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Abstract. An expert is able to tell the system developer in many image-related 

tasks what a prototypical image should look like. Usually he will choose several 

prototypes for one class, but he cannot provide a good and large enough sample 

set for the class to train a classifier. Therefore, we mapped his technical procedure 

into a technical system based on proper theoretical methods that assist him in 

acquiring the knowledge about his application and furthermore in developing a 

classifier for his task. This system helps him to learn about the clusters and the 

borderlines of the clusters even when the data are very noisy as is the case for 

microscopic cell images in drug discovery, where it is unclear if the drug will 

produce the expected result on the cell parts. 

We describe in this paper the necessary functions that a prototype-based classifier 

should have. We also use the expert’s estimated similarity as a new knowledge 

piece and based on that we optimize the similarity. The test of the system was 

carried out on a new application on microscopic cell image analysis - the study 

of the internal mitochondrial movement of cells. The aim was to discover the 

different dynamic signatures of mitochondrial movement. Three results of this 

movement were expected: tubular, round, and dead cells. Based on our results we 

can show the success of the developed method.  
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1 Introduction 

 

Prototypical classifiers have been successfully studied for medical applications by 

Schmidt and Gierl [1], by Perner [2] for image interpretation and by Nilsson and Funk 

[3] on time-series data. The simple nearest-neighbor approach [4], as well as hierar- 
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chical indexing and retrieval methods [5], have been applied to the problem. It has been 

shown that an initial reasoning system could be built up based on prototypical cases. 

The systems are useful in practice and can acquire new cases for further reasoning dur-

ing utilization of the system. Prototypical images are a good starting point for the de-

velopment of an automated image classifier [6]. This knowledge is often collected by 

human experts in image catalogues. We describe, based on a task for the study of the 

internal mitochondrial movement of cells [7], how such a classifier in combination with 

image analysis can be used for incremental knowledge acquisition and automatic clas-

sification. The work enhances our previous work on a prototype-based classifier [2] by 

introducing the expert’s estimated similarity as a new knowledge piece and a new func-

tion that adjusts this similarity and the automatically calculated similarity by the system 

in order to improve the system accuracy. The test of the system is done on a new appli-

cation on cell image analysis - the study of the internal mitochondrial movement of 

cells. 

The classifier is set up based on prototypical cell appearances in the image such as 

for e.g. „healthy cell“, „dead cell”, and „cell in transition stage“. For these prototypes 

are calculated image features based on a random set theory that describes the texture 

on the cells. The prototype is represented then by the feature-value pair and the class 

label. These settings are taken as initial classifier settings, in order to acquire the 

knowledge about the dynamic signatures. 

The importance of the features and the feature weights are learned by the protoclass-

based classifier [2]. After the classifier is set up each new cell is then compared by the 

protoclass-based classifier and the similarity to the prototypes is calculated. If the sim-

ilarity is high the new cell gets the label of the prototype. If the similarity to the proto-

types is too low, then there is evidence that the cell is in transition stage and a new 

prototype has been found. With this procedure we can learn the dynamic signature of 

the mitochondrial movement. 

In Section 2 we present the methods for our prototype-based classifier. The material 

is described in Section 3 for the internal mitochondrial movement of cells. In Section 4 

is presented the methodology for the knowledge acquisition based on a prototype-based 

classification. Results are given in Section 5 and finally in Section 6 conclusions are 

presented. 

2 ProtoClass Classifiers 

A prototype-based classifier classifies a new sample according to the prototypes in the 

data base and selects the most similar prototype as output of the classifier. A proper 

similarity measure is necessary to perform this task, but in most applications there is no 

a-priori knowledge available that suggests the right similarity measure. The method of 

choice to select the proper similarity measure is therefore to apply a subset of the nu-

merous similarity measures known from statistics to the problem and to select the one 

that performs best according to a quality measure such as, for example, the classifica-

tion accuracy. The other choice is to automatically build the similarity metric by learn-

ing the right features and feature weights. The latter one we chose as one option to 

improve the performance of our classifier. 
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When people collect prototypes to construct a dataset for a prototype-based classi-

fier, it is useful to check if these prototypes are good prototypes. Therefore a function 

is needed to perform prototype selection and to reduce the number of prototypes used 

for classification. This results in better generalization and a more noise-tolerant classi-

fier. If an expert selects the prototypes, this can result in bias and possible duplicates of 

prototypes causing inefficiencies. Therefore a function to assess a collection of proto-

types and identify redundancy is useful. 

