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ABSTRACT
This paper describes a citizen science system for flora mon-
itoring that employs a concept of missions, as well as an au-
tomatic approach for flower species classification. The pro-
posed method is fast and suitable for use in mobile devices,
as means to achieve and maintain high user engagement.
Besides providing a web-based interface for visualization,
the system allows the volunteers to use their smartphones
as powerful sensors for collecting biodiversity data in a fast
and easy way.

The classification accuracy is increased by a preliminary
segmentation step that requires simple user interaction, us-
ing a modified version of the GrabCut algorithm. The pro-
posed classification method obtains good performance and
accuracy, by combining traditional color and texture fea-
tures together with carefully designed features, including a
robust shape descriptor to capture fine morphological struc-
tures of the objects to be classified. A novel weighting tech-
nique assigns different costs to each feature, taking into ac-
count the inter-class and intra-class variation between the
considered species.

The method is tested on the popular Oxford Flower Da-
taset, containing 102 categories and we achieve state-of-the-
art accuracy while proposing a more efficient approach than
previous methods described in the literature.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Online Infor-
mation Services; I.4 [Image Processing and Computer
Vision]: Scene Analysis; I.5 [Pattern Recognition]: Ap-
plications

Keywords
Computer vision, fine-grained classification, flora classifica-
tion, citizen science

1. INTRODUCTION
Citizen science is not a new concept: the idea of conduct-

ing research by citizens, gathering crowdsourced data that is
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analyzed for scientific purposes, has been active for genera-
tions, dating back to 1900, when the Christmas Bird Count
(CBC)1 project started. It was a form of mass collaboration
citizen science project that used paper forms sent by post to
the responsible society or research group of scientists who
requested the data.

Nevertheless, it is noticeable that the power of crowd-
sourced science is growing intensely nowadays and such pro-
jects are becoming increasingly popular, even gaining the
attention of major news media. For instance, projects such
as eBird2 and Galaxy Zoo3 are able to engage hundreds of
thousands of volunteers and are being broadly used for sci-
entific and educational purposes.

The citizen science’s popularity boost is given by the fact
that data collection and analysis tasks became much eas-
ier to address. Even simple and low cost smartphones are
equipped with GPS and high-resolution cameras that allow
huge amounts of data to be collected with small effort. Also,
the Internet brings together a high number of volunteers to
work on this data remotely and simultaneously. However,
there are still difficulties that prevent the further growth of
this methodology.

One challenge of citizen science projects is how to obtain
high and constant engagement of the users. Although some
volunteers are motivated by the scientific contribution on
its own, it is possible to resort to “gamification”, the use
of game elements in non-game contexts [7], to get others
to further engage with the community and contribute more
enthusiastically [8].

Project Noah4, for instance, is a large scale project in
which every report is assigned to a specific mission, whose
goal is to monitor certain types of flora or fauna classes in
a specific location. There are also many aspects that can
increase user motivation, as observed in [28]. For instance,
the volunteers must have confidence that the collected data
is being used: therefore, they should have easy access to the
visualization of the collected data. Also, it is important to
notice that some users are not willing to modify their daily
activities to report data, and providing training and mentor-
ing for volunteers to increase their skills can be fundamental
for valid data registration.

This last point highlights an additional drawback of proje-

1http://birds.audubon.org/christmas-bird-count
2http://www.ebird.org/
3http://www.galaxyzoo.org/
4http://www.projectnoah.org/
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Table 1: Review of citizen science projects in the botanical field.

Project Goal Reported data Platform Scope Limitations

Conker Tree
Science

Plague monitoring
Presence or absence of affected
plants and severity of plague

damage

Web,
Android,
iPhone

UK
Requires training to

differentiate natural aging
and plague effect

Plant Tracker
Monitor invasive plants

(non-native)
Presence of 14 types of invasive

plants

Web,
Android,
iPhone

UK
Requires training to

differentiate native and
invasive plants

The Great
Sunflower
Project

Monitor pollinators
Presence and quantity of

pollinators (bees and
hummingbirds), plant type

Web US
Requires training to

differentiate bees from
wasps and flies

Melibee
Project

Monitor sweetclover
(invasive) effect in the

pollination of blueberry
and cranberry (native)

