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ABSTRACT

Leaves of plants can be classified as being either simple or
compound according to their shapes. Compound leaves can
be seen as a collection of simple leaf-like structures called
leaflets. However, most computer vision-based approaches
describe these two leaf categories similarly. In this paper,
we propose a new description and identification method for
compound leaves that takes into account particularities re-
lated to the arrangement of their shapes (specifically, their
division into leaflets). In fact, we propose a new multiple
leaflets-based identification approach. Our main motivation
behind this choice is that some compound leaf species may
hold variabilities in terms of their leaflets number, size and
even shape. Thus, a local description based on a certain
number of leaflets may provide greater accuracy. In our
approach, we were limited to three leaflets that were au-
tomatically extracted from image based on some geometric
assumptions inspired from botany. Then, we construct and
evaluate our identification scheme based on some classical
texture descriptors for local leaflets description and using
some state-of-the-art fusion algorithms to combine responses
obtained from each leaflet query. Experiments carried out
on compound leaves of the Pl@ntLeaves scan database have
shown an improvement in classification results with regard
to entire image query.

1. INTRODUCTION

New interdisciplinary technologies that integrate computer
vision in botanical research are being developed in response
to ecological challenges such as global climate change, rapid
urban development, destruction of habitats, overexploita-
tion of natural resources, food insecurity, biodiversity crises,
etc. In particular, computer vision studies are increasingly
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focusing on accurate, complete and user-friendly systems for
taxonomic identification of plant species (i.e, intended for
a wide range of people, not only experts). A number of
project-systems have already been built, for instance, Leafs-
nap in America [15, 19], CLOVER [25] in Asia, Pl1@ntNet[4],
ReVes [5] and ENVIROFI [1] in Europe, etc, and most of
these systems use leaves to identify plant species. In fact,
unlike other organs such as flowers, fruits or seeds, leaves
are generally easy to collect (available throughout the year)
and to scan or photograph (they have an approximately
two-dimensional shape). Moreover, they often hold discrim-
inative information that is useful for characterizing plant
species.

Existing leaf-based plant identification approaches differ
in several aspects: One is the type of feature used. Fun-
damental features are shape [22, 30, 29] and texture [9, 3,
8] which describe respectively the leaf margins and the vein
pattern, the main key indicators of leaf species. Another
aspect concerns the way the leaf is viewed: using generic or
domain-specific representations. Generic approaches consist
in using common computer vision representations such as
the Shape Context, the Curvature Scale Space, the Multi-
Scale Fractal representation, the Fourier and Wavelet Trans-
forms [8]). These methods have the advantage of being
simple and rapid. However, they are not always sufficient
to provide accurate identifications mainly due to the high
inter-class and low intra-class similarity that occur for some
species in terms of certain characteristics. For example, in
the case of the Acer Negundo (see Figure 1), the use of
contour descriptors may induce errors since some specimens
have lobed and/or serrated margins while others have en-
tire margins. For that reason, there has been a recent trend
toward using domain-specific or botanical knowledge, par-
ticularly about the leaf architecture, in order to enrich the
leaf image representation [7, 12, 23, 26]. In fact, the leaf
architecture, built and extensively used by botanists, refers
to the description and categorization of leaves according to
the properties of their structure. This includes several fo-
liar characters that describe, hierarchically, the form and the
placement of different elements constituting the leaf struc-



Figure 1: Intra-variation within the Acer Negundo
species: from right to left: lobed, serrated, entire
margins.

ture such as venation pattern (see 1°t row of Figure 2) [31,
17], marginal configurations (see 2"d row of Figure 2) [6],
shapes of leaf parts (see 3"d row of Figure 2) [14], etc. So
far, the use of this information has remained limited to some
simple characters (such as the laminar form described by
the ratio of the laminar width and height, the apical and
basal form expressed respectively by the apex and base an-
gles, etc. [16]). In this paper, we are interested in one of
the most important characters that has been less exploited:
the leaf arrangement (or type). In fact, leaves of trees are
grouped into two basic classes: simple and compound leaves
(see Figure 3).
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Figure 2: Some botanical leaf characters, from top
to bottom: Venation, margin and shape variations

