
Improved Questionnaire Trees for Active
Learning in Recommender Systems

Rasoul Karimi1, Alexandros Nanopoulos2, Lars Schmidt-Thieme1

1 Information Systems and Machine Learning Lab Marienburger Platz 22 University
of Hildesheim 31141 Hildesheim Germany

karimi, schmidt-thieme@ismll.uni-hildesheim.de
2 Department of Business Informatics., Schanz 49, University of Eichstatt-Ingolstadt

, 85049 Ingolstadt, Germany
nanopoulos@ku.de

Abstract. A key challenge in recommender systems is how to profile
new-users. This problem is called cold-start problem or new-user prob-
lem. A well-known solution for this problem is to use active learning
techniques and ask new users to rate a few items in order to reveal
their preferences. Recently, questionnaire trees (tree structures) have
been proposed to build such adaptive questionnaires. In this paper, we
improve the questionnaire trees by splitting the nodes of the trees in a
finer-grained fashion. Specifically, the nodes are split in a 6-way manner
instead of 3-way split. Furthermore, we compare our approach to on-
line updating and show that our method outperforms online updating
in order to fold-in the new user into recommendation model. Finally,
we develop three simple baselines based on the questionnaire trees and
compare them against the state-of-the-art baseline to show that the new-
user problem in recommender systems is tough and demands a mature
solution.

1 Introduction

Recommender systems help web users to address information overload in a large
space of possible options [1]. Collaborative filtering is the traditional technique
for recommender systems. Evidently, the performance of collaborative filtering
depends on the amount of information that users provide regarding items, most
often in the form of ratings. This problem is amplified for new users because they
have not provided any rating which impacts negatively on the quality of gen-
erated recommendations. A simple and effective way to overcome this problem,
is by posing queries to new users in order that they express their preferences
about selected items, e.g., by rating them. Nevertheless, the selection of items
must take into consideration that users are not willing to answer a lot of such

Copyright c© 2014 by the paper’s authors. Copying permitted only for private and
academic purposes. In: T. Seidl, M. Hassani, C. Beecks (Eds.): Proceedings of the
LWA 2014 Workshops: KDML, IR, FGWM, Aachen, Germany, 8-10 September 2014,
published at http://ceur-ws.org

34

queries. To address this problem, active learning methods have been proposed to
acquire the most informative ratings, i.e ratings from users that will help most
in determining their interests [3, 4].

Recently, active learning based on tree structures have been proposed by
(Golbandi et al. [2]). In [2], the tree structures are ternary because there are
three possible answers for queries: ”Like”, ”Dislike”, or ”Unknown”. In datasets
like Netflix and MovieLens that the range of the ratings is from 1 to 5, ratings
from 1 to 3 are considered as ”Dislike” and ratings 4 and 5 are treated as ”Like”.
Moreover, the missing ratings are considered as ”Unknown”, meaning users do
not know the queried item, so they can not rate it.

Nevertheless, [2] was a breakthrough in the literature of active learning for
recommender systems. In our previous paper [5], we improved [2] by incorpo-
rating matrix factorization into the tree structures and proposing a sampling
method to speed up the tree construction algorithm. In this paper, we improve
it one step further by upgrading the ternary trees to 6-way trees, meaning the
nodes are split in a 6-way fashion. In the 6-way split, there is one child node
per each rating from 1 to 5 and one child node for the ”Unknown” response. As
the 6-way split distinguishes users tastes more precisely, it is expected that the
accuracy of the rating prediction also improves. On the other hand, the 6-way
split might lead to overfitting, which affects adversely on the accuracy. There-
fore, we need a rating prediction model that handles the overfitting issue very
well. We apply the 6-way split to two prediction models and show the effect of
the overfitting on the accuracy of the 6-way split.

2 Related Work

The idea of using decision trees for the cold-start recommendation was proposed
by (Rashid et al. [7]). They tried to formalize the cold-start problem in a su-
pervised learning context and solve it through decision trees. However, they face
challenges that force them not to use standard decision tree learning algorithms
such as ID3 and C4.5. (Golbandi et al. [2]) improved [7] by advocating a special-
ized version of decision trees to adapt the preference elicitation process to the
new user’s responses. As our method relies on [2], we briefly explain it in this
section.

