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Abstract. Writing tests for configuration knowledge-bases is a dif-
ficult task. One not minor reason is the huge search space. For ex-
haustive testing, all possible combinations of configuration parame-
ters must be considered. In practice, exhaustive testing is thus often
impossible, due to the sheer, exponential, number of combinations.
Consequently it becomes necessary to focus on the most important
configurations first. This abstract challenge is well-known in the test-
ing community, and can be addressed by exploiting combinatorial
testing. Combinatorial testing deals with reducing the number of test
inputs by aiming at exhaustive combinations of parameter subsets.
That is, ensuring that a test-suite contains tests covering all value
combinations for all parameter subsets for (or up to) a given size. In
this paper, we formulate the configuration-testing problem and show
how combinatorial testing can be used in a corresponding test case
generation process, in order to achieve a huge reduction in the num-
ber of required test cases.

1 INTRODUCTION
A configuration, i.e., something that results from a particular ar-
rangement of parts or components (according to the Merriam Web-
ster dictionary2), can be considered as a system aggregating specific
parts in order to implement a desired functionality or behavior. In
model-based configuration, we use a knowledge-base in order to rep-
resent those components’ functionality, given user requirements, and
any other knowledge that is necessary for defining or constructing the
system. Such additional knowledge encompasses, for instance, con-
straints prohibiting physically impossible (and thus conflicting) ar-
rangements. Obviously, the outcome of any configuration algorithm
depends heavily on the model’s quality. In some sense, quality in this
case can be considered as being “as close as necessary (and possible)
to reality”, so that we need to capture the “appropriate” knowledge
and do that in the right way.

In case of faults in the knowledge base, e.g., when we miss some
constraint that prohibits some impossible configuration, a derived
configuration might be incorrect for at least some specific scenarios
or corner cases. Thus, testing, which is basically unavoidable for ver-
ification and validation problems, is not only essential for hardware
and programs, but also for knowledge-bases. We certainly have to
ensure that a configuration behaves as desired. The evidence is even
stronger when moving from static configuration, e.g., configuring a
product based on user needs, to dynamic configurations where the
system might adapt itself for a certain situation. For example, a robot
might adapt its control behavior in case of a broken wheel, that is, on
its view of the world that it stores in an internal knowledge-base as
foundation for its reasoning. In such cases, a reliable and, to a certain
degree, expected and “safe” behavior has to be ensured.
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In this paper, our focus is on such faults in configuration
knowledge-bases an their consequences. Of course, another source
for failure is in the configuration algorithm’s implementation, i.e.,
the reasoning engine, itself. While such faults are outside our paper’s
focus, the generated tests can also be used to test the reasoner.

Regarding fault detection and isolation, the size of a knowledge-
base is of certain interest. That is, if the knowledge-base itself, or the
configuration space, is very small, exhaustive testing might even be
feasible and a valid option for specific situations. However, in case
of huge knowledge-bases or huge configuration spaces, exhaustive
testing is practically impossible. For instance, and without loosing
generality, let us assume the example application of parameter con-
figuration. There the purpose is to find a value assignment to all avail-
able system parameters, in order to receive a setup that implements
a desired functionality. If we have parameters p1, . . . , pn, each tak-
ing values from a domain D with size k, an exhaustive search would
require us to test kn possible configurations, which, for the obvious
reasons, is most likely infeasible for those values for k and n expe-
rienced in practice. Therefore, we require effective alternatives that
allow us to systematically focus our testing efforts.

In system testing, where we often have to test in the context of
alternative “environments’, we suffer from a similar problem. For in-
stance, if we want to test a web page, we have to consider various
hardware platforms from PCs to smart phones and tablets, a variety
of operating systems, a set of web browsers commonly used, and so
on. Testing the web page in the context of all the possible “configu-
rations” is of course an achy task that requires a lot of resources. An
empirical study (see e.g., [12]) showed, however, that not all combi-
nations of parameter value assignments are necessary for revealing a
bug. Rather, it seems sufficient to consider local parameter configu-
rations. Implementing the concept of combinatorial testing (see also
Section 4), we aim to cover all local parameter combinations up to,
or of, a given size in a test suite. That is, all the combinations for
(all possible) chosen “local” subsets of parameters, which allows us
to dramatically reduce the number of required tests. Of course the
choice of the subset size directly influences the “locality” of the test
case generation process.