In current leaf image retrieval approaches, simple and
compound leaves are described similarly by using global de-
scriptors (for the whole leaf image) [22, 30, 29, 9, 3]. How-
ever, compound leaves can be seen as a subdivision of sim-
ple leaves. Otherwise, each leaflet has a blade-like structure.
For that reason, a local description, whose regions of interest
are leaflets, may provide greater accuracy, not only in the
case of occlusion or partial damage, but more specifically,
when dealing with partial intra-species non-similarity. For
instance, the Gleditsia triacanthos species may have differ-
ent types of leaflets (simple and pinnate) within the same
leaf (see Figure 4). Also, the fraxinus angustifolia and the
fraxinus ornus species may have a variable number of leaflets
(see Figure 5). Furthermore, the Vitex Agnus Cactus
species hold leaflets with different sizes (see Figure 6).

In these cases, the whole leaf images are clearly totally
different. However, the similarity can be revealed by com-
paring leaflets separately. From this assertion, in this paper,
we propose an image retrieval system for compound leaves
based on the combination of response lists derived from each
leaflet sub-image query. This involves the following steps:

e First, we automatically detect at most three represen-
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Figure 3: Leaf types: from top to bottom: sim-
ple, compound leaves which are divided (from left
to right) into: palmate, trifoliate, pinnate and bi-
pinnate compound leaves.
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Figure 4: Intra-variation of leaflet types (pinnate
and bi-pinnate) in the Gleditsia triacanthos species.

(b) Fraxinus ornus

Figure 5: Intra-variation of leaflet number (color
image (up) and contour image (down))



Figure 6: Intra-variation of leaflet size in Vitex Ag-
nus Cactus species

tative leaflets of the image using geometric properties
related to their contours.

e Then, we consider sub-images of leaflets as multiple
views of the same compound leaf image. In other
words, we replace the entire image by its three leaflets
in the identification scheme. We index each leaflet sub-
image separately. The list of responses includes all
the remaining leaflets sub-images other than the two
leaflets obtained from the same entire image as the

query.

e Finally, we combine the ranking lists obtained from
each leaflet query obtained from the same original com-
pound leaf, a posteriori, in order to find the overall re-
sponses of the whole image. Different state-of-the-art
fusion methods are tested and evaluated with regard
to the entire compound leaf image query.

This paper is organized as follows. First, we briefly de-
scribe some previous work on parts-based plant identifica-
tion and specifically those that deal with compound leaves.
Next, we describe the steps of our leaflets-based retrieval
scheme. Experiments and evaluations are presented in the
final section.

2. RELATED WORK

The elementary analysis and description of leaves, or plants
in general, based on their parts are traditionally performed
by botanists (mainly using qualitative features) in order to
identify species. Some recent computer-vision approaches
have used this assumption to enhance plant retrieval results.
For instance, the authors of [12] have combined different
views of plant organs (such as flowers, bark, leaves) using
a late fusion process. Analogically, the authors of [23] have
used the same principle (that is the late fusion) to parts of
simple leaves. They follow the Manual of Leaf Architecture
[14] for parts definitions (which divides simple leaves into
three parts: the apical, basal and margin parts) and they
automatically detect them based on semantic geometric fea-
tures.

Compound leaf identification based on their parts (leaflets)
has also been discussed in two previous studies: In the
first one [7], the authors propose a two-stage compound
leaf shape modelling. In the first stage, it makes the as-
sumption that compound leaves are reflectively symmetric
and that their leaflets have the same size and orientation.
In this phase, the leaflets are assimilated to uniform circles
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arranged, pairwise, on either side of the main axis, and de-
fined by their positions, their radius and distance from the
main axis. In the second stage, a joint polygonal model is
used to estimate the shape of the leaflets (by estimating the
length, width, bilateral width, angles of base and apex of
each leaflet. For each stage, an energy function, based on a
color dissimilarity map, is minimized. This method has the
advantage that it accomplishes both leaf segmentation and
recognition using the same model. However, it is limited by
the high computational cost and the intervention of the user
to initialize the model’s parameters. Moreover, the model’s
assumptions are so strict that they do not correspond to the
reality of the processed data (i.e, they are not valid for all
types of compound leaves). In fact, leaves are not always
axially symmetric even for pinnately compound leaves (see
Figure 3)). Furthermore, the leaflets’ size may vary (see
Figure 6). The second study that has dealt with compound
leaves is presented in [2]. It looks for the top 3 leaflets, ob-
tained using the following two hypotheses:(1) First, they are
located on either side of the main axis (estimated by a poly-
nomial of order 4). (2) they have the most elliptic shapes
(defined by the ratio between the area of the shape and its
minimum enclosing ellipse). The final identification stage is
based on only one leaflet, selected from the three candidates
, based on its similarity distance, computed with the com-
plex network shape descriptor, which should be the lowest
with regard to the two others.

