connor 
Charles River Analytics 

625 Mt. Auburn St. 
Cambridge, MA 02138 

David F. Boutt 
University of Massachusetts 

611 North Pleasant Street 
Amherst, MA 01003 

Joe Gorman 
Charles River Analytics. 

625 Mt. Auburn St. 
Cambridge, MA 02138 

 
Abstract 

The US Army faces a significant burden in 
planning sustainment operations. Currently, 
logistics planners must manually evaluate 
potential emplacement sites to determine their 
terrain suitability. Sites subject to rainfall-runoff 
responses such as flooding are ill-suited for 
emplacements, but evaluating the likelihood of 
such responses requires significant time and 
expertise. To reduce the time and to ease the 
difficulty of logistics site selection we 
demonstrated a series of Terrain Impact Decision 
Extensions (TIDE) for use in logistics planning 
tools and processes. TIDE performs data-fusion 
over a variety of terrain and weather data sets 
using probabilistic relational models (PRMS), 
providing a high-performance alternative to 
physics-based hydrologic models. 

1. INTRODUCTION 
Maintaining a constant supply of water and fuel is critical 
to sustaining the US Army’s forces in the field. 
(Department of the Army, 2008). To provide access to 
these critical resources, logistics planners must deliver 
those resources with minimal failure to establish and 
maintain emplacements (e.g., tanks, fuel lines) capable of 
storing these crucial commodities. Water and fuel 
supplies must not be susceptible to disruption, damage, 
and contamination by water due to rainfall-runoff 
responses such as flooding, overland flow, and ponding 
(i.e., the temporary accumulation of surface water).  

Currently, the risks posed by rainfall-runoff responses to 
potential emplacement sites are manually evaluated, and 
require considerable expertise and time. Site evaluation is 
further complicated for areas lacking detailed data that 
describe terrain, soil properties, and subsurface conditions 
(e.g., the presence of aquifers).  This occurs due to the 

significant role played by terrain, soil, and subsurface 
factors in the effects of rainfall run-off on terrain. A 
decision aid capable of automatically evaluating the 
suitability of emplacement sites would reduce the time 
needed for evaluation by logistics planners and improve 
the quality of sites selected.  

To reduce the time and the difficulty of logistics site 
selection we designed and demonstrated a series of 
Terrain Impact Decision Extensions (TIDE) for logistics 
planning tools and processes. TIDE performs data-fusion 
over a variety of terrain and weather data sets, and uses 
probabilistic relational models (PRMs) to reason with 
uncertainty to evaluate the suitability of potential logistics 
sites against a series of expert rules for a variety of 
emplacement systems. By using PRMs to rank the 
severity of potential rainfall-runoff responses, TIDE was 
able to site determine suitability much faster than by 
rigorous physical simulation. Additionally, PRMs can 
reason with incomplete data (e.g., a lack of detailed soil 
information), making them useful even when evaluating 
data-poor regions.  

1.1 PROBLEM DESCRIPTION 

The rainfall-runoff response of landscapes is a 
fundamental problem in the field of hydrology (Singh, 
1988). The accumulation of water at a particular time-
space location on the Earth’s surface (i.e., terrain 
ponding) is the result of the confluence of many 
climatologic, hydrologic, and physical factors and 
parameters.  During a liquid precipitation event (e.g., 
rain), water is transported in three main ways: water can 
run-off/on in the form of overland flow; infiltrate into the 
soil and become ground water; or be transferred back into 
the atmosphere via evapotranspiration. Overland flow can 
in turn lead to the accumulation of surface water (e.g., 
flooding), which poses a risk to US Army emplacements. 

The terrain assessment model must account for multiple 
aspects of the area of interest. First, overall climatic 
conditions (i.e., arid, semi-arid, humid) have an important 
influence over the relative distribution of water in the 
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three pathways. The model must account for uncertainty 
in weather predictions and climatologic predictions. 
Second, the model must account for local factors within 
the area of interest that influence the rainfall-runoff 
response. There are many such factors, including rainfall 
intensity and duration, slope of the land, land use and land 
cover characteristics (i.e., vegetation and impervious 
surfaces), soil and air temperature, soil hydraulic 
properties, and soil moisture conditions. The data sources 
for these factors may be incomplete or inaccurate, 
introducing additional uncertainty.  

The prediction of where, when, and how long water will 
accumulate on the land surface is reliant on constraining 
parameters that describe the above processes and 
conditions.  Fortunately, hydrologists have been 
developing tools to both quantify these factors and 
develop quantitative models for predicting rainfall-runoff 
response to precipitation events.  

These models are often based on solving complex 
equations that govern the physics of surface and 
subsurface water  (Abbott, Bathurst, Cunge et al., 1986; 
Panday & Huyakorn, 2004) or assign statistical values to 
terrain based on observation (Yoram, 2003). These 
models are not practical for US Army planning because 
they require complete data sets, are extremely time-
consuming to compute, and do not scale to the levels of 
detail and scope required by US Army logistics planners. 

2. APPROACH 
Given the potential incompleteness of input parameters 
(including terrain, soil and subsurface data), our approach 
uses a probability-based method to track the inferences 
made about data through the model. For TIDE to be 
useful, the system must infer terrain characteristics, soil 
properties, and subsurface conditions from limited data. 
While terrain elevation data is available for most of the 
world at varying levels of detail, soil data is less 
prevalent. Land use, land cover (e.g., vegetation), as well 
as the soil’s hydrologic properties and moisture 
conditions are all factors in predicting rainfall-runoff 
response. When this information is not directly available, 
it needs to be estimated or inferred. For example, soil 
properties for a given region within the United States may 
be well-known and stored in a Geographic Information 
System (GIS) database, but this data may be unknown for 
many rural regions around the world. An exhaustive 
geological survey of potential sites within that region is 
not possible given time and personnel constraints. Even 
when terrain, soil, and subsurface data are present, it may 
not be at resolutions high enough to be relevant to the 
emplacements (e.g., a map with soil data at a resolution of 
500m is of limited use when selecting a site for a fuel line 
less than a meter across). In cases where data describing 
terrain characteristics, soil properties, and subsurface 
conditions are absent, purely rule-based approaches are 
insufficient, as rules alone are poorly-suited to handling 
incomplete data. The system must be capable of reasoning 

with limited or incomplete data before executing any 
impact assessment rules. The PRM model developed 
under the TIDE effort is capable of reasoning with 
incomplete data and inferring data that may be absent. 
Additionally, while our initial model is very simple, 
further work may expand the model to be very complex. 
The object-oriented PRM approach is well-suited for such 
complexity. 

The PRM output is used to generate maps showing the 
likelihood for flow accumulation at a given location for a 
certain amount of time. We based our models on the 
Hortonian Infiltration and Runoff/On (HIRO2) model, 
which was originally developed for the USDA (Meng, 
Green, Salas et al., 2008). This model predicts rainfall-
runoff responses, including runoff channels (in which 
surface water flows) and the time until ponding occurs. 
The HIRO2 model performs well, but operates at larger 
scales than are useful to emplacement selection, generally 
being most accurate at scales of hundreds of meters. The 
HIRO2 model served as the basis for our model, but was 
modified to operate at higher levels of fidelity without 
significantly compromising performance.  

Bayesian modeling techniques have been used in the field 
of hydrology for decades (Vicens, Rodriguez-Iturbe, 
Schaake et al., 1975), but the majority of this work has 
different goals than TIDE. Bayesian modelling 
approaches generally take existing models that use direct 
measurements as inputs (e.g., rainfall) and predict specific 
hydrologic response values (e.g., runoff rate, groundwater 
level). Bayesian techniques are then used to calibrate the 
models parameters to improve their accuracy (Beven & 
Binley, 1992; Thiemann, Trosset, Gupta et al., 2001; 
Vrugt, Ter Braak, Clark et al., 2008).  

TIDE differs from past Bayesian hydrologic models in 
two fundamental ways. First, our model attempts to 
predict the impact of rainfall-runoff responses, not their 
precise values. Generally speaking, US Army logistics 
planners are not concerned about predicting the exact 
amount of surface water that may accumulate, but are 
instead primarily concerned about the impact on the 
mission. For example, the difference between 1.2 meters 
of standing water or 2.4 meters is irrelevant if either 
makes the mission impossible to complete.  

Second, the TIDE model must perform with reasonable 
accuracy in regions of the world that have little, if any, 
hydrologic data observations (e.g., hourly flow rates for a 
stream) that can be used to train or calibrate a model. 
Instrumenting and measuring rainfall-runoff responses in 
these areas may be too costly, logistically infeasible, or 
dangerous. As a consequence the TIDE model must rely 
on generally available data (e.g., elevation, land cover, 
weather).  

2.1 PROBABALISTIC RELATIONAL MODELS 

To represent our terrain and hydrologic models in a 
probabilistic form that allows us to determine the 
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suitability of an area of interest, we designed a 
probabilistic relational model (PRM) (Koller & Pfeffer, 
1998; Pfeffer, Koller, Milch et al., 1999; Friedman, 
Getoor, Koller et al., 1999). PRMs describe the world in 
terms of classes of objects, instances of those classes and 
relationships between them. Serving as a powerful 
extension of Bayesian Networks (BNs), PRMs use object-
oriented semantics that capture attribute, structural, and 
class uncertainty to overcome computational and storage 
complexity challenges faced by BNs.  

The design of PRMs has proven to be useful in 
representing a wide range of complex domains that 
involve uncertainty and require flexibility and reusability. 
In regard to complexity, PRMs capture the logical and 
relational structure of a domain. For example, PRMs 
specify how one attribute influences the value of another 
attribute. In our PRM, the value of the attribute, 
RankDrainageCapacity, is dependent on the values of 
attributes, LandCoverType and SoilType, from two other 
classes. Therefore, the model uses the values of 
RankDrainageCapacity’s dependent attributes, 
LandCoverType and SoilType, to infer the value of 
RankDrainageCapacity.  

To handle uncertainty, PRMs use probability distributions 
encoded in the model to determine values of unknown 
variables. The value of LandCoverType and SoilType for 
a location are retrieved from data sources outside the 
model and then posted to the model. Therefore, there is 
little uncertainty in regard to these two attributes. 
Conversely, the value of RankDrainageCapacity is 
inferred inside the model using probability distributions. 
To overcome the uncertainty involved with this attribute, 
encoded in the model is a map of possible combinations 
of land cover and soil types to appropriate probability 
distributions. Relying on the team’s hydrologic expertise, 
we created initial distributions for each possible pair of 
land cover and soil types, as well as each land cover and 
soil type provided the other attribute was unknown. 
Similarly, using domain knowledge, we supplied 
distributions for each individual slope ranking, flow 
ranking, and drainage ranking assuming that the other two 
attributes were unknown. Given the increased number of 
combinations for RankRunoffPotential, to obtain 
distributions in the case that two or three attributes were 
known, we multiplied the probabilities of the known 
attributes for each of the five possible 
RankRunoffPotential values. The distributions for 
Suitability were much simpler to encode, as only five 
probability distributions that required no further 
calculations were necessary. While these initial 
distributions pass face validation, future work is needed to 
adjust the distributions to meet higher accuracy needs. 

To support flexibility and reusability, PRMs allow the 
reuse of the same class probability models for all 
instances of a class. New probabilistic models do not have 
to be constructed for each new situation. Instances of 
classes can be configured in any way desired for a given 

situation. The relationships that hold between these 
instances are captured by the PRM. For example, our 
PRM contains a class SiteModel that has one attribute, 
Suitability. The value of Suitability depends on the 
instance of the Runoff class’ attribute, 
RankRunoffPotential. To reason over this model, one 
must create instances of both the SiteModel and Runoff 
classes. 

The flexibility and reusability of PRMs grant us the 
ability to reason over millions of locations. For each 
location, the relevant set of known facts about specific 
attributes – the land cover type, soil type, rank of slope 
and rank of flow –must be provided to the instances of 
classes. As we transition to discuss our PRM in greater 
detail, it will become more evident that these four key 
features of PRMs – complexity, uncertainty, flexibility, 
and reusability – are crucial to obtaining successful 
results. Bayesian Networks could also apply to this 
problem, as the relational structure is fixed for every 
instance. Nevertheless, the object-oriented representation 
of PRMs were quite helpful in designing the model. 

2.2 PRM EDITOR 

We developed a PRM Editor that provides an intuitive 
graphical user interface (GUI) that allows users to create 
complex PRMs by defining classes of objects, adding 
attributes to those class definitions, creating instances of 
the classes, and specifying the relationships between 
them. 

Upon launching the PRM Editor, the user can navigate 
between three views: the global view, class view, and 
instance view. While these three views are initially blank, 
the panels become populated with information and 
graphical representations of the model. The global view 
allows a user to view the PRM as a whole in a folder 
format. Its top-level folder, named after the PRM, can be 
expanded to display three other folders, enums, classes, 
and instances. The enums and instances folders can 
further be expanded to show all enumerations and 
instances of classes in the model. Within the classes 
folder are additional folders for each class that can be 
expanded to view the attributes in that class.  

Unlike the global view, the class view displays a 
graphical representation of the PRM. Each class is 
represented by a box labeled with the class name. If 
applicable, arrows are automatically drawn between 
boxes indicating super and subclasses (parent-child 
relationships). The instance view also displays boxes that, 
rather than represent classes, represent the instances of 
classes in the model.  

To begin utilizing these three views, the user has the 
option to either load an existing model into the GUI or 
create a new PRM. After loading or initializing the model, 
the user can begin building the model by adding classes. 
When creating a class, the user must specify the name and 
parent class of the new class. In the case of our model, we 
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created six classes, none of which had parents, so this 
field remained blank. 

Adding an attribute requires more detail than adding a 
class. A user must specify the attribute name, type, and 
resolution. The user has the option to assign single or 
multi as the attribute’s type, as well as choose from a list 
of possible types. Possible types contained in this list 
include integer, real number, Boolean, type, nothing, as 
well as all of the classes and enumerations created by the 
user. If the attribute is of type enumeration, the user must 
have previously defined the appropriate enumeration. For 
example, in our model, the SiteModel class’ attribute, 
Suitability, is of type enumeration. The possible values 
for Suitability are VeryPoor, Poor, Medium, Well and 
VeryWell. Therefore, we created an enumeration called 
RankPoor, to represent an attribute with these five 
possible values. Before defining an attribute’s resolution, 
the user must create instances of other classes. By 
creating instances of classes, attributes in other classes 
can depend on the attributes of these instances. Figure 1 
shows the global and class relationship views after the six 
classes and their six respective instances have been 
created.  

  

Figure 1: Global View (left), Class Relationship View 
(right) 

To complete the implementation of the previously 
discussed attribute, Suitability, its resolution must be 
defined. The resolution of an attribute can be assigned as 
nothing, assignment, or dependency. Upon creating the 
attribute, the default choice is nothing. If the user updates 

the resolution to assignment, the user must enter the exact 
value of the attribute or its reference. For example, if the 
attribute were an integer, the user could indicate that 
value was 10. Alternatively, the reference could be set to 
an attribute of another class that was also an integer. The 
appropriate resolution for Suitability is dependency. 
Therefore, the user must specify the influencer, the 
attribute that Suitability depends on, as well as the 
conditions and their respective distributions. The 
conditions are the possible values of the influencer. Each 
possible value of the influencer is paired with a CPD 
indicating the likelihood of each possible value of the 
attribute. Suitability depends on the instance of the 
Runoff class’, RunoffInstance, attribute 
RankRunoffPotential. RankRunoffPotential has five 
possible values – VeryLow, Low, Medium, High, and 
VeryHigh. Therefore, Suitability will have five conditions 
and five distributions that indicate the probability of each 
of Suitability’s five possible values occurring given the 
value of RankRunoffPotential.  

 Having defined four enumerations, six classes, 
seven attributes, and six instances in our model using the 
PRM Editor, the model was saved to as a .prm file that 
could be used by the TIDE system. 

2.3 HYRDOLOGIC MODEL 

A PRM consists of a set of class probability models. The 
final version of our PRM (Figure 2) contains six classes – 
SiteModel, Runoff, Topography, DrainageCapacity, 
LandCover, and Soil. Each class has a set of attributes. 
Attributes are either simple or complex. Simple attributes 
are random variables that represent direct properties of an 
object, such as the type of land cover or type of soil, 
whereas complex attributes represent relationships to 
other objects. The attributes in our model are all simple. 

Logical relationships can be described between classes. 
The lines in Figure 2 represent these relationships. 
Assuming we have an instance of every class, an instance 
of LandCover is related to an instance of the 
DrainageCapacity class by the LandCoverType attribute. 

Each simple attribute is associated with a set of parents 
and a CPD. The parents are determined by the attributes 
that the attribute depends on. Attributes can depend on 
either other simple attributes of the same object or of 
related objects. An example of an attribute of an object 
depending on an attribute of a related object is the 
dependence of the RankDrainageCapacity on 
LandCoverType.  

Attributes of related objects are specified via attribute slot 
chains, such as the slot chain LandCoverInstance 
LandCoverType. This slot chain begins with the object 
representing the land cover of a location, and accesses the 
simple attribute indicating the type of land cover at this 
location. The model specifies that the 
RankDrainageCapacity attribute of the DrainageCapacity 
class has this slot chain as a parent. To reiterate, this 
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indicates that the RankDrainageCapacity depends 
probabilistically on the LandCoverType. The other slot 
chain parent of RankDrainageCapacity is 
SoilInstance.SoilType. It is important to emphasize that 
these parent relationships are general, meaning that the 
land cover or soil type may vary from scenario to 
scenario, but the probabilistic relationships hold for all 
scenarios (e.g., when a new area is investigated).  

 

Figure 2: Hydrologic PRM 

In our tree-structured PRM, the attributes in the classes 
directly below another class are parents to the attributes in 
the class above them. Therefore, the attributes in the three 
leaf classes, LandCover, Soil and Topography, do not 
have parents. The values of these attributes are derived 
outside the model and posted as evidence to the model. 
Conversely, the values of the attributes in the remaining 
classes, SiteModel, Runoff, and DrainageCapacity, are 
inferred from the data available within the model.  

Recall that the other information associated with a simple 
attribute is a CPD that specifies a distribution over values 
of an attribute given the values of its parents. In the case 
of Suitability, its parent is Runoff.RankRunoffPotential. 
Table 1 shows the code for the implementation of the 
SiteModel class, complete with its attribute, Suitability, 
specification of its parent, RankRunoffPotential, and CPD 
for every possible value of RankRunoffPotential. The 
bolded line specifies, in plain terms, that if the 
RankRunoffPotential is VeryLow then there is 10% 
likelihood Suitability is VeryPoor, 15% likelihood 
Suitability is Poor, 50% likelihood Suitability is Medium, 
15% likelihood Suitability is Well and 10% likelihood 
Suitability is VeryWell. 

Similar to how parent relationships are defined, the 
assigned CPD is general; it holds no matter what the 
specific related objects are.  

 

Table 1: SiteModel Class Implementation 

class SiteModel =  { 
     Suitability: single RankPoor depends on 
[RunoffInstance.RankRunoffPotential] 
     case [VeryLow] =>  

(0.1 -> VeryPoor, 0.15 -> Poor, 0.5 -> Med, 0.15 -> Well, 
0.1 -> VeryWell) 
     case [Low] =>  

(0.7 -> VeryPoor, 0.1 -> Poor, 0.1 -> Med, 0.05 -> Well, 
0.05 -> VeryWell) 
     case [Med] =>  

(0.05 -> VeryPoor, 0.1 -> Poor, 0.7 -> Med, 0.1 -> Well, 
0.05 -> VeryWell) 
     case [High] =>  

(0.05 -> VeryPoor, 0.05 -> Poor, 0.1 -> Med, 0.7 -> Well, 
0.1 -> VeryWell) 
     case [VeryHigh] =>  

(0.05 -> VeryPoor, 0.05 -> Poor, 0.1 -> Med, 0.1 -> Well, 
0.7 -> VeryWell) 
     case [_] =>  

(0.2 -> VeryPoor, 0.2 -> Poor, 0.2 -> Med, 0.2 -> Well, 0.2 
-> VeryWell) 

  } 
 

With a clear understanding of how relationships and 
CPDs are specified in the model, we can discuss how 
inference ultimately determines if a location is suitable. 
The basic order of how the model performs inference is: 
once the values of an attribute’s parents are known, the 
value of that attribute can be inferred. Therefore, the 
process begins by posting evidence to the leaf classes. 
First, the LandCoverType, SoilType, RankSlope, and 
RankFlow evidence is posted to the model. Next, the 
model can infer the value of RankDrainageCapacity from 
the land cover and soil data. For example, if the 
LandCoverType is Shrub and the SoilType is Vertisols, 
the probability distribution encoded in the model for 
RankDrainageCapacity given this evidence is: case 
[Shrub,Vertisols] => (0.7 -> VeryPoor, 0.3 -> Poor, 0.0 -> 
Med, 0.0 -> Well, 0.0 -> VeryWell). Again, this 
distribution can be interpreted as: If LandCoverType is 
Shrub and SoilType is Vertisols, there is 70% likelihood 
the RankDrainageCapacity is VeryPoor and 30% 
likelihood the rank of drainage capacity is Poor. Once the 
CPD of RankDrainageCapacity is determined, the 
distribution can be used in conjunction with the 
Topography evidence to infer the value of the 
RankRunoffPotential. This process propagates up the 
model, as RankRunoffPotential influences the value of 
Suitability.  

To determine a site’s suitability, the model uses all 
available data. While accuracy increases with amount of 
available data, our model is capable of reasoning with 
incomplete or no data. In the case that data is unavailable 
or unknown for the four inputs – LandCoverType, 
SoilType, RankSlope, and RankFlow – the probability is 
evenly distributed over all possible values. 

Our PRM Editor utilizes the open source Figaro 
probabilistic programming language (PPL) 
(www.cra.com/figaro) to perform inference. PPLs provide 
a powerful and flexible way to represent probabilistic 
models using the power of programming languages. In 
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addition, PPLs offer general-purpose reasoning 
algorithms for inference and machine learning. Our 
implementation utilizes the Metropolis-Hastings 
reasoning algorithm, capped with a runtime of 5,000 
milliseconds per inference.  

2.4 INTEGRATION 

Our PRM used data from the following data sources. 

2.4.1 SRTMVF2 

 The Shuttle Radar Topography Mission (SRTM) was a 
joint project between NASA and the National Geospatial-
Intelligence Agency (NGA) to create high-resolution land 
surface data for much of the world (roughly 80% of the 
Earth’s land surface is covered). The SRTM Void-Filled 2 
(SRTMVF2) data set is at 1-arc-second (approximately 
30-meter) resolution data, with many gaps in data void-
filled using interpolation techniques (Dowding, Kuuskivi, 
Li et al., 2004). The SRTMVF2 dataset serves as our 
primary elevation data source, as our hydrologic model is 
heavily dependent on accurate, high-resolution elevation 
data. However, we have identified that there are gaps 
within the SRTMVF2 elevation data. In areas where no 
SRTMVF2 data can be found, we can fall back to lower 
resolution DTED data, including the SRTMVF1 and 
SRTMVF0 data sets. Elevation is used to determine 
inputs to our model, slope and water flow. Slope and flow 
implicitly capture the spatial relationships of each DTED 
point with its neighbors, allowing the PRM to reason 
about each point’s data independently. 

Slope 

Slope is determined using the elevation dataset. For the 
initial effort, we used a simple algorithm that iterates 
across each elevation point. For each point, the relative 
change, dE, in elevation is calculated for each adjacent 
point (excluding diagonally adjacent points.)  The dE 
value with the greatest magnitude is selected, and the 
distance between points (1 arc-second in the case of the 
SRTMVF2 dataset) is used to calculate the angle of the 
WHUUDLQ¶V�VXUIDFH��Ԧ��7KLV�YDOXH�FDQ�UDQJH�IURP���GHJUHHV�
(i.e., perfectly flat) to 90 degrees (which would be a 
perfectly vertical surface.) While there are more elaborate 
methods for determining slope that provide more accurate 
results, this technique can process millions of points in a 
matter of minutes, and yields sufficient accuracy for the 
needs of the terrain assessment model. 

Once the slope angles have been calculated using the 
algorithm described above, they are translated from a 
continuum of [0, 90) to five discrete values, which are 
used as inputs for the terrain model. Table 2 shows how 
angle ranges are mapped to model inputs. 

Table 2: Mapping terrain slope angles to model inputs 

Angle Range Rank of Slope 

����Ϊ ���� Very Low 

10 < Ϊ ���� Low 

20 < Ϊ ���� Medium 

30 < Ϊ ���� High 

Ϊ > 60 Very High 

Flow 

The elevation dataset is used to predict flow channels – 
that is, paths that surface water is likely to take in the 
event of rainfall. A greater amount of flow indicates a risk 
of surface water accumulation. To calculate flow, we 
relied on the TopoToolbox (Schwanghart & Kuhn, 2010). 
The toolbox includes techniques for predicting flow 
estimation.  The flow values predicted can vary wildly. In 
the case of our AOI, estimated flow varied between 0 and 
over 3,300. To normalize the dataset, we first transformed 
the flows to a logarithmic scale (changing the range from 
1 to ~9.7) and then normalized the results to [0, 1]. 

Table 3: Mapping Flow to Model Inputs 

Flow Range Rank of Flow 

flow is exactly 0 Very Low 

0 < flow � 0.1 Low 

0.1 < flow ����� Medium 

0.2 < flow ����� High 

flow > 0.5 Very High 

 

As shown in Table 3, these values are then translated into 
five discrete inputs for the terrain assessment model 
(same as the slope). As with the slope values, the process 
of mapping flows to discrete ranking values is 
independent from the flow calculations. This means that 
calculating the flows (a process that took roughly two 
hours for the Demonstration Scenario’s AOI) need only 
be run once per AOI, even if we adjust model values or 
how flow values are mapped to model inputs. 

2.4.2 GeoCover 

Earth Satellite Corporation (EarthSat) developed the 
GeoGover data set, a global landcover database. The 
GeoCover dataset consists of 13 land cover classes and is 
available for much of the world (Cunningham, Melican, 
Wemmelmann et al., 2002). Classes of land cover include 
grasslands, agriculture areas (i.e., farmland), wetlands, 
and water/ice. This data will serve as additional inputs to 
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our terrain models so we can more accurately assess 
rainfall-runoff response. The GeoCover dataset will also 
enable TIDE to identify bodies of water.  

2.4.3 Harmonized World Soil Database 

The Harmonized World Soil Database (HWSD) was 
produced by the European Union’s European Commission 
Joint Research Centre (more specifically, the Land 
Management Unit of the Institute for Environment and 
Sustainability.) The HWSD is a 30 arc-second 
(approximately 90-meter) resolution that contains detailed 
information about the top soil and subsoil properties. It 
was created by merging data from four different soil 
databases (Nachtergaele, Van Velthuizen, Verelst et al., 
2008).   

This data allows the model to more accurately predict 
how terrain will respond to surface water (for example, 
how quickly water will be absorbed into the soil.) This 
dataset’s low resolution means that some terrain 
boundaries (such as coasts) and geographical features 
(such as bodies of water) are of low accuracy compared to 
the other data sets. 

2.5 MISSION DECISION RULES 

The system must provide a set of logistic system-specific 
terrain assessment rules for a variety of systems and 
purposes (e.g., Tactical Water Distribution System, 
Assault Hose Line System). Terrain suitability may vary 
from system to system—for example, a suspended hose 
may be unaffected by some types of standing water while 
a ground-level hose could be at risk for contamination. 
Rule sets for individual systems will need to account for 
these differences, allowing planners to choose the 
appropriate system given the characteristics of a 
prospective emplacement site. Additionally, logistics 
planners must be able to easily modify and expand these 
rules as new systems are introduced, and as mission 
requirements change. (For example, different rules would 
be used for route planning than well placement.) 

In our initial effort, we have implemented some basic 
rules that filter terrain suitability for a hypothetical fuel 
line. The fuel line has two requirements: (1) it must be 
installed on flat land (so the pumps can function 
properly); and (2) the fuel lines cannot be placed in 
standing water (to prevent contamination), which includes 
bodies of water (such as lakes) and areas that are prone to 
flooding. 

To determine suitability for the fuel lines, we take slope, 
land coverage, and hydrologic suitability as inputs. We 
then apply a set of rules as described in Table 4. The rules 
transform the hydrologic suitability into mission 
suitability. These rules favor flat land over sloped land. 

Table 4: Mission Rules 

Condition Effect 

If the point is a body of water Mission suitability is Very Poor 

If slope is ranked as “Low” or 
“Very Low” and hydrologic 
suitability is “Medium” 

Mission suitability is High 

If slope is ranked as “Low” or 
“Very Low” and hydrologic 
suitability is not “Medium” 

Mission suitability is equal to 
hydrologic suitability 

If slope is ranked as “Medium” 
and hydrologic suitability is 
“High” or “Very High” 

Mission suitability is Medium 

If slope is ranked as “Medium” 
and hydrologic suitability is not 
“High” or “Very High” 

Mission suitability is equal to 
hydrologic suitability 

If slope is “High” or “Very 
High” 

Mission suitability is Very Poor 

 

Currently, rules are distinct from the PRM model, so that 
custom rules can be written for different operational needs 
while using the same PRM model. For example, while the 
PRM output is constant, the mission requirements for a 
long fuel pipeline may be very different than the mission 
requirements for a convoy. The fuel line would have a 
very low tolerance for changes in elevation (as the pumps 
cannot handle the increased workload) and would be 
susceptible to contamination from standing water. The 
convoy, while still limited by severe terrain or flooding, 
would be much more resilient to water and slopes. 