Phenology of blueberry,
cranberry and sweetclover,

monitoring 5 plants during a
certain period

Web Alaska
Requires repetitive work

and training to differentiate
the monitored species

Wildflowers
count

Annual wildflowers count
Identify 99 species in a

randomly chosen 1 km2 area
Web UK

Requires training to identify
99 types of flowers, location

chosen by the system

Virbunum
Leaf Beetle

Monitor plagues in
Viburnum species

Presence of infected plants Web NY
Requires training to identify

Viburnum species

BudBurst
Study effects of climate

change on plant
phenology

Presence and quantity of flowers
and fruits (single or regular

reports)

Web,
mobile

US
Requires training to identify

the monitored flowers

E-Flora BC Build flower catalog Geo-located rare species Web
British

Columbia
Only monitors significant

species

Project Noah
Build fauna and flora

catalog
Geo-located pictures within a

mission

Web,
Android,
iPhone

Worldwide Not all species are identified

LeafSnap Build plant catalog Geo-located leaf pictures iPhone
NY /

Washington
DC

Requires picture of a single
leaf in a white background

cts monitoring biodiversity: relying on the users having the
knowledge to classify, without further assistance, the speci-
mens being reported. This can be a difficult task when one
considers the large number of species that share similar mor-
phology. Misclassified inputs can compromise the environ-
mental research, and the impossibility to assure the quality
of the analysis made by non-experts may be the bottleneck
of such projects. In this regard, an algorithm to assist the
user would be very useful. A system that could automati-
cally recognize an input image with small effort, or at least
retrieve a list of the most similar species, could make the user
feel more confident, perhaps even engaging a larger number
of volunteers, preventing errors and accelerating the iden-
tification process. If such a system could be deployed in a
mobile device, the benefits would be even greater, once the
classification could be executed at collection time.

To assist non-expert classification, automatic works in the
flora field – which is the domain of focus of this paper –
are getting good attention, and recent studies were able to
achieve good results in leaf and flower classification [1, 3,
18, 19]. This popularity is evident as we see efforts such as
the recent Plant Identification Task, promoted by the widely
popular ImageCLEF challenge [9].

Besides robustness, automatic or semi-automatic methods
can reduce data collection time. For instance, as indicated
by Zou and Nagy [33], for a dataset of 102 flower species,
the time for a semi-automatic classification is much lower
than that made by humans alone.

1.1 Related Work

1.1.1 Citizen Science in the Flora Domain

Regarding automatic classification, the LeafSnap project5

offers a good differential with respect to other citizen science
projects, since it runs a shape-based algorithm to classify
plant species from their leaves automatically [15]. However,
the user needs to extract (i.e., cut) the leaf and place it on a
white background for the segmentation algorithm to work.

The segmentation method proposed by LeafSnap might
be considered harmful in an environmental aspect, once it
requires the extraction of the leaves from their natural sur-
roundings. Also, lighting variations can affect the back-
ground color and interfere in the segmentation result. Fi-
nally, it is hard to extend LeafSnap for additional domains
other than leaf classification: besides taking shape infor-
mation as the only feature for classification, a segmenta-
tion method based on a fixed background is only feasible
for static species, once it is clear that, when photographing
specimens that can move, there is no guarantee that they
will remain in place.

Table 1 shows a list of various citizen science projects in
the botanical field. To the best of our knowledge, these are
the most representative projects in this area. Their limita-
tions highlights the previously discussed issues regarding the
difficulty of species identification or adaptation of the vol-
unteers routine, once the data upload requires a computer
and/or Internet connection.

Our goal is to develop a system similar to LeafSnap, but
focusing on flowers, and replacing the user effort for seg-
mentation by a simpler and less intrusive action taken in his
own device. Since our study is part of the citizen science
context, user interaction is accepted, once we assume there
is always a volunteer operating the system in his smartphone
or tablet. Our platform is developed with the concern of be-

5http://leafsnap.com/
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ing attractive to users so it can reach the largest number of
volunteers as possible. Therefore, our flower classification
algorithm must have high accuracy and also must be fast
enough so that it can run in the web browser and also in
mobile devices. Besides, we use missions to engage and en-
tertain the volunteers, following gamification principles. In
order to compare our classification results with a benchmark,
we use the challenging Oxford Flower Dataset6.