The approach, presented in this paper, presents similari-
ties with regard to the two first studies, mentioned above,
related to plant organs [23] and simple leaf parts [12]. In
fact, we aim to identify compound leaves based on an a late
fusion of responses of their parts (leaflets) queries. On the
other hand, the proposed method presents several differences
from the two last studies [2, 7], described previously, about
leaflet-based identification: First, we propose to decompose
both pinnately and palmately compound leaf shapes, and
even leaflets are not similar or symmetric. Second, we use
more than one leaflet in order to cope with intra-variation of
leaflets shapes unlike [2]. Third, we choose to retrieve each
leaflet separately and to combine the ranking lists obtained,
a posteriori unlike the work presented in [7], in which an
early fusion is rather used. In fact, the early fusion, which
consists in concatenating leaflet representations in a single
one, needs an appropriate leaflet representations matching
algorithm since leaflets are not selected in the same order
from an image to other.

3. AUTOMATIC LEAFLET EXTRACTION

Parts-based shape decomposition is generally important
to shape representation and recognition. Several studies
have dealt with this problem. They are mainly based on
the perceptual rule of decomposing shapes into regions with
important concavities [28, 20]. The definition of the best
cut that joins minima points is still a challenging issue.
Most approaches are based on a recursive procedure or use
some optimization criteria, which is a time-consuming task.
Domain-specific knowledge related to shapes may be use-
ful to simplify the decomposition process. In our case, we
are dealing with shape of compound leaves (either pinnate
or palmate). They are, by definition, fully subdivided into
leaflets, arranged on either side of the rachis (main stalk)
in pinnately compound leaves and centred around the base
point (the point that joins the blade to the petiole) in pal-



mately compound leaves (see Figure 3) [14]. From that, we
can deduce that the generic perceptual rule can be applied
for shapes of compound leaves. In fact, leaflet shapes may
be seen as regions separated by extra points with deep con-
cavities. In order to determine the points that limit leaflets,
we base our solution on the two following botanical assump-
tions:

e In compound leaves, concave points may correspond,
besides to leaflets endpoints, to other irregularities such
as tooth, lobes, petiole bending or even points derived
from the aliasing effect. These points should be dis-
carded (only points corresponding to leaflets and rachis
terminals should be kept). In order to do so, we first
apply a smoothing to the leaf shape. We reject all con-
cave points that are aligned with its two-sided neigh-
bourhood inflexion points (see circled green points in
Figure 7). The remaining concave points (see Figure
8) are used to determine leaflets. Notice that inflexion
points and concave points are defined respectively as
the zeros-crossing and the local maxima with negative
value of the curvature function of a contour. In prac-
tice, we compute the curvature function as presented
in [21].

Figure 7: Concave points coloured in green aligned
with their two-sided neighbourhood inflexion points
coloured in blue are rejected (the ones that are cir-
cled in orange colour).

Figure 8: Selection of pertinent compound points
(red points).

e leaflets endpoints are generally close. Thus, we sort the
list of Euclidean distances between each two consecu-
tive concave points in ascending order and we consider
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the k-first pairs respectively as the two terminals of
the k-first leaflets. In Figure 9, we display the 3-first
leaflets of some compound leaves.

Figure 9: The 3-leaflets selected.