Here, each interior node is labeled with an item i ∈ I and each edge with
the user’s response to item i. The new user preference elicitation corresponds to
following a path starting at the root by asking the user to rate items associated
with the tree nodes along the path and traversing the edges labeled by the
users response until a leaf node is reached. Here, decision trees are ternary. Each
internal tree node represents a single item on which the user is queried. After
answering the query, the user proceeds to one of the three subtrees, according
to her answer. The answer is either Like, Dislike, or Unknown. The Unknown
means users are not able to rate the queried item because they do not know it.
Letting users not to rate the queried items in case they do not know it, is crucial
because it happens frequently in recommender systems.

35

Each tree node represents a group of users and predicts item ratings by taking
the average of ratings among corresponding users. Formally, let t be a tree node
and Ut ⊆ U be its associated set of users. Dt denotes a subset of Dtrain which
belong to the node t:

Dt := {(u, i, r) ∈ U × I ×R | u ∈ Ut},

the profile of the item i in the node t is denoted as Dt
i :

Dt
i := {(u, r) ∈ U ×R | u ∈ Ut},

and the predicted rating of item i at the node t is computed using the item
average method :

r̂ti =

∑
(u,r)∈Dt

i

rui + λ1r̂si

|Dt
i |+ λ1

(1)

To avoid over-fitting, the prediction of the item i is regularized towards its
prediction in the parent node rsi. λ1 is the regularization factor. The effect of
the regularization for the item i becomes more significant when the number of
the ratings in the item profile Dt

i is less. The squared error associated with node

t and item i is: (eti)
2 =

∑
(u,r)∈Dt

i

(r− r̂ti)2. Also, the overall squared error at node

t is: (et)2 =
∑
i∈I

(eti)
2 .

Building decision trees is done in a top-down manner. For each internal node,
the best splitting item is the one which divides the users into three groups such
that the total squared prediction error is minimized. This process continues
recursively with each of the subtrees and at the end all users are partitioned
among subtrees.

Suppose we are at node t. Per each candidate item i, three candidate child
nodes are defined: tL(i), tD(i), tU(i) representing users who like the item i,
dislike it, and have not rated it respectively. The squared error associated with
this item is Errt(i) = (etL)2 + (etD)2 + (etU)2. Among all candidate items, the
item which minimizes the following equation is the best :

splitter(t) = argmin
i∈I

Errt(i) (2)

A naive construction of the tree would be intractable if the number of items
and ratings is large. Therefore, (Golbandi et al. [2]) proposes a solution for that.
The idea is to expand ”Unknown” child nodes in a different way using some
statistics collected from ”Like” and ”Dislike” child nodes.

3 Problem Definition

Let U be a set (of users), I be another set (of items), and R ⊆ R be a (finite) set
of ratings, e.g., R := {1, 2, 3, 4, 5}. Let R+ := R∪ {.} with an additional symbol

36

for a missing value. The triple (u, i, r) ∈ U × I ×R denotes the rating r of user
u for item i.

For a data set D ⊆ U × I ×R denote the set of all users occurring in D by

U(D) := {u ∈ U | (u, i, r) ∈ D}

Subsets E ⊆ I ×R are called user profiles. The profile of user u in D is denoted
by

Du := {(i, r) ∈ I ×R | (u, i, r) ∈ D}

The rating of item i ∈ I in user profile E ⊆ I ×R is denoted by

r(i;E) :=

{
r , if (i, r) ∈ E
. , else

We define a questionnaire as a tree where each interior node is labeled with
an item i ∈ I, each branch with a rating value r ∈ R+ and each leaf node
corresponds to a rating predictive model r̂ : I → R, where the rating of each
item can be predicted. For a user profile E ⊆ I ×R let R̂(E) denote the rating
predictive model at the leaf one arrives when starting at the root of the tree and
iteratively from a node with label i ∈ I proceeds to its child node with label
r(i;E) until a leaf node is reached.