In this paper, we discuss the testing problem for configuration
knowledge-bases and propose the use of combinatorial testing for
automated test input generation. We introduce our preliminary def-
initions using a simplified example from the e-vehicle domain, and
furthermore discuss two different testing aspects. First, we consider
testing of different configurations. And second, when considering the
desired functionality as being changeable, there arises the question of
whether there actually is a valid configuration for a certain combina-
tion of functionalities.

Our paper is organized as follows. First, we discuss some related
research with a focus on testing of knowledge-based systems in gen-
eral. Afterwards, we introduce the foundations of configuration using



a running example. We then use the same example to discuss com-
binatorial testing. After the introduction into combinatorial testing,
we discuss testing of configuration knowledge-bases in more detail.
Finally, we conclude the paper and outline future research directions.

2 RELATED RESEARCH

Knowledge-based systems are used for various purposes like con-
figuration, diagnosis, and also decision support, e.g., for high-level
control of systems. For all these application areas, systems have to
be predictable, that is, they have to behave as expected and do not
cause any trouble leading to a loss of resources or even harm peo-
ple. Despite this fact, it is interesting to note that there has not been
a huge number of papers dealing with testing, verification, and val-
idation of knowledge-based systems. Robert Plant [17, 18] was one
of the first dealing with verification, validation, and testing of expert
systems and knowledge-based systems in general. There is also an
earlier survey available (see [13]) that deals with tools for validation
and verification of knowledge-based systems.

Regarding testing of knowledge-based systems, it is also worth
mentioning El-Korany and colleagues’ work [5], where their focus
is on the testing methodology. There the authors distinguish differ-
ent cases where testing is required, i.e., inference knowledge testing
and task knowledge testing. The objective behind their work was to
increase the level of correctness of knowledge-based systems. Other
work includes [9], where Hartung and Håkansson discuss test au-
tomation for knowledge-based systems. Their approach works for
production rules that are extracted from the knowledge-bases.

Hayes and Parzen [10] focused more on the question of “to what
degree a knowledge-based systems fulfills its purpose”, that is, as
indicated in the title of their publication, on achieving the desired
behavior. In order to answer the question about the quality of de-
cisions coming from a knowledge-based system, Hayes and Parzen
introduced a special metric (QUEM) to judge the quality of the solu-
tions. The proposed approach is essential for measuring the overall
performance of a knowledge-based system.

To the best of our knowledge, there is only little work on test-
ing configuration motors or motors that make use of configuration
methods like recommenders. Felfernig and colleagues [8, 7] discuss
the use of testing, i.e., white-box testing, and development environ-
ments in the context of recommender applications. Other work from
Felfernig and colleagues [6] mainly focuses on the second step of
debugging, i.e., fault localization and correction, but still requires
test cases for finding inconsistencies between the behavior coded in
a knowledge base and the expected behavior, which originates from
knowledge engineers or customers of the configuration system.

Tiihonen and colleagues [20] described a rule-based configura-
tor and also introduced a more or less model-independent testing
method. In their approach the configurator is tested using randomly
generated requirements given to the configurator. Besides discussing
the underlying methodology Tiihonen et al. also presents empirical
results gained from 4 different configuration models. In contrast to
Tiihonen and colleague the testing approach proposed in this paper
is not a random testing approach. Moreover, our focus is more on
testing the configuration knowledge-base and not the whole configu-
rator. Although, the obtained tests can be used later for testing con-
crete implementations.

In our paper, we rely on previous research in the domain of
testing knowledge-based systems, but focus on the specific case of
knowledge-based systems for configuration. We distinguish different
cases for testing and suggest to use a specific testing methodology,

i.e., combinatorial testing, which seems to suit configuration very
well.

3 THE CONFIGURATION PROBLEM
For illustration purposes, let us consider the following simplified ex-
ample from the domain of vehicle configurations. In Figure 1, we
illustrate an example comprising an electric vehicle that contains an
electric motor, electric consumers like an air-condition, and a battery
that delivers the required electricity. Battery size and other factors,
like the driving mode, substantially influence the range of the vehicle.
The configuration knowledge base for our example comprises four
components, i.e., an air-condition, a motor, the driving mode, and the
battery - each of them offering some options, which then vary from
configuration to configuration. Let us now assume that there are two
engine types (standard and powerful), three types of air-condition
(none, manual, and electronic), two driving modes (leisure and race),
and three different batteries (type1, type2, type3), each providing a
different electric capacity. Clearly, the configured vehicle’s range de-
pends heavily on the battery and actual power consumption. That is,
for instance, if there is too much power consumption, some partic-
ular range can never be achieved. The range, however, reflects an
important part of a customer’s needs. While customer A is satisfied
when she can drive the car for one day in a city for no more than 100
km, customer B expects his car being able to cover more than 200
km before it has to be recharged. Other customer requirements might
concern air-conditioning, or the availability of a particular driving
mode.