In practice, we only select, at most, three leaflets in order to
try to lead to the compromise between information richness,
derived from leaflets variations within the same species (see
Figures 4 and 6) and leaflets overlapping problem, that may
eventually induce false detections if the number of selected
leaflets is high (see Figure 10). In fact, since the processed
data (the pl@ntLeaves Scan dataset) hold generally partial
leaflets overlapping, the first leaflets are often approximately
complete (see Figure 10). This simple hypothesis (about the
number of selected leaflets) ensure a low computational cost,
compared to sophisticated methods such as active polygonal
models [7] which also fail to distinguish and delimit over-
lapped leaflets. Furthermore, trifoliate leaves (see Figure 3)
have only three leaflets (see 1st image, 1st column at left
in Figure 9). Finally, we judge the relevance of the selected
three leaflets, according their size. This is mainly important
in the case of approximately totally overlapped leaflets (for
example, in the 2nd column of Figure 10, only one leaflet is
selected).

4. LEAFLETS TEXTURE DESCRIPTION

We evaluate our multiple leaflets based identification ap-
proach by testing some texture descriptors described as fol-
lowing. The local description of leaflets texture allow to
outline vein networks which are an important attribute in
leaf identification.

e The Fourier histogram (Fourier) proposed in [11] de-
scribes the distribution of the spectral power density
within the complex frequency plane. This is expressed
using two types of histogram defined according to two
partitions of the Fourier plane: the first is a disk par-
tition used to differentiate between low, middle and
high frequencies, while the second is based on a parti-
tion according to different directions of the spectrum.

e The Edge Orientation Histogram (EOH) [10], com-
putes the distribution of edge directions. In a leaf,
the edges are composed of two parts: the interior and
the exterior contours which correspond respectively to
the vein networks and the margins.



Figure 10: Illustration of the overlapping problem
(see the green part of the contour), detected leaves
are coloured in blue, only one leaflet is detected for
images of the 2"d row, where the remaining leaflets
are overlapped.

e The Local Edge Orientation Histogram (LEOH) [23].
Here, instead of accumulating occurrences of gradi-
ent orientations in n bins such as in EOH, the LEOH
encodes the relative frequency distribution of groups
of gradient points contained within a sliding window
(blob). All local distributions are combined into a sin-
gle global histogram.

A Hough histogram (Hough) [11], is a 2D histogram
based on the Hough transform which gives the overall
behaviour of pixels in the image along straight lines.
Each pixel is represented by the orientation of the gra-
dient and the projection of its position vector onto its
tangent vector (i.e the vector orthogonal to the gradi-
ent).

S.
FUSION

The proposed multiple leaflets-based fusion method con-
sists in constructing a single overall ranked list by merging,
a posteriori, different lists obtained for different queries of
leaflets sub-images.

Let @ be the whole compound leaf image query, and Q;
the leaflet-based queries where 1 < i < 3. For the query Q,
the visual index is composed of all the remaining images of
the database, noted R", (where 1 < n < N and N is the
number of images in the dataset). In the same way, for each
leaflet query @Q;, the returned images are denoted by R}
and may belong to the set of all the remaining leaflet sub-
images, except the other two leaflet sub-images, obtained
from the same entire image as the leaflet associated to the
query Q;. For each image, all queries @; of leaflet sub-images
are indexed separately. In order to show the effectiveness of
the leaflets-based fusion, we test three fusion methods:

MULTIPLE LEAFLETS-BASED QUERIES
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e The leave out method (LO) [18]
Responses are inserted in the final ranking list circu-
larly from different leaflets queries lists. The best po-
sition of an image among the returned lists is kept.

e The inverse rank position method (IRP) [18]

. 1
IRP(Q,R") = o p—
1 TR;L (Qi)

where rrz (Q;) is the rank of the partial response R’
to the partial query ;. The final list is obtained by
sorting the IRP values in increasing order.

e The increasing distance method (DistInc) [27]

The ascending order of the scores, which correspond
in our case, to the similarity distance values, defines
the order of the final list. In fact, we can concatenate
the ranking lists obtained by three leaflet queries into
a single one. We sort the resulted list, in ascending
order, in terms of similarity distances in order to obtain
the overall ranking list.

Finally, once the overall ranking list is obtained after the
late fusion of leaflet queries, we apply the knn classifier in
order to determine the identity of the query image.