Given

– a data set Dtrain ⊆ U × I ×R,
– a loss ` : R× R→ R, and
– a maximal number of queries N ,

the active learning for the new-user problem in recommender systems is to find a
questionnaire R̂ of maximal depth N s.t. for another data set Dtest ⊆ U × I ×R
(sampled from the same distribution, not being used during training, and with
non-overlapping users, i.e., U(Dtrain)∩U(Dtest) = ∅) the average loss is minimal.

Users in Dtest are supposed to be new users. For each u ∈ Dtest, Du is split
into Dpool

u (pool data) and Dtest
u (test data). Dpool

u is used to find the predictive
model R̂(Dpool

u) at the leaf node and Dtest
u is used to evaluate it. Dpool

u should
also contain items with missing value, so

Dpool
u = Dpool

u ∪ {(u, i, .)|i ∈ I, i /∈ Dpool
u }

The total loss is the loss over all test users:

`(Dtest; R̂) :=
1

|Dtest|
∑

u∈U(Dtest)

∑
(i,r)∈Dtest

u

`(r, R̂(Dpool
u)(i)) (3)

What we call decision tree or questionnaire here really is a multivariate re-
gression tree for instances in (R+)I (here called user profiles) with values in RI .
The values in RI can be represented by models r̂ : I → R. Other names could
be rating prediction tree or recommendation tree.

37

4 Factorized Decision Trees

In [2], the ratings are predicted based on the item average method, which may
seem naive as there are more advanced algorithms, such as Matrix Factorization
(MF) [6], which have already shown their superiority over the item average. The
reason for using the item average is that building the tree structures is expensive
in terms of time. There are many nodes that need to be expanded and per each
node there are many candidate items that must be checked. On the other hand,
we have to predict ratings in child nodes and compute the error in order to find
the best split item. As a result, we need a method for rating prediction that is
fast, even though it may not be the best method. Otherwise, building the tree
structures would be intractable.

Now the question is ”how can we improve rating prediction of the tree struc-
tures while keeping its complexity low?” To find a solution for this question,
(Karimi et al. [5]) proposed a method, which is called Factorized Decision Trees
(FDT). The FDT divides the learning algorithm of the tree structures into two
steps. In the first step, the structure of the tree structures is learned according
to [2]. After constructing the tree, an MF model is trained to learn the labels of
the tree, in which the labels are the rating predictions in the leaf nodes. In this
way, we achieve a learning algorithm that is more accurate and scalable. (Karimi
et al. [5]) do not exploit MF during the tree construction algorithm because it
causes too much complexity. (Zhou et al. [9]) proposed another approach to in-
corporate matrix factorization into the tree structures. However, as it has been
detailed in [5], it is too complex and is not scalable.

The scalability becomes even more important when we notice how informa-
tion overload is growing up every day. Until a few years ago, Netflix was the
largest data set for recommender systems. But now we have Yahoo Music, con-
taining 717 M ratings, so it is more than 7 times bigger than Netflix. Therefore,
we need to think about the scalability of our approaches. Otherwise, even active
learning methods are accurate, it is not possible to apply them in big recom-
mender systems.

5 Fine-Grained Questionnaire Trees

First of all, we would like to clarify that trees that have been used for cold-
start recommendation are different from decision trees in machine learning. In
decision trees, leaves represent class labels and branches represent conjunctions
of features that lead to those class labels. But trees in the cold-start problem are
not acting as predictive model. They are simply tools that are used to visually
and explicitly represent decisions, in which decisions are new users’ responses to
the queried items. In fact, decision trees in machine learning describe data while
in cold-start problem they represent decisions. Therefore, we use questionnaire
trees term to refer to such trees.

(Golbandi et al.[2]) opts for 3-way splits corresponding to three possible
user responses (”Like”, ”Dislike”, and ”Unknown”). In datasets like Netflix and

38

MovieLens that the range of ratings is from 1 to 5, ratings from 1 to 3 are
considered as ”Dislike” and ratings 4 and 5 are treated as ”Like”. Moreover,
the missing ratings are considered as ”Unknown”, meaning users do not know
the queried item, so they can not rate it. However, it is expected that a more
refined split, such as a 6-way split that matches five star levels plus an ”unknown”
would improve accuracy. The main bottleneck to do so is the overhead caused by
increasing the number of nodes. The higher the number of splits, the higher the
number of nodes, which requires more time to build questionnaire trees. To make
this overhead more clear, we provide an example. Suppose that questionnaire
trees are built up to level 2. Given a 3-way split, the total number of nodes is
13. But if the nodes are split based on the 6-way split, questionnaire trees would
have 43 nodes. This overhead increases exponentially by increasing the number
of queries.