Figure 1. Configuration problem of an electric vehicle

In the following, we discuss the formalization of our e-vehicle
configuration example, but let us introduce the definition of a con-
figuration problem first.

Definition 1 (Configuration problem) A configuration problem is
a tuple (SD ∪ REQ,PARTS,MODES) where SD is the system de-
scription, REQ are the requirements, and PARTS are the configurable
parts that are allowed to be set to particular modes from MODES.

We assume that SD and REQ are first order logic formulae. Other
formalisms might also be used requiring the existence of consistency



checks and reasoning capabilities. Our definition of the configuration
problem assumes that the functionality or behavior of the parts (from
PARTS) are defined in SD for a particular mode (from MODES). For
our e-vehicle example, we consider 4 different parts: the electric mo-
tor (emot), the air-condition (ac), the driving mode (dm) and the bat-
tery (bat), i.e., PARTS = {emot, ac, dm, bat}.

What is missing, is the configuration knowledge and the require-
ments. Regarding the latter, we assume that we want to distinguish
slow acceleration cars (slowacc) from fast acceleration cars (fastacc),
as well as the availability of air-condition cooling (cooling). More-
over, a user might specify the maximum distance before recharging,
which might be city for less than or equal 100 km, interurban for dis-
tances up to 250 km, and max, otherwise. In the following, we depict
SD for our running example. In the system description, we make use
of the predicate mode that assigns a component a certain parameter
value, cons for fixing the power consumption of a part, and avpow
for stating the available electrical power for batteries.

Electric motor: The standard engine provides slow acceleration
only, but draws less electrical power. The powerful motor provides
fast acceleration but consumes more electricity as a downside.

mode(emot, standard)→ (cons(emot, 300)∧ slowacc)
mode(emot, powerful)→ (cons(emot, 400)∧ fastacc)

Air-condition: If there is no air-condition, then there is no power
consumption and also no cooling. The manual air-condition draws
less power than the electronic one. Both provide cooling.

mode(ac, none)→ (cons(ac, 0)∧¬cooling)
mode(ac,manual)→ (cons(ac, 100)∧ cooling)
mode(ac, electronic)→ (cons(ac, 150)∧ cooling)

Driving mode: A leisure driver consumes no additional electricity
on top of the power required to drive the motor. A racy driver
draws more power due to higher acceleration.

mode(dm, leisure)→ (cons(dm, 0))
mode(dm, race)→ (cons(dm, 100))

Battery: The three battery types have varying capacities.

mode(bat, type1)→ (avpow(bat, 450))
mode(bat, type2)→ (avpow(bat, 600))
mode(bat, type3)→ (avpow(bat, 800))

Other constraints: There are several further domain-dependent
constraints: The racy driving mode can only be obtained when
having a powerful motor, i.e., it is not possible to have fast accel-
eration without the right motor.

¬ (mode(dm, race)∧¬fastacc)

In addition, we have to ensure that a component cannot be in more
than one mode simultaneously,, and that some available functions
are in contradiction, e.g., slow and fast acceleration.

¬ (mode(emot, standard)∧mode(emot,manual))
¬ (mode(none, standard)∧mode(manual,manual))
¬ (mode(none, standard)∧mode(manual, electronic))
¬ (mode(none,manual)∧mode(manual, electronic))
¬ (mode(dm, leisure)∧mode(dm, race))
¬ (mode(bat, type1)∧mode(bat, type2))
¬ (mode(bat, type1)∧mode(bat, type3))
¬ (mode(bat, type2)∧mode(bat, type3))
¬ (slowacc∧ fastacc)

The power consumption of all vehicle parts should never exceed
the available power, so that we add an integrity constraint:

avpow(bat, B)∧ cons(emot, E)∧ cons(ac, A)∧
cons(dm, D)→ B > (E +A+D)

Finally, we have to map power consumption and available power
to the vehicle’s maximum distance (without recharging) class.

avpow(bat, B)∧ cons(emot, E)∧ cons(ac, A)∧
cons(dm, D)∧B − (E +A+D) > 99→ city

avpow(bat, B)∧ cons(emot, E)∧ cons(ac, A)∧
cons(dm, D)∧B − (E +A+D) > 200→ interurban

avpow(bat, B)∧ cons(emot, E)∧ cons(ac, A)∧
cons(dm, D)∧B − (E +A+D) > 400)→ max

It is worth noting that the above definition allows to derive differ-
ent maximum distances at the same time. If the distance is larger
than 400 city, interurban, and max become valid. This could be
avoided via integrity constraints or chaining to constraints, in or-
der to get non-overlapping definitions. However, this definition is
intended such as to allow to specify a minimum capability.