 A standard rules engine and associated rules language, 
such as that provided by JBoss, would allow mission 
experts to author rules for the TIDE system without 
requiring them to understand the PRM or hydrology.  

2.6 VISUALIZATION 

Outputs of the PRM and the rules engine, as well as the 
data sources themselves, were rendered within NASA 
WorldWind. WorldWind can accept a variety of GIS data 
formats and is easily customizable. Using the open-source 
the Geospatial Data Abstraction Library (GDAL), we 
wrote custom modules to render the HWSD and 
GeoCover data sets, while the SRTMVF2 data was loaded 
in using built-in WorldWind methods. Model output and 
rules output were rendered as textures which were then 
projected onto the WorldWind globe at the appropriate 
coordinates, but the data could easily be written to a 
variety of GIS formats. 

The hydrologic suitability is presented as belief values in 
five categories: {Very Poor, Poor, Medium, High, Very 
High}. Related military impact assessment (e.g., weather 
impact assessment) is done at three intervals (e.g., low 
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risk, medium risk, and high risk.) We expanded our model 
to use five intervals instead of three to present additional 
granularity in the model’s output. Further work is needed 
to determine the best number of intervals and their 
thresholds.  

For the initial effort, the category with the highest belief 
value is selected as the ‘correct’ suitability value. These 
categories are then color-mapped for visualization: {Red, 
Orange, Yellow, Green, Blue}. The same categories and 
colors are used for the rules output. 

3. DISCUSSION 
For our area of interest and the 1 arc-second SRTMFV2 
set, there are 25,934,402 points to process. Executing the 
entire PRM for each point would be unnecessarily 
complex – instead, we store each unique combination of 
{soil type, land cover, rank slope, rank flow} and store 
the associated beliefs. This means we can simply look up 
the correct PRM output for each unique combination of 
inputs, which need only be run through the PRM once. As 
a result, we are able to process all 25.9 million points in 
only two hours. (Further updates to the Figaro library 
should increase runtime performance as well.) In a full-
scale TIDE system, the PRM values for all combinations 
could be calculated once and only once, and then stored in 
a database for quick reference. This database would only 
need to be updated when the PRM is updated. 

 

Figure 3: PRM Model Output 

Figure 3 shows the output of the model. (Figures 3 and 4 
are best viewed in color.) The output of the model is very 
grainy as each point in the elevation set can have a 
distinct rank. Of note are the red regions running across 

the central region of the image – these are riverbeds and 
their surrounding valleys, which were detected despite 
those bodies of water not being explicitly present within 
our GeoCover or HWSD data sets. 

Figure 4 shows the output of our rules engine (and a 
region slightly larger than the figure above). While these 
rules are very simple, they demonstrate how rules can 
transform the high-density output of the models (Figure 3, 
above). The model output scores each point in the 
elevation grid (approximately a 30 by 30 meter square 
when using the SRTMVF2 data set), producing a very 
dense output. Rules can be used to simplify the models’ 
output into easier-to-interpret regions. With these simple 
rules, we were able to execute rules across the entire 
region in five minutes. Figure 4 shows the same riverbeds 
as in Figure 3, but the view is expanded to show a large 
lake to the west, which has been appropriately flagged as 
having very poor mission suitability. Unlike the riverbeds 
(which were predicted by the PRM), this body of water is 
present within both the GeoCover and HWSD data sets 
(at differing levels of precision). 

 

Figure 4: Rules Output 

4. FUTURE WORK 

4.1 TERRAIN AND HYDROLOGIC MODELS 

Future improvements to the model begin by incorporating 
more data. The more information captured by the model, 
the more accurate the inferences will be. The next data 
source to integrate is precipitation data. Depending on the 
duration of the mission, weather or climate data would be 
used. For example, missions spanning from zero to four 
months would heavily rely on weather information, 
missions spanning from four to eight months would 
integrate both weather and climate data, and missions 
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lasting longer than eight months would incorporate 
climate data. We will also work to quantitatively evaluate 
the performance and applicability of our models.  

Our approach to testing and verifying the accuracy of our 
models is two-fold. First, we will compare the outputs of 
our models to those of existing, alternative hydrologic 
models. These models are often based on solving complex 
equations that govern the physics of surface and 
subsurface water (Abbott et al., 1986; Panday & 
Huyakorn, 2004) or assign statistical values to terrain 
based on observation (Yoram, 2003). These models are 
not practical for US Army planning because they require 
complete data sets, are extremely time-consuming to 
compute, and do not scale to the levels of detail and scope 
required by US Army logistics planners. However, their 
outputs have been validated when tested on carefully 
monitored and measured regions of terrain, typically 
within the US. By running the TIDE models on the same 
regions and comparing its output to that of the established 
models, we can confirm that the TIDE models are 
functioning correctly. 

Second, we will gather existing data sources of rainfall-
runoff responses. Several regions within the United States 
have had their rainfall-runoff responses measured at 
various degrees of fidelity. For example, the Leaf River 
basin in Mississippi has over forty years of time series 
data that includes precipitation and runoff (Yapo, Gupta, 
Sorooshian et al., 1996). Additional data sources could be 
built from flood records and high water level records. 
These data sets will serve to validate the PRM models 
used by TIDE. They may also serve as training data to 
calibrate the model to more accurately predict the severity 
of rainfall run-off responses (e.g., flooding). 

4.2 DATA FUSION MODEL 

Our basic solution for handling cases of limited or 
missing data assumes that each value is equally likely if 
no evidence is posted to the model. Under this 
assumption, the accuracy of our inferences declines with 
limited or no data. The inferences are only as strong as the 
data known and evidence provided.  

 Future improvements for how to reason with 
incomplete or no data involve adjusting the prior 
distributions. Although the prior distributions in our 
current model assume that all values of an attribute are 
equally likely if no data is available, one would argue this 
is not representative of the real world. We plan to explore 
the possibilities of more representative prior distributions. 
For example, the prior distribution for land cover type 
could reflect that fact that over 70% of the earth’s surface 
is covered in water, making it the most likely of the seven 
values. 

This being said, the most dramatic mitigation of 
consequences due to incomplete data or unknown values 
will result from future improvements to the model itself 
rather than the dependencies. As we integrate more data 

sources into the model, the number of attributes and 
dependencies will increase, resulting in more accurate 
inferences. Existing data can also be used to infer missing 
data. For example, using higher-resolution data (such as 
elevation data or land cover data) we can easily determine 
that the HSWD fails to cover the coastlines. We can then 
predict the missing values using spatial relationships. 
Ambiguous areas could be assigned multiple values with 
different confidence values. Figure 5 shows how the two 
HSWD regions could be used to infer the values for the 
missing regions.  

Point A, to the north, would be assigned a high 
probability of having luvisols as the dominate soil type. 
Point B would be assigned near equal probabilities of 
being either luvisols or vertisols. Point C, to the south, 
would be assigned a high probability of vertisols as the 
dominate soil type. The inference used for point B could 
be assigned to any region near the boundaries of low-
resolution data sets – for example, point D could also be 
assigned a probability of being either vertisols or luvisols; 
even though the data set classifies it as vertisols, the 
resolution is low enough that the point could be a 
misclassification. The assigned probabilities, along with 
the soil types themselves, would serve as inputs to the 
PRM models.. For example, the soil type input to our 
PRMs for Point D could be “{Vertisols-50%, Luvisols-
50%} instead of simply {Vertisols}. 

 

Figure 5: Reasoning about incomplete data 

5. CONCLUSIONS 
Flooding, and other terrain rainfall-runoff responses, pose 
significant risk and cost to US Army operations. 
Assessing the magnitude of flood risk and the impact it 
will have on a mission requires both time and expertise 
that may not always be available. An automated system 
for predicting the likelihood and impact of flooding and 
surface water accumulation would be of great benefit to 
logistics planners and the US Army at large.  

During our initial effort, we demonstrated the feasibility 
of Terrain Impact Decision Extensions to predict rainfall-
runoff response. We have identified key data sources 
required for predicting flooding and have developed an 
initial set of models that are capable of identifying regions 
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that are at high risk of flooding. These models are capable 
of processing millions of data points per hour, allowing 
them to process thousands of square kilometers. We feel 
these models and their performance indicate our approach 
is sound, and future work will refine and validate the 
models’ performance. 

Acknowledgements 

This work was performed under US Army Research Lab 
contract number W911QX-13-C-0111. The authors would 
like to thank Mr. Peter Grazaitis for his significant 
technical support and eager engagement on this project. 
This work was funded in its entirety by ARL. We would 
also like to thank Ms. Yvonne Fuller and Ms. Jill Oliver 
for their assistance in preparing this paper. 
 
References: 
 
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. 

E., and Rasmussen, J. (1986). An introduction to 
the European Hydrological System—Systeme 
Hydrologique Europeen,“SHE”, 1: History and 
philosophy of a physically-based, distributed 
modelling system. Journal of hydrology, 87, 45-
59. 

Beven, K.& Binley, A. (1992). The future of distributed 
models: model calibration and uncertainty 
prediction. Hydrological processes, 6, 279-298. 

Cunningham, D., Melican, J., Wemmelmann, E., and 
Jones, T. (2002). GeoCover LC-A moderate 
resolution global land cover database. In ESRI 
International User Conference. 

Dowding, S., Kuuskivi, T., and Li, X. (2004). Void fill of 
SRTM elevation data–principles, processes and 
performance. In Images to Decisions: Remote 
Sensing Foundations for GIS Applications, 
ASPRS, Fall Conf., Sep, 12-16. 

Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. 
(1999). Learning probabilistic relational models. 
In Sixteenth International Joint Conference on 
Artificial Intelligence (IJCAI-99). 

Koller, D.& Pfeffer, A. (1998). Probabilistic frame-based 
systems. In Fifteenth National Conference on 
Artificial Intelligence (AAAI-98), 580-587. 

Meng, H., Green, T. R., Salas, J. D., and Ahuja, L. R. 
(2008). Development and testing of a terrain-
based hydrologic model for spatial Hortonian 

Infiltration and Runoff/On. Environmental 
Modelling & Software, 23, 794-812. 

Nachtergaele, F., Van Velthuizen, H., Verelst, L., Batjes, 
N., Dijkshoorn, K., Van Engelen, V., Fischer, G., 
Jones, A., Montanarella, L., and Petri, M. (2008). 
Harmonized world soil database. Food and 
Agriculture Organization of the United Nations. 

Panday, S.& Huyakorn, P. S. (2004). A fully coupled 
physically-based spatially-distributed model for 
evaluating surface/subsurface flow. Advances in 
water Resources, 27, 361-382. 

Pfeffer, A., Koller, D., Milch, B., and Takusagawa, K. T. 
(1999). SPOOK: A system for probabilistic 
object-oriented knowledge expression. In 14th 
Annual Conference on Uncertainty in AI (UAI). 

Schwanghart, W.& Kuhn, N. J. (2010). TopoToolbox: A 
set of Matlab functions for topographic analysis. 
Environmental Modelling & Software, 25, 770-
781. 

Singh, V. P. (1988). Hydrologic systems. Volume I: 
Rainfall-runoff modeling. Prentice Hall, 
Englewood Cliffs New Jersey. 1988. 480. 

Thiemann, M., Trosset, M., Gupta, H., and Sorooshian, S. 
(2001). Bayesian recursive parameter estimation 
for hydrologic models. Water Resources 
Research, 37, 2521-2535. 

Vicens, G. J., Rodriguez-Iturbe, I., and Schaake, J. C. 
(1975). A Bayesian framework for the use of 
regional information in hydrology. Water 
Resources Research, 11, 405-414. 

Vrugt, J. A., Ter Braak, C. J., Clark, M. P., Hyman, J. M., 
and Robinson, B. A. (2008). Treatment of input 
uncertainty in hydrologic modeling: Doing 
hydrology backward with Markov chain Monte 
Carlo simulation. Water Resources Research, 44. 

Yapo, P. O., Gupta, H. V., and Sorooshian, S. (1996). 
Automatic calibration of conceptual rainfall-
runoff models: sensitivity to calibration data. 
Journal of Hydrology, 181, 23-48. 

Yoram, R. (2003). Applied stochastic hydrogeology.: 
Oxford University Press. 

 

40



 
 

 

Semantics for Reducing Complexity and Improving Accuracy in 
Model Creation Using Bayesian Network Decision Tools  

 

 

Oscar Kipersztok 
Boeing Research & Technology 

P.O.Box 3707, MC: 4C-77 
Seattle, WA 98124 

oscar.kipersztok@boeing.com 

Abstract 
The work presented simplifies and makes accessible the 
process of using advanced probabilistic models to reason 
about complex scenarios without the need for advanced 
training. More specifically, it greatly simplifies the effort 
involved in building Bayesian Networks for making 
probabilistic predictions in complex domains. These 
methods typically require trained users with a 
sophisticated understanding of how to build and use these 
networks to predict future events. It entails the creation of 
simplified semantics that keeps the complexity of the 
methodology transparent to users. We provide more 
precise semantics to the definition of concept variables in 
the domain model, as well as using those semantics to 
assign more precise and robust meaning to predicted 
outcomes. This work is presented in the context of a tool 
and methodology, called DecAid, where complex 
cognitive models are created by defining domain-specific 
concepts using free language and defining relations and 
causal weights between them. In response to a user query 
the DecAid, unconstrained, directed graph is converted 
into a Bayesian network to enable predictions of events 
and trends. 

1 INTRODUCTION 
DecAid  is a hypothesis-driven decision support tool that 
facilitates complex strategic decisions with features that 
allow for easy, fast, knowledge capture and modeling in 
complex domains. It identifies the key variables relevant 
to a specific query. While the cognitive, unconstrained, 
model is built, the defined concepts are used to create a 
probabilistic model to forecast events and trends. 
Similarly, the free-language used to define and label the 
concepts is used to generate a document search classifier 
to retrieve evidence for validation of hypotheses raised by 
the predictive model. DecAid’s   goal   is   to   predict 

likelihood, impact and timing of events and trends 
(Kipersztok, 2004).  

DecAid is aimed at strategic decision making where the 
risk of making the wrong decision can be very costly and 
where there is need for argumentative rigor and careful 
documentation of ideas, associations and assumptions 
leading to the final decision. The modeling methodology 
was created to enable domain experts to create Bayesian 
networks (BN) without having to familiarize with the 
theory of graphical probabilistic networks or the practice 
of how to build them. Such users may not also require the 
involvement of a knowledge engineer. At the levels where 
high impact decisions are made, requiring high-level of 
abstraction and dealing with large number of variables 
and interdependencies, it is less likely that decision 
makers will use advanced decision analytic tools 
requiring learning specialized methodology to define and 
represent complex domain knowledge. The overall goals 
and requirements identified for the development of the 
DecAid tool were described in (Kipersztok, 2007). 

In a world of rapid change it is incresingly challenging to 
stay abreast of occurring events and trends, making it 
more difficult to process information without the use of 
advanced technology tools designed to manage 
complexity and large volumes of information. 
Furthermore, strategic decision makers recognize the need 
for argumentative explanations to strategic decisions that 
capture the hypothetical reasoning and the evidential 
context behind each decision. For these reasons the need 
arises to rely on advanced methods to gather, organize, 
process and analyze data and knowledge.  

Bayesian networks practitioners recognize the need to 
make the technology more accessible to end users due to 
the challenges presented during the model creation 
process. Some of the most significant challenges that 
DecAid aims to address are: 1) the complexity in eliciting 
expert knowledge, 2) defining a, potentially, large number 
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of parameters and relations in a particular domain, 3) 
adhering to conditional independence constraint in the 
definition of causal variables, and 4) requiring to avoid 
feedback reasoning during model creation that may result 
in graphs with cycles.    

The first challenge has been addressed by various 
software packages (e.g.,  Netica, GeNIe, Hugin, etc.) that 
enable users to build BN with user-friendly interfaces 
equipped with knowledge elicitation tools. Learning 
algorithms have also provided the means for automated 
construction of BN structures and their parameters from 
data.  To address the second challenge, canonical 
structures have been defined that reduce the number of 
parameters needed to construct conditional probability 
tables (CPT). (Farry et al, 2008) review several canonical 
models, including Influence Networks (Rose and Smith, 
1996), Noisy-OR, Noisy-MAX, Qualitative Probabilistic 
Networks (QPN) and Causal Influence Models (CIM). 
They, in particular, emphasize usability of CIM models 
where the causal influence of each parent is captured by a 
single number and the combined influence of all parents 
is the mean of the individual parent values.  (Pfautz et al, 
2007) address the first three challenges and describe 
additional ones in findings from in-depth analyses of their 
experience in facilitation of model construction from 
numerous projects.  

The purpose of this work is to describe formal semantics 
that enable DecAid to be directly accessible to domain 
experts to create BN models without having to concern 
themselves with these challenges. These semantics are 
aimed at easing the constraints imposed by the 
aforementioned challenges by enabling users to define 
concepts and their relations in free-association mode. 
Concepts are defined and labeled using free language and 
a single numerical weight is assigned to each parent-child 
relation. This effort results in the creation of the DecAid 
(unconstrained) network (DN), a directed graph, which 
allows cycles. The step of creating a BN from the DN 
starts with a query definition, and it involves the 
identification of the query-specific sub graph and removal 
of its cycles by, optimally, minimizing the information 
loss. The result is BN directed acyclic graph specific to 
the query.  

2 FROM DECAID NETWORKS TO 
BAYESIAN NETWORKS   

DecAid is a system for simple but powerful probabilistic 
modeling of arbitrary scenarios. It enables domain expert 
to create DecAid networks by defining concepts with free 
language and causal relations between them. For each 
pair of relations, the user assigns a weight of causal belief. 
There are two types of concepts: a) Event concepts that 
represent quantities that can occur or not-occur; and b) 
Trend concepts that represent quantities that increase, 

remain unchanged, or decrease. Various levels of 
granularity can be selected to define the trend concept 
states. 

In this section we describe the formal definitions that 
enable the creation of a DN and its subsequent conversion 
into a BN. 

2.1  Definition of a DecAid Network (DN) 
Similar to a Bayesian network, each DecAid variable 
(DV) represents a concept, which is some aspect of the 
domain modeled.  More specifically, a DV defines a 
probability distribution over its possible values and it is 
discrete—i.e., finite-valued and typically taking 2, 3, 5, or 
7 values.  For example, we might have a DV named 
‘Barometric   Pressure’   that   has   3   values:   ‘decreasing’,  
‘unchanged’,  and   ‘increasing’.  The set of values is taken 
to have some natural ordering so that we can speak of 
high values versus low values.  If the variable is binary, 
we would say that values such as false / off / does-not-
occur  would  be  “low”  compared  to  true  /  on  /  occurs. 

More formally, a DecAid model M includes a set V of 
DVs and, taken together, the variables in V jointly 
describe a distribution over the entire scenario modeled 
by M.  Along with the set V, the model M includes a 
directed graph structure G connecting the variables of V.  
Each variable in V is a node of G and each arc denotes a 
direct  probabilistic   influence  of   the  parent’s  value  on   the  
distribution  over  the  child’s  values.  The  directed  graph  G 
is unconstrained—all connections are allowed and cycles 
are permitted.  Each arc is labeled with a single real 
number  between  −1  and  1  called  the  weight.  Intuitively, 
the closer |w| is to 1, the stronger the influence of the 
parent over the child and the closer |w| is to 0, the weaker 
the influence.  If the weight is positive, a high parent 
value makes high child values more likely and a low 
parent value make low child values more likely. A 
negative weight flips the influence so that a high parent 
value makes low child values more likely and a low 
parent value makes high child values more likely (other 
things being equal).  Note that a moderate parent value 
will make moderate child values more likely. 

 

Figure 2.1: A DecAid Unconstrained Model 
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Figure 2.1 shows an example of an unconstrained DN 
representing three concept variables in the Aviation 
Safety domain and five parent-child relations with their 
corresponding weights. 

Once, the unconstrained model is built, DecAid is capable 
of transforming the DN into a BN in order to make 
predictions in response to queries. 

 

2.2 Transforming a DecAid Network (DN) 
into a Bayesian Network structure 

A user can make a query to the DN by defining a set of 
observation variables and a target variable. In response 
to the query, DecAid is capable of transforming the 
unconstrained (directed graph) model to a Bayesian 
network by carrying out the following sequence of steps: 

1) Identifying all cycles in the unconstrained model. We 
use an algorithm by (Johnson, 1975) that finds the 
elementary cycles in the directed graph by improving over 
the original algorithm by (Tarjan, 1973);  

2) Eliminating the cycles in the unconstrained model by 
removing the weak edges. This is done, optimally, in 
order to minimize the information loss in the 
unconstrained model. This step constitutes a tradeoff 
between increased expressive power for domain-expert 
users and modest information loss resulting from removal 
of edges that least contribute to the information flow. 

3) Identifying the sub graph relevant to the query by 
pruning the non relevant variables from the resulting 
Bayesian network (Geiger et al, 1990). This step 
constitutes an important feature of DecAid in that it can 
list all the relevant parameters to the user that are relevant 
to a specific user query. 

The last step in the creation of a query specific Bayesian 
network is the creation of the conditional probability 
tables (CPT).  The semantics to achieve that are described 
in section 3. 

For practitioners involved in high-level, strategic, 
decision making the use of Bayesian network building 
tools can be counterintuitive and may require significant 
training time, unavailable to such intended users. Making, 
however, the BN technology accessible through tools like 
DecAid not only will improve the accuracy of decision 
making but will also provide the means to document and 
track the chain of causal reasoning behind each decision. 

 

3 SEMANTICS TO CREATE 
CODITIONAL PROBABILITY 
TABLES 

What follows is a description of the method used to 
express the random variable (RV) encoded by a DV.  That 
is, we show how to calculate a conditional probability 
table (CPT) for each variable in the DecAid model given 
its parent set and the size of each variable. 

3.1 Concepts Defined as Random Variables 
Let X be an n-valued DV from a DecAid model D.   We 
say that the sample space S for X is the real interval [0,1).  
That is, we can suppose that X describes an experiment 
whose outcome is a real number r such   that   0   ≤   r < 1.  
The values of the random variable X break the sample 
space into n disjoint events—namely, half-open intervals 
of equal length.  The set of events is thus:   

  { r � [k/n , (k+1)/n)    :  for  0  ≤  k < n } 

Example (3.1.1)  

If X has 2 states, the events corresponding to the states of 
X are: 

   { r � [0.0, 0.5) , r � [0.5,1.0) }. 

Example (3.1.2)  
If X has 5 states, the events corresponding to the states of 
X are: 

   { r � [0.0, 0.2), r �  [0.2, 0.4), r � [0.4, 0.6), r � [0.6, 
0.8), and r � [0.8, 1.0) }. 

3.2 Conditional Probability Tables 
The heart of the probabilistic semantics is the definition 
of local conditional probability distributions for DecAid 
variables.  We consider the various cases below: a) where 
the variable has no parents, b) where it has one parent of 
weight 1, c) where it has one parent of arbitrary weight, 
and finally, d) where it has any number of parents. 

Case 3.2.1 -Variables without parents 

If X has no parents in D, then it is simply given a uniform 
distribution: 

P(X = xk) = 1/n   for  0  ≤  k < n . 

That is, the event  X = xk corresponds to r � [k/n, (k+1)/n).  
The probability equals the proportion of the total length of 
S contributed by X=xk.  Since the total length of S is 1.0, 
it is simply equal to the length of the interval, which is 
(k+1  −  k)/n = 1/n.  

Example (3.2.1.1)   

If X has 2 states, P(X = xk)  =  0.5    for  0  ≤  k ≤  1. 

Example (3.2.1.2)  

If X has 5 states, P(X = xk)  =  0.2  for  0  ≤  k ≤  4. 

Case 3.2.2 – Variables with one parent and |w| = 1 
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We first describe the case where we have a single parent 
Y and where the link from Y to its child X has weight 1. 
We need to show how to calculate the conditional 
probability P(X = xk | Y = yj).  This is given by the 
formula: 

P(X = xk | Y = yj , w = 1) = P(X = xk  &  Y = yj) / P(Y = yj) . 

That is, the conditional probability of the event X = xk 
given that Y = yj is equal to the intersection of the 
intervals corresponding to these events divided by the 
length of the interval corresponding to Y = yj.  

Example (3.2.2.1)  

Suppose YoX  and Y has 5 states and X has 2 states, 

P(X = x0 | Y = y2) = | Intersection of [0, 0.5) & [0.4, 0.6) | / 
| 0.6 – 0.4 |= 0.5 

The full CPT would be: 

P(x | y) x0 x1 

y0 1 0 

y1 1 0 

y2 0.5 0.5 

y3 0 1 

y4  0 1 

 

Example (3.2.2.2) 

Suppose ZoX and Z has 3 states and X has 5 states, 

P(X = x0 | Z = z0) = | Intersection of [0, 0.2) & [0, 0.33) | / | 
0.33 – 0 | = 0.6 

 

 The full CPT is: 

 

Example (3.2.2.3) 

Suppose YoX and Y has 2 states and X has 5 states, 

P(X = x0 | Y = y0) = | Intersection of [0, 0.2) & [0, 0.5) | / | 
0.5 – 0 | = 0.2 / 0.5 = 0.4 

 

The full CPT is: 

P(x | y) x0 x1 x2 x3 x4  

y0 0.4 0.4 0.2 0 0 

y1 0 0 0.2 0.4 0.4 

 

Case 3.2.3 – Variables with one parent and |w| < 1 

We next look at the case where the weight is different 
than 1.  It is useful to refer to the distribution defined in 
Case 2a as the full-weight distribution—i.e., where w=1. 

Let Pfull(X | yj ) be the distribution over the values of X 
given Y = yj under the assumption that the arc from Y to X 
has weight w = 1.  Let U(X) be the uniform distribution 
over the values of X.  Then,  if  the  weight  is  0  ≤  w < 1, we 
have 

P(X | yj ,  0  ≤  w < 1 ) = w·Pfull(X | yj ) + (1 – w)·U(X) 

That is, the final distribution is a weighted combination of 
the distribution calculated in Case 3.2.1 and the uniform 
distribution—which is the default distribution if there 
were no parent. Note that the weight acts as the 
probability that we get the full-weight distribution instead 
of a uniform distribution.   

 

Example (3.2.3.1) 

Following the previous example (II.2.3), suppose YoX 
and Y has 2 states and X has 5 states.  But now suppose 
that the weight of the arc is w = 0.6, then we have  

P(X = x0 | Y = y0)  = w·Pfull(X | y0 ) + (1 – w)·U(X) 

                             = 0.6·0.4 + (1.0 – 0.6)·(1/5)  

= 0.24 + 0.4·0.2 = 0.3 + .08 = 0.32 

 

The full CPT is: 

 

If   the   weight   is   negative,   the   direction   of   the   parent’s  
influence is reversed.  If Y is an m-valued variable, we can 
calculate the resulting distribution using a similar 
calculation   above   but   for   the   “opposed”   value   of   the  
parent.    By  “opposed”  we  mean  the value at the other side 
of the range—i.e., highest is opposed to lowest, second-
highest is opposed to second-lowest, etc. More 
specifically, if the weight w < 0, we have 

P(x | z) x0 x1 x2 x3 x4  

z0 0.6 0.4 0 0 0 

z1 0 0.2 0.6 0.2 0 

z2 0 0 0 0.4 0.6 

P(x | y) x0 x1 x2 x3 x4

  

y0 0.32 0.32 0.2 0.08 0.08 

y1 0.08 0.08 0.2 0.32 0.32 
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P(X | yj , –1  ≤  w < 0) = w·Pfull(X | ym-j-1 ) + (1 – w)·U(X) 

 

   Example (3.2.3.2) 

Following the previous example (II.2.3), suppose YoX 
and Y has 2 states and X has 5 states.  But now suppose 
that the weight of the arc is w = –0.6, then we have  

P(X = x2 | Y = y1) = 0.6·0.2 + (1.0 – 0.6)·(1/5) = 0.12 + 
0.4·0.2 = 0.12 + .08 = 0.2 

The full CPT is: 

P(x | y) x0 x1 x2 x3 x4  

y0 0.08 0.08 0.2 0.32 0.32 

y1 0.32 0.32 0.2 0.08 0.08 

 

Case 3.2.4 – Variables with multiple parents  

The remaining situation is when we have a variable with 
multiple parents.  In this situation, we assume that the 
influence of each parent is independent of the influence of 
other parents.  So, if X has parents Y1, Y2,  …,  YN, we set 

P(X | Y1, Y2,  …,  YN) = c·P(X | Y1) ·P(X | Y2)  ·…·P(X  |  YN) 

where c is normalization constant to make the distribution 
sum to 1. 

 

Example (3.2.4.1) 
Suppose X has 5 states and two parents: Y with 2 states 
and weight 0.5 and Z with 3 states and weight –0.5.  As 
we saw above from examples (3.2.2.1) and (3.2.2.2), if we 
ignore the weights of the arcs and the fact that there are 
multiple parents, we have for parent Z: 

Pfull(X | z0) = [ 0.6, 0.4, 0.0, 0.0, 0.0 ] 

And for parent Y: 

Pfull(X | y0) = [ 0.4, 0.4, 0.2, 0.0, 0.0 ] 

 

Next, adding in the effect of the weights on the 
distributions, we get:  

P(X | z0, w= –.5) = [ 0.1, 0.1, 0.1, 0.3, 0.4 ] 

and 

P(X | y0, w= .5) = [ 0.3, 0.3, 0.2, 0.1, 0.1 ]   

Now, combining both parents we get 

P(X | y0 , z0) = c·P(X | y0)·P(X | z0) 

= c·[ 0.3, 0.3, 0.2, 0.1, 0.1 ]·[ 0.1, 0.1, 0.1, 0.3,      
0.4 ] 

= c·[ 0.03, 0.03, 0.02, 0.03, 0.04 ] 

= [0.2, 0.2, 0.13, 0.2, 0.27]  

The full CPT is: 

 

4 DISCUSSION 
DecAid is used for strategic decision making. Here are a 
few examples of such decisions: a) when to launch a new 
product into a specific market, b) how close is a rouge 
country to achieving nuclear weapon capability, or c) 
whether to invest in a particular emerging technology. 
These are decisions that involve several variables and 
their inter relations. The system enables decision makers 
to define concepts of the problem in a simple, intuitive, 
manner using free language. As the user defines the 
concepts and relations, the system is creating an 
unconstrained model. Once, the model is built, DecAid is 
capable of making predictions in response to queries by 
converting the unconstrained model into a Bayesian 
network.  