1.1.2 Flower Classification
In the flower classification field, previous studies worked

on small datasets of 10 to 17 flower species [10, 14, 20, 25],
achieving accuracy rates of 81% - 96%. Most of these works
rely on contour analysis and SIFT features [17], which is
known to be a robust descriptor, but computationally inef-
ficient.

Using larger datasets, consisting of 30 to 79 flower species,
accuracy rates vary from 63% - 94%, combining a variety
of approaches such as histograms in HSV color space, con-
tour features, co-occurrence matrix (GLCM) for texture fea-
tures, RBF and probabilistic classification [6, 29, 30]. Qi
[26] focuses on a fast environmental classification for flowers
and leaves, using spatial co-occurrence features and a linear
SVM, but accuracy is not reported.

Works on the Oxford Flower Dataset, that contains 102
flower species, reported accuracy rates no greater than 80%.
The dataset was introduced by Nilsback and Zisserman[21]
and is used by many authors. It is considered an extremely
challenging dataset, because it contains pictures with severe
variations in illumination and viewpoint, and also, due to
small inter-class variations and large intra-class variations
between the considered flower species. See some examples
of such cases in Fig. 1.

(a) Spear Thistle (left) and
Artichoke (right).

(b) English Marigold (left)
and Barbeton Daisy (right).

(c) Spring Crocus. (d) Bougainvillea.

Figure 1: Samples of the Oxford Flower Dataset. On the
top row, samples of different classes with small inter-class
variations. On the bottom, samples of the same class, with
large variations in color, texture and shape.

Using the Oxford Dataset, studies working with unseg-
mented images demonstrate lower accuracy in classification
and require powerful classifiers, that are computationally ex-
pensive [2, 11]. Khan’s work [13] relies on color and shape,
using a SIFT based approach. Kanan [12] applies salience
maps to extract a high-dimensional image representation
that is used in a probabilistic classifier. Both works require
high computation time due to their feature extraction meth-
ods.

6http://www.robots.ox.ac.uk/~vgg/data/flowers/

Using segmented images, the authors are able to achieve
a more robust classification for this dataset, though none of
the considered works is suitable for real time. Nilsback [21,
22] applies a multi-kernel SVM classifier using four differ-
ent features (color in HSV space, HOG, and SIFT in fore-
ground and boundary regions). Chai [5] proposes a robust
approach for co-segmentation (segmenting images with sim-
ilar background color distributions) and applies a SVM clas-
sifier based on color features in the Lab space and SIFT in
foreground region. Angelova [1, 16] proposes a segmenta-
tion approach, followed by the extraction of HOG features
at four different levels, encoded using LLC. The encoded
features are subject to a max pooling and a SVM classifier
is used. They mention future efforts in making a real time
approach.

1.2 Contributions and Organization
Our main goal is to develop a citizen science application

for flower monitoring whose collection is oriented by mis-
sions. Also, to assist the volunteers, we propose an algorithm
for classification of flower species that meets the following
requirements:

(i) Has high accuracy: We propose a novel approach that
relies on efficient histogram-based feature descriptors that
capture both global properties and fine shape information of
objects. This is made while leveraging a learning-based dis-
tance measure to properly weight the feature contributions,
which is a critical step for increasing accuracy as demon-
strated in previous studies [4, 31, 32].

(ii) Is fast: Mobile-based applications have a challenge re-
garding connectivity: users can only submit requests and
receive answers if their devices have access to the Internet.
There are several locations in which this kind of service is
not affordable or has poor quality, making image transfer-
ence prohibitive. Our algorithm is fast enough to run di-
rectly in the devices (without transferring information to a
server), so the user does not have to rely upon a network
connection and wait too long for a response, considering ad-
ditional time latency for uploading the image and retrieving
the classification results.

This paper is structured as follows. In Section 2, we de-
scribe the overall structure of our citizen science platform
and, in Section 3, we describe the core approach for fine-
grained classification. In Section 4, we show and discuss the
obtained classification results on the considered dataset and
our conclusions and future work are described in Section 5.

2. SYSTEM
The system is comprised of two main parts: a web portal,

organized toward data visualization and community organi-
zation, and a mobile application, aimed at data collection.
Both components arrange user-contributed data around the
concept of missions, which aggregate users with the common
goal of collecting structured and unstructured data about a
certain class of observations.