Fortunately, (Karimi et al. [5]) have already proposed a sampling method
that drastically speeds up the tree construction algorithm. This method is called
Most Popular Sampling (MPS). Instead of checking all candidate items at each
node, the MPS checks only those items that are most popular among users
associated with the node. Given that MPS is used, the 6-way split can be used
to improve the accuracy of rating predictions while the tree learning algorithm
is still tractable.

When the new user preference elicitation ends and a couple of ratings are
received from the new user, she is treated as a normal user like existing users of
the recommender system. On the other hand, there is already a recommendation
model for the existing users, which is usually MF. We call it warm MF since it
is for users who already have enough ratings in the data set, in contrast to cold
(new) users who have a few ratings. Now we need to fill the gap between the
new users and the existing users by folding the new user into the warm MF.
Specifically, we need to learn the latent features of the new user in the warm
MF. A naive approach for doing this is to add the ratings of the new user to
the original data set and then retrain the MF with the whole training data set.
However, as we have to repeat this process for all new users, it would be very
slow. Therefore, we have to switch to online updating. In online updating, using
the ratings that the new user has given, only the new user’s latent features
are updated and the rest of the features including item features and other user
features are not touched [8].

Fortunately, the FDT can already provide us with the new user’s latent
features and there is no need to use online updating. The FDT generates user
features for each type of new users, which corresponds to the leaf nodes of
decision trees. In this way we learn the new user features with a higher accuracy.
Moreover, there is no need for an online updating step to bridge the query
prediction model (decision trees) and the recommendation model (MF). In fact,
this is a new fold-in approach, in which, given a new user with a few ratings, a
subset of training users who have the same ratings like the new user are selected
and then the new users features are trained using all ratings of these users. In
our experiments, we found out that FDT can become even faster if only user

39

features are updated and the rest of the features are fixed to the warm MF.
However, the accuracy is slightly affected.

6 Experimental set up

The main challenge in applying active learning for recommender systems is that
users are not willing to answer many queries in order to rate the queried items.
For this reason, we report the performance of all examined methods in terms of
prediction error (RMSE) versus the number of queried items, which is simply
denoted as #queries. The RMSE of user u is computed as follows:

RMSEu =

√√√√ 1

|Dtest
u |

∑
(i,r)∈Dtest

u

(r − r̂ui)2 (4)

where Dtest
u is the set of the test items of user u, r̂ui is the predicted rating

of user u for item i, and rui is the true (actual) rating. Thus, we examine the
problem of selecting at each step, the item for which each new user u will be
queried to provide a rating. The item has to be selected in order to minimize
the RMSE. The RMSE of each test user is measured separately and then the
average RMSE over all test users is reported.

We report the performance of 6-way questionnaire trees based on two predic-
tive models: item average (6-way-AVG) and matrix factorization (6-way-FDT).
Correspondingly, we choose two baselines: 3-way-AVG [2] and 3-way-FDT [5].

We implemented [2] by ourself in java. First, we followed the same hyper-
parameters reported in [2] to calibrate our results against it and make sure that
our implementation was correct. Then, in our experiments, we changed one of
the hyper-parameters: (Golbandi et al. [2]) do not expand nodes in which the
the number of ratings is fewer than α = 200000 and stops the learning. The goal
is to save runtime. In our experiments, we set α to zero because Most Popular
Sampling (MPS) [5] is already able to save runtime and there is no need to stop
the learning. The results show that this setting is significantly beneficial. For
α = 200000, the RMSE is 0.971 after 5 queries but for α = 0 the RMSE would
be 0.958.