Now let us we define formally what we understand about a con-
figuration. Intuitively, a configuration has to do with a mode assign-
ment, which corresponds to choosing a certain part, e.g., setting the
battery to type1 means that we want this battery in our configuration.

Definition 2 (Configuration)
Let (SD∪REQ,PARTS,MODES) be a configuration problem. A con-
figuration is an assignment of a particular mode to each of the parts,
i.e., a set C is a configuration, if and only if |C| = |PARTS| and
∀ p ∈ PARTS : ∃mode(p,m) ∈ C where m ∈ MODES.

As this definition ignores REQ and SD, it induces the whole con-
figuration space. Being interested only in valid configurations, i.e.,
those that do not contradict REQ and SD, we define them as follows:

Definition 3 (Valid configuration) Let C be a configuration for the
configuration problem (SD∪REQ,PARTS,MODES). Configuration
C is valid if and only if SD ∪ REQ ∪ C is satisfiable.

Clearly Definition 3 does not ensure that a valid configuration
meets the requirements. Hence, we define a suitable configuration.

Definition 4 (Suitable configuration) Let C be a valid configura-
tion for the configuration problem (SD ∪ REQ,PARTS,MODES). C
is suitable iff the requirements REQ can be derived from the system
description and the configuration, i.e., SD ∪ C |= REQ.

The user requirements have a direct impact on the space of suit-
able configurations. Clearly, REQ = {city} has more suitable con-
figurations than the requirements REQ = {city, cooling}. The given
definitions of configuration are close to those of reconfiguration and
parameter configuration, e.g. from [19, 15]. However, to some extent,
generative configuration, e.g., [19], can also be handled, when as-
suming a boundary for involved components and connections. Each
potential component and connection has to be defined in the sys-
tem description having two modes. One is for indicating the use of
a component or connection in a configuration, and the other for stat-
ing that the component or connection is not used. In addition, some
integrity constraints have to be specified, in order to ensure that in a



final configuration there is no connection without the corresponding
components. Note that for larger systems and configurations such a
bounded variant might lead to a description that cannot be used for
computing configurations in reasonable time, which does not contra-
dict the observation that the given definitions - in principle - allow
for specifying different configuration problems.

Let us come back to our running example and the definition of
suitable configurations. When stating REQ = {city, cooling} we can
obtain the suitable configuration{

mode(emot, standard),mode(ac,manual),
mode(dm, leisure),mode(bat, type1)

}
but also{

mode(emot, powerful),mode(ac, electronic),
mode(dm, leisure),mode(bat, type2)

}
among others. The configuration{

mode(emot, powerful),mode(ac, none),
mode(dm, leisure),mode(bat, type1)

}
would be a valid one, but is not suitable as cooling is not established.
For computing configurations meeting requirements, we refer the in-
terested reader to [19] or [15].

What remains now, is the question whether the formalized config-
uration problem represents reality and results in the desired configu-
rations. Hence, we need to test the configuration knowledge-base. To
this end, in the next section we introduce a certain testing methodol-
ogy suitable for this task.

4 COMBINATORIAL TESTING
Combinatorial testing is a method for the algorithmic computation of
tests and in particular test input data for a system under test (SUT).

An answer to the question of how much test input data we should
generate in order to reveal undetected faults is of great practical im-
portance. As mentioned before, for n inputs with k possible values,
an exhaustive approach would require us to test kn combinations.
When missing an important combination, so that a fault remains in
the source code, the consequences might be catastrophic, especially
for safety-critical systems. Recently, researchers suggested not to
consider all input value combinations, but only certain ones focusing
on an exhaustive “local” search (see e.g. [3, 23, 24]). The underlying
idea is that while input combinations might be required in order to
reveal a bug, in practice, we can restrict the size of considered com-
binations and consider multiple “local” combinations in a test case.