 
Figure 4.2: Predictions made by DecAid Model  

Figure 4.2 shows two such predictions derived from the 
model in Figure 2.1. The first prediction forecasts a 0.85 
probability  that  “Public  concern”  will   increase  given  that  
“Occurrence   of   accidents”   has   increased   and  
“Government   oversight”   does   not   occur.   The   second  
prediction lowers   the   forecast   that   “Public   concern”  will  
increase  to  a  0.53  probability,  if  “Government  oversight”  
occurs.  

At the final stage of making decisions, summarization and 
argumentation becomes critical steps. It is the aim of 
DecAid to facilitate the capture of knowledge and 

P(x | y, z) x0 x1 x2 x3 x4  

y0 , z0  0.2 0.2 0.13 0.2 0.27 

y0 , z1 0.15 0.3 0.4 0.1 0.05 

y0 , z2 0.48 0.36 0.08 0.04 0.04 

y1 , z0 0.04 0.04 0.08 0.36 0.48 

y1 , z1 0.05 0.1 0.4 0.3 0.15 

y1 , z2 0.27 0.2 0.13 0.2 0.2 
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information for that last stage, as well, by combining the 
predictive analytic capability obtained from the cognitive 
models with the ability to retrieve evidential data and 
information to validated predictive hypotheses, which is 
outside the scope of this paper. 

The complete probabilistic semantics of a DecAid model 
include how the local probability models are combined 
(not discussed here). The cornerstone of the semantics, 
however, is the definition given here for the complete 
CPT of a local variable from the simple numeric weights 
associated with its parents as provided by the end-user 
creating the model. 

DecAid variables represent a tradeoff between simplicity 
of model definition and expressive power.  Aside from 
adding temporal modeling (Nodelman, et. al. 2002, 2003) 
to DecAid, there are additional areas where the balance 
between simplicity and expressivity could be further 
enhanced. In one such area there is, currently, complete 
symmetry between the positive effect of a parent taking 
on a high value and the negative effect of a parent taking 
on a low value.  Sometimes this symmetry is warranted 
but sometimes it is not.  For example, consider a child 
variable   “Strength of a   Fire”   (“fire”)   with   a parent 
“Oxygen   Level   Present”   (“oxygen”).   Increasing   oxygen  
will tend to increase the fire and decreasing oxygen will 
tend to lessen the fire.  But now consider an alternative 
parent  “Use  of  fire-extinguisher”.    If  the  fire-extinguisher 
is used, that will tend to lessen the fire.  But lack of fire-
extinguisher use does not, in itself, increase the fire.  So 
we may, in general, want to allow an asymmetry between 
the impact of a high-value parent and a low-value parent 
where the high-value has the regular effect but the low-
value has no special impact on the child.  

 
Furthermore, the assumption that the effects of multiple 
parents are independent of each other is strong.  
Obviously, there are many cases where this assumption is 
unwarranted.  The problem would be to find a simple, 
understandable way for end-users to convey extra 
information about covariance and to find an algorithm 
that could examine the link structure in other parts of the 
DecAid model and extract some useful information about 
the dependencies among the parents. 

5. SUMMARY 
The semantics definition is given in this paper for the 
complete CPT of a local variable from simple numeric 
weights associated with its parents as provided by the 
end-user creating a DecAid model. Explicitly, 1) The 
values of a DV are represented as equal-length 
subintervals of the unit interval and making explicit that 
they have a natural ordering so they can be seen as 
coming in opposed pairs (except for a possible middle-
most value). 2) A single parent full-weight conditional 

probability is defined as the size of the intersection of 
parent and child intervals divided by the size of parent 
interval. 3) The magnitude of the weight is used as the 
probability that you get the full-weight conditional 
distribution instead of a uniform distribution. 4) The sign 
of the weight is used to reverse the direction of influence. 
And 5) the probabilistic influence of multiple parents on a 
child are assumed to be independent of one another. 

The semantics described in this paper enable the creation 
of a Bayesian networks from an unconstrained, directed 
graph model created by a user within a simpler, more 
intuitive, framework implemented in a tool called DecAid, 
without requiring specialized training in how to build 
Bayesian networks. 
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Abstract

This paper explores the e↵ects of parameter
sharing on Bayesian network (BN) parameter
learning when there is incomplete data. Us-
ing the Expectation Maximization (EM) al-
gorithm, we investigate how varying degrees
of parameter sharing, varying number of hid-
den nodes, and di↵erent dataset sizes impact
EM performance. The specific metrics of
EM performance examined are: likelihood,
error, and the number of iterations required
for convergence. These metrics are important
in a number of applications, and we empha-
size learning of BNs for diagnosis of electrical
power systems. One main point, which we
investigate both analytically and empirically,
is how parameter sharing impacts the error
associated with EM’s parameter estimates.

1 INTRODUCTION

Bayesian network (BN) conditional probability tables
(CPTs) can be learned when the BN structure is
known, for either complete or incomplete data. Dif-
ferent algorithms have been explored in the case of
incomplete data, including: Expectation Maximiza-
tion [8, 14, 15, 28], Markov Chain Monte Carlo meth-
ods such as Gibbs sampling [17], and gradient descent
methods [9]. Expectation Maximization (EM) seeks to
maximize the likelihood, or the Maximum a Posteriori
(MAP) estimate, for the BN CPTs.

We focus in this paper on EM [8, 14, 15, 28], an itera-
tive algorithm that converges to a maximum likelihood
estimate (MLE). While EM is powerful and popular,
there are several challenges that motivate our research.
First, when computing MLEs, EM is easily trapped
in local optima and is typically very sensitive to the
placement of initial CPT values. Methods of making
EM less prone to getting trapped in local optimal have

been investigated [11, 18, 34, 38]. Second, EM is often
computationally demanding, especially when the BN
is complex and there is much data [2,3,29,35]. Third,
parameters that EM converges to can be far from the
true probability distribution, yet still have a high like-
lihood. This is a limitation of EM based on MLE.

In this paper we investigate, for known BN structures,
how varying degree of parameter sharing [17, 25, 26],
varying number of hidden nodes, and di↵erent dataset
sizes impact EM performance. Specifically, we are:

• running many random initializations (or random
restarts) of EM, a technique known to e↵ectively
counter-act premature convergence [10,22];

• recording for each EM run the following metrics:
(i) log-likelihood (``) of estimated BN parameters,
(ii) error (the Euclidean distance between true
and estimated BN parameters), and (iii) number
of EM iterations until convergence; and

• testing BNs with great potential for parameter
sharing, with a focus on electrical power system
BNs (reflecting electrical power system compo-
nents known to exhibit similar behavior).

Even when EM converges to a high-likelihood MLE,
the error can be large and vary depending on initial
conditions. This is a fundamental limitation of EM us-
ing MLE; even a BN with high likelihood may be far
from the true distribution and thus have a large error.
Error as a metric for the EM algorithm for BN param-
eter learning has not been discussed extensively in the
existing literature. The analysis and experiments in
this paper provide new insights in this area.

Our main application is electrical power systems, and
in particular NASA’s Advanced Diagnostics and Prog-
nostics Testbed (ADAPT) [27]. ADAPT has already
been represented as BNs, which have proven them-
selves as very well-suited to electrical power system
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health management [12, 19–21, 30–33]. Through com-
pilation of BNs to arithmetic circuits [4, 5], a broad
range of discrete and continuous faults can be detected
and diagnosed in a computationally e�cient and pre-
dictable manner, resulting in award-winning perfor-
mance in international diagnostic competitions [30].1

From a machine learning and EM perspective, as con-
sidered in this paper, it is hypothesized that the learn-
ing of ADAPT BNs may benefit from parameter shar-
ing. This is because there are several repeated BN
nodes and fragments in these BNs. In addition to pa-
rameter sharing, we study in this paper the impact on
EM of varying the number of hidden nodes, reflecting
di↵erent sensing capabilities.

Why are BNs and arithmetic circuits useful for elec-
trical power system diagnostics? First, power systems
exhibit multi-variate uncertainty, for example regard-
ing component and sensor health (are they working
or failing?) as well as noisy sensor readings. Sec-
ond, there is substantial local structure, as reflected
in an EPS schematic, that can be taken advantage
of when constructing a BN automatically or semi-
automatically [19,20,30]. Consequently, BN treewidth
is small enough for exact computation using junction
trees, variable elimination, or arithmetic circuits to be
feasible [19,30]. Third, we compile BNs into arithmetic
circuits [4, 5], which are fast and predictable in addi-
tion to being exact. These are all important benefits in
cyber-physical systems including electrical power sys-
tems.

The rest of this paper is structured as follows. In
Section 2, we introduce BNs, parameter learning for
incomplete data using EM, and related research. Sec-
tion 3 presents our main application area, electrical
power systems. In Section 4, we define the sharing con-
cept, discuss sharing in EM for BN parameter learn-
ing, and provide analytical results. In Section 5 we
present experimental results for parameter sharing in
BNs when using EM, emphasizing electrical power sys-
tem fault diagnosis using BNs. Finally, we conclude
and outline future research opportunities in Section 6.

2 BACKGROUND

This section presents preliminaries including notation
(see also Table 1).

2.1 BAYESIAN NETWORKS

Consider a BN � = (X,W ,✓), where X are discrete
nodes, W are edges, and ✓ are CPT parameters. Let
E ✓ X be evidence nodes, and e the evidence. A

1Further information can be found here: https://
sites.google.com/site/dxcompetition/.

Notation Explanation

X BN nodes
W BN edges
✓ BN CPTs
ˆ✓ estimated CPTs
✓⇤ true CPTs
O observable nodes
H hidden nodes
S (actually) shared nodes
P (potentially) shared nodes
U unshared nodes
Y set partition of X
TP number of wrong CPTs
E evidence nodes
R non-evidence nodes
t
min

min # of EM iterations
t
max

max # of EM iterations
t0 iteration # at EM convergence
✏ tolerance for EM
err(ˆ✓) error of ˆ✓ relative to ✓⇤

nA = |A| cardinality of the set A
` likelihood
`` log-likelihood
� = (X,W ,✓) Bayesian network (BN)
E(Z) expectation of r.v. Z
V (Z) variance of r.v. Z
r Pearson’s corr. coe↵.
✓ 2 [0, 1] CPT parameter

✓̂ 2 [0, 1] estimated CPT parameter
✓⇤ 2 [0, 1] true CPT parameter
� error bound for ✓

Table 1: Notation used in this paper.

BN factors a joint distribution Pr(X), enabling dif-
ferent probabilistic queries to be answered by e�cient
algorithms; they assume that nodes E are clamped to
values e. One query of interest is to compute a most
probable explanation (MPE) over the remaining nodes
R = X \ E, or MPE(e). Computation of marginals
(or beliefs) amounts to inferring the posterior probabil-
ities over one or more query nodes Q ✓ R, specifically
BEL(Q, e), where Q 2 Q.

In this paper, we focus on situations where ✓ needs
to be estimated but the BN structure (X and W ) is
known. Data is complete or incomplete; in other words
there may be hidden nodes H where H = X \O and
O are observed. A dataset is defined as (x1, . . . ,xm

)
with m samples (observations), where x

i

is a vector
of instantiations of nodes X in the complete data
case. When the data is complete, the BN parame-
ters ✓ are often estimated to maximize the data like-
lihood (MLE). In this paper, for a given dataset, a
variable X 2 X is either observable (X 2 O) or hid-
den (X 2 H); it is not hidden for just a strict subset
of the samples.2 Let H > 0. For each hidden node

2In other words, a variable that is completely hidden
in the training data is a latent variable. Consequently, its
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H 2 H there is then a “?” or “N/A” in each sam-
ple. Learning from incomplete data also relies on a
likelihood function, similar to the complete data case.
However, for incomplete data several properties of the
complete data likelihood function–such as unimodal-
ity, a closed-form representation, and decomposition
into a product form–are lost. As a consequence, the
computational issues associated with BN parameter
learning are more complex, as we now discuss.

2.2 TRADITIONAL EM

For the problem of optimizing such multi-dimensional,
highly non-linear, and multimodal functions, several
algorithms have been developed. They include EM,
our focus in this paper. EM performs a type of hill-
climbing in which an estimate in the form of an ex-
pected likelihood function ` is used in place of the true
likelihood `.

Specifically, we examine the EM approach to learn BN
parameters ✓ from incomplete data sets.3 The tradi-

tional EM algorithm, without sharing, initializes pa-
rameters to ✓(0). Then, EM alternates between an
E-step and an M-step. In the t-th E-step, using pa-
rameters ✓(t) and observables from the dataset, EM
generates the likelihood `(t) taking into account the
hidden nodes H. In the M-step, EM modifies the pa-
rameters to ✓(t+1) to maximize the data likelihood.
While |`(t) � `(t�1)| � ✏, where ✏ is a tolerance, EM
repeats from the E-step.

EM monotonically increases the likelihood function `
or the log-likelihood function ``, thus EM converges
to a point ✓̂ or a set of points (a region). Since ``
is bounded, EM is guaranteed to converge. Typically,
EM converges to a local maximum [37] at some itera-
tion t0, bounded as follows: tmax � t0 � tmin. Due to
the use of ✏ above, it is for practical implementations
of EM with restart more precise to discuss regions of
convergence, even when there is point-convergence in
theory.

One topic that has been discussed is the initialization
phase of the EM algorithm [8]. A second research
topic is stochastic variants of EM, typically known as
Stochastic EM [7,11]. Generally, Stochastic EM is con-
cerned with improving the computational e�ciency of
EM’s E-step. Several other methods for increasing the
e�cacy of the EM algorithm for BNs exist. These
include parameter constraints [1, 6, 25], parameter in-
equalities [26], exploiting domain knowledge [17, 24],
and parameter sharing [13,17,25,26].

true distribution is not identifiable.
3Using EM, learning from complete data is a special

case of learning from incomplete data.

When data is incomplete, the BN parameter estima-
tion problem is in general non-identifiable. There may
be several parameter estimates ✓̂1, ..., ✓̂m

that have
the same likelihood, given the dataset [36]. Thus, we
need to be careful when applying standard asymptotic
theory from statistics (which assumes identifiability)
and when interpreting a learned model. Section 4.2
introduces an error measure that provides some in-
sight regarding identifiability, since it measures dis-
tance from the true distribution ✓⇤.

3 ELECTRICAL POWER SYSTEMS

Electrical Power Systems (EPSs) are critical in today’s
society, for instance they are essential for the safe oper-
ation of aircraft and spacecraft. The terrestrial power
grid’s transition into a smart grid is also very impor-
tant, and the emergence of electrical power in hybrid
and all-electric cars is a striking trend in the automo-
tive industry.

ADAPT (Advanced Diagnostics and Prognostics
Testbed) is an EPS testbed developed at NASA [27].
Publicly available data from ADAPT is being used to
develop, evaluate, and mature diagnosis and progno-
sis algorithms. The EPS functions of ADAPT are as
follows. For power generation, it currently uses utility
power with battery chargers (there are also plans to
investigate solar power generation). For power stor-
age, ADAPT contains three sets of 24 VDC 100 Amp-
hr sealed lead acid batteries. Power distribution is
aided by electromechanical relays, and there are two
load banks with AC and DC outputs. For control and
monitoring there are two National Instruments com-
pact FieldPoint backplanes. Finally, there are sensors
of several types, including for: voltage, current, tem-
perature, light, and relay positions.

ADAPT has been used in di↵erent configurations and
represented in several fault detection and diagnosis
BNs [12,19–21,30–33], some of which are investigated
in this paper (see Table 2). Each ADAPT BN node
typically has two to five discrete states. BN nodes
represent, for instance: sensors (measuring, for exam-
ple, voltage or temperature); components (for example
batteries, loads, or relays); or system health of compo-
nents and sensors (broadly, they can be in “healthy”
or “faulty” states).

3.1 SHARED VERSUS UNSHARED

In BN instances where parameters are not shared, the
CPT for a node in the BN is treated as separate from
the other CPTs. The assumption is not always rea-
sonable, however. ADAPT BNs may benefit from
shared parameters, because there are typically several
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Figure 1: One of three similar sub-networks in the
mini-ADAPT BN. Under parameter sharing, the S

B

node is shared between the three sub-networks.

repeated nodes or fragments in these BNs [21, 30]. It
is reasonable to assume that “identical” power system
sensors and components will behave in similar ways.
More broadly, sub-networks of identical components
should function in a similar way to other “identical”
sub-networks in a power system, and such knowledge
can be the basis for parameter sharing.

For parameter sharing as investigated in this paper,
the CPTs of some nodes are assumed to be approxi-
mately equal to the CPTs of di↵erent nodes elsewhere
in the BN.4 Data for one set of nodes can be used else-
where in the BN if the corresponding nodes are shared
during EM learning. This is a case of parameter shar-
ing involving the global structure of the BN, where
di↵erent CPTs are shared, as opposed to parameter
sharing within a single CPT [13].

In some ADAPT BNs, one sub-network is essentially
duplicated three times, reflecting triple redundancy in
ADAPT’s power storage and distribution network [27].
Such a six-node sub-network from an ADAPT BN is
shown in Figure 1. This sub-network was, in this pa-
per, manually selected for further study of sharing due
to this duplication. The sub-network is part of the
mini-ADAPT BN used in experiments in Section 5.3.
In the mini-ADAPT sharing condition, only the node
S
B

was shared between all three BN fragments. Gen-
erally, we define shared nodes S and unshared nodes
U , with U = X \ S.

4It is unrealistic to assume that several engineered phys-
ical objects, even when it is desired that they are exactly
the same, in fact turn out to have exactly the same behav-
ior. A similar argument has been made for object-oriented
BNs [14], describing it as “violating the OO assumption.”
We thus say that CPTs are approximately equal rather
than equal. Under sharing, however, we are making the
simplifying assumption that shared CPTs are equal.

3.2 OBSERVABLE VERSUS HIDDEN

Consider a complex engineered system, such as an elec-
trical power system. After construction, but before
it is put into production, it is typically tested exten-
sively. The sensors used during testing lead to one set
of observation nodes in the BN, OT . The sensors used
during production lead to another set of observations
in the BN, OP . For reasons including cost, fewer sen-
sors are typically used during production than during
testing, thus we assume OP ✓ OT .

As an example, in Figure 1 we denote OP =
{C

B

, S} as production observation nodes, and OT =
{C

B

, S,H
B

, H
S

} as testing observation nodes.

In all our experiments, shared nodes are also hidden, or
S ✓ H. Typically, there are hidden nodes that are not
necessarily shared, or S ⇢ H. This is, for example,
the case for the mini-ADAPT BN as reflected in the
sub-network in Figure 1.

4 EM WITH SHARING

4.1 SHARING IN BAYESIAN NETWORKS

Consider a BN � = (X,W ,✓). A sharing set partition
for nodes X is a set partition Y of X with subsets
Y 1, ...,Y k

, with Y
i

✓ X and k � 1. For each Y
i

with k � i � 1 the nodes X 2 Y
i

share a CPT during
EM learning as discussed in Section 4.2. We assume
that the nodes in Y

i

have exactly the same number of
states. The same applies to their respective parents in
�, leading to each Y 2 Y

i

having the same number of
parent instantiations and exactly the same CPTs.

Traditional non-sharing is a special case of sharing in
the following way. We assign each BN node to a sep-
arate set partition such that for X = {X1, ..., Xn

} we
have Y 1, ...,Y n

with Y
i

= {X
i

}.

One key research goal is to better understand the be-
havior of EM as sharing nodes S and observable nodes
O vary. We examine three cases: complete data O

C

(no hidden nodes); a sensor-rich testing setting with
observationsO

T

; and a sensor-poor production setting
with observations O

P

. Understanding the impact of
varying observations O is important due to cost and
e↵ort associated with observation or sensing.

4.2 SHARING EM

Similar to traditional EM (see Section 2.2), the shar-
ing EM algorithm also takes as input a dataset and
estimates a vector of BN parameters ✓̂ by iteratively
improving `` until convergence. The main di↵erence
of sharing EM compared to traditional EM is that we
are now setting some nodes as shared S, according to
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Y . To arrive at the sharing EM algorithm from the
traditional EM algorithm, we modify the likelihood
function to introduce parameter sharing and combine
parameters (see also [13, 17]). When running sharing
EM, nodes X are treated as separate for the E-step.
There is a slightly modified M-step, using Y , to ag-
gregate the shared CPTs and parameters.5 This is the
use of aggregate su�cient statistics, which considers
su�cient statistics from more than one BN node [13].

Let ✓̂
i,j

be the j’th estimated probability parameter

for BN node X
i

2 X. We define error of ✓̂ for BN
(X,W , ✓̂) as the L2 distance from the true probability
distribution ✓⇤ from which data is sampled:

err(✓̂) =
X

i

sX

j

⇣
✓⇤
i,j

� ✓̂
i,j

⌘2

. (1)

This error is the summation of the Euclidean distance
between true and estimated CPT parameters, or the
L2 distance, providing an overall distance metric.

Why do we use Euclidean distance to measure error?
One could, after all, argue that this distance metric
is poor because it does not agree with likelihood. We
use Euclidean distance because we are interested not
only in the black box performance of the BN, but also
its validity and understandability to a human expert.6

This is important when an expert needs to evaluate,
validate, or refine a BN model, for example a BN for
an electrical power system.

4.3 EM’S BEHAVIOR UNDER SHARING

We now provide a simple analysis of certain aspects
of traditional EM (TEM) and sharing EM (SEM). For
simplicity, we only consider EM runs that converge
and exclude runs that time out.7

For a node X
i

2 X, TEM will converge to one among
potentially several convergence regions. Suppose that
the CPT of node X

i

has (X
i

) convergence regions.
Then the actual number of convergence regions (�

U

)
for a non-shared BN �

U

with nodes X = {X1, ..., Xn

}
is upper bounded by ̄(�

U

) as follows:

(�
U

)  ̄(�
U

) =
nY

i=1

(X
i

). (2)

5For the relevant LibDAI source code, please see
here: https://github.com/erikreed/HadoopBNEM/blob/
master/src/emalg.cpp#L167. In words, it is a modifi-
cation on the collection of su�cient statistics during the
maximization step.

6We assume that (1) is better than likelihood in this
regard, if the original BN was manually constructed. The
BNs experimented with in Section 5 were manually con-
structed, for example.

7In practice, runs that time out are very rare with the
parameter settings we use in experiments.

Due to the sharing, SEM intuitively has fewer con-
vergence regions than TEM. This is due to SEM’s
slightly modified M-step that aggregates the shared
CPTs and parameters. Consider a BN �

S

with ex-
actly the same nodes and edges as �

U

, but with shar-
ing, specifically with sharing set partitions Y 1, ...,Y k

and k < n. Without loss of generality, assume that
X

i

2 Y
i

. Then the actual number of convergence re-
gions (�

S

) is upper bounded by ̄(�
S

) as follows:

(�
S

)  ̄(�
S

) =
kY

i=1

(X
i

), (3)

assuming that the (X
i

) convergence regions used for
X

i

in (2) carry over to Y
i

.

A special case of (3) is when there exists exactly one
Y 0 2 Y such that |Y 0| � 2 while for any Z 2 Y \Y 0 we
have |Z| = 1. The experiments performed in Section 5
are all for this special case. Specifically, but without
loss of generality, let Y

i

= {X
i

} for 1  i < k and
Y

k

= {X
k

, ..., X
n

} with nS = n� k+1 (i.e., S = Y
k

has nS sharing nodes). It is illustrative to consider the
ratio:

̄(�
U

)

̄(�
S

)
=

Q
n

i=1 (Xi

)
Q

k

i=1 (Xi

)
=

nY

i=k+1

(X
i

). (4)

Here, we assume that X
i

has (X
i

) convergence re-
gions in both �

U

and �
S

and take into account that
for shared nodes Y

k

= S, CPTs are tied together.

The simple analysis above suggests a non-trivial im-
pact of sharing, given the multiplicative e↵ect of the
(X

i

)’s for k+1  i  n in (4). However, since upper
bounds are the focus in this analysis, only a partial
and conservative picture is painted. The experiments
in Section 5—see for example Figure 3, Figure 5, and
Figure 6—provide further details.

4.4 ANALYSIS OF ERROR

We now consider the number of erroneous CPTs as
estimated by SEM when sharing is varied. Clearly, a
CPT parameter is continuous and its EM estimate is
extremely unlikely to be equal to the original param-
eter. Thus we consider here a discrete variable, based
on forming an interval in the one-parameter case. Gen-
erally, let a discrete BN nodeX 2 X have k states such
that x

i

2 {x1, ..., xk

}. Consider ✓
xi|z = Pr(X = x

i

|
Z = z) for a parent instantiation z. We now have an
original CPT parameter ✓

i

2 {✓
x1|z, ..., ✓xk�1|z} and

its EM estimate ✓̂
i

2 {✓̂
x1|z, ..., ✓̂xk�1|z}. Let us jointly

consider the original CPT parameter ✓⇤
i

and its esti-
mate ✓̂

i

. If ✓̂
i

2 [✓⇤
i

��
i

, ✓⇤
i

+�
i

] we count ✓̂
i

as correct,
and say ✓̂

i

= ✓⇤
i

; else it is incorrect or wrong, and we
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say ✓̂
i

6= ✓⇤
i

. This analysis clearly carries over to mul-
tiple CPT parameters, parent instantiations, and BN
nodes. This shows how we go from a continuous (esti-
mated CPT parameters ✓̂) to a discrete value (number
of wrong or incorrect CPT estimates), where the latter
is used in this analysis.

Suppose that up to nP nodes can be shared. Further
suppose that nS nodes are actually shared while nU

nodes are unshared, with nU + nS = nP . Let TP

be a random variable representing the total number
of wrong or incorrect CPTs, TS the total for shared
nodes, and TU the total for unshared nodes. Clearly,
we have TP = TS +TU .

Let us first consider the expectation E(TP ). Due to
linearity, we have E(TP ) = E(TS) + E(TU ). In the
non-shared case, assume for simplicity that errors are
iid and follow a Bernoulli distribution, with probability
p of error and (1 � p) = q of no error.8 This gives
E(TU ) = nUp, using the fact that a sum of Bernoulli
random variables follows a Binomial distribution.9

In the shared case, all shared nodes either have an
incorrect CPT ✓̂ 6= ✓⇤ or the correct CPT ✓̂ = ✓⇤.
Assuming again probabilities p of error10 and (1�p) =
q of no error, and by using the definition of expectation
of Binomials we obtain E(TS) = nSp.

Substituting into E(TP ) we get

E(TP ) = nUp+ nSp = nP p. (5)

Let us next consider the variance V (TP ). While vari-
ance in general is not linear, we assume linearity for
simplicity, and obtain

V (TP ) = V (TU ) + V (TS). (6)

In the non-shared case we have again a Binomial dis-
tribution, with well-known variance

V (TU ) = nUp(1� p). (7)

In the shared case we use the definition of variance,
put p1 = (1 � p), p2 = p, and µ = nSp, and obtain
after some simple manipulations:

V (TS) =
2X

i=1

p
i

(X
i

� µ)2 = n2
Sp(1� p), (8)

8This is a simplification, since our use of the Bernoulli
assumes that each CPT is either “correct” or “incorrect.”
When learned from data, the estimated parameters are
clearly almost never exactly correct, but close to or far
from their respective original values.

9If X is Binomial with parameters n and p, it is well-
known that the expected value is E(X) = np.

10The error probabilities of TS and TU are assumed to
be the same as a simplifying assumption.

and by substituting (7) and (8) into (6) we get

V (TP ) = p(1� p)((nP � nS) + n2
S). (9)

In words, (9) tells us that as the number nS of shared
nodes increases at the expense of the number of un-
shared nodes nU , variance due to non-shared nodes de-
creases linearly, but variance due to sharing increases
quadratically. The net e↵ect shown in (9) is that vari-
ance V (TP ) of the error increases with the number of
shared nodes, according to our analysis above. Ex-
pectation, on the other hand, remains constant (5)
regardless of how many nodes are shared. These ana-
lytical results have empirical counterparts as discussed
in Section 5, see for example the error sub-plot at the
bottom of Figure 2.

5 EXPERIMENTS

We now report on EM experiments for several di↵er-
ent BNs, using varying degrees of sharing. We also
vary the number of hidden nodes and dataset size. We
used ✏ = 1e�3 as an EM convergence criterion, mean-
ing that EM stopped at iteration t0 when the ``-score
changed by a value  ✏ between iterations t0�1 and t0

for tmax � t0 � tmin. In these experiments, tmax = 100
and tmin = 3.

5.1 METHODS AND DATA

Bayesian networks. Table 2 presents BNs used in
the experiments.11 Except for the BN Pigs, these BNs
all represent (parts of) the ADAPT electrical power
system (see Section 3). The BN Pigs has the largest
number of nodes that can be shared (nP = 296), com-
prising 67% of the entire BN. The largest BN used,
in terms of node count, edges, and total CPT size, is
ADAPT T2.