As (Golbandi et al. [2]) conduct their experiment on the Netflix data set,
we also run our experiments on this dataset. Since the data set is large, the
experiments are done in one fold, the same evaluation protocol as [2]. The dataset
is already split into train and test datasets. However, this split is not suitable
for cold-start evaluation protocol since users in the training and test sets are
the same. As test users are considered as new users, they should not already
appear in the training set. Therefore, we split all users into two disjoint subsets,
the training set and the test set, containing 75% and 25% users, respectively.
The tree is learned based on the ratings of training users in the training data.
The ratings of training users in the original Netflix test split is considered as
validation data in our experiments to find the hyper-parameters of MF. The
users in the test set are assumed to be new users. The ratings of test users in the

40

Netflix training dataset are used to generate the user responses in the interview
process. To evaluate the performance after each query, the ratings of test users
in the Netflix test data are used.

We will also compare our work to three simple baselines. The goal of this
comparison is assess the difficulties of the new-user problem. These three base-
lines are as follows:

– Random: At each node, the split item is selected randomly.
– Local Most Popular (LMP): At each node, the most popular item ac-

cording to the users associated with the node is selected.
– Global Most Popular (GMP): First, s most popular items are found

based on all ratings available in the dataset. Then we start to build ques-
tionnaire trees. All the nodes that are at level l are expanded using the l-th
most popular item. In this way, the dynamic aspect of questionnaire trees
is omitted and all new users, regardless of their responses to the queries,
receive the same questions.

6.1 Results

0,97

0,975

0,98

0,985

0,99

M
SE

Random

LMP

GMP

0,95

0,955

0,96

0,965

0 1 2 3 4 5 6

R

#queries

3‐Way‐AVG

6‐Way‐AVG

3‐Way‐FDT

6‐Way‐FDT

Fig. 1. RMSE results of 6-way split based on FDT (6-way-FDT), 6-way split based on
item average (6-way-AVG), 3-way split based on FDT (3-way-FDT), and 3-way split
based on item average (3-way-AVG).

Figure 1 shows the results of three simple baselines, 3-way-avg [2], 3-way-
FDT [5], 6-way-AVG, and 6-way-FDT. All results are based on MPS where the
sampling size is 200. First we discuss about the simple baselines. As the results

41

show, random item selection performs very badly and gains almost nothing after
8 queries. LMP doesn’t work well either. Among the three simple baselines, GMP
is the best, although it is still much worse than Bootstrapping. Table 1 shows
some statistics which can justify these results. This table shows the probabilities
of receiving different responses from new users by each method. The main reason
that the random selection does not perform well is that it chooses items that will
not be rated by new users. The probability that the random selection receives a
rating is less that 0.01. When the new user does not rate the queried item, that
new user is moved to the unknown child node. As the predictions in the unknown
child node do not significantly differ from the predictions at the current node,
this strategy is not able to improve the accuracy of predictions. Remember that
test users and training users have the same distributions. If test (new) users do
not know the split item, training users do not know it either. Therefore, decision
trees which are built using training users with the random selection strategy are
very imbalanced. This means that almost all users of the current node are moved
to the unknown child node and consequently the predictions at the current node
and the child nodes would be almost the same. LMP and GMP receive more
ratings compared to the random selection, that is why their performance also
improves in Figure 1.

Table 1. The probability that the new user likes the queried item (plike), dislikes it
(pdislike), or does not rate it (punknown) for different active learning methods.

Method plike pdislike punknown

Random 0.004 0.003 0.993

LMP 0.18 0.16 0.66

GMP 0.26 0.17 0.57

Bootstrapping and FDT 0.18 0.15 0.67

Coming back to Figure 1, as we expected the 6-way-AVG beats 3-way-AVG
because it provides more refined splits. 6-way-FDT further improves the 6-way-
AVG since it leverages MF for rating prediction. The benefit of using MF for
rating prediction instead of the item average is more clear in the 6-way split
compared to the 3-way split. The reason is that the accuracy we gain at each
level is the summation of the improvements of all users at the corresponding
level. The higher the number of users, the larger the improvement. A grid search
methodology was followed to find hyper-parameters, which are reported in ta-
ble 2.