The collected data is structured in a set of attributes,
whose pre-established values are filled in by the user and re-
fer to the domain being registered. This structure allows us
to provide query-by-example features, which helps to avoid
common input errors and establish a common vocabulary for
user-contributed data. The unstructured data, on the other
hand, is comprised of images only, since we are dealing with
plants.
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(a) Image upload (b) Free-hand user marker
(in white)

(c) Classification of the
segmented input

(d) Other results (e) Screen for geo-analysis

Figure 2: System mobile interface for classification. The user uploads an image, inserts a marker for semi-automatic seg-
mentation of the input image and retrieves a scrollable screen with the top similar classes for the uploaded image, sorted by
highest probability. The observation is inserted in a map using the device’s location.

Missions are created by users and can be set as public or
private, as determined by the mission’s owner, since some
of them may contain sensitive geo-spatial data about obser-
vations belonging to endangered species. As the number of
missions in the system may be rather large, the portal ranks
them according to their activity, to make it easier for users
to engage with the rest of the community.

It is currently possible to collect geo-referenced photos
with consumer-grade mobile devices, using their cameras
and GPS receivers, as mentioned in Section 1. The steps
the user has to go through in order to submit a contribution
are highlighted in Fig. 2. For the purpose of submitting a
report, the user first needs to join one mission. After the pic-
ture is taken, he must loosely delineate the region of interest
in the image. This is used for a segmentation process that
will be described int the next Section. This step can require
user confirmation for proceeding with the next task, which
is the automatic classification of the segmented input. The
system retrieves the top 5 matches that are more similar to
the uploaded image and the user can select the correct one
or browse within a list of all the registered classes.

In situations where there is no connectivity, the algorithms
can be executed directly on the devices, as a significant range
of current mobile processors have multiple cores and some
of them have vector processing instructions, which are al-
ready supported by popular libraries for mobile platforms,
such as OpenCV. After the report is submitted (and syn-
chronized with the server, in situations of intermittent or no
connectivity), other users can view and bookmark this re-
port. The feedback is provided to the users as bookmarked
reports. Additionally, the user may fill in a form contain-
ing values for the observable raw morphological attributes
of the sample. The set of supported attributes is defined
by the mission’s owner at the moment it is created, where
he can define the required fields according to the mission’s
needs. For the botanic field, some examples of attributes
are stem diameter, leaf thickness and so on.

In order to obtain more accurate classification results, we
let the user choose the category of the image he is uploading.
We currently only have trained classifiers for flowers, but the

overall concept of the system is generic for accepting data
belonging to other categories. Since observations can be
arbitrary, we need to load the corresponding classifier that
was trained with the relevant data for the current category.

3. ALGORITHM
This section describes the proposed algorithm for flower

recognition that is divided in segmentation and classification
steps. Both tasks are designed to be fast and precise and
are generic enough to be used for classifying categories other
than flowers.

3.1 Segmentation
We use the GrabCut algorithm [27] for a semi-manual

segmentation using small user interaction. This method is
also used in Qi’s work [26] due to its good performance. In
our method, instead of defining a bounding box and control
points, the user draws a free hand marker, which is more
intuitive for a general user. The marker replaces the control
points for a more refined boundary in a faster interaction.
It must involve the whole object but does not have to be
precise.

A Gaussian Mixture Model is used to learn the pixel dis-
tribution in the background (outside the marker) and pos-
sible foreground regions and a graph is built from this pixel
distribution. Edges’ weights are given according to pixel
similarity (a large difference in pixel color generates a low
weight). Finally, graph and image are segmented by a min-
cut algorithm. See an example in Fig. 2(b) of a user marker
and corresponding segmented output in Fig. 2(c).

The advantages of this approach are its simplicity in a user
perspective, generation of good segmentations and that it is
faster than the segmentation approaches proposed in Section
1.1.2, requiring average time of 1.5 second.

3.2 Classification
We compare multiple features (i.e. color, texture and

shape-based features) with histogram matching, which is
fast and invariant to rotation, scale and partial occlusion.
For each class, a weight is assigned to each feature and
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(a) Two classes that have similar color for
all samples, but variations in shape.

(b) Species that can have many different col-
ors, while having a similar shape.