Datasets. Data for EM learning of parameters for
these BNs were generated using forward sampling.12

Each sample in a dataset is a vector x (see Section 2.1).
The larger BNs were tested with increasing numbers
of samples ranging from 25 to 400, while mini-ADAPT
was tested with 25 to 2000 samples.

Sharing. Each BN has a di↵erent number of param-
eters that can be shared, where a set of nodes Y

i

2
11ADAPT BNs can be found here: http://works.

bepress.com/ole_mengshoel/.
12Our experiments are limited in that we are only learn-

ing the parameters of BNs, using data generated from those
BNs. Clearly, in most applications, data is not generated
from a BN and the true distribution does not conform ex-
actly to some BN structure. However, our analytical and
experimental investigation of error would not have been
possible without this simplifying assumption.

53



NAME |X| |P | |W | CPT

ADAPT T1 120 26 136 1504
ADAPT T2 671 107 789 13281
ADAPT P1 172 33 224 4182
ADAPT P2 494 99 602 10973
mini-ADAPT 18 3 15 108
Pigs 441 296 592 8427

Table 2: Bayesian networks used in experiments. The
|P | column presents the number of potentially shared
nodes, with actually shared nodes S ✓ P . The CPT
column denotes the total number of parameters in the
conditional probability tables.

Y with equal CPTs are deemed sharable. In most
cases, there were multiple sets of nodes Y 1, ..., Y

k

with |Y
i

| � 2 for k � i � 1. When multiple sets were
available, the largest set was selected for experimenta-
tion, as shown in Section 5.2’s pseudo-code.

Metrics. After an EM trial converged to an estimate
✓̂, we collected the following three metrics:

1. number of iterations t0 needed to converge to ✓̂,

2. log-likelihood `` of ✓̂, and

3. error: distance between ✓̂ and the original ✓⇤ (see
(1) for the definition).

To provide reliable statistics on mean and standard
deviation, many randomly initialized EM trials were
run.

Software. Among the available software implementa-
tions of the EM algorithm for BNs, we have based our
work on LibDAI [23].13 LibDAI uses factor graphs for
its internal representation of BNs, and has several BN
inference algorithms implemented. During EM, the
exact junction tree inference algorithm [16] was used,
since it has performed well previously [19].

5.2 VARYING NUMBER OF SHARED
NODES

Here we investigate how varying the number of shared
nodes impacts EM. A set of hidden nodes H was cre-
ated for each BN by selecting

H = argmax
Y i2Y

|Y
i

|,

where Y is a sharing set partition for BN nodes X
(see Section 4.1). In other words, each experimental
BN had its largest set of shareable nodes hidden, giv-
ing nH = 12 nodes for ADAPT T1, nH = 66 nodes
for ADAPT T2, nH = 32 nodes for ADAPT P1, and
nH = 145 nodes for Pigs.

13www.libdai.org

The following gradual sharing method is used to vary
sharing. Given a fixed set of hidden nodes H and an
initially empty set of shared nodes S:

1. Randomly add �nS � 1 hidden nodes that are
not yet shared to the set of shared nodes S. Since
we only have a single sharing set, this means mov-
ing �nS nodes from the set H \ S to the set S.

2. Performm sharing EM trials in this configuration,
and record the three metrics for each trial.

3. Repeat until all hidden nodes are shared; that is,
S = H.

Using the gradual sharing method above, BN nodes
were picked as hidden and then gradually shared.
When increasing the number of shared nodes, the new
set of shared nodes was a superset of the previous set,
and a certain number of EM trials was performed for
each set.

5.2.1 One Network

For ADAPT T2, m = 200 samples were generated and
nH = 66 nodes were hidden. We used, in the gradual
sharing method, �nS = 4 from nS = 2 to nS = 66
(every hidden node was eventually set as shared).

Figure 2: The number of iterations (top), log-
likelihood or `` (middle), and error (bottom) for a
varying number of shared nodes nS (along the x-axis)
for the BN ADAPT T2. Here, nH = 66 nodes are hid-
den. Shared nodes are a random subset of the hidden
nodes, so nS  nH .
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ADAPT T1
Iterations Likelihood Error

Size r(µ) r(�) r(µ) r(�) r(µ) r(�)
25 -0.937 -0.135 0.997 0.882 -0.068 0.888
50 -0.983 -0.765 0.992 0.941 0.383 0.988

100 -0.825 0.702 0.494 0.941 0.786 0.985
200 0.544 0.926 -0.352 0.892 0.517 0.939
400 0.810 0.814 -0.206 0.963 0.863 0.908

ADAPT T2
Iterations Likelihood Error

Size r(µ) r(�) r(µ) r(�) r(µ) r(�)
25 0.585 0.852 0.749 0.842 0.276 0.997
50 0.811 0.709 0.377 0.764 0.332 0.981

100 0.772 0.722 -0.465 0.855 -0.387 0.992
200 0.837 0.693 -0.668 0.788 -0.141 0.989
400 0.935 0.677 -0.680 0.784 -0.0951 0.987

ADAPT P1
Iterations Likelihood Error

Size r(µ) r(�) r(µ) r(�) r(µ) r(�)
25 -0.769 -0.0818 -0.926 0.278 -0.107 0.774
50 -0.864 -0.0549 -0.939 0.218 -0.331 0.188

100 -0.741 0.436 -0.871 0.678 -0.458 0.457
200 -0.768 0.408 -0.879 0.677 -0.196 0.700
400 -0.665 0.560 -0.862 0.681 0.00444 0.653

PIGS
Iterations Likelihood Error

Size r(µ) r(�) r(µ) r(�) r(µ) r(�)
25 0.954 0.763 0.970 0.614 0.965 0.887
50 0.966 0.956 0.137 0.908 0.740 0.869

100 -0.922 -0.0167 -0.994 -0.800 -0.893 0.343
200 -0.827 -0.394 -0.985 -0.746 -0.577 0.0157
400 -0.884 -0.680 -0.942 -0.699 -0.339 0.285

Table 3: Values for Pearson’s r for the correlation be-
tween the number of shared nodes and statistics for
these metrics: number of iterations, log-likelihood (``),
and error. r(µ) defines the correlation between num-
ber of shared nodes and the mean of the metric, while
r(�) defines the correlation for the standard deviation.

Figure 2 summarizes the results from this experiment.
Here, nS is varied along the x-axis while the y-axis
shows statistics for di↵erent metrics in each of the
three sub-plots. For example, in the top plot of Fig-
ure 2, each marker is the mean number of iterations
(µ), and the error bar is +/- one standard deviation
(�). The main trends14 in this figure are: parameter
sharing increased the mean number of iterations re-
quired for EM and slowly decreased the mean ``. In-
creasing the number of shared nodes resulted in a cor-
responding increase in standard deviation for the num-
ber of iterations, ``, and error of the BN ADAPT T2.
For standard deviation of error, this is in line with our
analysis in Section 4.4.

5.2.2 Multiple Networks

We now investigate how varying the number of shared
nodes impacts EM for several BNs, specifically the cor-
relation between the number of parameters shared and
the mean µ and standard deviation � for our three
metrics. To measure correlation, we use Pearson’s

14We say “main trends” because the curves for the met-
rics mean number of iterations and `` are in fact reversing
their respective trends and dropping close to the maximum
of 66 shared nodes.

sample correlation coe�cient r:

r(X,Y ) =

mP
i=1

(x
i

� x̄)(y
i

� ȳ)

(m� 1)s
x

s
y

, (10)

where x̄ and ȳ are the sample means of two random
variables X and Y , and s

x

and s
y

are the sample stan-
dard deviations of X and Y respectively. Here, (10)
measures the correlation between m samples from X
and Y .15

The number of samples, m, refers to the number of
(X,Y ) sharing samples we have for this correlation
analysis (and not the number of samples used to learn
BN parameters). In all these experiments, we do a trial
for a number of shared nodes, giving several (X,Y )
pairs. Consequently, each number of shared nodes
tested would be an X, and the metric measured would
be a Y . For example, if we use nS 2 {2, 4, 6, 8, 10}
shared nodes, then m = 5.

We now tie r(X,Y ) in (10) to the r(µ) and r(�) used in
Table 3. In Table 3, µ and � show the mean and stan-
dard deviation, respectively, for a metric. Thus, r(µ)
is the correlation of the number of shared nodes and
the mean likelihood of a metric, while r(�) is the corre-
lation of the number of shared nodes and the standard
deviation of likelihood of a metric.

Figure 2 helps in understanding exactly what is being
correlated, as µ and � for all three metrics are shown
for the BN ADAPT T2. In the top plot, r(µ) is the
correlation between the number of shared nodes (x-
axis) and the mean number of iterations (y-axis). In
other words, the mean y

i

= µ
i

is for a batch of 50 trials
of EM. The mean ȳ used in Pearson’s r is, in this case,
a mean of means, namely the mean over 50-EM-trials-
means over di↵erent numbers of shared nodes.

Table 3 summarizes the experimental results for four
BNs. In this table, a positive correlation implies that
parameter sharing increased the corresponding metric
statistic. For example, the highest correlation between
number of shared nodes and mean likelihood is for
ADAPT T1 at 25 samples, where r(µ) = 0.997. This
suggests that increasing the number of shared nodes
was highly correlated with an increase in the likelihood
of EM. Negative coe�cients show that increasing the
number of shared nodes resulted in a decrease of the
corresponding metric statistic.

A prominent trend in Table 3 is the consistently pos-
itive correlation between the number of shared nodes

15In this case, X is the independent variable, specifically
the number of shared nodes. We treat the metric Y as a
function of X. When X is highly correlated with Y , this
is expressed in r through extreme (positive or negative)
correlation values.
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NO SHARING
Observable Error Likelihood Iterations

µ � µ � µ �

OC 16.325 (-) -3.047e4 (-) (-) (-)
OP 48.38 3.74 -2.009e4 43.94 16.39 4.98
OT 33.25 7.45 -2.492e4 1190 8.65 1.99

SHARING
Observable Error Likelihood Iterations

µ � µ � µ �

OC 16.323 (-) -3.047e4 (-) (-) (-)
OP 48.56 3.92 -2.010e4 62.87 15.98 4.95
OT 34.12 14.3 -2.629e4 2630 6.59 2.48

Table 4: Comparison of No Sharing (top) versus Shar-
ing (bottom) for di↵erent observable node sets O

C

,
O

P

, and O
T

during 600 EM trials for mini-ADAPT.

nS and the standard deviation of error, r(�), for all 4
BNs. This is in line with the analytical result involving
nS in (9).

The number of samples was shown to have a signifi-
cant impact on these correlations. The Pigs network
showed a highly correlated increase in the mean num-
ber of iterations for 25 and 50 samples. However, for
100, 200, and 400 samples there was a decrease in the
mean number of iterations. The opposite behavior is
observed in ADAPT T1, where fewer samples resulted
in better performance for parameter sharing (reducing
the mean number of iterations), while for 200 and 400
samples we found that parameter sharing increased the
mean number of iterations. Further experimentation
and analysis may improve the understanding of the in-
teraction between sharing and the number of samples.

5.3 CONVERGENCE REGIONS

5.3.1 Small Bayesian Networks

First, we will show how sharing influences EM parame-
ter interactions for the mini-ADAPT BN shown in Fig-
ure 1 and demonstrate how shared parameters jointly
converge.

Earlier we introduced O
P

as observable nodes in a
production system and O

T

as observable nodes in a
testing system. Complementing O

P

, hidden nodes are
H

P

= {H
B

, H
S

, V
B

, S
B

}. Complementing O
T

, hid-
den nodes are H

T

= {V
B

, S
B

}. When a node is hid-
den, the EM algorithm will converge to one among its
potentially many convergence regions. For O

P

, EM
had much less observed data to work with than for O

T

(see Figure 1). For O
P

, the health breaker node H
B

was, for instance, not observed or even connected to
any nodes that were observed. In contrast, O

T

was de-
signed to allow better observation of the components’
behaviors, and H

B

2 O
T

. From mini-ADAPT, 500
samples were generated. Depending on the observable
set used, either nH = |H

T

| = 2 or nH = |H
P

| = 4
nodes were hidden, and 600 random EM trials were

(a) OP – No Sharing (b) OP – Sharing

(c) OT – No Sharing (d) OT – Sharing

Figure 3: The progress of di↵erent random EM trials
for the mini-ADAPT BN. Both the degree of sharing
(No Sharing versus Sharing) and the number of ob-
servables nodes (O

P

versus O
T

) are varied.

executed with and without sharing.

Table 4 shows results, in terms of means µ and stan-
dard deviations �, for these EM trials. For O

P

, with
nH = 4, the means µ of the metrics error, likeli-
hood, and number of iterations showed minor di↵er-
ences when parameter sharing was introduced. The
largest change due to sharing was an increase in �
of likelihood. For O

T

, where nH = 2, di↵erences were
greater. The µ of likelihood for sharing was lower with
over a 2x increase in �. The µ for error demonstrated
only a minor change, but nearly a 2x increase in �.
This is consistent with our analysis in Section 4.4.

Figure 3a and Figure 3c show how log-likelihood or ``
(x-axis) and error (y-axis) changed during 15 EM tri-
als for O

P

and O
T

respectively. These EM trials were
selected randomly among the trials reported on in Ta-
ble 4. Parameter sharing is introduced in Figure 3b
and Figure 3d. For O

P

, the progress of the EM trials
is similar for sharing (Figure 3b) and non-sharing (Fig-
ure 3a), although for a few trials in the sharing condi-
tion the error is more extreme (and mostly smaller!).
This is also displayed in Table 4, where the di↵erence
in number of iterations, error, and likelihood was mi-
nor (relative to O

T

). On the other hand, there is a
clear di↵erence in the regions of convergence for O

T

when parameter sharing is introduced, consistent with
the analysis in Section 4.3. Figure 3d shows how the
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(a) OP – No Sharing (b) OP – Sharing

(c) OT – No Sharing (d) OT – Sharing

Figure 4: Four 20-bin histograms, for mini-ADAPT,
of the error values of 600 randomly initialized EM tri-
als at convergence. Both the degree of sharing (No
Sharing versus Sharing) and the number of observables
nodes (O

P

versus O
T

) are varied.

EM trials typically followed a path heading to optima
far above or far below the mean error, with two of the
EM trials plotted converging in the middle region of
the error.

Histograms for the 600 EM trials used in Table 4 are
shown in Figure 4. The 20-bin histograms show error
err(✓̂) at convergence. TheO

P

andO
T

sets are shown
without parameter sharing in Figure 4a and Figure 4c,
respectively. Parameter sharing is introduced in Fig-
ure 4b and Figure 4d. There is an increased � of error
due to parameter sharing for O

T

. When comparing
Figure 4c (No Sharing) and Figure 4d (Sharing), we
notice di↵erent regions of error for EM convergence
due to sharing. Figure 4c appears to show four main
error regions, with the middle two being greatest in
frequency, while Figure 4d appears to show three re-
gions of error, with the outer two being most frequent.
The outer two regions in Figure 4d are further apart
than their non-sharing counterparts, showing that pa-
rameter sharing yielded a larger range of error for O

T

,
see Section 4.4.

5.3.2 Large Bayesian Networks

Next, large BNs are used to investigate the e↵ects of
parameter sharing, using a varying number of shared
nodes. The larger ADAPT networks and Pigs were run
with 50 EM trials16 for each configuration of observ-

16The decrease in number of EM trials performed rela-
tive to mini-ADAPT was due to the substantial increase in

(a) No Sharing (b) Sharing

Figure 5: The progress of 15 random EM trials for
ADAPT T2. The No Sharing condition (a) shows
more locally optimal convergence regions than Shar-
ing (b), where there appears to be only four locally
optimal convergence regions.

(a) No Sharing (b) Sharing

Figure 6: The progress of random EM trials for
ADAPT P1. While the number of EM trials is the
same for both conditions, the No Sharing condition
(a) clearly shows more local optima than Sharing (b).

able nodes, number of samples, and number of shared
nodes. Some of the results are reported here.

Figure 5a shows results for ADAPT T2 without pa-
rameter sharing during 15 EM trials using nH = 66
hidden nodes and 200 samples. Figure 5b shows a
substantial change in error when the nH = 66 hidden
nodes were shared. The range of the error for EM is
much larger in Figure 5b, while the upper and lower
error curves have a symmetric quality. Four regions
for the converged error are visible in Figure 5b, with
the inner two terminating at a lower `` than the outer
two. The lowest error region of Figure 5b is also lower
than the lowest error of Figure 5a, while retaining a
similar ``.

Figure 6 uses a smaller ADAPT BN, containing 172
nodes instead of 671 nodes (see Table 2). Here, nH =
33 nodes were hidden and 200 samples were used. In
several respects, the results are similar to those ob-
tained for ADAPT T2 and mini-ADAPT. However,

CPU time required (days to weeks).
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Figure 6a shows that EM terminates on di↵erent like-
lihoods, which is not observed in Figure 5a. The error
also appears to generally fluctuate more in Figure 6a,
whereas the error changes the most during later it-
erations in Figure 5a. Figure 6b applies parameter
sharing to the nH = 33 hidden nodes. A symmetric
e↵ect is visible between high and low error, reflect-
ing the analysis in Section 4. Of the 15 trials shown
in Figure 6b, two attained `` > �1.2e�4, while the
rest converged at `` ⇡ �1.21e�4. Additionally, the
``s of these two trials were greater than any of the
non-sharing ``s shown in Figure 6a.

6 CONCLUSION

Bayesian networks have proven themselves as very
suitable for electrical power system diagnostics [19,20,
30–33]. By compiling Bayesian networks to arithmetic
circuits [4,5], a broad range of discrete and continuous
faults can be handled in a computationally e�cient
and predictable manner. This approach has resulted
in award-winning performance on public data from
ADAPT, an electrical power system at NASA [30].

The goal of this paper is to investigate the e↵ect, on
EM’s behavior, of parameter sharing in Bayesian net-
works. We emphasize electrical power systems as an
application, and in particular examine EM for ADAPT
Bayesian networks. In these networks, there is consid-
erable opportunity for parameter sharing.

Our results suggest complex interactions between
varying degrees of parameter sharing, varying number
of hidden nodes, and di↵erent dataset sizes when it
comes to impact on EM performance, specifically like-
lihood, error, and the number of iterations required for
convergence. One main point, which we investigated
both analytically and empirically, is how parameter
sharing impacts the error associated with EM’s pa-
rameter estimates. In particular, we have found an-
alytically that the error variance increases with the
number of shared parameters. Experiments with sev-
eral BNs, mostly for fault diagnosis of electrical power
systems, are in line with the analysis. The good news
here is that there is, in the sharing case, smaller error
some of the time.

Further theoretical research to better understand pa-
rameter sharing is required. Since parameter sharing
was demonstrated to perform poorly in certain cases,
further investigations appear promising. Parameter
sharing sometimes reduced the number of EM itera-
tions required for parameter learning, while at other
times the number of EM iterations increases. Improv-
ing the understanding of the joint impact of parameter
sharing and the number of samples on the number of
EM iterations would be useful, for example. Finally, it

would be interesting to investigate the connection to
object-oriented and relational BNs in future work.
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Abstract 

We present a method to devise, execute, and 
assess a cyber deception. The aim is to cause an 
adversary to believe they are under a cyber 
attack when in fact they are not. Cyber network 
defense relies on human and computational 
systems that can reason over multiple individual 
evidentiary items to detect the presence of meta 
events, i.e., cyber attacks. Many of these systems 
aggregate and reason over alerts from Network-
based Intrusion Detection Systems (NIDS). Such 
systems use byte patterns as attack signatures to 
analyze network traffic and generate 
corresponding alerts. Current aggregation and 
reasoning tools use a variety of techniques to 
model meta-events, among them Bayesian 
Networks. However, the inputs to these models 
are based on network traffic which is inherently 
subject to manipulation. In this work, we 
demonstrate a capability to remotely and 
artificially trigger specific meta events in a 
potentially unknown model. We use an existing 
and known Bayesian Network based cyber attack 
detection system to guide construction of 
deceptive network packets. These network 
packets are not actual attacks or exploits, but 
rather contain selected features of attack traffic 
embedded in benign content. We provide these 
packets to a different cyber attack detection 
system to gauge their generalizability and effect. 
We combine the deception packets' 
characteristics, the second system's response, and 
external observables to propose a deception 
model to assess the effectiveness of the 
manufactured network traffic on our target. We 
demonstrate the development and execution of a 
specific deception, and we propose the 
corresponding deception model. 

Key words: Cyber Deception, Cyber Attack, Bayesian 
Model, Deception Model, Intrusion Detection System 

1. INTRODUCTION 
Network-based Intrusion Detection Systems (NIDS) are 
essentially granular sensors. Their measurements consist 
of computer network traffic, sometimes at the packet 
level, which matches signatures of known cyber attack 
activity. For a typical network, the individual data points 
are numerous and require aggregation, fusion, and context 
to acquire meaning. This reasoning may be accomplished 
through the use of cyber attack detection models, where 
the NIDS data points represent evidence and specific 
cyber attacks or classes of attacks represent hypotheses. 
Modeling approaches, including Bayesian Networks, have 
been applied in the past, are an active research area, and 
are in use today in deployed systems. 

The input to a NIDS sensor is network traffic, which is 
inherently uncertain and subject to manipulation. Prior 
research has exploited this fact to create large numbers of 
false NIDS alerts to overwhelm or disable the backend 
processing systems. In this work, we leverage knowledge 
of the backend cyber attack models to craft network 
traffic which manipulates the inputs and hence the outputs 
of both known and unknown models. With a small 
number of packets and no actual cyber attack, we are able 
to create the false impression of an active attack. 

In this work, we describe a general approach to network-
based offensive cyber deception, and we demonstrate an 
implementation of such a deception. We use an existing 
cyber attack detection model to guide the development of 
deception traffic, which is then processed by a second and 
distinct cyber attack detection model. Finally, we propose 
a deception model to assess the effectiveness of the 
deception on a target. Future work will expand and 
automate the generation of deceptive network packets and 
further develop the deception model. 
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2. RELATED WORK 
Deception has been a staple of military doctrine for 
thousands of years, and a key element of intelligence 
agency activities since they took their modern form in 
World War II. From Sun Tzu 2,500 years ago (Tzu, 
2013), to Operation Mincemeat in 1943 (Montagu and 
Joyce, 1954), to the fictional operation in the 2007 book 
Body of Lies (Ignatius, 2007), one side has endeavored to 
mislead the other through a variety of means and for a 
variety of purposes. The seminal work of Whaley and 
Bell (Whaley, 1982; Bell and Whaley, 1982; Bell and 
Whaley, 1991), formalized and in some ways defended 
deception as both necessary and possible to execute 
without "self contamination". 
 
Deception operations have naturally begun to include the 
cyber domain, although the majority of this work has been 
on the defensive side. Fred Cohen suggested a role for 
deception in computer system defense in 1998 (Cohen, 
1998) and simultaneously released his honeypot 
implementation called The Deception Toolkit (Cohen, 
1998). Honeypots are systems meant to draw in attackers 
so they may be distracted and/or studied. The Deception 
Toolkit was one of the first configurable and dynamic 
honeypots, as opposed to prior honeypots which were 
simply static vulnerable systems with additional 
administrator control and visibility. Other honeypot 
implementations have followed, and they remain a staple 
of defensive cyber deception. Neil Rowe (2003)(2007), 
his colleague Dorothy Denning (Yuill, Denning, and Feer, 
2006), and students (Tan, 2003) at the Naval Postgraduate 
School have been researching defensive cyber deception 
for several years. Extending their early work identifying 
key disruption points of an attack, they propose deception 
by resource denial, where some key element of an active 
attack vector is deceptively claimed to be unavailable. 
Such an approach stalls the attacker while the activity can 
be analyzed and risks mitigated. Other defensive cyber 
deception approaches include masking a target's operating 
system (Murphy, McDonald, and Mills, 2010), and 
actively moving targets within an IP address and TCP 
port space (Kewley, et al., 2001), later labeled "address 
shuffling". Crouse’s (2012) comparison of the theoretical 
performance of honeypots and address shuffling remains 
one of the few rigorous comparisons of techniques. Until 
recently, most defensive cyber deception involved 
theoretical work or small proofs of concept. However, in 
2011, Ragsdale both legitimized defensive cyber 
deception and raised the bar when he introduced 
DARPA’s  Scalable Cyber Deception program (Ragsdale, 
2011). The program aims to automatically redirect 
potential intruders to tailorable decoy products and 
infrastructures in real time and at an enterprise scale.  
 
By comparison, offensive cyber deception has been 
discussed only briefly in the literature, often as a 
secondary consideration. For example, honeypots are 
typically a defensive tool but may be used in an offensive 

sense to provide disinformation to an adversary. 
Similarly, deliberately triggering an adversary's network 
defenses to overwhelm or disable equipment, software, or 
operators was discussed openly in 2001 (Patton, Yurcik, 
and Doss 2001) but proposed as cover for other attacks 
rather than to effect a deception. A small number of 
offensive cyber deception implementations have been 
presented, such as the D3 (Decoy Document Distributor) 
system to lure malicious insiders (Bowen, Hershkop, 
Keromytis, and Stolfo, 2009) and the ADD (Attention 
Deficit Disorder) tool to create artificial host-based 
artifacts in memory to support a deception (Williams and 
Torres, 2014). While offensive cyber warfare has entered 
the public awareness with the exposure of activity based 
on tools such as Stuxnet, Flame, and Shamoon, offensive 
cyber deception remains the subject of limited open 
research and discussion. 
 
Our deception work focuses on aggregation and reasoning 
tools applied to Network Intrusion Detection Systems 
(NIDS). These reasoning tools emerged from the 
inundation of alerts when NIDS sensors were first 
deployed on enterprise networks. Such tools may simply 
correlate and aggregate alerts or may model cyber attack 
and attacker behavior to reason over large quantities of 
individual evidentiary items and provide assessments of 
attack presence for human operators to review. Such 
reasoning models are abundant in the literature and in 
operational environments, having become indispensable 
to cyber defenders and remaining an active research area. 
Initial work on correlating and aggregating NIDS alerts 
appeared in 2001 (Valdes and Skinner, 2001). A few 
years later, a body of research emerged which correlated 
NIDS events with vulnerability scans to remove irrelevant 
alerts, for example (Zhai, et al., 2004). More advanced 
reasoning models emerged a few years later, attempting to 
capture attack and attacker behavior using various 
techniques. For example, Zomlot, Sundaramurthy, Luo, 
Ou, and Rajagopalan (2011) applied Dempster-Shafer 
theory to prioritize alerts, and Bayesian approaches 
remain popular (Tylman, 2009; Hussein, Ali, and Kasiran, 
2012; Ismail, Mohd and Marsono, 2014). Jones and 
Beisel (2014) developed a Bayesian approach to 
reasoning over custom NIDS alerts for novel attack 
detection. A prototype of this approach, dubbed Storm, 
was used as the base model in this work. 
 
Our research builds on this rich body of prior work, 
merging the basic precepts of deception, manipulation of 
network traffic, and model-based reasoning into an 
offensive cyber deception capability. We use existing 
detection models to derive corresponding deception 
models, demonstrating the ability to deceive an adversary 
on their own turf and causing them to believe they are 
under attack when in fact they are not. This capability 
may be used offensively to create an asymmetry between 
attackers generating small numbers of deception packets 
and targets investigating multiple false leads, and 
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defensively to improve the sensitivity, specificity, and 
deception recognition of existing cyber attack detection 
tools. 

3. BACKGROUND 
Signature-based Network Intrusion Detection Systems 
operate by matching network traffic to a library of 
patterns derived from past attacks and known techniques. 
Matches generate alerts, often one per packet, which are 
saved and sent to a human operator for review. The basic 
idea of intrusion detection is attributed to Anderson 
(1980). Todd Heberlein introduced the idea of network-
based intrusion detection in 1990 (Heberlein, et al., 1990). 
Only when processing capabilities caught up to network 
bandwidth did the market take off in the late 1990s and 
early 2000s. Unfortunately, early enterprise deployments 
generated massive numbers of alerts, to the point that 
human operators could not possibly process them all. Two 
capabilities came out of this challenge: (1) correlation 
between NIDS data and other enterprise sources, such as 
vulnerability scanning data, e.g., see ArcSighti, and (2) 
aggregators which model cyber attacks and use NIDS 
alerts as individual evidentiary items, only alerting a 
human when multiple aspects of an attack are detected, 
e.g., see Hofmann and Sick (2011). As noted in Section 2, 
many modeling approaches have been applied to the 
aggregation and context problem for more than a decade, 
and the area remains one of active research, e.g., 
Boukhtouta, et al (2013). 

For the base model in this project, we used an existing 
cyber attack detection model previously developed by one 
of the authors. The implementation of this model, called 
Storm, uses network traffic observables and a Bayesian 
Network reasoning model to detect a system compromise 
resulting from known and novel cyber attacks. The 
system ingests raw network traffic via a live network 
connection or via traffic capture files in libpcapii format. 
Individual packets and groups of packets are assessed 
against signatures associated with cyber attack stages, 
such as reconnaissance, exploitation, and backdoor access 
(see Figure 1). Prior to ingest by the model, saturation and 
time decay functions are applied to packets which match 
signatures so that model output reflects the quantity and 
timing of packets. Ingest and model updates occur in real 
time as packets are received and processed. Packet 
capture and signature matching is implemented in C++ 
using libpcap on a Linux (Ubuntu) system. Matching 
packet processing, model management, and the user 
interface are implemented in Java, and the Bayesian 
Network is implemented with Unbbayesiii. Packets are 
passed to the model via a TCP socket so that packet 
processing and reasoning may be performed on different 
systems, although we used a single server for our testing. 
 