Combinatorial testing formalizes this idea of considering a certain
combination of inputs - in our case parameter subsets of size -, e.g., 2
or 3, where all possible value combinations are tried. Regarding the
considered combination of inputs we distinguish the strength of com-
binatorial testing, e.g., strength 2 or 3. Each strength t (where t ≥ 2)
requires that each t-wise tuple of values of the different system pa-
rameters is covered at least once in the test suite, which reduces the
necessary number of test cases substantially. Of course, the strength t
could also be set to the maximum in order to do an exhaustive search.
The natural question is then if this method is sufficient. In [12], for
example, the authors report on an empirical study considering vari-
ous programs from different domains and showed that it was enough
to consider six-way interactions in order to detect all faults.

We now illustrate combinatorial testing in the context of our run-
ning example, where we restrict our focus purely on the testing

methodology. Even more details are offered in the next section. For
brevity let us consider the component modes as inputs:

input values
emot standard, powerful
ac none, manual, electronic
dm leisure, race
bat type1, type2, type3

When searching for all two-way combinations, i.e., combinations
of values for two particular inputs, we would obtain results similar
or equivalent to the one depicted in Table 1. There for each combina-
tion of two inputs, all possible value combinations are given, which
results in 9 test cases. For comparison reasons, we also depict the test
cases for strength 3 in Table 2. It is worth noting that, when consid-
ering all combinations, we would finally obtain 36 test cases.

Table 1. All two-way interactions for the e-vehicle example

emot ac dm bat
1 powerful none race type1
2 standard none leisure type2
3 powerful none leisure type3
4 standard manual race type1
5 powerful manual leisure type2
6 standard manual race type3
7 powerful electronics leisure type1
8 standard electronics race type2
9 powerful electronics race type3

The significant advantage of combinatorial testing is that the num-
ber of test cases can be reduced while still considering combinations
of input values. In order to implement combinatorial testing as a test
case generation method, the following steps are required:

1. First, someone has to write a model of the input space, comprising
the inputs and their value domains.

2. The combinatorial design procedure takes this input space and
generates an array where each row is simple a test case describing
the value for each input considering the given strength t.

3. Every row is delivered back as a single test case describing poten-
tial input data (but not the expected output).

Another benefit of combinatorial testing is that Steps 2 and 3 can
be automated completely. There are tools available for computing
the test cases, e.g., the ACTS combinatorial test generation tool [16].
ACTS has been developed jointly by the US National Institute Stan-
dards and Technology (NIST) and the University of Texas at Arling-
ton and currently has more than 1,400 individual and corporate users.

A drawback of combinatorial testing is that only test input data is
generated. Hence, the oracle problem, i.e., classifying the computed
output as being correct or not, still remains for combinatorial testing.
However, at least, combinatorial testing offers a structured and well
defined method for test input data generation that can be effectively
used in practice.

Regarding an algorithm for computing test cases using combinato-
rial testing, we refer the reader to the available literature. The under-
lying data structure for computing the test is the mixed-level covering
array which can be defined as follows (see [4] ).

Definition 5 A mixed-level covering array which we will denote as
MCA(t, k, (g1, . . . , gk)) is an k × N array in which the entries of



Table 2. All three-way interactions for the e-vehicle example

emot ac dm bat
1 standard none leisure type1
2 powerful none race type1
3 standard none race type2
4 powerful none leisure type2
5 standard none leisure type3
6 powerful none race type3
7 standard manual race type1
8 powerful manual leisure type1
9 standard manual leisure type2

10 powerful manual race type2
11 standard manual race type3
12 powerful manual leisure type3
13 standard electronics leisure type1
14 powerful electronics race type1
15 standard electronics race type2
16 powerful electronics leisure type2
17 standard electronics leisure type3
18 powerful electronics race type3

the i-th row arise from an alphabet of size gi. Let {i1, . . . , it} ⊆
{1, . . . , k} and consider the subarray of size t×N by selecting rows
of the MCA. There are

∏t

i=1
gi possible t-tuples that could appear

as columns, and an MCA requires that each appears at least once.
The parameter t is also called the strength of the MCA.

The mixed level covering array defines all possible combinations
of t inputs having a finite value domain of gi for an input i. It is worth
noting that in combinatorial testing we have to have finite domains
(which is perfectly fine in case of configuration knowledge-bases).
We might also remark that the technique for discretizing the param-
eter values is referred to as input parameter modeling in combina-
torial testing [11]. After discussing combinatorial testing, we show
how combinatorial testing can be effectively used for testing config-
uration knowledge-bases in the next section.