Finally, an important variable in a prototype-based classifier is the value used to 

determine the number of closest cases and the final class label.  

Consequently, the design-options for the classifier to improve its performance are 

prototype selection, feature-subset selection, feature weight learning and the ‘k’ value 

of the closest cases (see Figure 1). 

We assume that the classifier can start in the worst case with only one prototype per 

class. By applying the classifier to new samples the system collects new prototypes. 

During the lifetime of the system it will chance its performance from an oracle-based 

classifier, which will classify the samples roughly into the expected classes, to a system 

with high performance in terms of accuracy.  

In order to achieve this goal we need methods that can work on a low number of 

prototypes and on large number of prototypes. As long as we have only a few prototypes 

feature subset selection and learning the similarity might be the important features the 

system needs. If we have more prototypes we also need prototype selection.  

For the case with a low number of prototypes we chose methods for feature subset 

selection based on the discrimination power of features. We use the feature based cal-

culated similarity and the pair-wise similarity rating of the expert and apply the adjust-

ment theory [11] to fit the similarity value more to the true  value. 

For a large number of prototypes we choose a decremental redundancy-reduction algo-

rithm proposed by Chang [8] that deletes prototypes as long as the classification accu-

racy does not decrease. The feature-subset selection is based on the wrapper approach 

[9] and an empirical feature-weight learning method [10] is used. Cross validation is 

used to estimate the classification accuracy. A detailed description of our prototype-

based classifier ProtoClass is given in [2]. The prototype selection, the feature selection, 

and the feature weighting steps are performed independently or in combination with 

each other, in order to assess the influence these functions have on the performance of 

the classifier. The steps are performed during each run of the cross-validation process. 

The classifier schema shown in Figure 1 is divided in the design phase (Learning 

Unit) and the normal classification phase (Classification Unit). The classification phase 

starts after we have evaluated the classifier and determined the right features, feature 

weights, the value for ‘k’ and the cases. 

Our classifier has a flat data base instead of a hierarchical one that makes it easier 

to conduct the evaluations. 
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Fig. 1. Prototype-based Classifier 

2.1 Classification Rule 

Assume we have n prototypes that represent m classes of the application. Then, each 

new sample is classified based on its closeness to the n prototypes. The new sample is 

associated with the class label of the prototype that is the closest one to sample. 

More precisely, we call x1,x2,…,xi,…xn a closest case to x if 

   min , ,i nd x x d x x , where i=1,2,…,n. 

The rule chooses to classify x into category lC , where  is the closest case to x 

and  belongs to  

class lC  with },,1{ ml  . 

In the case of the k-closest cases we require k samples of the same class to fulfill 

the decision rule. As a distance measure we can use any distance metric. In this work 

we used the city-block metric. 

The pair-wise similarity measure Simij among our prototypes shows us the discrimina-

tion power of the chosen prototypes based on the features. 

The calculated feature set must not be the optimal feature subset. The discrimination 

power of the features must be checked later. For a low number of prototypes we can let 

the expert judge the similarity SimEij between the prototypes. This 

gives us further information about the problem which can be used to tune the designed 

classifier. 

2.2 Using Expert’s Judgment on Similarity and the Calculated 

Similarity to Adjust the System 

Humans can judge the similarity SimEij among objects on a rate between 0 (identity) 

and 1(dissimilar). We can use this information to adjust the system to the true system 

parameters [11].  