The Storm system reasons over indirect observables 
resulting from the necessary and essentially unavoidable 
steps necessary to effect a system compromise. This 

underlying cyber attack process is shown in Figure 1 
below, where a typical attack progress downward from 
State 1 (S1) to State 7 (S7). Observables are created at 
each state and transition. The existing Storm 
implementation contains one or more observable 
signatures for each of the six state transitions (T1-T6 in 
the figure). 

 
Figure 1: Cyber Attack Model  

 
 
The reasoning model, shown in Figure 2, was derived 
from expert knowledge and consists of 20 signature 
evidence nodes (leaves labeled Tnn), three derived 
evidence nodes (labeled Mn), two protocol aggregation 
nodes (labeled Port80 and Port25), six transition 
aggregation nodes (labeled Tn), and a root node (labeled 
Compromise). Signature hits are processed and used to set 
values for the Tnn and Mn nodes. As implemented, one 
model is instantiated for each cyber attack target (unique 
target IP address). Model instances are updated whenever 
new evidence is received or a preconfigured amount of 
time has passed, and the root node values are returned as 
Probability of Compromise given Evidence, P(C|E), for 
each target. 
 
The theory behind the model, further explained by Jones 
and Beisel (2014), is to recognize observables created 
when a cyber attack transitions to a new state. For 
example, when transitioning to the exploit stage, packets 
with NOP instructions (machine code for "do nothing" 
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and used in buffer overflow type attacks) or shell code 
elements (part of many exploit payloads) are often seen. 
As such, the Storm signature rules for detecting 
observables are not specific to particular attacks, but 
rather represent effects common to actions associated 
with cyber attack stages in general. Taken individually, 
signature matches do not imply an attack. However, when 
aggregated and combined in context by the reasoning 
model, an accurate assessment of attack existence may be 
produced. The system is able to detect novel attacks, since 
signatures are based on generic cyber attack state 
transitions instead of specific attack signatures. 

 
Figure 2: Bayes Net Cyber Attack Detection Model  

 
For most environments, network traffic is insecure and 
untrusted. Most networks and systems carry and accept 
traffic that may be both unencrypted and unauthenticated. 
As such, nearly anyone can introduce traffic on an 
arbitrary network or at least modify traffic destined for an 
arbitrary network or system. While full arbitrary packet 
creation, modification, and introduction is not generally 
possible, the ability to at least minimally manipulate 
packets destined for an arbitrary network or system is 
inherent in the design and implementation of the Internet. 
Packet manipulation is straightforward using available 
tools like Scapyiv, requiring only knowledge of basic 
object oriented concepts and an understanding of the 
relevant network protocols. 

It is the combination of an ability to manipulate network 
traffic and models which use network traffic as 
evidentiary inputs which we exploit in our work. 

4. METHODOLOGY 
Our goal for this project is to establish the viability of 
manipulating an adversary's perception that they are the 
target of a cyber attack when in fact they are not. We 
begin by conducting a sensitivity analysis of a known 
cyber attack detection model to identify candidate 
influence points. We design, construct, and inject network 
packets to trigger evidence at a subset of these influence 
points. We construct a corresponding deception model to 
assess the likelihood that our deception is effective. This 
derivative deception model combines the impact of our 
deception packets with other factors, such as the ease with 
which a target may invalidate the deception packets, the 
prevalence of alternative explanations for detection 

system alarms, and external indicators of the target's 
response activities. The impact of our deception packets is 
estimated by their effect on an alternative cyber attack 
detection system, in this case Snortv. See Figure 3 for an 
overview of this process. 

 
 

Figure 3: Process Overview  
 
The deception model output, P(Successful Deception) is 
envisioned to be a dynamic value computed in real time 
as deception packets are delivered to a target and external 
observables are collected. As the deception operation 
unfolds and feedback from external observables is 
incorporated, additional existing deception packets may 
be injected, or influence points may be examined for 
additional deception packet development. 
 
Our base detection model is a Bayesian Network (Figure 
2) from a test implementation of the Storm cyber attack 
detection system. A single node sensitivity to findings 
analysis (from Netica) is summarized in Table 1 for the 
20 evidence input nodes. We reviewed this output and the 
descriptions of each signature to select those which (a) 
would have high impact on Storm's probability of 
compromise based on the sensitivity analysis, (b) could be 
reasonably developed into a deception packet or packets, 
and (c) could be general enough to be detected by a 
target's cyber attack detection system, i.e., not Storm. In 
Table 1, the eight non-gray rows are those that were 
selected for deception packet development (signatures 
T5a, T6a, T6b, T6d, T4a, T4b, T1e, and T1f). 
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Table 1: Storm model sensitivity analysis 

Signature Mutual 
Info 

Variance 
of Beliefs 

T5a 0.03305 0.0011763 
T6e 0.02719 0.0008344 
T6a 0.02719 0.0008344 
T6b 0.02719 0.0008344 
T6d 0.02719 0.0008344 
T6c 0.02719 0.0008344 
T6f 0.02719 0.0008344 
T4a 0.01701 0.0004315 
T4b 0.01701 0.0004315 
T3b 0.01658 0.0003618 
T3c 0.00702 0.0001202 
T3a 0.00259 0.0000372 
T1a 0.00002 0.0000002 
T1b 0.00002 0.0000002 
T1e 0.00002 0.0000002 
T1c 0.00002 0.0000002 
T1d 0.00002 0.0000002 
T1f 0.00002 0.0000002 
T2a 0.00001 0.0000002 
T2b 0.00001 0.0000002 

 
 
Our test environment consisted of a Storm 
implementation running on Ubuntu 11.10 and a packet 
manipulation host running BackTrack5vi. We captured 
normal network traffic in a test environment and 
processed the traffic through the Storm system to confirm 
that no attacks were detected. Storm, like most NIDS 
implementations, has the ability to ingest live network 
traffic as well as network traffic capture files without loss 
of accuracy or fidelity. Traffic was captured using the 
open source Wiresharkvii tool, saved as a pcap file, then 
ingested by Storm. We labeled this original packet 
capture file "clean" and used it as the basis for our 
subsequent packet manipulations. 
 
We used Scapy on the BackTrack5 instance to craft 
deception packets. Scapy is an open source Python based 
packet crafting and editing tool. Packets may be loaded 
from a pcap file, then manipulated in an environment 
similar to a Python command shell and written out to a 
pcap file. Scapy supports creation and modification of any 
packet field down to the byte level and to include the raw 
creation and editing of packet data. To create our 
deception packets, we made minor modifications to 

packets from the clean set. By minimizing changes, we 
produced packets that maintained most of the clean 
session characteristics and so would not be blocked by a 
firewall or other packet screening device. Also, packets 
were modified only to the extent necessary to trigger the 
desired signature, so the modified packets do not contain 
any actual attacks. The modified packets and associated 
unmodified session packets, such as session establishment 
via the TCP 3-way handshake, were exported to a 
separate pcap file so they could be ingested by the Storm 
and Snort systems in a controlled manner. 
 
The eight signatures selected for deception and the related 
deception packets are summarized in Table 2. 
 

Table 2: Signatures and deception packets 

Signature T1e 
Description: After 3-way handshake, DstPort=80, 

payload≠<ASCII>   
Explanation: Abnormal traffic to web server (usually 

expect GET or POST with ASCII data) 
Deception packet: Inserted non-ASCII (hex > 7F) at 

beginning of payload for existing HTTP session 
Signature T1f 

Description: After 3-way handshake, DstPort=25, 
payload≠<ASCII>   

Explanation: Abnormal traffic to a mail server 
(normally we expect plaintext commands) 

Deception packet: Edited HTTP session to use server 
port 25; inserted non-ASCII (hex > 7F) at 
beginning of payload 

Signature T4a 
Description: Client to server traffic containing 20+ 

repeated ASCII characters  
Explanation: Buffer overflows often use a long string 

of ASCII characters to overflow the input buffer 
Deception packet: Inserted 43 "d" (hex 64) characters 

at the beginning of existing HTTP session payload 
Signature T4b 

Description: Client payload contains 20+ identical and 
consecutive NOP instruction byte patterns  

Explanation: A "NOP sled" is a common technique 
used in buffer overflow exploits; the sled consists 
of multiple NOP (No Operation) instructions to 
ensure that the real instructions fall in the desired 
range 

Deception packet: Inserted 24 hex 90 (known NOP 
code) characters at the beginning of existing HTTP 
session payload 
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Signature T5a 
Description: Client  to  server  traffic  if  port≠23  and  first  

100 bytes of payload contains "rm", "rmdir", "rd", 
"del", "erase"  

Explanation: File or directory removal activity 
Deception packet: Inserted "rm " (hex 726D20) 

characters at the beginning of existing HTTP 
session payload 

Signature T6a 
Description: First two bytes of client to server 

payload="MZ"  
Explanation: COM, DLL, DRV, EXE, PIF, QTS, 

QTX, or SYS file transfer for use in a backdoor 
Deception packet: Inserted "MZ" (hex 4D5A) and 

filename "exe" characters at the beginning of 
existing HTTP session payload 

Signature T6b 
Description: New Port opened on server; ignore first 

500 packets after startup 
Explanation: Traffic from a port not previously seen 

might indicate the opening of a new back door 
Deception packet: Edited HTTP session to use server 

port 25 (ingested after first 500 packets) 
Signature T6d 

Description: Unencrypted traffic on encrypted port  
Explanation: Traffic on encrypted sockets (HTTPS, 

SMTP with SSL, Secure Shell, etc.) should be 
encrypted once the session is established. 

Deception packet: Inserted ASCII text in an 
established SSH session 

 
Manual creation of the deception packets required a 
moderate amount of effort. When crafting deception 
packets, care must be taken to use carrier traffic which 
will be passed by a firewall or similar network security 
gateway while still triggering the desired signature. 
Flexibility in carrier traffic is signature dependent. For 
example, some signatures have offset or port 
dependencies like requiring the traffic to be, or not to be, 
on port 80 (HTTP), while others are more flexible. Future 
work will develop an automated deception packet creation 
capability. 
 
We began by identifying a candidate session for packet 
modification. For example, we could start with an existing 
HTTP or HTTPS session and alter packet payload, or we 
might also alter TCP ports. Payload modification required 
adjustments to the TCP checksum, IP checksum, and IP 
length values as well. To create a deception packet set, we 
loaded the clean pcap file in scapy, made the desired 
packet modifications, and wrote the resulting packet set to 
a new pcap file. We then used Wireshark to confirm our 
modifications and to extract and save only the session of 
interest as a distinct pcap file. We confirmed our 

deception packets by processing them with Storm, and 
later Snort, in a controlled environment. 
 
We tested single occurrences of each signature separately 
and in a subset of possible combinations. For each 
individual signature and for selected combinations, we 
also tested the effects of 10 and 20 signature instances. 
Finally, for selected signatures, we measured the effect of 
multiple occurrences for values 1, ..., 25. For all tests, we 
reset the Storm model, loaded the desired pcap file, and 
recorded the resulting P(C|E). 
 
We then processed each of the deception pcap files (one 
per signature) with Snort, separately and in combinations 
and repetitions. 

5. EXPERIMENTAL RESULTS 
Each signature pcap file was processed by Storm in 
quantities of 1, 10, and 20 hits. Storm was reset after each 
run, that is, reset after a run of one T1e hit, then reset after 
a run of 10 T1e hits, then reset after a run of 20 T1e hits, 
etc. Results are recorded in Table 3. 

Table 3: Single signature impact on P(C|E) with repetition 

Signature Qty=1 Qty=10 Qty=20 

ID 
Short 
Description P(C|E) P(C|E) P(C|E) 

T1e HTTPload!=ASCII 0.00 0.01 0.03 

T1f SMTPload!=ASCII 0.00 0.01 0.03 
T4a Repeated ASCII 0.01 0.05 0.16 
T4b Repeated NOPs 0.01 0.05 0.15 
T5a Cleanup cmds 0.02 0.09 0.27 
T6a Executable load 0.02 0.08 0.22 
T6b New server port 0.02 0.08 0.22 

T6d Unencrypted SSL 0.02 0.08 0.22 
 
The relationships between the quantity of signature hits 
and P(C|E) in each row indicate that setting the Bayesian 
Network findings is not a simple True/False assignment. 
To confirm this behavior, we recorded the effect on 
P(C|E) of 1, 2, ..., 25 signature hits for signatures T5a and 
T6a. These results are graphed in Figures 4a and 4b. The 
curves and apparent inflection points of the graphs 
indicate that the signature hits are subject to a ramping up 
requirement at low quantities and a saturation adjustment 
at high quantities. This is in fact implemented by a pre-
processing step in the Storm system and is not actually a 
part of the Bayesian Network component of Storm. 
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Figure 4a: T5a signature hit effect for n = 1..25 

 

Figure 4b: T6a signature hit effect for n = 1..25 

We constructed 11 combinations of signature hits at 
selected quantities and tested each combination. The 
results are shown in Tables 4a and 4b below (split for 
readability). 
 
The results indicate that the desired effect was achieved in 
two ways: (1) single hits across a wide range of signatures 
(e.g., tests D, E, and F), and (2) repeated hits on selected 
signatures (e.g., tests H and K). Assuming a threshold of 
P(C|E) > 0.75 for alerting, meta-event alerts could be 
generated with as few as five packets spread across five 
signatures as in test F, or 40 packets spread across only 
two different signatures as in test K. 
 
We processed the same eight pcap deception files with 
Snort. Six of the eight files triggered Snort alerts, as 
summarized below in Table 5. 
 
Snort Priority 1 are the most severe, Priority 3 the least. 
The name, classification, and priority of each signature 
are assigned by the signature author. A base Snort install 
contains signatures contributed by the Snort developers 
and the open source community. 
 
Our deception packets produced five Priority 1 alerts, one 
Priority 2 alert, and one Priority 3 alert. Two deception 

packets (pcap files for T5a and T6b) did not trigger any 
Snort alerts. 

Table 4a: Effect of signature combinations on P(C|E) 

Signature Test 
ID A B C D E F 

T1c     1  
T1e     1  
T4a  1 1 1 1 1 
T4b  1 1 1 1  
T5a    1 1 1 
T6a 1  1 1 1 1 
T6b 1  1 1 1 1 
T6d 1  1 1 1 1 

       
P(C|E) 0.10 0.02 0.46 0.86 0.89 0.79 

Table 4b: Effect of signature combinations on P(C|E) 

Signature Test 
ID G H I J K 

T1c      
T1e      
T4a 1 10 10   
T4b      
T5a 1 10 10 10 20 
T6a 1 10  10 20 
T6b      
T6d      

      
P(C|E) 0.37 0.93 0.58 0.72 0.78 

 
In a default configuration, and without any subsequent 
aggregation or alert thresholds, Snort alerts are explicitly 
linear, meaning that combination and repetition testing 
produced the obvious results. For example, running any 
one pcap file N times produces N alerts. Similarly, 
running the files in combination produced the expected 
total of alerts, e.g., running the entire set 10 times 
produced 70 Snort alerts.  
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Table 5: Snort alerts from deception packets 

File Snort Alerts 

T5a None 

T6a 
Lotus Notes .exe script source download attempt 

[Classification: Web Application Attack] 
[Priority: 1] 

T6b None 

T6d 

Protocol mismatch 
[Priority: 3]  

EXPLOIT ssh CRC32 overflow /bin/sh 
[Classification: Executable code was detected] 

[Priority: 1] 

T4a 
MailSecurity Management Host Overflow Attempt 

[Classification: Attempted Admin Privilege Gain] 
[Priority: 1] 

T4b 
SHELLCODE x86 NOOP 

[Classification: Executable code was detected] 
[Priority: 1] 

T1e 
apache chunked enc mem corrupt exploit attempt 
[Classification: access to potentially vuln web app] 

[Priority: 2] 

T1f 
x86 windows MailMax overflow 

[Classification: Attempted Admin Privilege Gain] 
[Priority: 1] 

 

6. DECEPTION MODEL 
A sample deception model is shown in Figure 5. The 
model consists of three key parts: (A) the deception 
packets, (B) external observables indicating a successful 
deception, and (C) external observables indicating an 
unsuccessful deception. 

Each deception packet, area A in the figure, is assessed 
for alternative explanations. For example, a byte string 
that we embed in a JPEG image file may generate a NIDS 
alert for an unrelated attack, but upon examination will be 
discounted as a chance occurrence and hence a false 
alarm. Strong alternative explanations suggest that the 
target might not interpret the packet as part of an attack 
and so would weaken the packet node's intended effect on 
the Successful Deception node. Similarly, each deception 
packet is assessed for how difficult it will be for a target 
to invalidate the packet. Again using the example of a 
byte string embedded in a JPEG image file, if the 
triggered NIDS alert is an exploit of image viewers, then 
the packet will be difficult to invalidate. A difficult-to-
invalidate packet will have a strong positive influence on 
the Successful Deception node via the intended effect 
node. 

Processing the original eight deception packets (pcap 
files) with Snort provides additional parameters for the 
model. The number, priority, and relevance of Snort alerts 

are used to build the Conditional Probability Table of the 
Deception Success node. 

 
 

Figure 5: Bayes Net Cyber Deception Model 
 

Area B in the graphic contains three nodes representing 
external observables which could indicate a successful 
deception. The "apparent target" and "apparent attacker" 
are the endpoints of the deception packets. As noted 
elsewhere, these systems may not send or receive any of 
the observed traffic, but they will be endpoints from a 
network monitor's point of view. If a target blocks the 
apparent target or attacker, or takes the apparent target 
off-line, then the deception is likely working. Similarly, if 
the target system operators probe the apparent attacker, 
then the deception is likely working. 
 
Area C in the graphic contains two nodes for external 
observables which may indicate that the deception is not 
working. If the apparent target's response or processing 
time slows down, this may indicate that the target has 
added monitoring capabilities in order to trace the source 
of the deception, although this could also indicate 
monitoring in response to a perceived successful 
deception. The other node in area C is the worst case 
scenario. Although none of the deception packet contents 
are directly traceable to the actual perpetrators of the 
deception, probing of the perpetrators systems, especially 
from the target of the deception, might indicate that the 
deception has failed and the target suspects the true 
source of the deception. 
 
The model of Figure 5 is a work in progress at the time of 
this writing. Preliminary values for the conditional 
probability tables have been developed but not yet tested 
or refined. Our work suggests that such a deception model 
may be developed for other domains where we have some 
control over the inputs to the base model. Our process in 
Figure 3 may be generalized by replacing "packets" with 
"evidence", since packets are simply our mechanism for 
affecting an evidentiary input node. Generally, a derived 
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deception model consists of the nodes that we directly 
influence, their estimated effect on the target's model, and 
external observables. 

7. CONCLUSIONS AND FUTURE WORK 
We demonstrated the ability to construct network packets 
which will look similar to normal network traffic, pass 
through a typical Firewall, trigger specific attack element 
signatures, and have a controlled impact on a back-end 
cyber attack detection reasoning model. Further, we 
proposed a derived deception model to dynamically 
assess the effectiveness of the cyber deception activities, 
and we suggested how such a deception model might be 
constructed for other domains. In support of cyber 
defense, our work also supports the testing and 
development of more accurate reasoning models and 
research geared towards detecting deception. 
 
An apparent limitation of our work is a requirement to 
know the signatures which trip alerts and are fed to the 
back end reasoning model. However, this is not 
necessarily true. While these signatures may be known, as 
in the case of systems leveraging open source tools like 
Snort, it is also true that a system designed to detect 
specific attacks or attacks of a certain class will use 
similar signatures. The common requirement to derive a 
discriminatory signature that is as short as possible results 
in different entities independently producing similar 
signatures. We have observed this effect in the NIDS 
domain, where commercial and open source tools have 
similar signature sets for many attacks. Similarly, we 
observe this effect in the antivirus and malware detection 
industry, where different vendors and open source 
providers frequently generate similar signatures 
independently. The implication is that we could develop 
probable signatures for specific attacks or behaviors, then 
develop deception packets to trip these signatures with a 
reasonable expectation of successfully affecting a target 
system using unknown signatures. We partially 
demonstrated this by processing our Storm-derived 
packets with Snort. 
 
As noted above, we assert that the use of pcap files is 
equivalent for our purposes to live network traffic capture 
and processing. However, it is true that in most live 
network scenarios we will not be able to put both sides of 
a TCP session on the wire as we did in this work. Rather, 
we will have to establish a live session with a target 
computer and modify subsequent session packets in real 
time, or we will have to intercept and modify packets 
between a target and some other system. This is an 
implementation issue vs. a question of validity, as the 
results presented here hold regardless of how the 
deceptive packets are introduced. 
 

Future work will focus on automated deception packet 
creation, development of delivery mechanisms, and the 
derived deception model. We created our packets 
manually based on a review of the target signature and 
several iterations of trial and error. Our next step is to 
create deception packets directly from signature 
descriptions. For example, given a Snort signature file, we 
could craft multiple deception packets in an automated 
fashion. A related effort will explore the automation of 
delivery mechanisms, for example establishing TCP 
sessions with an internal host and delivering deception 
packets and injection of deception material into an 
existing network traffic stream. Author Jones recently led 
a project to develop a hardware-based inline packet 
rewriting tool which could be used for such a purpose. 
Finally, we will continue the development and 
generalization of deriving deception models from 
detection models. 
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Abstract

To cope with society’s demand for transparency
and corruption prevention, the Brazilian Office of
the Comptroller General (CGU) has carried out
a number of actions, including: awareness cam-
paigns aimed at the private sector; campaigns
to educate the public; research initiatives; and
regular inspections and audits of municipalities
and states. Although CGU has collected infor-
mation from various different sources – Rev-
enue Agency, Federal Police, and others –, going
through all the data in order to find suspicious
transactions has proven to be really challenging.
In this paper, we present a Data Mining study ap-
plied on real data – government purchases – for
finding transactions that might become irregular
before they are considered as such in order to act
proactively. Moreover, we compare the perfor-
mance of various Bayesian Network (BN) learn-
ing algorithms with different parameters in order
to fine tune the learned models and improve their
performance. The best result was obtained us-
ing the Tree Augmented Network (TAN) algo-
rithm and oversampling the minority class in or-
der to balance the data set. Using a 10-fold cross-
validation, the model correctly classified all split
purchases, it obtained a ROC area of .999, and its
accuracy was 99.197%.

1 Introduction

The Brazilian Office of the Comptroller General (CGU) is
the Brazilian central body of the internal control system of
the federal executive branch. It has, among its responsi-
bilities, the task of inspecting and auditing the Brazilian
Government projects and programs with respect to their le-
gality, results, efficacy and efficiency.

⇤Department of Computer Science (CIC), University of
Brası́lia (UnB), Brası́lia, DF, Brazil

A primary responsibility of CGU is to prevent and detect
government corruption. To carry out this mission, CGU
must gather information from a variety of sources and com-
bine it to evaluate whether further action, such as an inves-
tigation, is required. One of the most difficult challenges is
the information explosion. Auditors must fuse vast quanti-
ties of information from a variety of sources in a way that
highlights its relevance to decision makers and helps them
focus their efforts on the most critical cases. This is no triv-
ial duty. The Growing Acceleration Program (PAC) alone
has a budget greater than 250 billion dollars with more than
one thousand projects only in the state of Sao Paulo 1. All
of these have to be audited and inspected by CGU – and, in
spite of having only three thousand employees. Therefore,
CGU must optimize its processes in order to carry out its
mission.

In Brazil, all contracts with the private sector must be in
accordance with the Law N� 8,666/93, also known as the
national Procurement Law. According to [15] procurement
is the administrative procedure by which the Public Ad-
ministration selects the most advantageous proposal for a
contract in its interest. From the former definition, the con-
clusion is that the public interest must always be the objec-
tive of the procedure. In terms of purchasing with the use
of public money, this means that not only must the winner
of the procurement process be the best supplier in terms of
the price of the good or service supplied, but also in terms
of other objectives of the procurement process.

Corruption can happen in many ways in Public Procure-
ments [16]. The public agent may favor a specific supplier
that she happens to know. She may receive, from the bid-
der, a financial compensation for awarding a contract to that
firm. Bidders may collude as to set the results of the pro-
curement. The whole process is susceptible to many forms
of corruption, from within and outside the public adminis-
tration.

The government purchases large quantities of goods and
services. It is also the sole purchaser for some goods, such

1http://www.pac.gov.br/
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as hydraulic turbines for large damns. The government
spends large quantities of money in the market and is a
guaranteed payer. Hence, many firms have a strong inter-
est in negotiating with the public administration. There is a
temptation for many suppliers to cheat in the procurement
process to find means of being awarded a lucrative govern-
ment contract.

The Brazilian Procurement Law has as one of its main ob-
jectives the curbing of corruption in public purchasing and
contracting. Concern over corruption is evident in Brazil’s
daily press. There are frequent accusations of public ad-
ministrators who did not abide by the procurement rules,
and are accused of favoring a certain supplier or worse, re-
ceiving a payment in the process.

When writing the law, legislators included many articles
that established penalties for firms or/and public legisla-
tors caught in corruption activities. There are two types of
penalties stated in Law N� 8,666/93 dealing with this sub-
ject. They are administrative actions and penal actions.

Since enforcing the law is difficult [16], legislators will
have to find another manner to prevent corruption in public
procurement. The question is one of preventing corruption
practices, against one of punishing the ones that have al-
ready happened.

Therefore, the main objective of this project is to apply
Data Mining methods to create models, more specifically
to learn Bayesian Network models, that will aid the experts
in identifying procurement frauds and, if possible, identify
suspicious transactions as soon as possible in order to pre-
vent the fraud from happening.

The structure of this paper is as follows: Section 2 presents
the CRoss Industry Standard Process for Data Mining
(CRISP-DM) methodology used in this work. Section 3
presents the data used and its underlying semantics. Sec-
tion 4 presets the models learned as well as their evaluation.
Section 5 presents ideas on how the learned model for iden-
tifying split purchases will be deployed. Finally, Section 6
presents the conclusion and future work.

2 Methodology

The CRoss Industry Standard Process for Data Min-
ing (CRISP-DM) project developed an industry and tool-
neutral data mining process model. Starting from the
embryonic knowledge discovery processes used in early
data mining projects and responding directly to user re-
quirements, this project defined and validated a data min-
ing process that is applicable in diverse industry sectors.
This methodology makes large data mining projects faster,
cheaper, more reliable, and more manageable. Even small-
scale data mining investigations benefit from using CRISP-
DM.

The process model provided by the consortium CRISP-DM
can be summarized through the life cycle of the data mining
process presented in Figure 1, reproduced from [5]. The
outer circle symbolizes the cyclical nature of the process of
data mining. Data mining does not end when a solution is
achieved. In fact, the lessons learned during a process can
be useful in subsequent processes.

Figure 1: Phases of the CRISP-DM Process Model

The life cycle of a data mining project consists of six
phases. The sequence of the phases is not strict. Moving
back and forth between different phases is often required.
The arrows indicate the most important and frequent de-
pendencies between phases. The phases are [19]:

Business Understanding: This initial phase fo-
cuses on understanding the project objec-
tives and requirements from a business per-
spective, and then converting this knowl-
edge into a data mining problem definition,
and a preliminary project plan designed to
achieve the objectives.

Data Understanding: The data understanding
phase starts with an initial data collection
and proceeds with activities in order to get
familiar with the data, to identify data qual-
ity problems, to discover first insights into
the data, or to detect interesting subsets
to form hypotheses for hidden information.
There is a close link between Business Un-
derstanding and Data Understanding. The
formulation of the data mining problem and
the project plan require at least some under-
standing of the available data.

Data Preparation: The data preparation phase
covers all activities to construct the final
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data set (data that will be fed into the mod-
eling tool(s)) from the initial raw data. Data
preparation tasks are likely to be performed
multiple times, and not in any prescribed
order. Tasks include table, record, and at-
tribute selection, data cleaning, construction
of new attributes, and transformation of data
for modeling tools.

Modeling: In this phase, various modeling tech-
niques are selected and applied, and their
parameters are calibrated to optimal values.
Typically, there are several techniques for
the same data mining problem type. Some
techniques require specific data formats.

Evaluation: At this stage in the project you have
built one or more models that appear to have
high quality, from a data analysis perspec-
tive. Before proceeding to final deployment
of the model, it is important to more thor-
oughly evaluate the model, and review the
steps executed to construct the model, to be
certain it properly achieves the business ob-
jectives. A key objective is to determine if
there is some important business issue that
has not been sufficiently considered. At the
end of this phase, a decision on the use of
the data mining results should be reached.

Deployment: Creation of the model is gener-
ally not the end of the project. Usually, the
knowledge gained will need to be organized
and presented in a way that the customer
can use it. Depending on the requirements,
the deployment phase can be as simple as
generating a report or as complex as imple-
menting a repeatable data mining process.
In many cases it will be the user, not the data
analyst, who will carry out the deployment
steps. In any case, it is important to under-
stand up front what actions will need to be
carried out in order to actually make use of
the created models.

The Business Understanding phase was already covered in
the introduction section. The Data Understanding phase
will not be covered in detail since the data and its struc-
ture is confidential. The following sections will cover the
Data Understanding, Data Preparation, Modeling, Evalua-
tion, and Deployment phases.

3 Data Understanding and Preparation

The data set used in this work is related to procurements
and contracts of IT services in the Brazilian Federal Gov-
ernment from 2005 to 2010. This data set is actually

merged data from different databases (DB) available in dif-
ferent agencies in Brazil.

CGU has been working closely with subject matter experts
(SMEs) in order to identify certain fraud topologies, such
as:

1. Identify if owners from different companies are ac-
tually partners. In the public procurement we expect
competition, but if the only two enterprises participat-
ing in the procurement have owners that are partners,
then it is obvious that there is no competition at all, so
this should be prevented/identified.