After 5 queries, 6-way-AVG converges to 3-way-AVG and even starts to be-
come worse with the sixth query. This happens because, as we go down to the
deeper layers of questionnaire trees, the number of associated users of nodes
decreases. Therefore, the ratings in such nodes are predicted with less training
data, which obviously adversely affects accuracy. Although the predictions are
still regularized towards the predictions in the parent node, this regularization

42

might not be enough to compensate for the effect of less training data in such
nodes. However, 6-way-FDT does not suffer from this problem because it does
not use hierarchical regularization, instead it exploits typical `2 regularization.
Due to the same reason, 3-way-FDT outperforms 6-way-AVG after 4 queries.

Regarding the running time, 6-way-FDT and 3-way-FDT are slower than 6-
way-AVG and 3-way-AVG since these method need to train a MF model. In our
experiments, training a MF model takes around 3 hours, which considering the
gained improvement, it pays off.

Table 2. Hyper-parameters of MF in 6-way-FDT in all levels. α is the learning rate
and λ is the regularization factor.

level α λ

1 0.0011 0.016

2 0.0015 0.007

3 0.0013 0.005

4 0.0013 0.005

5 0.0013 0.009

6 0.0004 0.03

We finish this section by comparing the FDT to online updating [8]. To use
online updating, first decision trees are built as in [2]. Then in the leaf nodes,
the user features are retrained only based on the received ratings from the root
node to the leaf node. Table 3 reflects the RMSE after each query. Clearly FDT
outperforms online updating by a large margin. This happens because FDT uses
all ratings of the training users who are similar to the new user to train the user
features. However, online updating uses only a few ratings that are received from
the new user. The more the number of ratings, the better the accuracy of the
learned user features. Interestingly, online updating is even worse than Boot [2],
which is based on item average prediction. However, as the Boot method does
not provide the latent features, it cannot be used to fold the new user into the
warm MF model.

Table 3. The RMSE of online updating in MF and FDT after each query

0 1 2 3 4 5
Online 1.056 1.0290 1.0056 1.0008 0.9948 0.9914
FDT 0.9872 0.9776 0.9707 0.9649 0.9602 0.9554

43

7 Conclusion

Using active learning to build adaptive questionnaire trees is the promising ap-
proach to address the cold-start problem in recommender systems. The per-
formance of questionnaire trees can be improved by splitting the nodes in a
finer-grained fashion, i.e. one child node per each possible rating (including the
”Unknown” answer).

As the future work, we plan to use other data sets, in which the maximum
rating is higher than 5. For example, in EachMovie, the range of ratings is from
one to six, or in IMDb, it is from one to ten. The hypothesis is that opting for
the higher number of splits, i.e. 7-way and 11-way splits respectively, may lead to
a better accuracy. On the other hand, there might be limitation in the accuracy
gained by increasing the number of splits. One needs to verify this hypothesis.

References

1. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering, 17(6):734–749, 2005.

2. N. Golbandi, Y. Koren, and R. Lempel. Adaptive bootstrapping of recommender
systems using decision trees. In WSDM, pages 595–604. ACM, 2011.

3. A. S. Harpale and Y. Yang. Personalized active learning for collaborative filtering.
In SIGIR, pages 91–98. ACM, 2008.

4. R. Jin and L. Si. A bayesian approach toward active learning for collaborative
filtering. In UAI, 2004.

5. R. Karimi, M. Wistuba, A. Nanopoulos, and L. Schmidt-Thieme. Factorized deci-
sion trees for active learning in recommender systems. In 25th IEEE International
Conference on Tools With Artificial Intelligence (ICTAI), 2013.

6. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42:30–37, 2009.

7. A. M. Rashid, G. Karypis, and J. Riedl. Learning preferences of new users in
recommender systems: an information theoretic approach. SIGKDD Explor. Newsl.,
10(2):90–100, Dec. 2008.

8. S. Rendle and L. Schmidt-Thieme. Online-updating regularized kernel matrix fac-
torization models for large-scale recommender systems. In ACM Conference on
Recommender Systems (RecSys), pages 251–258. ACM, 2008.

9. K. Zhou, S.-H. Yang, and H. Zha. Functional matrix factorizations for cold-start
recommendation. SIGIR ’11, pages 315–324. ACM, 2011.

44