5 TESTING KNOWLEDGE-BASES
The obvious purpose of testing is to reveal a SUT’s faults. To this
end, the SUT is executed using certain input values, and the resulting
behavior is logged. This behavior is compared with the expected one.
In case of deviations, a fault is detected and we certainly get inter-
ested in the corresponding root causes. In his ACM Turing Lecture
1972, Edsger W. Dijkstra mentioned that ”program testing can be
a very effective way to show the presence of bugs, but is hopelessly
inadequate for showing their absence”. Hence, someone might be
interested in efficiently detecting deviations, i.e., finding the right in-
put that causes the misbehavior. Finding such an input might be like
finding a needle in a haystack. Testing methods like combinational
testing help in this respect.

For a more detailed view on testing, we recommend Myers
book [14], where he - aside covering other issues - introduces 10
testing principles. In the 5th one, Myers mentions that ”test cases
must be written for input conditions that are invalid and unexpected
as well as for those that are valid and expected”. Hence, there is a
requirement not only to test for expected results, but also to execute
a SUT using input values for which the SUT was not designed. In
case of a configuration knowledge base, this means that we have to
use also queries where we expect no solution due to inconsistencies
arising during resolution.

Testing is based on test cases. We formalize test cases in a simpli-
fied form appropriate for our purposes.

Definition 6 (Test case) A test case for a SUT is a tuple (IN,OUT)
where IN is a formalization of the input values, and OUT defines the
expected output when executing the SUT using IN.

We say that a test case (IN,OUT) is a passing test case for a SUT
if the execution of SUT using IN returns an output that is not in con-
tradiction with OUT. Otherwise, we say that the test case is a failing
test case. A test suite is a set of test cases. In order to test a SUT, we
are interested in having a test suite that comprises at least one fail-
ing test case. If there is no such test case, we assume the SUT to be
correct with respect to the test suite.

After discussing some basic testing principles, the question re-
mains of how to actually test configuration knowledge-bases. Ac-
cording to Definition 1, the formalized knowledge covers the system
description SD and the requirements REQ. What we actually want
to ensure is that when querying the knowledge-base using a certain
request, we obtain the expected result. Hence, for testing purposes,
we are interested mainly in testing SD and not REQ.

There are some additional aspects when discussing testing con-
figuration knowledge-bases. For testing ordinary programs, the role
of input and output variables is well known. For configuration prob-
lems, someone might, however, also consider REQ as input and the
set of suitable configurations SCONF as output. It might also be de-
sirable to ask for the requests to be obtained when assuming a certain
configuration. In terms of configurations, most likely there are some
valid configurations that are not suitable. Others are not even valid.
According to Myers 5th testing principle, however, we also have to
check the invalid and unexpected cases.

We now formalize these two testing problems. Let us assume a
system description SD that describes configuration knowledge re-
garding PARTS and MODES. The first testing problem is for check-
ing whether the derived suitable configurations are the correct ones.

Definition 7 (Testing configuration) The testing configuration
problem concerns testing the knowledge-base in its capabilities for
deriving the expected configurations, and can be characterized as
follows:

Input: SD, PARTS, and MODES
Objective: Finding test cases of the form (REQ, SCONF), where

REQ are requirements, and CONF is a set of expected configura-
tions for the configuration problem (SD∪REQ,PARTS,MODES).
Note that CONF might be empty in case of inconsistencies. Other-
wise, CONF is expected to comprise suitable configurations only.

The second testing problem is related to checking whether given
configurations lead to the derivation of the correct requirements, if
there are any.

Definition 8 (Testing requirement derivation) The testing re-
quirement derivation problem captures the case where we are
interested in testing the capabilities of the knowledge base to derive
requirements from conflicts. It can be characterized as follows:

Input: SD, PARTS, and MODES
Objective: Finding test cases, of the form (C,R) where C is a con-

figuration and R is the expected result. Obviously, R might be
⊥ in case the configuration itself lead to an inconsistency, i.e.,
SD ∪ C |= ⊥. R might comprises all requests for which C is a
suitable configuration, or might be empty if there are no requests
for which C is suitable.



In order to solve both configuration specific testing problems, we
need a method for computing input values, i.e., requirements respec-
tively configurations, and the resulting values. For the first part, we
can easily make use of combinatorial testing with the advantage
of a reduced number of test cases to be computed while still re-
taining the capabilities for revealing a faulty behavior. Computing
the expected outcome in an automated fashion, however, is not di-
rectly possible, because of a missing specification. Hence, we have
to rely on the knowledge engineer to provide this information. In the
testing community, this problem is referred to as the oracle prob-
lem. There are some related methods like model-based testing (e.g.,
see [22, 21]) or metamorphic testing (e.g., see [1, 2]). The latter uses
symmetries in the functions or systems to be tested in order to gain
information about the correct behavior. For example, when testing
the sinus function implementation, we can make use of the property
sin(x) = sin(2π+x). If available, such techniques can be also used
for testing configuration knowledge-bases. However, in the following
we discuss the overall testing process ignoring metamorphic testing.