2. In Brazil if the contract is small enough (8 thousand
reais, or roughly around 4 thousand dollars), then
there is no need to actually go through the whole pro-
curement process. However, sometimes, they break
down a big contract in a lot of small ones. This is
called split purchase2 and it is not allowable by law
and should be prevented/identified. E.g., identify a
lot of contracts that sums up to more than the thresh-
old with the same objective (buying computers, for in-
stance) in a week or a month.

There are actually more than 20 typologies like these
two described by the SMEs that we would like to iden-
tify/predict using the data set we have. However, this
project focuses on the second one described above.

First the data set was loaded in Excel, then we re-
moved some characters (comma, double quotes, and single
quotes), because they were being a problem when loading
the file in Weka (see [13] for details about Weka). Then we
replaced values like NA, -9, -8, and 0 by “?” to represent a
missing value in Weka.

The initial data set had 42 attributes and 70,365 transac-
tions. From Excel we were able to bring that number down
to 26. Most of the attributes removed were identification of
descriptions that were also available as a different attribute.
We decided to keep the description because it is easier to
understand what it means. For instance, we kept the name
of the state instead of its ID.

The next step was to save the data as a CSV file and load
it in Weka. Then we changed the year to nominal and re-
moved rows with missing values in the final price attribute,
since we will need a value later on to identify the class.

Before running any algorithm we started looking at the data
trying to understand it better. The first thing that we no-
ticed was the range of the values. There were values from
cents to hundreds of trillions of dollars. Besides that, there
were cases where the proposed unit price was 4 thousand

2For more information about split purchases and
case examples see http://guide.iacrc.org/
potential-scheme-split-purchases/.
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whereas the final actual price was a dollar. Those are typ-
ical cases of data that should not be trusted or considered
incorrect.

The number of cases with a really high value is small
so they should be carefully analyzed before being thrown
away, just to make sure they are not outliers, but actually in-
consistent data. For that, we got in contact with the SMEs
at CGU and asked them which ones should be ignored.
With their consent we removed those transactions that were
considered noise. The transactions that could be outliers
are being analyzed by the experts in more detail.

Since we are interested in transactions that sum to 8,000 in
a given period of time (see typology 2 above), we computed
using R3 the transactions that involved the same institutions
on the same month and year that added up to more than
8,000, then we flagged them as irregular transactions4 (i.e.,
split purchases).

4 Modeling and Evaluation

The main objective of this work is to try to classify, without
looking at the sums, which transactions should be consid-
ered suspicious. The reason for that is to avoid waiting for
the problem to occur (having several transactions that add
to more than 8,000 reais) and to identify the problem as
soon as possible.

Before being able to classify we had to discretize the value
of the transactions, since we decide to work with learning
algorithms that do not support continuous values. We used
equal frequency to generate 11 different bins. The num-
ber of bins could be different. The only thing we kept in
mind was that we did not want it to be binary, nor to have
too many bins to the point that we would have just a few
transactions in each bin.

Since Bayesian Networks (BNs) have been successfully
used in classification problems (e.g., see [4,7,10–12,17,18,

3R is a free software environment for statistical comput-
ing and graphics. For more information see http://www.
r-project.org/.

4Usually we also consider the type of service/product con-
tracted/bought. However, since we limited the scope of our anal-
ysis to only computer purchases, all 10 different types of ser-
vice/product are too broad and really similar (they all basically
say that these are computer related purchases without any signifi-
cant difference between each other). Therefore, we can safely ig-
nore this field when defining split purchases, since they do not add
any more useful information. To avoid comparing purchases of
different nature, we use the contractor field, since a company that
provides software development does not usually sell computer pe-
ripherals. Unfortunately, we do not have any other structured field
that we could use to improve this proxy classification. Of course
we might have cases that purchases identified as split purchases
are, in fact, false positives. However, our current alert system
would also identify those purchases as split purchases. What we
are trying to do is to identify those ”split purchases” as soon as
possible, instead of waiting for the whole month cycle.

20]), we decided to experiment with different BN learning
algorithms in order to classify the transactions as regular or
not, in order to identify split purchases as soon as possible,
without having to wait for them to actually be confirmed as
such (before having several purchases summing up to more
than 8 thousand reais). We ran all classifiers with 10-fold
cross-validation.

At first we compared the results of Naı̈ve Bayes versus
Bayesian Network models. Since the data is unbalanced
with 50,911 regular cases and 2,626 irregular cases, we de-
cided to resample the data.

Table 1 presents the performance of the Naı̈ve Bayes
and Bayesian Network classifiers using 10-fold cross-
validation. We learned models without resampling the data
set, oversampling the minority class, undersampling the
majority class, and both oversampling the minority class
and undersampling the majority class. The metrics used
to compare the models are regular false positive (FP) rate,
irregular FP rate, accuracy, and Receiver Operating Char-
acteristic (ROC) area.

The standard algorithm used in Weka for BN is K2. K2
uses a hill climbing algorithm restricted by an order on
the variables. For more information on K2 see [8, 9].
The parameters used for learning the BN model were all
the default values in Weka expect for the maximum num-
ber of parents allowed, which we changed from 1 to 2.
The estimator parameter used, which is independent
of which algorithm we use to learn the model, was the
SimpleEstimator. SimpleEstimator is used for
estimating the conditional probability tables of a BN once
the structure has been learned. It estimates probabilities di-
rectly from data. The only configurable parameter for this
estimator is alpha. Alpha is used for estimating the prob-
ability tables and can be interpreted as the initial count on
each value. The default value used for alpha is .5. As
explained in [3], the options for the K2 algorithm in Weka
are:

initAsNaiveBayes – When set to true (de-
fault), the initial network used for structure
learning is a Naı̈ve Bayes Network, that is,
a network with an arrow from the classifier
node to each other node. When set to false,
an empty network is used as initial network
structure.

markovBlanketClassifier – When set
to true (default is false), after a network
structure is learned a Markov Blanket cor-
rection is applied to the network structure.
This ensures that all nodes in the network
are part of the Markov blanket of the classi-
fier node.

maxNrOfParents – Set the maximum num-
ber of parents a node in the Bayes net can
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have. When initialized as Naı̈ve Bayes, set-
ting this parameter to 1 results in a Naı̈ve
Bayes classifier. When set to 2, a Tree Aug-
mented Bayes Network (TAN) is learned,
and when set to greater than 2, a Bayes
Net Augmented Bayes Network (BAN) is
learned. By setting it to a value much larger
than the number of nodes in the network
(the default of 100000 pretty much guaran-
tees this), no restriction on the number of
parents is enforced.

randomOrder – When set to true, the order of
the nodes in the network is random. Default
random order is false and the order of the
nodes in the data set is used. In any case,
when the network was initialized as Naı̈ve
Bayes Network, the class variable is first in
the ordering though.

scoreType – The score type determines the
measure used to judge the quality of a
network structure. It can be one of
Bayes (default), BDeu, Minimum Descrip-
tion Length (MDL), Akaike Information
Criterion (AIC), and Entropy.

When oversampling, we used the sample size of 200% to
avoid removing known cases of the majority class, which is
basically the oversampling of the minority class. The goal
was to increase the irregular cases to match the number of
regular ones.

We can see that we got much better results with Bayesian
Network, when oversampling the minority class. More-
over, the false positive rate for the regular cases, which is
our main concern since it represents the number of irregular
transactions that were classified as regular, has dropped sig-
nificantly after oversampling (from .363 to .140 for Naı̈ve
Bayes and from .452 to .005 for Bayesian Network). As
a result, the FP rate for the irregular cases increased while
the accuracy decreased for NB and slightly increased for
BN. Nevertheless, since we are more interested in correctly
classifying the irregular cases, the result with oversampling
is better.

When undersampling, we decided to use the sample size
of (2, 626/50, 911) ⇤ 2 ⇡ 10%. Finally, we tried doing
both oversampling and undersampling by keeping the sam-
ple size at 100%.

As it can be seen from Table 1, oversampling the minority
class gave us the best results both in accuracy and in ROC
Area. Besides that, we did have a significant decrease in
regular FP rate, which is our main concern. The accuracy
without resampling is higher than most of the other results
with resampling due to the fact that we had an increase in ir-
regular FP rate and since this is the majority class the num-
ber of correctly classified cases is much larger. However,

as explained before, the main objective is to obtain low reg-
ular FP rate and not necessarily high accuracy, which could
only mean that we are getting just the majority class right.

As BN gave the best result, we decided to try different
search algorithms. The algorithms used were K2 (again
using the default parameters), Hill Climber5, Tabu Search6,
and Tree Augmented Network7 (TAN).

The options for the Hill Climber algorithm in Weka
are the same as K2, except that it does not have
the parameter randomOrder. Besides, we have the
useArcReversal, which when set to true (default is
false), the arc reversal operation is used in the search. As
in K2, we have used all default parameters, except for the
maximum number of parents and the score metric (we used
MDL instead of Bayes).

The Tabu Search algorithm in Weka has the same options
as Hill Climber. Besides that, it also has runs, which sets
the number of steps to be performed (default is 10), and
tabuList, which sets the length of the tabu list (default is
5). As in both K2 and Hill Climber, we have used all default
parameters, except for the maximum number of parents and
the score metric (we used MDL instead of Bayes).

The TAN algorithm in Weka only has the
markovBlanketClassifier and scoreType
options with the same values as K2. We have used the
default parameters. Note that the TAN algorithm does
not allow the configuration in the maximum number of
parents, since it is always 2.

Table 2 shows a summary of the BN classifiers perfor-
mance using different search algorithms with oversampled
data. It is worth noting that we were only able to use the
default Bayes metric with the K2 and TAN algorithms. We
had to use MDL metric in order to avoid out of memory
error with the Hill Climbing and Tabu Search algorithms.
This difference might be the reason why K2 and TAN out-
performs both Hill Climbing and Tabu Search, since we
have tried both K2 and TAN using MDL metric and we did
obtain worse results. As it can be seen, TAN search algo-
rithm had the best performance with a ROC area of .999.

Since oversampling resulted in very good results, we de-
cided to also try Synthetic Minority Oversampling TEch-
nique (SMOTE) [6] to oversample the minority class. We
used 1800% to get roughly the same number of transac-

5Hill Climber uses a hill climbing algorithm adding, deleting
and reversing arcs. The search is not restricted by an order on
the variables (unlike K2). For more details see http://weka.
sourceforge.net/doc.dev/weka/classifiers/
bayes/net/search/global/HillClimber.html.

6Tabu Search algorithm uses tabu search for finding a well
scoring BN structure. For more details see [2].

7TAN algorithm determines the maximum weight spanning
tree and returns a NB network augmented with a tree. For more
details see [10].
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Table 1: Evaluation of Naı̈ve Bayes (NB) and Bayesian Network (BN) classifiers without resampling, with oversampling,
with undersampling, and with both over and undersampling

Metric NB BN NB - Over BN - Over NB - Under BN - Under NB - Both BN - Both

Regular FP Rate .363 .452 .140 .005 .169 .068 .146 .012
Irregular FP Rate .028 .003 .048 .036 .082 .054 .054 .045

Accuracy 95.6% 97.5% 90.6% 97.9% 87.4% 90.6% 90.0% 97.1%
ROC Area .931 .973 .975 .997 .945 .968 .971 .996

Table 2: BN classifiers performance with oversampling and different number of parents

Metric BN - K2 BN - HC BN - Tabu BN - TAN

Parents 2 3 2 3 2 3 -
Regular FP Rate .005 .018 .098 .066 .093 .093 0
Irregular FP Rate .036 .038 .082 .067 .039 .039 .02

Accuracy 97.94% 97.23% 91.01% 93.35% 93.40% 93.40% 98.98%
ROC Area .997 .996 .976 .985 .988 .988 .999

tions in both classes. After we oversampled the data, we
discretized it as we did previously (11 bins with equal fre-
quency). However, even though the SMOTE oversampling
gave better results for most metrics, the standard oversam-
pling method outperformed the SMOTE method on the reg-
ular FP rate, which is the one that we are most interested
in. Therefore, we do not present the details of the results
here.

Since TAN algorithm presented the best results, we decided
to try different values for the alpha parameter in order to
improve its performance. Table 3 presents performance for
the alpha values .7, .5, .3, .1, and .05. On the one hand,
when we increased the default value of .5 to .7, the per-
formance slightly worsened. On the other hand, when we
decreased the default value we kept getting slightly better
results up to .05, when the performance started worsening
again.

Table 4 presents the confusion matrix for the best model we
obtained, which was learned using TAN with the value .1
for the alpha parameter. As it can be seen, every single
split purchase (irregular) was correctly classified. Although
the regular FP rate in Table 3 suggests that alpha values
of .5, .3, and .05 also classified all irregular instances cor-
rectly, the model with .5 alpha missclassified 7 instances
(the regular FP rate is shown as 0 due to rounding, since
the value is actually .00013). Besides that, even though the
irregular FP rate is the same for the models with .1 and
.05 alpha, the model with the .05 alpha missclassified 5 in-
stances more than the model with .1 alpha.

In order to try to better understand the relationship be-
tween the variables, we generated some association rules

using Apriori algorithm [1, 14]. In the first run we used .1
as lower bound min support, 1 as upper bound min sup-
port, lift as the metric type, 1.1 as min metric, and 50 as
number of rules. For more information on each of these
parameters see http://weka.sourceforge.net/
doc.dev/weka/associations/Apriori.html.

The results were related to variables that were not of in-
terest and even though they had a high confidence (1) and
high lift (1.82) they were not describing anything that we
did not already know. So we decided to remove those vari-
ables from the data set and run the algorithm again to see
the new rules it would generate.

We analyzed all 50 new rules generated and they still did
not provide any insightful information. Besides that, these
new rules were not as “strong” as the previous ones in the
sense that the best confidence was .62 and the best lift was
1.11.

The reason for not presenting the rules is two-fold. The first
is because, as previously explained, they did not provide
any insightful information. The second is because they are
confidential and we cannot discuss the contents of the rules.
All that can be said is that they were not useful.

Finally, we analyzed the BN that had the best evaluation
results (BN – TAN with .1 alpha – standard oversampled
data set) to try to better understand the relations between
the variables in order to comprehend why it is getting such
good results. This could provide insightful information that
we were not able to extract from association rules.

By analyzing the structure of the BN we were able to iden-
tify some interesting relations associated to the government
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Table 3: TAN performance with different values for the alpha parameter

Metric TAN - .7 alpha TAN - .5 alpha TAN - .3 alpha TAN - .1 alpha TAN - .05 alpha

Regular FP Rate .001 0 0 0 0
Irregular FP Rate .023 .020 .018 .016 .016

Accuracy 98.834% 98.984% 99.108% 99.197% 99.192%
ROC Area .999 .999 .999 .999 .999

Table 4: Confusion matrix of the best model, which was learned using TAN with .1 alpha

Predicted Regular Predicted Irregular

Is Regular 52,670 860
Is Irregular 0 53,544

office responsible for the procurement and also to the win-
ner of the procurements. However, due to the confiden-
tiality nature of the problem we are not allowed to discuss
these relations further. Nevertheless, we can comment on
the fact that to better understand these relations a more de-
tailed study is necessary by looking at the conditional prob-
ability tables on these relations, which was not done in this
work due to time constraints.

5 Deployment

As it was explained before, the main goal is to identify sus-
picious transactions as soon as possible to avoid the occur-
rence of split purchases.

Split purchases in the data set we worked on happen when
a procurement that should be done just once with a value
higher than 8,000 is broken down in smaller ones to avoid
the normal procurement procedure, allowing the office to
hire an enterprise directly.

So, the idea is that we want to detect one or more of these
procurements, but that still does not sum up to more than
8,000, as soon as they become suspicious (using the classi-
fier) and act proactively. This will allow a faster response
and prevent irregularities in the first place. This means that
instead of waiting a whole month to find an irregular trans-
action, we will be finding suspicious ones (not necessarily
irregular ones) and warn/educate/teach the people involved
that they should be careful, since breaking down big pro-
curements in small ones is not allowed.

Hopefully, this will make them think twice before continu-
ing with these kinds of transactions, if they are really think-
ing about doing irregular transactions on purpose. And at
the same time this will educate those that are not aware they
cannot do these kinds of transactions by law.

Another thing to keep in mind when deploying this classi-

fier is that as we warn/teach the different offices in Brazil
about this type of fraud, it is expected that they will de-
crease the number of irregular transactions associated to
this type of fraud. Therefore, it is important to keep track
of these numbers in order to evaluate if this expected be-
havior is actually happening and at what rate.

Besides that, as people learn and change their behavior, it is
also expected that our classifier will also need some modifi-
cations to cope with these changes. Therefore, it should be
expected that every month or so a new classifier should be
trained and evaluated to learn the new behavior and analyze
its performance.

6 Conclusion

This project shows how Data Mining, BN learning more
specifically, can be used to identify and prevent split pur-
chases in Brazil using real data provided by the Brazil’s
Office of the Comptroller General (CGU).

At first, the idea was to allow the identification of a few
different types of irregularities. However, as we started
working with the data and creating the different models, it
became clear that this is a great effort and after discussing
with stakeholders at CGU, we decided to prioritize depth
instead of breadth. In other words, it was decided that it
was best to choose one type of fraud and do a thoroughly
job to develop a model that is good enough to actually de-
ploy it and analyze the results before looking at other types
of frauds.

Fortunately, the results paid off in the sense that we were
able to generate a model that correctly classified all split
purchases and a really high ROC area (.999). The next step
is to deploy this classifier in CGUs intelligence system and
analyze its impact.

As future work, it is necessary to better understand why
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the model is capable of getting such good results. By an-
alyzing the structure of the BNs generated, it is possible
to understand relations between variables that were previ-
ously unknown. A brief analysis showed that some inter-
esting relations were found, but a more detailed analysis is
needed.

Even though we have used resampling for dealing with the
rare event of split purchases and cross-validation to avoid
overfitting, we might have not completely ruled out the pos-
sibility that this model might be slightly overfitted. There-
fore, before deploying the model, we will gather new data
from recent purchases in order to test the performance of
our model with new unseen data. Due to time constraints,
we have not been able to gather the new data and perform
this test yet.

Besides that, there are a lot of different types of frauds that
were not analyzed. So, a starting point for future work is
to do the same kind of analysis done in this project with
different types of fraud.
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Abstract

Identifying biomarkers with predictive value
for disease risk stratification is an important
task in epidemiology. This paper describes an
application of Bayesian linear survival regres-
sion to model cardiovascular event risk in di-
abetic individuals with measurements avail-
able on 55 candidate biomarkers. We extend
the survival model to include data from a
larger set of non-diabetic individuals in an
e↵ort to increase the predictive performance
for the diabetic subpopulation. We com-
pare the Gaussian, Laplace and horseshoe
shrinkage priors, and find that the last has
the best predictive performance and shrinks
strong predictors less than the others. We
implement the projection predictive covari-
ate selection approach of Dupuis and Robert
(2003) to further search for small sets of pre-
dictive biomarkers that could provide cost-
e�cient prediction without significant loss in
performance. In passing, we present a deriva-
tion of the projective covariate selection in
Bayesian decision theoretic framework.

1 INTRODUCTION

Improving disease risk prediction is a major task in
epidemiological research. Non-communicable diseases,
many of which develop and progress slowly, are a ma-
jor cause of morbidity worldwide. Accurate risk pre-
diction could be used to screen individuals for targeted
intervention. Advances in measurement technologies
allow researchers cost-e�cient quantification of large
numbers of potentially relevant biomarkers, for exam-
ple, in blood samples. However, often only a few of
such candidate biomarkers could be expected to give
practically relevant gain in risk stratification or could
be realistically used in routine health care setting. The

statistical challenge is then to identify an informative
subset of the biomarkers and estimate its predictive
performance.

Here, we describe an application of linear, hierarchi-
cal Bayesian survival regression to model cardiovascu-
lar event risk in diabetic individuals. The available
data consists of 7932 Finnish individuals in the FIN-
RISK 1997 cohort [1], of whom 401 had diabetes at
the beginning of the study. The covariates consist of
a set of 55 candidate biomarkers measured from blood
samples and 12 established risk factors (e.g., base-
line age, sex, body-mass index, lipoprotein cholesterol
measures, blood pressure and smoking). The length
of the follow-up period was 15 years. We focus on
three key elements in the model construction: 1) using
shrinkage priors to model the assumption of possibly
limited relevance of many biomarkers, 2) utilizing the
large set of non-diabetic individuals in the modelling,
and 3) the selection of a subset of the biomarkers with
predictive value. While the statistical approach is not
limited to this particular application, we use the set-
ting to make the description of the methods concrete.

Shrinkage or sparsity-promoting priors for regression
coe�cients are used to shrink the e↵ects of (appar-
ently) irrelevant covariates to zero, while retaining the
e↵ects of relevant covariates. Their use has increased
with the availability of datasets with large numbers of
features, for example, from high-throughput measure-
ment technologies, which often capture a snapshot of
a whole system (e.g., metabolome, genome) instead
of targeted features. The interest has spawned con-
siderable research e↵ort into such priors and multiple
alternatives have been proposed (see, e.g., refs [2–6]).
In this work, we chose to compare three priors: the
Laplace [3], the horseshoe [5] and, as a baseline, a
Gaussian prior. The Laplace prior corresponds to the
popular lasso penalty [7] in non-Bayesian regularized
regression. The horseshoe prior has been shown to
have desirable features in Bayesian analysis [5, 8]. We
briefly review these priors in Section 2.2.
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Of the 401 diabetic individuals in the study, 155 ex-
perienced a cardiovascular event within the follow-up
period. This leaves a limited set of informative sam-
ples to perform the model fitting, covariate selection
and predictive performance evaluation with. Although
the risk of cardiovascular events is larger in diabetic
individuals than the general population [9], we would
expect that the risk factors are shared at least to some
extent. Based on this assumption, we incorporate the
non-diabetic individuals (n = 7531, 1031 events) into
the analysis by constructing a hierarchical joint model,
where the submodels for diabetic and non-diabetic in-
dividuals can be correlated (akin to transfer or multi-
task learning [10]). The joint model does not place
hard constraints on the similarity of the submodels,
but allows the models to di↵er between non-diabetic
and diabetic individuals and also between men and
women. Details are given in Section 2.3.

While lasso regression in the non-Bayesian context can
perform hard covariate selection by estimating exact
zeroes for regression coe�cients, the Bayesian shrink-
age priors do not lead to sparse posterior distributions
as there will remain uncertainty after observing a fi-
nite dataset. However, we are interested in finding
a minimal subset of predictively relevant biomarkers
as discussed above. To this end, we examine the use
of projection predictive covariate selection1, where the
full model, encompassing all the candidate biomarkers
and the uncertainties related to their e↵ects, is taken
as a yardstick for the smaller models. Specifically, the
models with subsets of covariates are found by maxi-
mizing the similarity of their predictions to this refer-
ence as proposed by Dupuis and Robert [12]. Notably,
this approach does not require specifying priors for the
submodels and one can instead focus on building a
good reference model. Dupuis and Robert [12] suggest
choosing the size of the covariate subset based on an
acceptable loss of explanatory power compared to the
reference model. We examine using cross-validation
based estimates of predictive performance as an alter-
native.

The structure of this article is as follows. In Section
2, we describe the survival model, shrinkage priors,
and the hierarchical extension to include data of non-
diabetic individuals. The projection predictive covari-
ate selection is described in Section 3. The results
from the application of the methods for cardiovascular-
event-free survival modelling in diabetic individuals
are presented in Section 4. Finally, Section 5 discusses
the modelling approach.

1A comprehensive review of predictive Bayesian model
selection approaches is given by Vehtari and Ojanen [11].
Our terminology follows theirs.

2 MODEL

We first consider modelling the cardiovascular-event-
free survival in the subset of diabetic individuals only.
The model is then extended to include the data of
non-diabetic individuals, while allowing the covariate
e↵ects and the baseline hazard to di↵er in these groups
and between men and women.

2.1 OBSERVATION MODEL

Let the observation ti be the event time Ti or
the censoring time Ci since the beginning of the
study for ith individual and vi be the corresponding
event/censoring indicator (1 for observed events, 0 for
censored). All censored cases are right censored (i.e.,
Ti > Ci where only Ci is observed; censoring occurs
in the data mostly because of event-free survival to
the end of the follow-up). Further, let xi be a column
vector of the observed covariate values for the ith sub-
ject. We assume a parametric survival model, where
the observations follow the Weibull model2

p(ti|xi, vi,�,↵) = ↵vitvi(↵�1)
i exp(vi�

T
xi�t↵i exp(�T

xi))

with the shape ↵ and the scale defined through the
linear combination �

T
xi of the covariates [14]. The

Weibull model is a proportional hazard model with
the hazard function h(Ti) = ↵T↵�1

i exp(�T
xi).

We include a constant term 1 in the covariates xi

and denote the corresponding regression coe�cient �0.
The intercept and the shape are given the di↵use pri-
ors:

�0 ⇠ N(0, 102),

log↵ ⇠ N(0, 102).

The covariates are divided into a set of established
risk (or protective) factors and a set of new candidate
biomarkers, which are of more uncertain relevance.
The coe�cients of the established predictors, �j for
j = 1, . . . ,mbg, are given the prior [15]:

�j ⇠ N(0,�2
s�

2
j ), for j = 1, . . . ,mbg,

�2
j ⇠ Inv–�2(1), for j = 1, . . . ,mbg,

�s ⇠ Half–N(0, 102).

Priors for the coe�cients of the candidate biomarkers
are considered below.

2The notation for probability distributions follows the
parametrizations given in ref. [13], except for the Weibull
model, which is explicitly written out. Half -distributions
refer to the restriction to the real positive axis.
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2.2 PRIORS FOR BIOMARKER
COEFFICIENTS

Based on our prior assumption that only some of the
biomarkers are expected to be practically relevant for
prediction, we consider the use of shrinkage priors for
the biomarker coe�cients. As discussed in the intro-
duction, there has been a lot of recent research into
these type of priors and there are multiple proposals.
We restrict our consideration to three alternatives: the
horseshoe prior [5], the Laplace prior [3], and, as a
baseline approach, a Gaussian prior. Each of these
can be expressed as normal scale mixtures

�j ⇠ N(0, ⌧2s ⌧
2
j ), for j = mbg + 1, . . . ,mbg +mbm,

where ⌧s is a global scale parameter (shared across j)
and ⌧j are local parameters. Ideally, the prior shrinks
the coe�cients of irrelevant biomarkers to zero, but
allows large coe�cients for relevant biomarkers. In a
sparse situation, with many irrelevant biomarkers and
few relevant, this could be e↵ected by making ⌧s small,
but allowing some ⌧j to take on large values to escape
the shrinkage [16].

The priors for ⌧js, for j = mbg +1, . . . ,mbg +mbm, for
the three alternatives are

⌧j ⇠ Half–Cauchy(0, 1) for horseshoe,

⌧2j ⇠ Exponential(0.7) for Laplace,

⌧j = 1 for the Gaussian.

A comparison of the Laplace and horseshoe prior is
given in ref. [5]: it is noted that the Laplace prior
may overshrink large coe�cients in a sparse situation,
while the horseshoe prior is more robust (see also ref.
[16]). Furthermore, van der Pas et al. [8] derive the-
oretical results indicating that the posterior distribu-
tion under the horseshoe prior may be more informa-
tive3 than under the Laplace prior in a sparse normal
means problem. The Gaussian prior does not try to
separate between relevant and irrelevant covariates as
it depends only on the shared scale parameter ⌧s.

The same prior is given for the global scale parameter
in each case:

⌧s ⇠ Half–Cauchy(0, 1),

which has its (bounded) mode at zero, but is only
weakly informative as it also places a substantial
amount of prior mass far from zero (see refs [15–17] for
discussion on priors for global variance parameters).

3That is, the posterior mean estimator attains a min-
imax risk, possibly up to a multiplicative constant, in a
sparse setting and the posterior contracts at a similar rate
(with conditions on ⌧s).

2.3 HIERARCHICAL EXTENSION

Next, we consider extending the approach to jointly
model the event-free survival of non-diabetic men
(NM), non-diabetic women (NW), diabetic men (DM),
and diabetic women (DW). Our aim is to increase the
predictive performance of the model specifically in the
subset of diabetic individuals, but gain power by in-
cluding the larger set of observations for non-diabetic
individuals in the model. To this end, we tie together
the submodels of the four groups using the following
assumptions:

1. The relevance of a biomarker will be similar for
all the submodels.

2. The e↵ect size of a biomarker (or other covari-
ate) and its direction are similar between men and
women, and between diabetic and non-diabetic in-
dividuals.

3. The baseline hazard functions have similar shapes
for men and women, and diabetic and non-
diabetic individuals.

Let �j = [�j,NM �j,NW �j,DM �j,DW ]T be the coef-
ficients for the jth biomarker in the four submodels.
We set

�j ⇠ N(0, r2j�⇤
�1),

where r2j�⇤
�1 is the prior covariance matrix. Here,

rj = ⌧j⌧s and follows one of the prior specifications
given in the previous section. This encodes the first
assumption above: a single rj parameter defines the
relevance of the jth biomarker in all the four submod-
els.

To encode the second assumption, we specify the struc-
ture of the prior precision matrix as

⇤=

2

664

1 + cN + sM �cN �sM 0
�cN 1 + cN + sW 0 �sW
�sM 0 1 + cD + sM �cD
0 �sW �cD 1 + cD + sW

3

775 .