Using the city-block distance as distance measure, we get the following linear sys-

tem of equations: 

nx

nx

nx

},,1{, nji 
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   (1) 

with ,  the feature l of the i-th prototype and N the number of fea-

tures.  

The feature al is the normalization of the feature to the range {0,1} with 

that is calculated from the prototypes. That this is not the true range 

of the feature value is clear since we have a low number of samples. The factor al is 

adjusted closer to the true value by the least square method using expert`s SimEij: 

 !   (2) 

with the restriction  . 

3 Methodology 

Figure 2 summarizes the knowledge-acquisition process based on protoclass-based 

classification.  

We start with one prototype for each class. This prototype is chosen by the biologist 

based on the appearance of the cells. It requires that the biologist has enough knowledge 

about the processes going on in cell-based assays and can decide what kind of reaction 

the cell is showing. 

   The discrimination power of the prototypes is checked first based on the feature 

values measured from the cells and the chosen similarity measure. Note that we calcu-

lated a large number of features for each cell. However, using many features does not 

mean that we will achieve a good discrimination power between the classes. It is better 

to come up with one or two features for small sample sizes in order to ensure a good 

performance of the classifier. The expert manually estimates the similarity between the 

prototypes and inputs these values into the system. The result of this process is the 

selection of the right similarity measure and the right number of features. With this 

information is set up a first classifier and applied to real data.  

Each new data gets associated with the label of the classification. Manually we eval-

uate the performance of the classifier. The biologist gives the true or gold label for the 

sample seen so far. This is kept into a data base and serves as gold standard for further 

evaluation. During this process the expert will sort out wrongly classified data. This 

might happen because of too few prototypes for one class or because the samples should 

be divided into more classes. The decision what kind of technique should be applied is 

made based on the visual appearance of the cells. Therefore, it is necessary to display 

the prototypes of the classes and the new samples. The biologist sorts these samples 

based on the visual appearance. That this is not easy to do by humans is clear and needs 

some experiences in describing image information [6]. However, it is a standard tech-

nique in psychology, in particular in gestalts psychology, and known as categorizing or 
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card sorting. As a result of this process we come up with more prototypes for one class 

or with new classes and at least one prototype for these new classes.  

The discrimination power needs to get checked again based on this new data set. 

New features, a new number of prototypes or a new similarity measure might be the 

output. The process is repeated as long as the expert is satisfied with the result. As a 

result of the whole process we get a data set of samples with true class labels, the set-

tings for the protoclass-based classifier, the important features and the real prototypes. 

The class labels represent the categories of the cellular processes going on in the exper-

iment. The result can now be taken as a knowledge acquisition output. Just for discov-

ering the categories or the classifier can now be used in routine work at the cell-line.  

 

 
 

Fig. 2. Methodology for Prototype-based Classification 
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4 THE APPLICATION 

After the assay has been set up, it is not quite clear what the appearances of the different 

phases of a cell are. This has to be learnt during the use of the system.  

Based on their knowledge the biologists set up several descriptions for the classifi-

cation of the mitochondria. They grouped these classes into the following classes: tub-

ular cells, round cells and dead cells. For the appearance of these classes see images in 

Figure 3. 

 

Class Tubular 

 B10_1  B10_18  B10_19 

 
Class Round 

  

 B03_8  B03_22 B03_26 

 
Class Death 

  

 B03_11  B06_0  B06_20 

   

Fig. 3.   Sample Images for three Classes (top Class Tubular, middle Class Round, bottom Class 

Death) 

   

Then prototypical cells were selected and the features were calculated with the soft-

ware tool CellInterpret [12]. The expert rated the similarity between these prototypical 

images. 

Our data set consist of 223 instances with the following class partition: 36 instances 

of class Death, 120 instances of class Round, 47 instances of class Tubular, and 114 

features for each instance.  
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The expert chose for each class a prototype shown in Figure 4. The test data set for 

classification has then 220 instances. For our experiments we also selected 5 prototypes 

pro class respectively 20 prototypes pro class. The associate test data sets do not contain 

the prototypes. 