Algorithm 1 TEST CONF(SD,PARTS,MODES,CM)

Input: A system description SD, its component set PARTS, their
modes MODES, and a combinatorial testing model CM for require-
ments.
Output: A test suite TS where also the result of the test is stored for
each test case

1: TS := ∅
2: t := 2
3: flag := FALSE
4: repeat
5: Call the combinatorial testing algorithm using CM and t and

store the result in T .
6: for all t ∈ T do
7: Convert t to its corresponding requirements representation

REQ.
8: Call the configuration engine on (SD ∪

REQ,PARTS,MODES) and store the result in SCONF.
9: Present REQ and SCONF to the user for obtaining a classi-

fication UC ∈ {PASS,FAIL, ?}
10: if UC = FAIL then
11: Ask the user for SCONF
12: flag = TRUE
13: end if
14: TS := TS ∪ {(REQ, SCONF,UC)}
15: end for
16: t := t+ 1
17: until flag or no more t-way combinations are possible
18: return TS

In the proposed testing methodology for configuration knowledge-
bases, we make use of combinatorial testing for generating the inputs
for both problems, the testing configuration as well as the testing re-
quirement derivation problem. We use these inputs, and a configura-
tion engine (respectively a theorem prover) for generating the current
output. The input and the corresponding output is given to the user
(e.g., the knowledge engineer) for classifying the result as FAIL or
PASS. Note that we also have to consider that the user has no clear
understanding of the expected outcome. In this case, the classifica-
tion inconclusive (i.e., ?) can be used. This test input generation and
classification process that keeps the user in the loop, is started con-

sidering 2-way combinations. If no FAIL is obtained, the process
can be continued for 3-way combinations or even stronger ones, of
course re-using previously obtained classifications. The process can
definitely stop when strength t in combinatorial testing (for obtain-
ing t-way combinations) reaches the number of variables used. Ex-
perimental surveys suggest that it seems enough to consider 6-way
combinations (see [12]).

Algorithm 1 summarizes the steps necessary for computing a test
suite in order to solve the testing configuration problem. The algo-
rithm for solving testing requirement derivation problem is very sim-
ilar. Algorithm 2 shows the necessary steps. The only differences are
in the for-loop of the algorithm, where we have to take care of the
different situations. Both algorithms terminate assuming a finite set
of requirements and configurations. When ignoring the time required
for theorem prover, computing a configuration, and user interaction,
the time required for executions is mainly bound by the time required
for combinatorial testing.

Algorithm 2 TEST REQ(SD,PARTS,MODES,CM)

Input: A system description SD, its component set PARTS, their
modes MODES, and a combinatorial testing model CM for configu-
rations.
Output: A test suite TS where also the result of the test is stored for
each test case

1: TS := ∅
2: t := 2
3: flag := FALSE
4: repeat
5: Call the combinatorial testing algorithm using CM and t and

store the result in T .
6: for all t ∈ T do
7: Convert t to its corresponding configuration representation

C.
8: if SD ∪ C |= ⊥ then
9: R := ⊥.

10: else
11: Call the the theorem prover with input SD ∪ C and store

the derivable requirements in R.
12: end if
13: Present C and R to the user for obtaining a classification

UC ∈ {PASS,FAIL, ?}
14: if UC = FAIL then
15: Ask the user for R
16: flag = TRUE
17: end if
18: TS := TS ∪ {(C,R,UC)}
19: end for
20: t := t+ 1
21: until flag or no more t-way combinations are possible
22: return TS

Finally, it is worth discussing the computation of combinatorial
tests in Algorithm 1 and Algorithm 2. For Algorithm 2, we al-
ready computed the test cases in the previous section. See, for ex-
ample, Table 1 for all two-way combinations. There, test case 4
would lead to an inconsistency when calling the theorem prover,
because the standard motor would lead to slowacc which contra-
dicts the rules ¬(mode(dm, race)∧¬fastacc) in combination with
¬(slowacc∧ fastacc). Hence, we would be able to detect the case



where a knowledge-base is missing some of the mentioned rules.
For obtaining the combinatorial tests for Algorithm 1, the situation

is a little different (but not much). There, we are interested in require-
ment combinations. As discussed before, there might be cases where
we do not want to specify all requirements. Hence, we have to find
a model for the combinatorial testing algorithm where we are able
to take not care on a certain requirement. For our e-vehicle exam-
ple, we have three different requirement categories: cooling, driving
distance, and acceleration, each of them with the following possible
values:

input values
cooling true, false,
driving distance city, interurban, max,
acceleration slowacc, fastacc,