The corresponding graphical structure is illustrated in
Figure 1. As will be made more explicit below, the cN
and cD control the similarity of the submodels of non-
diabetic men and women, and between the submodels
of diabetic men and women, respectively. sM and sW
control the similarity between the submodels of non-
diabetic and diabetic men, and non-diabetic and di-
abetic women, respectively. We further simplify the
model by taking cN = cD = c and sM = sW = s and
constrain c > 0 and s > 0. The precision matrix has
similarity to the one used by Liu et al. [18] to learn de-
pendencies between covariates, but here ⇤ is restricted
to encode a specific prior structure.
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�j,NM �j,NW

�j,DM �j,DW

cN

cD

sM sW

Figure 1: Prior structure for the regression coe�cients
of jth biomarker in the joint model.

We choose � = (2c+1)(2s+1)(2c+2s+1)
(1+2c+2s+2cs)(c+s+1) as this makes the

diagonal elements of �⇤�1 equal to 1, that is, �⇤�1

becomes a correlation matrix. The relevance of the jth
biomarker is then solely dependent on rj .

For more insight, the prior for �j may be written out
as proportional to

exp

 
� 1

2r2j�
(S2 + cSc + sSs)

!
,

where S2 = �2
j,NM + �2

j,NW + �2
j,DM + �2

j,DW , Sc =
(�j,NM � �j,NW )2 + (�j,DM � �j,DW )2 and Ss =
(�j,NM � �j,DM )2 + (�j,NW � �j,DW )2. c controls
the penalization in the di↵erence between men and
women, and s controls the penalization in the di↵er-
ence between non-diabetic and diabetic subjects. Tak-
ing negative logarithm of the prior shows that it corre-
sponds to a specific Bayesian version of the multi-task
graph regularization penalty proposed by Evgeniou
et al. [19] and further studied by Sheldon [20]. The
prior can also be represented in the sparse Bayesian
multi-task learning framework of Archambeau et al.
[21], where a zero-mean matrix-variate Gaussian den-
sity is placed on B = [�1, . . . ,�m] with row covariance
⌦ (over the m covariates) and column covariance ⌃
(over the tasks). Here, ⌦ is a diagonal matrix with
elements r2j and ⌃ = �⇤�1.

We use the following transformations of c and s: c =
(1� c0)�1 � 1 and s = (1� s0)�1 � 1, where c0 2 [0, 1)
and s0 2 [0, 1). At c0 = 0, c = 0 and the corresponding
submodels are independent. As c0 ! 1, c ! 1 and the
corresponding submodels are constrained to identical.
s0 behaves similarly.

We can also examine the implied prior distribution of
the di↵erence between two �X,j coe�cients as a func-
tion of c0 and s0. First, note that the distribution of
�X,j � �Y,j is N(0, 2r2j (1 � ⇢)), where ⇢ is the corre-
lation coe�cient. Specifically, the variance of the dis-
tribution is linearly dependent on ⇢ and, for ⇢ � 0,
has the maximum value of 2r2j when ⇢ = 0 and the

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.1

0.5

0.9

c0

s0

0 0.2 0.4 0.6 0.8 1

0.1

0.5

0.9

c0

Figure 2: Contour plots of the correlation coe�cient
between �j,NM and �j,DM (left) and �j,NM and �j,DW

(right) as a function of c0 and s0.

minimum value of 0 when ⇢ = 1. In Figure 2, the im-
plied prior correlation coe�cients of some interesting
pairs of �X,js are shown as functions of c0 and s0: s0

controls almost linearly the correlation between �j,NM

and �j,DM , whereas the correlation between �j,NM

and �j,DW is close to bilinear in c0 and s0.

To complete the prior specification c0 and s0 are given
prior distributions. We use di↵erent parameters for
biomarkers (c0 and s0), other covariates (c0bg and s0bg)
and the log-scale Weibull shape parameter log↵ (c0↵
and s0↵; this encodes the third assumption):

c0 ⇠ Beta(ac, bc),

s0 ⇠ Beta(as, bs),

c0bg ⇠ Beta(ac, bc),

s0bg ⇠ Beta(as, bs),

c0↵ ⇠ Beta(ac, bc),

s0↵ ⇠ Beta(as, bs).

Finally, ac, bc, as and bs are given Gamma( 12 ,
1
4 ) priors.

We note that the eigendecomposition of ⇤ = V DV

T

is of simple form, with D being a diagonal matrix with
elements 1, 1 + 2c, 1 + 2s, 1 + 2c+ 2s and

V =
1

2

2

664

1 �1 �1 1
1 1 �1 �1
1 �1 1 �1
1 1 1 1

3

775 .

This can be useful in reparametrizing the model for
Markov chain Monte Carlo sampling algorithms. It
also shows that the precision matrix is positive defi-
nite.
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3 METHODS FOR BIOMARKER
SELECTION AND PREDICTIVE
PERFORMANCE EVALUATION

The approaches used for biomarker selection and eval-
uation of predictive performance are described below.
The model constructed in previous section is used as
the reference model in the biomarker selection.

3.1 PROJECTION PREDICTIVE
COVARIATE SELECTION

Assuming the availability of a reference model, which
is a good representation of the predictive power of the
candidate biomarkers and the related uncertainty, we
seek a subset of the biomarkers, which can be used
for prediction without a large loss in performance rel-
ative to the reference model. Our prior assumption
of sparsity in the biomarker e↵ects implies that this
goal could be achievable. We describe the approach in
two steps: 1) defining a submodel for making predic-
tions with a specific subset of the candidate biomark-
ers, and 2) finding submodels with good predictive per-
formance.

3.1.1 Projective Submodels

We use the projective approach of Dupuis and Robert
[12], Goutis and Robert [22] to find the parameters of
the submodel, but present an alternative derivation in
the Bayesian decision theoretic framework reviewed in
ref. [11]. The projection is posed as a solution to an
optimization problem with regard to a restriction of
the reference model. Let the covariates x be divided
into two parts x = [x?,x>] and define a submodel
M? to be restricted to using the covariates in x?

4 with
parameters ✓? = (�?,↵?) in the Weibull model. We
find the submodel by maximizing the Gibbs reference
utility

ū(M?) =

Z Z
u(M?,x?,✓, T )p(T |✓,x)dT

�

p(✓|D)p(x)d(✓,x)

with respect to the unknown probability densi-
ties f(✓?|✓) appearing in the u(M?,x?,✓, T ) =R
f(✓?|✓) log p(T |✓?,x?)d✓?. Here, p(✓|D) is the

posterior distribution of the reference model given the
observed data D and p(x) is the distribution of the co-
variates. Writing out u and changing the integration

4We assume that the established risk factors are always
included in this set.

order,

ū(M?) =

Z Z
p(T |✓,x) log p(T |✓?,x?)dT

�

⇥ f(✓?|✓)p(✓|D)p(x)d(✓?,✓,x).

Finally, to arrive at the same solution with Dupuis and
Robert [12], f(✓?|✓) can be restricted to the Dirac
delta function �(✓? � ✓̂?) with an o↵set ✓̂? that de-
pends on ✓. That is, the solution to the maximization
of ū is defined pointwise for each ✓ as the correspond-
ing optimal value of ✓̂?. The pointwise solution arises
from the dependence of f on ✓.

As p(✓|D) is not available analytically and p(x) at all,
the former is approximated with Markov chain Monte
Carlo methods and the latter by using xi samples
available in the data D [12]. The obtained estimate
is

ū(M?) ⇡
1

nJ

X

i,j

Z
p(T |✓(j),xi) log p(T |✓̂(j)

? ,xi,?)dT

�
,

where the double sum runs over the n data points and
the J posterior samples. The optimization problems

to find the optimal ✓̂(j)
? s are independent over j. We

solve them using the Newton’s method.

We define the projection predictive distribution for the
submodel M? as

p(T |x?,Mref ) =

Z
p(T |x?,✓?)f(✓?|Mref )d✓?,

where we explicitly emphasize the dependence on the
reference modelMref and which is approximated using

the projected samples ✓̂

(j)
? s. This kind of projected

predictive distribution was also considered by Nott and
Leng [23].

Note that scaling the estimated ū as d(M?) =
ū(Mref ) � ū(M?) (and minimizing instead of maxi-
mizing) does not change the optimal solution and gives
otherwise the same formula as ū, except the term in
square brackets is replaced with the Kullback–Leibler
divergence between p(T |x,✓) and p(T |x?,✓?). This
gives the approach further information theoretic justi-
fication and is the basis of the formulation in Dupuis
and Robert [12]. They also suggest defining the rela-
tive explanatory power of the submodel as

relative explanatory power(M?) = 1� d(M?)

d(M0)
,

where M0 refers to the model without any of the can-
didate biomarkers and which transforms the d(M?)
values to between 0 (for M? = M0) and 1 (for M? =
Mref ).
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3.1.2 Submodel Search

ū (or equivalently d) is used to compare the submodels
in the search for good subsets of biomarkers. However,
exhaustive search of the model space5 is not feasible,
unless the number of candidate biomarkers is small.
We choose to use the suboptimal forward selection
strategy for its simplicity and its scalability to large
covariate sets:

1. Begin with the submodel M0 (no biomarkers) and
set j to 0.

2. Repeat until all biomarkers have been added:

(a) Find the projections for all submodels that
are obtainable by adding one new biomarker
to Mj . Select the one with largest ū and set
it as Mj+1. Set j to j + 1.

This defines a deterministic6 path of models from M0

to Mmbm and gives a ranking of the biomarkers ac-
cording to their projection predictive value. Dupuis
and Robert [12] suggest finally choosing the small-
est submodel with an acceptable loss in the explana-
tory power relative to the reference model (and use
a slightly more elaborate search). Alternatively, one
could monitor some other statistic (e.g., predictive per-
formance) along the search path to locate good sub-
models. Computing the full forward selection path
may not be necessary, if a suitable stopping criterion
is used in the step 2 above.

3.2 PREDICTIVE PERFORMANCE
EVALUATION

Given a model M with posterior predictive distribu-
tion p(T⇤|x⇤, D), where D is the observed data, we
evaluate its predictive performance using the loga-
rithm of the predictive density (LPD) at an actual ob-
servation (t⇤, v⇤,x⇤). This scoring rule is proper and
measures the calibration and sharpness of the predic-
tive distribution simultaneously [24]. As the predictive
densities are not available analytically for the models
considered here, we estimate the LPD score from the
Markov chain Monte Carlo samples of the posterior
distribution:

LPD⇤(M) ⇡ log
1

J

JX

j

p(t⇤|x⇤, v⇤,�
(j),↵(j)),

where (�(j),↵(j)) are J posterior samples of the model
given the data D.

5The number of subsets for mbm covariates is 2mbm .
6Given the stochastic samples from the posterior distri-

bution of the reference model.

Stratified ten-fold cross-validation [25] is used to ob-
tain estimates of the generalization performance: The
full dataset is divided randomly into ten disjoint sub-
sets (folds), while balancing the sets to have approxi-
mately similar age distributions and proportions of di-
abetic and non-diabetic individuals, men and women,
and cases of cardiovascular events. Predictions for
each fold are obtained using a posterior distribution
based on training data, where the particular fold has
been left out. Given predictions obtained this way,
the predictive performance is summarized by the mean
LPD over the full set of n data points (MLPD).

To reduce variance and gauge uncertainty in model
comparisons, we compute Bayesian bootstrap [26]
samples of the MLDP di↵erence (�MLPD) between
model Ma and model Mb by

�MLPD(j)(Ma,Mb) =
nX

i=1

w(j)
i [LPDi(Ma)�LPDi(Mb)],

where w(j)
i , i = 1, . . . , n, are the bootstrap weights

(
P

i w
(j)
i = 1) for the jth bootstrap sample generated

using the Dirichlet distribution with parameters set to
1 [11]. The comparison is summarized by the q-value7:

q(Ma,Mb) =
1

J

JX

j=1

I(�MLPD(j) � 0),

where I(·) = 1 if the given condition holds and 0 oth-
erwise, and which is interpreted as the Bayesian pos-
terior probability (under the Dirichlet model) of Ma

performing better than Mb [11].

4 RESULTS

Missing values in the covariate data were multiply im-
puted using chained linear regressions with in-house
scripts based on ref. [27]. The candidate biomarkers
were log-transformed and scaled to have zero mean and
unit variance. The No-U-Turn variant of the Hamil-
tonian Monte Carlo algorithm [28], as implemented
in Stan software [29], was used to sample from the
posterior distributions of the full models. The sam-
pling was done independently for 5 imputed datasets
(4 chains of 1000 samples after burn-in for each). The
samples were then concatenated. The sampling pro-
cess was further performed independently for each of
the 10 cross-validation training sets. All shown esti-
mates of predictive performance were computed using
cross-validation (Section 3.2).

7We use q instead of p to avoid confusion with the fre-
quentist p-value.
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Table 1: Model comparisons on cross-validation predictions. MLPDs and q-values (Section 3.2) are shown for
predictions only on diabetic women, only on diabetic men or both. q-values are calculated against the joint
horseshoe model; color scale 0.0 ⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅ 1.0.

women men women & men
model MLPD q-value MLPD q-value MLPD q-value
joint horseshoe -0.581 NA -0.716 NA -0.652 NA
joint Laplace -0.582 0.27 ⌅ -0.720 0.10 ⌅ -0.656 0.08 ⌅
joint Gaussian -0.585 0.22 ⌅ -0.727 0.05 ⌅ -0.660 0.04 ⌅
joint no-biomarkers -0.594 0.18 ⌅ -0.758 0.03 ⌅ -0.681 0.01 ⌅
diab women&men horseshoe -0.606 0.03 ⌅ -0.719 0.44 ⌅ -0.666 0.13 ⌅
diab women/men horseshoe -0.610 0.03 ⌅ -0.721 0.45 ⌅ -0.669 0.15 ⌅
diab women/men no-biomarkers -0.613 0.05 ⌅ -0.765 0.04 ⌅ -0.694 0.01 ⌅

1 10 20 30 40 50 55

�0.2

0

0.2

0.4

biomarker

�

horseshoe

Laplace

Gaussian

Figure 3: Biomarker regression coe�cients � for the submodel of diabetic men in the joint models with the
horseshoe, Laplace and Gaussian priors (full dataset). Dot is the mean and vertical line shows the 95% credible
interval. Biomarkers are ordered according to the mean coe�cients of the horseshoe model.

4.1 MODEL COMPARISONS

Table 1 presents results on comparing the mean log
predictive densities (MLPD) of the following com-
binations of models: joint for the joint model of
non-diabetic and diabetic individuals (Section 2.3),
diab women&men for a joint model of diabetic men
and women (two-group version of Section 2.3), diab
women/men for separate models of diabetic men and
women (without the extension of Section 2.3), and
using the horseshoe, Laplace or Gaussian priors on
the biomarker e↵ects, or using only the established
risk factors (no-biomarkers). The MLPDs and q-
values were computed separately for the predictions
for women and men, and for pooled predictions, and,
importantly, in each case only for the predictions on
the diabetic subpopulation.

The results show that there is an increase in the pre-
dictive performance when supplanting the established
risk factors with the candidate biomarkers. The in-
crease holds both when using the joint models or us-

ing only the data of diabetic individuals and seems to
be greater in men. This indicates that the candidate
biomarkers contain relevant information for predicting
cardiovascular event risk.

Including the data of the non-diabetic individuals in
the model seems to increase the predictive perfor-
mance for the diabetic subpopulation, especially for
women. The covariate e↵ects in the joint models are
very similar across the diabetic and non-diabetic sub-
models: posterior mean of s0 is 0.96 for the horseshoe
model. This implies that the risk factors behave sim-
ilarly in both groups, but it is also possible that the
dataset has limited information to distinguish between
them and that larger datasets could uncover more dif-
ferences.

Finally, it seems that the horseshoe prior performs bet-
ter than the Laplace, and that the Gaussian is the
worst of the three for this data. Figure 3 shows a
comparison of the biomarker regression coe�cients un-
der these priors. The Laplace and the Gaussian priors
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shrink the largest coe�cient more than the horseshoe
as would be expected in a sparse setting [5, 16]. Fur-
thermore, the horseshoe seems to shrink coe�cients
near zero more strongly than the Laplace making the
credible intervals around zero narrower.

4.2 BIOMARKER SELECTION AND
SUBMODEL PREDICTIVE
PERFORMANCE

We applied the projection predictive covariate selec-
tion (Section 3.1) with the joint horseshoe model as
the reference. The forward selection was run using
only the part of the model concerning diabetic individ-
uals. We run the forward selection jointly for women
and men to get an overall biomarker ranking for the di-
abetic subpopulation. The forward selection was run
also for each cross-validation training set separately
(using the reference model fitted on the corresponding
training data).

Figure 4 shows the relative explanatory power curves
along the forward selection path. In the full dataset,
the best candidate biomarker attains 61% explanatory
power relative to the reference model, five best reach
over 80% and ten biomarkers are needed to reach over
90%. The growth in the explanatory power slows with
more biomarkers, indicating diminishing gains from
adding more candidate biomarkers (22 are needed to
reach 95% and the remaining 33 account for the last
5%).

However, choosing an acceptable loss in the explana-
tory power to select an appropriate minimal subset of
the biomarkers for use in prediction tasks seems di�-
cult. In Figure 5, we show MLPDs (normalized to the
reference model) obtained using the projection pre-
dictive covariate selection approach within the cross-
validation. Top panel shows the �MLPD along the
forward selection path and the bottom panel by the
obtained relative explanatory power (e.g., at 0.6, the
predictions in each cross-validation fold was made with
the smallest submodel reaching 60% power in that
fold). These show a mode at 2 biomarkers and at
around 0.65 relative explanatory power (which corre-
sponds to choosing two, three or four biomarkers de-
pending on the fold). A second peak can be seen at
10 biomarkers or correspondingly at 0.91 power (10–16
biomarkers).

Unfortunately, the variance in the cross-validation es-
timates is quite large for making a definite choice based
on them. Figure 6 shows the full set of pairwise com-
parisons between the submodels along the forward se-
lection path (by number of biomarkers; same as in Fig-
ure 5 top panel). This indicates that two biomarkers
is overall the best choice, but the di↵erence to the 10
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Figure 4: Relative explanatory powers along the for-
ward selection path.
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Figure 5: �MLPD values (in reference to the full
model) by number of biomarkers (top) or by explana-
tory power threshold (bottom). Top: vertical lines
are 95% Bayesian bootstrap credible intervals for the
�MLPD. Bottom: dashed curves show the (pointwise)
credible interval.
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Figure 6: q-value matrix for Mi is better than Mj

with regard to MLPD (Section 3.2; M·s refer to the
submodels along the forward selection path).

biomarker selection is not large (q-value = 0.52). How-
ever, on comparing these to the full model or generally
models with 11 or more biomarkers, the 10 biomarker
selection is more confidently better (q-values mostly
> 0.9) than the 2 biomarker selection (q-values mostly
within 0.7–0.8).

Nevertheless, the analysis seems to support two clearly
predictively relevant biomarkers for the cardiovascular
risk prediction, with further 8 possibly interesting can-
didate biomarkers, but with some uncertainty about
their relevance. Figure 3 also supports this conclusion
with two of the biomarkers having clearly non-zero ef-
fects.

5 DISCUSSION

This paper presented a Bayesian analysis of
cardiovascular-event-free survival in diabetic individ-
uals, with the aim of identifying biomarkers with pre-
dictive value. We presented a comparison of the horse-
shoe, Laplace and Gaussian priors on the candidate
biomarker e↵ects and demonstrated empirically an ex-
pected [5, 16] di↵erence in their behaviour. We further
extended the model hierarchically to include data of
non-diabetic individuals and examined the use of pro-
jection predictive covariate selection to find biomarker
subsets with good predictive performance.

We could also hope that the predictive biomarkers cap-
ture some part of the state of the underlying disease
process and as such could be used to speculate about
causal disease pathways and to prioritize biomarkers
for further study. However, the analysis approach does

not warrant any formal causal inferences. Moreover,
the inclusion of the data of non-diabetic individuals
may bias the inferences on the diabetic subpopulation
towards the general population, when the dataset has
limited information to distinguish them. Nevertheless,
the presented predictive comparisons, being indepen-
dent of the model assumptions, justify studying the
joint model.

The submodels in projection predictive covariate se-
lection depend on the observed data only through the
reference model. Thus, finding the submodel param-
eters and the covariate selection itself do not cause
further fitting to the data, but rely on the information
provided by the reference model [11]. The projected
submodels may also be able to retain some predictive
features of the reference model that would not be avail-
able, if the submodels were independently fitted to the
data [11]: importantly, from Bayesian point of view,
the submodel may be able to account for uncertainty
due to the omission of some covariates.

However, selecting a single submodel for future pre-
diction tasks may be di�cult. We examined using the
projection approach within cross-validation to obtain
estimates of the submodel predictive performances. A
disadvantage of this procedure is that the performance
estimates are for the selection process and not for some
particular combination of selected biomarkers. Fur-
thermore, if selection is based on these estimates, the
performance estimate for the chosen submodel will not
anymore be unbiased for out-of-sample prediction un-
less nested cross-validation is used [11].
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Abstract

In this paper, we present a dynamic Bayesian
network (DBN) approach to modeling vascu-
larization in engineered tissues. Injuries and
diseases can cause significant tissue loss to
the degree where the body is unable to heal
itself. Tissue engineering aims to replace the
lost tissue through use of stem cells and bio-
materials. For tissue cells to multiply and
migrate, they need to be close to blood ves-
sels, and hence proper vascularization of the
tissue is an essential component of the en-
gineering process. We model vascularization
through a DBN whose structure and parame-
ters are elicited from experts. The DBN pro-
vides spatial and temporal probabilistic rea-
soning, enabling tissue engineers to test sen-
sitivity of vascularization to various factors
and gain useful insights into the vasculariza-
tion process. We present initial results in this
paper and then discuss a number of future re-
search problems and challenges.

1 INTRODUCTION

People lose tissue due to accidents, medical opera-
tions, treatments, and illnesses. While some organs,
e.g. liver, can replace the lost tissue most cannot espe-
cially when the damage is too severe. For these kinds
of tissue damages, the lost tissue can be replaced by
engineering a new tissue through stem cells and bio-
materials [18].

An essential process for engineering a healthy tissue
is the proper vascularization (formation of new blood
vessels) of the tissue, as the tissue cells need to be
close to the blood vessels both to discharge their waste
and to receive nutrition and oxygen. The blood ves-
sels need to spread out in the tissue, invade into the

depths of the tissue, and form connections to allow
blood circulation.

The formation of new blood vessels are triggered and
a↵ected by growth factors that are released by dis-
tressed cells that are far from the existing blood ves-
sels. When these growth factors reach existing blood
vessels, they sprout new branches and these branches
“search” for the distressed cells by following the gradi-
ent of the growth factor. This process, however, is
stochastic for at least two reasons: i) even though
growth factors are the main ingredients for causing
sprouts, they are not the only elements that a↵ect vas-
cularization, and ii) the growth factors are increasingly
more uniformly distributed as they go further away
from the distressed cells, and hence the gradient is al-
most uniform, hindering the capability of the blood
vessel finding its way correctly.

This inherent stochasticity in the vascularization pro-
cess, the spatial nature of the tissue, and the temporal
aspect of the vascularization make temporal graphical
models a great fit for reasoning with uncertainty in
vascularization. In this paper, we present a dynamic
Bayesian network (DBN) for modeling vascularization
in engineered tissues. We elicit the structure of the
DBN from tissue engineering experts and we experi-
ment with various parameter settings to provide fur-
ther insights into the vascularization process. Because
this is a first and novel application of DBNs to tissue
engineering, it avails itself to many interesting future
research directions and challenges.

Our contributions in this paper include:

• We present a novel application of DBNs to vascu-
larization in engineered tissues

• We present initial results and insights, where we
experiment with various parameter settings, and

• We discuss several future research challenges and
opportunities in detail.
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The rest of the paper is organized as follows: in Sec-
tion 2, we provide a brief background on tissue engi-
neering and vascularization. In Section 3, we describe
our DBN model for vascularization. We present our
experimental setup and results in Section 4. In Sec-
tion 5, we briefly discuss related work. We then dis-
cuss future research directions and challenges in detail
in Section 6, and then conclude.

2 BACKGROUND

In this section, we first provide a brief background on
tissue engineering and vascularization and then discuss
briefly why dynamic Bayesian networks (DBNs) are a
good fit for modeling vascularization.

People lose tissue due to accidents, treatments, and
illnesses. Some organs, e.g. liver, can replace the lost
tissue while others cannot. Sometimes, the damage
can be so severe that the body cannot heal itself. For
example, bones can heal after smooth fractures. Yet,
some fractures damage bone body so severely that the
bone cannot regenerate. For these kinds of damages,
the lost tissue can be replaced by engineering a new
tissue through stem cells and biomaterials.

Stem cells are generic types of cells that have the abil-
ity to replicate and transform to any tissue. Stem
cells, like all other cells, need to be close enough to the
blood vessels so that they can forward their biological
wastes to the vessels and they can be fed with nutri-
tion and oxygen carried by the blood vessels. When
a tissue is engineered through replication and trans-
formation of stem and tissue cells, there is no existing
blood vessel web in the environment; the only blood
vessels available are the original vessels located at the
edges, ready to sprout and progress to the depths of
the newly-formed tissue.

The stem cells that do not have access to blood vessels
will not be able to discharge waste and receive nutri-
tion and oxygen. In such cases, a cell starts signaling
about its needs by means of emitting chemicals called
vascular endothelial growth factor (VEGF). VEGF dif-
fuses and disperses in the environment. When it con-
tacts a blood vessel, it triggers a new sprout of blood
vessel towards the source of emission. The tip of these
new sprouts typically follow the gradient of the VEGF
to find the distressed cell. During this process, the
newly-formed blood vessel can also branch and sprout
new blood vessels. When the branches meet with other
branches, they merge (this process is called anastomo-
sis) and a blood circulation through the new vessel
starts. The blood circulation helps nearby stem and
tissue cells, which then stop emitting growth factors.
This event is called angiogenesis or vascularization.
Please see Figure 1 for an illustration of this process.

Figure 1: Illustration of vascularization, including the
tip cells (active cells), the fixed cells (stalk cells), and
anastomosis. [19]

Vascularization is a key process in tissue development.
When cells that are emitting VEGF cannot be reached
in time by the new blood vessels, the cells first fall
in hypoxia (i.e., lack of Oxygen) and then start dy-
ing. Hence the formation of healthy tissue depends on
appropriate vascularization; the blood vessels need to
spread out in the newly-formed tissue, invade into the
depth, and need to form connections to allow blood
circulation.

Though it is well-known that the VEGF is a major
contributor to sprouting of new blood vessels and that
the tip of the blood vessel typically follows the gradient
of the VEGF, there are still unknown factors that af-
fect vascularization. Moreover, the VEGF distribution
becomes more uniform as we get further away from
the source of the emission and hence the gradient does
not necessarily point to the distressed cell. Therefore,
given our knowledge of the VEGF distribution the en-
vironment, the blood vessels do not necessarily follow
a deterministic path; they also do a bit of exploration.
This is where the uncertainty reasoning capabilities of
probabilistic graphical models become handy for mod-
eling vascularization.

In this paper, we model the vascularization process
through dynamic Bayesian networks (DBNs) to enable
tissue engineering researchers to reason with spatial
and temporal growth of blood vessels. With the help
of DBNs, the researchers can formulate and query the
DBNs and try a number of parameter settings, without
the need to experiment with every one of them in the
lab. This process allows the researchers to gain further
insights and formulate new in-vivo (on animals) and
in-vitro (on glass) experiments.
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3 APPROACH

In this section, we describe our DBN model for vas-
cularization. We made a number of assumptions to
simplify the model. In this model, we assume a 2D
structure, whereas in real-life scenarios, the tissue ob-
viously has a 3D structure. In this 2D structure, which
is illustrated in Figure 2, as also assumed in [1], we as-
sume that the blood vessel grows bottom-up towards
north. Therefore, the status of a location at time t

depends on: i) its status at time t, and ii) the statuses
of its south neighbors at t.

t 

𝐿௫௬௧  

𝐿(௫ିଵ)(௬ିଵ)௧  𝐿௫(௬ିଵ)௧  𝐿(௫ାଵ)(௬ିଵ)௧  

t+1 

𝐿௫௬(௧ାଵ) 

𝐿(௫ିଵ)(௬ିଵ)
(௧ାଵ)  𝐿௫(௬ିଵ)

(௧ାଵ)  𝐿(௫ାଵ)(௬ିଵ)
(௧ାଵ)  

Figure 2: The tissue grid. Each cell of the grid rep-
resents a location, which can be Empty, or can be oc-
cupied with an Active Cell or Stalk Cell. Each
location is represented as a random variable in DBN.

To simplify the notation, when we refer to a generic
location L

t

xy

, we will drop the subscripts and hence
simply use L

t, and when we refer to its neighbors
at its south L

t

(x�1)(y�1), L
t

x(y�1), and L

t

(x+1)(y�1) we

will simply use L

t

SW

, Lt

S

, and L

t

SE

, corresponding to
neighbors at south west, south, and south east, respec-
tively. We illustrate the relevant 2-time slice dynamic
Bayesian network in Figure 3.

Each location on the 2D grid is a random variable,
representing whether that location is Empty, or occu-
pied by a blood vessel cell. Blood vessel cells are two
types: the tip of a blood vessel that has the potential to
grow (henceforth called an Active Cell) or the body
of the blood vessel (henceforth called the Stalk Cell).
Therefore, the domain of random variable is [Active
Cell, Stalk Cell, Empty], abbreviated henceforth as
[AC, SC, E].

We model the conditional probability distribution,
(CPD), P

�
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(t+1)|Lt

, L
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t
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�
as a tree CPD as

illustrated in Figure 4. To give a simple overview,
at each step in time, an Active Cell elongates and
moves into a nearby Empty location, forming the body
of the blood vessel (i.e., Stalk Cell) in the process.
The transitions are:

𝐿௧ 

𝐿ௌௐ௧  𝐿ௌ௧  𝐿ௌா௧  

𝐿(௧ାଵ) 

t t+1 

Figure 3: A two-time slice representation of the DBN.
A location at a time t + 1 has four parents: itself at
time t and its lower neighbors at time t.