6. EXPERIMENTAL RESULTS

Experiments were carried out on a subset including com-
pound leaves of the Pl@ntLeaves Scan pictures dataset [13].
This subset contains 595 images belonging to 16 plant species

characterised mainly by a high intra-species variabilities (mainly

in terms of leaflets number, size variations, see Figures 5 and
6). The dataset categorisation (into simple and compound)
is performed automatically based on the approach proposed
in [24]. We evaluate the effectiveness of our approach using
the correct classification rate metric, obtained by the K-NN
classifier, for different values of k (k € {5,10,20,25,30}).
This metric is adequate to the context of plant species iden-
tification because it reflects the user satisfaction, which is
achieved when the accurate species is the mostly present in
the k first responses.

Recall that the principle of our leaflets-based identifica-
tion scheme is that each leaflet represents a different view of
the entire image (i.e, the entire image is replaced by these
views in the identification scheme). For that reason, we can
show the robustness of our approach by comparing its classi-
fication results with regard to the classical retrieval scheme
based on the global representation of the entire image. We
perform several test configurations using four texture de-
scriptors: Hough, Fourier, Leoh, Eoh (see Section 4), in
the description phase, and three fusion algorithms, in the
leaflets-based queries fusion phase: IRP, LO, DistInc (see
Section 5). Figure 11 presents results for these different
configurations. We can see an enhancement in the classifica-
tion rates, obtained by all descriptors and fusion algorithms
tested, and for different values of k, with regard to the clas-
sical retrieval scheme for compound leaves. This prove the
effectiveness of our leaflets-based scheme for enhanced com-
pound leaves identification. Also, fusion algorithms IRP and
LO perform both the best classification rate values. Figure
12 presents the 6—top images, returned for the leoh descrip-
tor, for both the classical retrieval scheme with the entire
image (top) and our leaflets-based approach (bottom) using



Decision results of Fourier descriptor between the entire image and three-leaflets based fusion
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Figure 11: Comparison of the correct classification
rates obtained for different values of knn, using 4
texture descriptors, between the classical retrieval
scheme (labelled Entire leaf and displayed with the
blue bar) and our three leaflets-based identification
approach using three fusion techniques: Distlnc,
IRP and LO.
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the IRP fusion algorithm, for a specimen that belongs to
the species Fraxinus angustifolia. This species was particu-
larly chosen because it holds variability of leaflets number
(see some examples in Figure 5). We can see that all the re-
sponses returned for the entire image are wrong (they does
not belong to the right species). It seems that the leoh de-
scriptor has provided these responses because of the high
global similarity in terms of macro-texture. Nevertheless,
when we use our leaflets-based approach, we obtain 5 accu-
rate images from the 6—top ones, although that the three
last ones have different leaflets number with regard to the
query image which illustrates well the efficiency of our strat-
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Figure 12: The 6—top images obtained by the classi-
cal retrieval scheme based on the entire image (top)
and our three-leaflets based scheme (bottom), using
the leoh descriptor and the IRP fusion algorithm:
false positives are framed by red, the others (which
belong to the same species as the query image) are
framed by blue.

7. CONCLUSION

In this paper, we propose a new multiple leaflets-based
identification approach dedicated to compound leaves. We
construct our approach in three phases: (1) The first is the
leaflets extraction. This step is established using simple ge-
ometric parameters which are defined based on botanical
observations. We fix the number of leaflets to three in order
to lead to the compromise of information richness derived
from leaflets variations within the same species and false
leaflet detections induced by leaflets overlapping problem.
Our leaflets extraction method has the advantage of being




rapid and efficient for different types of compound leaves
unlike previous methods (2) The second step is the local
description of leaflets. In this step, we test four classical
texture descriptors (Hough, Fourier, Leoh, Eoh). (3) The
third step is the late fusion of ranking lists obtained by each
leaflets queries. We test three state-of-the-art fusion algo-
rithms which are IRP, LO and distInc. Experiments were
performed on compound leaves of the P1@ntLeaves Scan pic-
tures dataset for the different configurations of descriptors
and fusion algorithms. They have shown an improvement in
the classification rates with different values of the knn clas-
sifier, with regard to the classical retrieval scheme obtained
by the entire image. Our ongoing work aims at construct-
ing and evaluating the global parts-based leaf identification,
defined depending on the leaf type: simple or compound.
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