Note that the value is used to indicate that this requirement is cur-
rently not active. When using this model as input to the ACTS tool,
we are able to obtain 12 combinatorial tests of strength 2 depicted
in Table 3. Each row comprises requirements for our configuration
model. Some of the requirements may lead to suitable configura-
tions, some may not. This clarification has to be performed when
considering the test cases in Algorithm 1.

Table 3. All two-way interactions for the requirements of the e-vehicle

driving distance acceleration cooling
1 city slowacc false
2 city fastacc
3 city true
4 interurban slowacc
5 interurban fastacc true
6 interurban false
7 max slowacc true
8 max fastacc false
9 max

10 slowacc true
11 fastacc false
12

From the results obtained using our running example we are able
to conclude that combinatorial testing – in principle – can be used
to solve the two testing problems, which correspond to configura-
tion knowledge-bases. These two problems correspond to the two
different questions someone would ask during and after the devel-
opment of configuration knowledge-bases. The first question, deals
with the challenge of ensuring whether a knowledge-base is able
to derive expected configurations. The second question is related to
the evaluation whether a knowledge-base allows for deriving con-
figurations that fulfill the given requirements. Both questions have
to be addressed within the development of configurators and their
knowledge-bases in order to gain trust in their correctness.

6 CONCLUSION
In this paper, we raised the question of how to test configuration
knowledge-bases. We focused on model-based configuration and de-
fined two testing problems. One for checking whether obtained con-
figurations are in line with the requirements, and the other for test-
ing whether the correct set of configurations is returned for given
requirements. The proposed testing method relies on combinatorial

testing for computing input data needed. We argued that combina-
torial testing is very well suited for configuration testing, because
of ensuring a good fault detection capability while still reducing the
number of input combinations to consider. In practice, limited com-
binations, i.e., five- to six-way combinations have turned out to be
sufficient for revealing faults that have not been found before. The
question whether, e.g., six-way combinations are enough for config-
uration knowledge-base testing, will have to be addressed by future
research and corresponding experiments.

In future research also the proposed approach has to be em-
pirically evaluated. For such an evaluation, large configuration
knowledge-bases should be used. Moreover, by introducing faults in
the knowledge-bases someone would be able to check, whether the
proposed approach is capable of detecting faults. Ideally, the fault de-
tection capabilities should be compared with other approaches, e.g.,
random testing. Another interesting question is due to the testing ca-
pabilities of existing knowledge-based configuration tools. Do they
support testing? Which testing strategies do they suggestion? These
two questions among others can be answered, when carrying out a
case study with the objective of evaluating existing configuration so-
lutions. It is worth noting that we focussed more on the principles
of testing configuration knowledge-bases in this paper and provided
a solution. We leave a detailed empirical analysis of the proposed
approach for future research.
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erative constraint-based configuration of large technical systems’, AI
EDAM, 12, 307–320, (9 1998).

[20] Juha Tiihonen, Timo Soininen, Ilkka Niemelä, and Reijo Sulonen, ‘Em-
pirical testing of a weight constraint rule based configurator’, in ECAI
2002 Configuration Workshop, pp. 17–22, (2002).

[21] J. Tretmans, ‘Model-based testing and some steps towards test-based
modelling’, in Proceedings of the 11th International School on Formal
Methods for Eternal Networked Software Systems (SFM 2011), (2011).

[22] M. Utting and B. Legeard, Practical Model-Based Testing - A Tools
Approach, Morgan Kaufmann Publishers Inc., 2006.

[23] Cemal Yilmaz, Myra B Cohen, and Adam A Porter, ‘Covering arrays
for efficient fault characterization in complex configuration spaces’,
Software Engineering, IEEE Transactions on, 32(1), 20–34, (2006).

[24] Linbin Yu, Yu Lei, R.N. Kacker, and D.R. Kuhn, ‘Acts: A combinatorial
test generation tool’, in Software Testing, Verification and Validation
(ICST), 2013 IEEE Sixth International Conference on, pp. 370–375,
(2013).