AC 

SC 

T F 
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PAC PSC PE 

PAC PSC PE 

Figure 4: The CPD for P (L(t+1)|Lt

, L

t

SW

, L

t

S

, L

t

SE

).

• The tip of a blood vessel (AC) at time
t becomes the body (SC) at time t + 1.
That is P

�
L

(t+1)|Lt = AC,L

t

SW

, L

t

S

, L

t

SE

�
=

P

�
L

(t+1)|Lt = AC

�
= h✏, 1 � 2✏, ✏i, where ✏ is a

small noise parameter.

• A Stalk Cell at time t either continues
to remain a Stalk Cell at time t + 1 or
it might become Active Cell with probabil-
ity � to sprout a new blood vessel branch.
That is, P

�
L

(t+1)|Lt = SC,L

t

SW

, L

t

S

, L

t

SE

�
=

P

�
L

(t+1)|Lt = SC

�
= h�, 1 � � � ✏, ✏i. We refer

to � as the sprout possibility.

• An Empty location at time t will remain Empty

at time t + 1 if none of its SW, S, or SE neigh-
bors are Active Cell at time t; if there is an
Active Cell at one or more of those neighbor-
ing locations at time t, one of them might elon-
gate to this Empty location at time t + 1. The
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probability of that an Empty location being oc-
cupied by an Active Cell at time t + 1 is mod-
eled as a Noisy-OR of its neighboring locations.
That is P

�
L

(t+1) = AC|Lt = E,L

t

SW

, L

t

S

, L

t

SE

�

is a Noisy-OR of Lt

SW

, L

t

S

, L

t

SE

, with parameters
�0, �SW

, �
S

, and �

SE

, where �0 is leak param-
eter, and �

SW

, �
S

, and �

SE

corresponds to the
possibility that an Active Cell elongates in the
NE, N, or NW direction.1 The magnitude of �

SW

,
�

S

, and �

SE

are determined by the VEGF gradi-
ent. We refer to various configurations of the �

parameters as the growth patterns.

4 EXPERIMENTAL SETUP,
RESULTS, AND INSIGHTS

In this section, we describe the experiments we per-
formed using various settings for the growth pattern
(�) and sprout (�) parameters. In all the experiments
to follow, we set the noise ✏ and the leak �0 parameters
to 0.01. For the growth pattern, we present results for
two settings:

• straight-growth: h�
SW

,�

S

,�

SE

i =
h0.01, 0.98, 0.01i. For this pattern, the blood
vessel follows a straight line, growing towards
north.

• uniform-growth: h�
SW

,�

S

,�

SE

i = h 13 ,
1
3 ,

1
3 i.

For this pattern, the blood vessel has equal chance
of growing towards north, north west, or north
east.

For the sprout possibility, that is a Stalk Cell turn-
ing into an Active Cell, we present results for two
settings:

• seldom-sprout: � = 0.01. For this setting, the
Stalk Cell has very small chance (probability of
0.01) of becoming an Active Cell in the next
time step.

• always-sprout: � = 0.98. For this setting, the
Stalk Cell has 0.98 probability of becoming ac-
tive in the next step. This is quite an unrealistic
setting; we present it only for didactic purposes.

We present results for four possible configurations: the
cross-product of the growth patterns and sprout pos-
sibilities. We first provide detailed results on a 3 ⇥ 3

1
Note that �SW denotes the probability that an Active

Cell at the SW of an Empty location will move to this

Empty location; hence �SW denotes the possibility that an

Active Cell at SW moves in the NE direction to occupy

an Empty location.

grid over three time slices. Then, we present results
on a bit larger scale, 9 ⇥ 9, over nine time slices. Fi-
nally, we present a framework where we quantify the
uncertainty over the predictions on the last time slice
and discuss how it is a↵ected by the growth patterns
and sprout possibilities.

For inference, in the 3⇥3 case, we used exact inference.
For the 9 ⇥ 9 case, we used forward sampling. Note
that we are able to use forward sampling in our settings
because we provide the initial condition (all locations
at time t = 0) as evidence and compute probabilities
for the remaining time slices.

4.1 Detailed Results for 3⇥ 3

In this toy setting, we provide the evidence for the
initial configuration of the experiment, i.e., we provide
evidence for all locations for time t = 0, and compute
probabilities for all locations for all future time slices.
That is, we compute P (L1

,L2|L0), where Lt denotes
all locations at time t. For t = 0, we provide the
evidence as follows: the middle of the bottom row is
set as the tip of the blood vessel (i.e, L0

x=1,y=0 = AC)
and the rest of the locations are set as Empty. Figure 5
illustrates this setting.

E E E

E E E

E AC E

Figure 5: The initial configuration for the 3⇥ 3 grid.

The straight-growth results are presented in Figures
6 and 7, and uniform-growth results are presented in
Figures 8 and 9.

The simplest setting where the blood vessel grows in
a straight path and that does not sprout at all (Fig-
ure 6) is fairly straightforward to analyze. The tip of
the blood vessel migrates one location towards north at
each step, forming the body of the vessel along the pro-
cess. This setting, therefore, serves as a sanity check.

In the next setting, which is presented in Fig-
ure 7, we keep the growth pattern the same
(straight-growth) but increase the sprout possibility
to 0.98 (always-sprout). In this setting, the blood
vessel grows towards north as expected. Unlike the
seldom-sprout case, however, a Stalk Cell at time
t = 1 became active at time t = 2.

Next, we present results for the uniform-growth

cases. In this setting, the blood vessel has uniform
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AC

.01 .01 .01 .04 .95 .04

.02 .98 .02 .02 .01 .02

.01 .01 .01 .01 .01 .01

SC

.00 .00 .00 .01 .01 .01

.00 .00 .00 .02 .96 .02

.00 .98 .00 .02 .97 .02

t = 1 t = 2

Figure 6: straight-growth, seldom-sprout.
This is the most straightforward setting where the
blood vessel grows one step at a time towards
north.

AC

.01 .01 .01 .04 .95 .04

.02 .98 .02 .02 .01 .02

.01 .01 .01 .02 .96 .02

SC

.00 .00 .00 .01 .01 .01

.00 .00 .00 .02 .96 .02

.00 .98 .00 .02 .02 .02

t = 1 t = 2

Figure 7: straight-growth, always-sprout. The
blood vessel grows towards north. A location that
is a Stalk Cell at time t = 1 (L

x=1,y=0) becomes
Active Cell at time t = 2.

AC

.01 .01 .01 .22 .31 .22

.34 .34 .34 .02 .02 .02

.01 .01 .01 .01 .01 .01

SC

.00 .00 .00 .01 .01 .01

.00 .00 .00 .34 .33 .34

.00 .98 .00 .02 .97 .02

t = 1 t = 2

Figure 8: uniform-growth, seldom-sprout. The
blood vessel has equal probability to grow in all
three directions. A Stalk Cell at time t will most
likely remain as Stalk Cell at t+ 1.

AC

.01 .01 .01 .22 .31 .22

.34 .34 .34 .02 .02 .02

.01 .01 .01 .02 .96 .02

SC

.00 .00 .00 .01 .01 .01

.00 .00 .00 .33 .33 .33

.00 .98 .00 .02 .02 .02

t = 1 t = 2

Figure 9: uniform-growth, always-sprout. The
blood vessel has equal probability to grow in all
three directions. A Stalk Cell will most likely
become Active Cell in the next time slice.

probability of growing towards NW, N, and NE. In
the seldom-sprout case (Figure 8), the Active Cell

at t = 0 turned into a Stalk Cell at time t = 1 and
remained a Stalk Cell at time t = 2. The Active

Cell, unlike the straight-growth case, has equal
probability of moving in all three directions. In the
last time step, the middle of the top row has higher
probability (.31) than the sides (.22) simply because
the middle location can be reached from more locations
compared to the side locations. The always-sprout

case (Figure 9) is similar except a Stalk Cell at t = 1

becomes an Active Cell at t = 2.

These toy experiments provide insights into how the
process typically works. Next, we present results for
the 9⇥ 9 grid.

4.2 Summary Results for 9⇥ 9

Similar to the 3⇥3 grid, we provide evidence for t = 0
case and compute probabilities for the remaining eight
time slices. In the initial configuration, the middle
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Active 
Cell

.06 .06 .06 .10 .64 .10 .06 .05 .05 .17 .17 .18 .22 .75 .22 .17 .18 .17

.06 .06 .07 .06 .01 .06 .06 .06 .06 .17 .18 .17 .18 .13 .17 .18 .18 .18

.05 .05 .05 .05 .01 .05 .05 .05 .06 .17 .16 .18 .24 .88 .24 .17 .18 .18

.05 .05 .05 .04 .01 .05 .05 .05 .05 .16 .17 .16 .16 .09 .16 .17 .17 .16

.04 .04 .04 .04 .01 .04 .04 .04 .04 .16 .14 .16 .22 .91 .22 .15 .16 .15

.04 .04 .03 .04 .01 .03 .04 .03 .04 .13 .14 .14 .13 .07 .14 .14 .14 .14

.03 .03 .03 .03 .01 .03 .03 .03 .03 .12 .11 .12 .17 .92 .16 .12 .12 .12

.02 .03 .02 .02 .01 .02 .02 .02 .02 .09 .09 .10 .10 .07 .09 .09 .10 .09

.02 .01 .01 .01 .01 .01 .01 .01 .01 .06 .06 .06 .06 .86 .05 .05 .06 .05

Stalk 
Cell

.22 .23 .22 .23 .23 .23 .24 .23 .23 .14 .14 .14 .15 .14 .14 .14 .14 .14

.23 .23 .23 .27 .86 .27 .23 .23 .22 .14 .14 .15 .18 .77 .18 .14 .15 .14

.23 .23 .23 .28 .87 .26 .24 .23 .22 .14 .15 .14 .14 .11 .14 .15 .14 .15

.23 .22 .23 .26 .88 .26 .23 .23 .22 .14 .13 .14 .20 .89 .20 .14 .15 .14

.21 .21 .22 .25 .89 .25 .22 .21 .21 .13 .14 .13 .13 .08 .13 .14 .14 .13

.20 .20 .20 .23 .89 .23 .20 .20 .20 .12 .11 .12 .18 .91 .18 .12 .12 .12

.18 .17 .17 .20 .90 .19 .18 .17 .18 .10 .11 .11 .10 .07 .11 .11 .10 .10

.14 .14 .14 .15 .91 .15 .14 .14 .14 .08 .08 .08 .11 .92 .10 .08 .08 .08

.10 .10 .10 .10 .93 .10 .10 .10 .10 .06 .06 .06 .06 .07 .06 .05 .06 .06

straight-growth – seldom-sprout straight-growth – always-sprout

Figure 10: AC and SC probabilities for the 9 ⇥ 9 grid at the last time slice (t=8) for straight-growth. Left:
seldom-sprout. Right: always-sprout. On the right, it is apparent that the Stalk Cells and Active Cells
alternate.

of the bottom row is set as an Active Cell and the
remaining locations are set as Empty. Due to space
limitations, we present results for only the last time
slice, t = 8. The straight-growth case is shown in
Figure 10 and the uniform-growth case is shown in
Figure 11.

In the straight-growth seldom-sprout case (the left
side of Figure 10), we see a straight blood vessel for
the middle of the grid, where every cell of the blood
vessel except the tip is a Stalk Cell and the tip is
an Active Cell, as expected. In the always-sprout

case (the right side of Figure 10), the Stalk Cells and
Active Cells alternate, again as expected.

In the uniform-growth seldom-sprout case (the left

side of Figure 11), the blood vessel can be anywhere
on the grid, except, as expected, the middle locations
have higher probability. In the always-sprout case
(the right side of Figure 11), the Stalk Cells and
Active Cells alternate, as expected. Additionally,
the probabilities for locations being a blood vessel (ei-
ther Stalk to Active) are higher in the always-sprout
case compared to the seldom-sprout case, again as
expected.

The results so far have been nothing surprising, but
only confirming our expectations. The value of the
DBNs, however, lies at their capability to reason with
spatial and temporal uncertainty as well as their po-
tential for future directions. We discuss one of the
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Active 
Cell

.04 .06 .07 .08 .09 .08 .07 .06 .04 .17 .22 .24 .26 .26 .25 .24 .22 .17

.03 .04 .03 .04 .04 .04 .04 .04 .03 .16 .20 .21 .20 .20 .22 .21 .20 .16

.03 .04 .03 .04 .03 .04 .04 .03 .03 .21 .30 .34 .40 .40 .38 .34 .29 .21

.03 .04 .03 .03 .03 .03 .03 .03 .03 .15 .19 .18 .17 .17 .17 .19 .19 .15

.03 .03 .03 .03 .03 .03 .03 .03 .03 .22 .37 .51 .60 .63 .59 .50 .36 .21

.02 .03 .03 .03 .02 .03 .03 .03 .02 .15 .17 .15 .13 .12 .13 .15 .17 .15

.02 .03 .02 .02 .02 .02 .02 .03 .02 .13 .16 .52 .71 .80 .70 .53 .16 .13

.02 .02 .02 .02 .02 .02 .02 .02 .02 .10 .13 .13 .09 .09 .09 .12 .13 .10

.01 .01 .01 .01 .01 .01 .02 .02 .02 .06 .06 .06 .05 .86 .06 .06 .06 .06

Stalk 
Cell

.17 .19 .21 .20 .21 .21 .20 .20 .16 .13 .16 .17 .17 .16 .17 .17 .16 .13

.17 .23 .23 .26 .27 .26 .25 .23 .18 .14 .18 .21 .22 .23 .21 .21 .18 .14

.18 .22 .25 .27 .27 .27 .26 .23 .17 .13 .16 .16 .15 .17 .16 .17 .16 .13

.17 .22 .26 .28 .29 .29 .26 .22 .17 .18 .26 .34 .40 .41 .39 .33 .25 .18

.17 .22 .26 .30 .31 .30 .26 .21 .17 .12 .15 .15 .14 .13 .14 .15 .15 .12

.15 .21 .26 .32 .34 .31 .26 .20 .15 .12 .29 .47 .62 .66 .62 .46 .28 .11

.15 .16 .25 .32 .39 .33 .24 .17 .14 .11 .14 .12 .10 .09 .10 .12 .14 .11

.13 .15 .14 .40 .41 .41 .14 .14 .13 .09 .10 .10 .71 .71 .71 .10 .10 .08

.10 .10 .10 .10 .91 .10 .10 .10 .10 .06 .06 .06 .06 .07 .06 .06 .06 .05

uniform-growth – seldom-sprout uniform-growth – always-sprout

Figure 11: AC and SC probabilities for the 9 ⇥ 9 grid at the last time slice (t=8) for uniform-growth. Left:
seldom-sprout. Right: always-sprout. In both cases, the blood vessel can grow uniformly in each direction
and the middle locations have higher probability of having a blood vessel simply because they can be reached
from multiple locations. In the always-sprout case, Stalk Cells and Active Cells alternate.

future directions here supplemented with some pre-
liminary results, and discuss more future directions in
Section 6.

4.3 Quantifying Uncertainty

Given an initial condition, L0, the tissue engineers are
interested in the final status of the tissue, LT , where
T denotes the final step of the experiment. Because
real-world experiment take a long time, mostly weeks,
they would like to be able to stop an experiment at
time t < T and still be able to reason about time T .
Therefore, they are interested in the following ques-
tion: given an initial condition L0, if we stop the ex-

periment at time t, what is the uncertainty over LT ?
More practically: when is the earliest time we can stop
an experiment so that the uncertainty over the last
time slice is below a pre-specified target �?. It is im-
portant to note that when an experiment is stopped,
the researchers dissect the tissue to analyze its proper-
ties, such as vascularization, and hence the experiment
cannot continue beyond that point.

Given an uncertainty measure, this question can be
formulated rather straightforwardly using DBNs. Let
UNC

�
P

�
LT |l0, lt

��
denote the uncertainty over the

predictions over the last time slice, given the initial
condition L0 = l

0 and the status of the experiment at
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time t, Lt = l

t. Then, we simply need to find

argmin
t<T

UNC

�
P

�
LT |l0, lt

��
< � (1)

Obviously, even though we know the initial conditions
l

0, we do not know the status of the experiment at time
t > 0 unless we stop the experiment. Therefore, we
need to take an expectation over all possible outcomes
at time t:

argmin
t<T

X

l

t

P

�
Lt = l

t|l0
�
UNC

�
P

�
LT |l0, lt

��
< �

(2)

where the subscript l

t in the summation ranges over
all possible configurations of Lt.

Unfortunately the number of all possible configura-
tions for an n ⇥ n grid is 3n⇥n, which is clearly in-
tractable to solve. We leave a more systematic solu-
tion for future direction and present results for the case
where the summation is replaced with the most proba-
ble lt|l0. For the UNC measure, there are a number of
possibilities, including the entropy. We present results
where we compute the conditional error of the most
probable blood vessel path. That is, for the most-
likely blood vessel path, we sum 1 � P (SC|lt, l0) for
the body of the vessel and add 1�P (AC|lt, l0) for the
tip of the blood vessel.

We experimented with the 9 ⇥ 9 grid and we set
the sprout possibility to � = 0.01 so that the most
probably path does not have any branches. We
present the uncertainty values for straight-growth

and uniform-growth patterns in Figure 12. The x

axis represents the time we would stop the experiment
and the y axis plots the uncertainty. As expected, the
uncertainty is much higher for the uniform-growth

case and that uncertainty goes down for both growth
patterns as we provide evidence for later time steps.

We scratched only the surface of this important prob-
lem, leaving many interesting research problems for
future work, some of which are discussed in Section 6.

5 RELATED WORK

Tissue engineering experiments typically are per-
formed in-vivo usually on mice and in-vitro in glass
on lab. Researchers experiment with various settings
including the porosity of the sca↵old that the tissue is
expected to hold on to, the VEGF distribution, and
initial blood vessel sprout locations [24, 13, 16, 17].

On the computational side, various researchers have
used agent-based modeling to simulate the tissue en-
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Figure 12: Uncertainties for two growth patterns. As
expected, the straight-growth pattern is more pre-
dictable than the uniform-growth pattern. Addition-
ally, providing evidence for later time slices results in
lower uncertainties in the last time slice.

gineering process [1, 19, 3, 2, 9]. In these simulations,
stem cells, tissue cells, and blood cells are modeled as
agents and are provided rules that are often elicited
from experts. These simulations allow researchers
to experiment with a varying number of parameters,
without having to perform in-vivo or in-vitro experi-
ments. Some of the parameter settings that produce
promising results are then tried in the lab. Based on
the results obtained in the lab, the rules for the agents
are updated and thus there is often a continuous feed-
back loop between the simulations and experiments.

Our DBN modeling is a complementary approach to
the lab experiments and computational simulations.
Because the whole process is inherently stochastic, ob-
taining the average behavior through experiments and
simulations require many trials whereas DBNs provide
a systematic, transparent, and modular mechanism to
reason with uncertainty.

DBNs have been previously used for many practi-
cal applications. Examples include managing wa-
ter resources [8], modeling environmental problems
[23], driverless cars [14], gene regulatory networks
[20, 22, 15], figure tracking [21], ranking [10], and
speech recognition [25] to name a few. To the best
of our knowledge, ours is the first probabilistic graphi-
cal model approach for modeling the tissue engineering
process.
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6 CURRENT LIMITATIONS AND
FUTURE DIRECTIONS

There are two lines of work that we would like to pur-
sue in the future. The first type is enriching the model,
lifting some of the assumptions we made. The second
type of work is a new line of research that we refer to
as active inference, which we will describe shortly.

We made a series of simplifying assumptions in our
current DBN model. One such assumption is that the
tissue space is 2D, whereas in reality it is obviously
3D. The 2D assumption allowed us to work with much
fewer random variables. Additionally, in 2D, the num-
ber of parents for a variable is four whereas in 3D, the
number of parents is ten (itself in the previous time
slice and nine locations under it). It is rather straight-
forward to move from 2D to 3D from a representa-
tion perspective. However, scalability both in terms
of memory and computational time is a challenge.

Another assumption we made is that the gradient of
the VEGF is fixed throughout the grid. That is, we as-
sumed the � and the � values are fixed across the grid.
In reality, however, the growth factor is expected to
have steeper gradient when it is closer to the source of
the distressed tissue cell and it is expected to be more
uniform as we get further away from the distressed
cell. Our simplifying assumption can be easily lifted
by providing a growth factor distribution across the
grid and then translating it into the necessary � and
� parameters.

A limitation that is harder to address is scalability. In
our experiment section (Section 4), we experimented
with 3⇥3 and 9⇥9 grids. These were trivial to exper-
iment with. In reality, however, we need to deal with
thousands if not millions of random variables over a
much longer period of time. This will raise scalabil-
ity issues both in terms of memory and in terms of
computation time. Lifted inference [7] can be used to
address some of these challenges.

Another line of research is to formulate and run ac-
tive inference for dynamic Bayesian networks [6, 5, 4,
12, 11]. Active inference is interested in the following
question: if we are given the opportunity to gather ev-
idence to condition on but gathering evidence is costly,
which variables and what time frames are the most
cost-e↵ective ones to condition on?. We discussed the
initial formulation of active inference and preliminary
results in Section 4.3. However, many questions and
challenges remain to be addressed. For example, given
a target uncertainty threshold �, how can we e�ciently
find the smallest time t, where UNC(P (LT |l0, lt) < �,
without searching all possible t values?

7 CONCLUSIONS

We presented a dynamic Bayesian network model for
vascularization in engineered tissues. This DBN en-
ables i) spatial and temporal reasoning for understand-
ing of vascularization, ii) formulation and investiga-
tion of various parameter settings for vascularization,
and iii) formulation of uncertainty and active informa-
tion gathering to minimize uncertainty. We presented
initial results that provide insights in to the vascu-
larization process. Though the DBN model currently
represents an oversimplification of the reality, it is the
first and hence novel application of DBNs to vascular-
ization. As such, it avails itself to many interesting
research challenges and opportunities.
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Abstract

A prediction market allows a group of traders
to form a consensus probability distribution
by entering into agreements that pay o↵ con-
tingent on events of interest. A combinatorial
prediction market allows conditional trades
or trades on Boolean combinations of events
to form a joint distribution over many related
events. Sun et al. (2012) showed how to use
a junction tree to update both the consen-
sus joint distribution and each user’s assets
in a combinatorial prediction market. Be-
cause a separate asset junction tree is main-
tained for each user on the joint space, this
approach is very ine�cient in the typical case
where most users trade sparsely with respect
to the joint space. Further, any changes to
the global junction tree must be mirrored
across all users. We demonstrate large ef-
ficiency gains from divorcing the probability
and asset data structures, dynamically build-
ing a separate asset junction tree for each
user. The trade-based asset model has as-
set blocks as the basic units involving ques-
tions being traded only. We compare a sim-
ple block-iteration method against a more so-
phisticated user-specific junction tree, ana-
lyzing conditions under which each approach
is faster. Our asset model has been deployed
in SciCast1, a combinatorial prediction mar-
ket for science and technology forecasting.

1 Introduction

A prediction market is a market formed for the pur-
pose of making predictions about events of interest.
Participants provide inputs either by directly editing

1
https://SciCast.org/

a consensus probability distribution or by buying and
selling assets whose prices can be interpreted as prob-
abilities. Prediction markets have demonstrated their
value for aggregating collective expertise (Arrow et al.,
2008).

Combinatorial prediction markets allow forecasts not
only on base events, but also on conditional and/or
Boolean combinations of events (Hanson, 2007). A
market-maker-based combinatorial market (Hanson,
2007) allows a user to trade on any event at any time
by interacting with an automated market maker which
sets the price according to a market scoring rule. The
market maker provides a number of functions: it pro-
cesses trades on demand, manages a consistent joint
probability distribution over the base events, can be
queried for any user’s expected assets, disallows any
trade that could allow a user’s assets negative, and
pays o↵ users when the state of any event becomes
known.

Sun et al. (2012) presented an approach to performing
these market maker functions under the assumption
that the joint distribution can be represented in fac-
tored form as a junction tree, and trades are required
to respect the conditional independence relationships
encoded in the junction tree. Their approach main-
tains parallel junction trees, one for the joint distribu-
tion and one for the assets of each user. In practice,
most users tend to trade sparsely relative to the joint
probability space. Therefore, using the same global
junction tree for all users is very ine�cient for both
storage and computation. Another problem is that
any change to the probability structure (e.g., adding
or resolving a question; adding or removing a link)
must be mirrored across all users’ asset structures.

This paper describes a new approach to managing as-
sets in a market-maker-based combinatorial prediction
market. The basic data structure is the asset block,
which compactly represents a set of trades made by
a user. A user’s asset model consists of a set of as-
set blocks representing the user’s entire trade history.
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Graph transformations are applied to transform the
collection of asset blocks into an asset junction tree.
The asset junction tree serves as the computational
framework for computing the user’s minimum assets,
expected assets, and other quantities of interest.

2 Trade-based Asset Model

An individual asset model for each user is constructed
from the user’s trade history and updated incremen-
tally with each trade. A data structure called an asset

block groups the user’s trades on a set of questions and
represents gains and losses from those trades. An as-
set block B = (VB , �B) consists of block variables VB

and a block asset function �B that maps states vB of
VB to real numbers �B(vB).

A collection of asset blocks is a compact representa-
tion of a user’s gains or losses in any joint state. This
user-specific asset representation can be exploited for
e�cient calculation of expected and conditional mini-
mum assets. If asset blocks are organized according to
trades, it can be shown that the user’s assets auv are ad-
ditively decomposable with respect to the set {B}B2B
of asset blocks. For any arbitrary edit x(t|H) (H can
be empty), logarithmic market scoring rule provides

auv + b log
x(t|H)

p(t|H)
(1)

When assets are additively decomposable according to
{B}B2B, the asset blocks can be assembled into a com-
putational structure that supports asset management
computations.

The Dynamic Asset Cluster (DAC) model begins with
an undirected asset graph assembled from the user’s
trades, where each node in the graph is associated with
an asset block. The asset blocks are constructed in a
manner that ensures additive separability. The asset
graph is transformed into an asset junction tree, guar-
anteeing that the original asset blocks will not be split
when new cliques are formed in the asset junction tree.
The steps are:

1. Create an undirected trade graph G by pairwise
connecting all variables in each asset block.

2. Triangulate G to make a triangulated graph T ,
and identify all cliques from T .

3. Use a standard algorithm to form a junction tree
J from the triangulated graph T .

4. Assign the asset function for each asset block to
exactly one clique that contains all the block vari-
ables for the asset block.

5. Create an asset table for each clique by adding
the block asset functions for blocks assigned to
the clique.

Given the asset junction tree, local propagation can be
used to perform the following tasks:

• Calculate conditional minimum assets. Min-
propagation is used to return a global asset min-
imum, and the user is prevented from making
trades that allow minimum assets to become neg-
ative. (Sun et al., 2012)

• Calculate expected assets. Expected assets are cal-
culated by finding the joint consensus probability
for each clique, calculating clique expected assets,
and summing the over cliques.

3 Conclusion

To test the algorithm, we designed several di↵erent
scenarios and conducted empirical comparisons be-
tween DAC and a simpler solution in which we it-
erate over a joint set of all overlapping variables
(called global separator GS ). Experimental results
show both advantages and disadvantages for di↵erent
cases. Inference for each is exponential in its respec-
tive treewidth, with DAC eventually winning due to
its generally smaller treewidth. Analysis of expected
use cases and empirical comparisons showGS is prefer-
able when the number of overlaps is less than about
8, or the number of entries in clique tables is below
about 500. These limits are likely to hold in SciCast
for the near future.
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Abstract 

The Victorian State Government is reserving 15,000 hectares of land to protect native grasslands in to the west 
of Melbourne, Australia, to be managed by the Department of Environment and Primary Industries (DEPI). The 
WGR currently contains a mixture of high quality native grasslands, degraded grasslands and non-native 
vegetation including improved pasture and cropland. Managing these areas for conservation will require a 
complex management approach involving weed control, biomass management using fire and grazing, cropland 
retirement and restoration involving the re-introduction of native plants and their seeds. The reserve must be 
managed as soon as land is required, but the best management techniques are largely unknown, thus an adaptive 
management approach -- where management and monitoring are adjusted overtime as understanding of the 
ecosystem’s response to management improves. In order to assist adaptive management, Bayesian network 
technology was chosen to model ecological change in grassland ecosystem, to provide probabilistic predictions 
to evaluate management actions (e.g. weed control, fire) and to justify the choice of actions to be trialed within 
the reserve.  

The Western Grasslands model is a complex BN, employing a number of extensions to the basic BN structure, 
as it is: a dynamic BN, representing the change in state variables over time, with a seasonal time steps, 
rolled-out for a 30 year prediction window; a decision network, with decision nodes representing management 
options grouped into management strategies, which are sequences of actions across seasons, and utility nodes 
which represent the costs associated with interventions and the environmental value of the site; an object 
oriented model, to manage the complexity of the number of species and seasonal transitions. In this paper, we 
present the Western Grasslands dynamic object-oriented Bayesian decision network. The Grasslands model is 
now deployed and being used by DEPI to: make predictions about changes in the grassland ecosystem; act as a 
repository of knowledge, to be updated as understanding of the grassland ecosystem improves; quantitatively 
evaluate the ecological and financial consequences of management actions; and rank management options with 
the highest probability of success for trialing. 

This paper is published as abstract only. 
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