 

 

Fig. 4. The Prototypes for the classes Death, Round and Tubular 

5 Results 

Figure 5 shows the accuracy for classification based on different numbers of prototypes 

for all features and Fig. 6 shows the accuracy for a test set based on only the three most 

discriminating features. The test shows that the classification accuracy is not so bad for 

only three prototypes, but with the number of prototypes the accuracy increases. The 

selection of the right subset of features can also improve the accuracy and can be done 

based on the method presented in Section 2 for a low number of samples. The right 

chosen number of closest cases k can also help to improve accuracy, but cannot be 

applied if we only have three prototypes or less in the data base. 

      Figure 7 shows the classification results for the 220 instances started without ad-

justment meaning the weights are equal to one (1;1;1) and with adjustment based on 

expert`s rating where the weights are (0.00546448; 0.00502579; 0.00202621) as an 

outcome of the minimization problem. 

 

 
 

Fig. 5.  Accuracy versus Prototypes and for two different feature subsets; Accuracy for different 

number of prototypes using all features 
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Fig. 6. Accuracy versus Prototypes and for two different feature subsets; Accuracy for different 

number of prototypes using 3 features (Area5, ObjCtn0, ConSk3) 

 

 
 

Fig. 7. Accuracy depending on choice of features (k=1) 

Table 1.    Difference values between 3 Prototypes using the 3 features (ObjCnt0, ArSig0, 

ObjCnt1) and the judged difference values by the expert 

 B6_23 B03_22 F10_2 

B6_23 0 
0,669503257 

(0,8) 

0,989071038 

(0,6) 

B03_22 
0,669503257 

(0,8) 
0 

0,341425705 

(0,9) 

F10_2 
0,989071038 

(0,6) 

0,341425705 

(0,9) 
0 

 

Table 1 shows the difference values of three prototypes and in clips the judged dif-

ference values by the expert. The result shows that accuracy can be improved by apply-

ing the adjustment theory and especially the class specific quality is improved by ap-

plying the adjustment theory (see Fig. 8). 

The application of the methods for larger samples set did not bring any significant 

reduction in the number of prototypes (see Fig. 9) or in the feature subset (see Fig. 10). 
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The prototype selection method reduced the number of prototypes only by three proto-

types. We take it as an indication that we have not yet the enough prototypes and that 

the accuracy of the classifier can be improved by collecting more prototypes. 

In Summary, we have shown that the chosen methods are valuable methods for a 

prototype-based classifier and can improve the classifier performance. For future work 

we will do more investigations on the adjustment theory as a method to learn the im-

portance of features based on a low number of features and for feature subset selection 

for a low number of samples.  

 

             

Fig. 8. Accuracy with and without adjustment theory 

         

Fig. 9. Number of removed Prototypes 

 

Fig. 10. Number of removed Features after Feature Subset Selection 
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6 CONCLUSIONS 

We have presented our results on a prototype-based classification. Such a method can 

be used for incremental knowledge acquisition and classification. Therefore the classi-

fier needs methods that can work on low numbers of prototypes and on on large num-

bers of prototypes. Our result shows that feature subset selection based on the discrim-

ination power of a feature is a good method for low numbers of prototypes. The adjust-

ment theory in combination with an expert similarity judgment can be taken to learn 

the true feature range in case of few prototypes. If we have a large number of prototypes 

an option for prototype selection is needed that can check for redundant prototypes.  

The system can start to work on a low number of prototypes and can instantly collect 

samples during the usage of the system. These samples get the label of the closest case. 

The system performance improves the more prototypes the system has in its data base. 

That means an iterative process of labeled sample collection based on prototype based 

classification is necessary, followed by a revision of these samples after some time, in 

order to sort out wrongly classified samples until the system performance has been sta-

bilized. 

The test of the system is done on a new application on cell image analysis, the study 

of the internal mitochondrial movement of cells. 
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