(c) Two classes with similar shape and color,
but with large variation in texture.

Figure 3: A few examples of intra-class and inter-class variation between features of different training samples of six of the
considered classes.

the segmented images are matched by comparing their his-
tograms, using a kNN classifier. The difference between
two histograms is computed by a metric based on the Bhat-
tacharyya distance that is described as follows.

Consider histograms H1 and H2, with n bins. Let H1(i)
denote the ith bin element of H1, i ∈ 1 . . . n. H2(i) is defined
analogously. The distance between H1 and H2 is measured
as:

d(H1, H2) =

√√√√√√1−
∑n

i=1

√
H1(i)×H2(i)√

n∑
i=1

H1(i)×
n∑

i=1

H2(i)

Note that low scores indicate best matches. Our algorithm
compares histograms built on three features cues.

3.2.1 Features

Color.
We build a histogram of the segmented image’s colors in

the HSV space, which is known to be less sensitive to lighting
variations, using 30 bins for hue and 32 bins for saturation.
Image quantization is applied before computation and the
histograms are normalized in order to be comparable with
the proposed distance metric.

Texture.
The texture operator applied in the segmented image is

LBP (Local Binary Pattern) [23], that is commonly used in
real time applications due to its computational simplicity.
In LBP, pixels are represented as a binary number that is
product from thresholding its neighbors against it.

We use the extended version of LBP [24], that considers
a circular neighborhood with variable radius and is able to
detect details in images with different scales. Our method
computes a single histogram with 255 bins, once the consid-
ered textures are mainly uniform and spatial texture infor-
mation did not improve the classification in our tests.

Shape.
We propose the use of two simple and fast descriptors

that, when combined, are able to represent different shape
characteristics. The shape contour is partitioned in 72 bins
using fixed angles, resulting of m contour points. For each
point pi, i ∈ 1 . . .m, we compute modular and angular de-
scriptors, and both vectors are later represented as separate
histograms.

The modular descriptor is taken by computing the point
distance from the shape centroid, normalized by the major
distance dmax computed in this process. It measures the
contour relation according to the shape mass center, and

elongated shapes are easily distinguished from round shapes.
The angular descriptor computes the angles between p and
its neighbors pi−1 and pi+1, measuring the smoothness of
the contour. The proposed descriptor becomes powerful by
merging two simple features being able to represent, for in-
stance, petals length, density and symmetry.

3.2.2 Metric Learning
In order to achieve higher accuracy, we assign different

weights to the features when matching each class, as to con-
template the situations described in Fig. 3. Our idea is to
find which features are more discriminative taking into ac-
count each feature variation inside a same class, but also,
with respect to the global variation of all classes. We learn,
for each class, one weight for each of the four feature de-
scriptors. We estimate few weights due to the small number
of training samples per class.

We consider N classes, each containing M training sam-
ples, evaluated according to P features7.

Let Hp
i,j denote, for a class i, the histogram of a sample

j regarding feature p. We compute the mean histogram of a
feature p for a class i as:

H̄p
i =

M∑
j=1

Hp
i,j

M

Likewise, we define εpi as the mean distance per class i,
regarding feature p, computing the distance from all the
training samples to the mean histogram. This help us to
evaluate intra-class variations, once we are considering the
difference between all samples with respect to a histogram
that estimates the overall structure of the class.

εpi =

M∑
j=1

d(Hp
i,j , H̄

p
i )

M

Also, we compute the mean distance per feature p (εp) as
follows:

εp =

N∑
i=1

εpi

N

and we use this information to estimate inter-class varia-
tions between all types of species regarding each considered
feature. Finally, the weight λ attributed to each of the con-
sidered features p in class i is given by:

7In our tests, we use N = 102, M = 20 and P = 4, since we
consider two histograms for shape information.
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(a) Input belonging to Bearded Iris (BI) class, with large variation in color.

(b) Input belonging to Bishop of Llandaff (BoL) class, with small variation in color.

(c) Input belonging to Spring Crocus (SC) class, with large variation on texture.

(d) Input belonging to Blackberry Lily (BL) class, with small variation in texture.

Figure 4: Results for 4 different inputs. In each column, from left to right: input with user marker; segmented input and top
5 matches sorted by highest probability; respective weights λ(i, p) for the corresponding classes; 8 training samples of each
class. In the graphics, columns indicate angular, modular, color and texture features.

λ(i, p) =
1− x(i, p)
P∑

p=1

x(i, p)

,where x(i, p) = εpi − ε
p + min

p
(εp)

and we are able to take into account intra-class and inter-
class variations between all training samples, estimating how
each feature should be considered when evaluating each con-
sidered class.

After the weights computation, we employ a kNN classifier
in the test phase where the cost of matching an image I with
an image IC of class C is computed as:

C(I, IC) =

P∑
p=1

λ(C, p)× d(HI , HIC )

maxi(ε
p
i )

and select the classes with the lowest costs. We choose the
kNN classifier because it is robust and performs well with
training sets whose dimension is similar to the ones we are
dealing with.

4. RESULTS
Our tests followed the specifications for using the Oxford

Dataset as a benchmark, considering 20 training samples per
class and computing the mean-per-class accuracy. In this
dataset, the number of images in each class varies from 40
to 258. Fig. 4 shows the top 5 results for 4 different inputs.
Every image is segmented as described in Section 3.1 and
the used weights are given as described in our metric learn-
ing method. Note how the weights affect the classification
results.

Table 2 describes the algorithm’s accuracy for a variable
number of top matches, with and without using metric learn-
ing. Once our platform returns the top 5 most likely classes,

we can see that the system is able to achieve a very high
accuracy rate for a very challenging dataset.

Table 2: Algorithm’s accuracy when considering the top n
matches for the test inputs.

Metric Learning n = 1 n = 3 n = 5 n = 10
No 65.58% 83.13% 88.72% 94.11%
Yes 80.88% 92.45% 96.07% 98.33%

The results also show that weighting features can im-
prove classification significantly (+15.3%) and we are able
to achieve the best results reported on the state-of-the-art
for this dataset, in terms of accuracy, as seen in Table 3.

Table 3: Accuracy comparison with previous works using
the Oxford Dataset.

Ito and Kubota [11] 53.9%
Nilsback and Zisserman [21] 72.8%

Khan et al. [13] 73.3%
Kanan and Cottrell [12] 75.2%

Nilsback [22] 76.3%
Angelova et al. [2] 76.7%

Chai et al. [5] 80.0%
Angelova and Shenghuo [16] 80.6%

Ours 80.8%

Efficiency can not be compared precisely, because this in-
formation is not reported in all the previous works. However,
our average time for extracting and matching all features
proved to be 4 times faster than running SIFT in the im-
ages’ foreground region. The baseline work of Angelova and
Shenghuo [16] takes about 5 seconds for segmentation and 2
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seconds for classification. Our classification runs in less than
a second, and there is a tradeoff for segmentation: ours is
semi-automatic, but requires 1.5 seconds on average.

Finally, we replicated the training instances, and Table
4 shows that our method is still efficient for much larger
training sets. Approximate nearest-neighbor methods based
on hashing or kd-trees could also be used for obtaining even
higher efficiency.

Table 4: Elapsed time (in seconds) for classifying a single
input, with increasing number of training samples per class.

# samples 20 40 60 100 200 1000
Elapsed time 0.07 0.09 0.13 0.20 0.35 1.3

5. CONCLUSIONS
This paper proposes a citizen science platform based on

a novel approach for flower recognition. We introduce a
strategy for comparing feature histograms for fine-grained
classification, a robust shape descriptor and a metric learn-
ing approach that employs different weights to each feature,
that can improve classification accuracy significantly. Our
algorithm is extremely fast, being suitable for offline mo-
bile applications and was able to outperform previous works
using the popular Oxford Dataset.

Our system is organized around missions, which in gen-
eral will help us acquire more data due to gamification as-
pects. Also, besides engaging users, missions provide addi-
tional data external to the image, that may be useful for
aiding classification in the future.

Other future works include testing our algorithm in other
species that contain large variations in the considered fea-
tures (color, texture and shape), such as butterflies, fishes,
birds and so on, and evaluating more efficient classifiers.

We will also evaluate our system with real users analyz-
ing how their behavior is affected with gamification and
automatic classification techniques. Finally, we aim to use
crowdsourcing for labeling training images, in order to build
various datasets that should represent the local flora and
fauna for diverse locations.
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