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Abstract. We analyze the geometry behind the problem of non-negative
matrix factorization (NMF) and devise yet another NMF algorithm. In
contrast to the vast majority of algorithms discussed in the literature,
our approach does not involve any form of constrained gradient descent
or alternating least squares procedures but is of purely geometric nature.
In other words, it does not require advanced mathematical software for
constrained optimization but solely relies on geometric operations such
as scaling, projections, or volume computations.
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1 Introduction

Non-negative matrix factorization (NMF) has become a popular tool of the trade
in areas such as data mining, pattern recognition, or information retrieval. Ever
since Paatero and Tapper [14] and later Lee and Seung [11] published seminal
papers on NMF and its possible applications, the topic has attracted considerable
research that produced a vast literature. Related work can be distinguished into
two main categories: either reports on practical applications in a wide range of
disciplines or theoretical derivations of efficient algorithms for NMF.

The work reported here belongs to the latter category. However, while our
technique scales to very large data sets, our focus is not primarily on efficiency.
Rather, our main goal is to expose a new point of view on NMF and to show
that it can be approached from an angle that, to the best of our knowledge, has
not been widely considered yet.

In order for this paper to be accessible to a wide audience, we first review the
NMF problem, its practical appeal, established algorithms for its computation,
and known facts about its complexity. Readers familiar with matrix factorization
for data analysis might want to skip this introductory exposition.

Then, we discuss NMF from a geometric point of view and devise an NMF
algorithm that does not involve gradient descent or alternating least squares
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Fig. 1: Visualization of the idea of matrix factorization and its interpretation as
representing data vectors in terms of linear combinations of a few latent vectors.

schemes. Rather, our approach is based on strikingly simple geometric properties
that were already noted by Donoho and Stodden [7] and Chu and Lin [4] but,
again to our best knowledge, have not yet been fully exploited to design NMF
algorithms. In short, we present an approach towards computing NMF that does
not explicitly solve constrained optimization problems but only relies on rather
simple operations.

The three major benefits we see in this are: (a) our approach allows users
to compute NMF even if they do not have access to specialized software for
numerical optimization; (b) it allows for parallelization and therefore naturally
scales to BIG DATA settings; (c) last but not least our approach hardly requires
prior knowledge as to optimization theory and convex analysis and therefore
provides an alternative, possibly more intuitive avenue towards teaching these
materials to students.

2 Non-Negative Matrix Factorization

Applications of NMF naturally arise whenever we are dealing with the analysis
of data that reflect counts, ranks, or physical measurements such as weights,
heights, or circumferences which are non-negative by definition. In situations
like these, the basic approach is as follows: Assume a set {xj}nj=1 of n non-
negative data vectors xj ∈ Rm and gather them in an m × n data matrix
X = [x1, . . . ,xn].

Given such a non-negative data matrix, we write X � 0 to express that
its entries xij ≥ 0 for all i and j. The problem of computing a non-negative
factorization of X then consists of two basic tasks:

1. Fix an integer k � rank(X) ≤ min(m,n).
2. Determine two non-negative factor matrices W and H where W is of size
m×k, H is of size k×n, and their product approximates X. In other words,
determine two non-negative, rank-reduced matrices W and H such that
X ≈WH. Mathematically, this can be cast as a constrained optimization
problem

min
W ,H

E(k) =
∥∥∥X −WH

∥∥∥2 (1)

subject to W � 0

H � 0
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where ‖·‖ denotes the matrix Frobenius norm. Note that instead of mini-
mizing a matrix norm to determine suitable factor matrices, we could also
attempt to minimize (more) general divergence measures D(X||WH). Yet,
w.r.t. actual computations this would not make much of a difference so that
we confine our discussion to the more traditional norm-based approaches.

Now, assume, for the time being, that W and H have been computed already.
Once they are available, it is easy to see that each column xj of X can be
reconstructed as

xj ≈ x̂j = Whj =
k∑

i=1

wihij (2)

where hj denotes column j of H and wi refers to the ith column of W . Next,
we briefly point out general benefits and applications of this representation of
the given data.

2.1 General Use and Applications

Looking at (2), the following properties and corresponding applications of data
matrix factorization quickly become apparent:

Latent component detection: Each data vector xj is approximated in terms
of a linear combination of the k column vectors wi of matrix W . Thus, in a
slight abuse of terminology, W is typically referred to as the matrix of “basis
vectors”. Since each wi is an m-dimensional vector, any linear combination
of the wi produces another m-dimensional vector. Yet, since the number k of
basis vectors in W is less than the dimension m of the embedding space, we
see that the reconstructed data vectors x̂j reside in a k-dimensional subspace
spanned by the wi. Hence, solving (1) for W provides k latent factors wi

each of which characterizes a different distinct aspect or tendency within the
given data.

Dimensionality reduction: There is a one-to-one correspondence between the
data vectors xj in X and the columns hj of H and we note that the entries
hij of vector hj assume the role of coefficients in (2). Accordingly, the factor
matrix H is typically referred to as the coefficient matrix. We also note that
while xj is an m-dimensional vector, the corresponding coefficient vector hj

is only k-dimensional. In this sense, NMF implicitly maps m-dimensional
data to k-dimensional representations.

Data compression: Storage requirements for the original data matrix X are
of the order of O(mn). For the approximation X ≈WH, however, we would
only have to store an m× k and a k × n matrix which would need space of
the order of O(k(m + n)). Since typically k � mn/(m + n) this allows for
considerable savings.

All these practical benefits also apply to related methods such as the singular
value decomposition (SVD) or independent component analysis to name but a
few. In this sense, NMF is not at all special. However, while methods such as
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the SVD are well appreciated for their statistical guarantees as to the quality
of the resulting low-rank data representations, they are not necessarily faithful
to the nature of the data. In other words, basis vectors resulting from other
methods are usually not non-negative and therefore will explain non-negative
data in terms of latent factors that may not have physical counterparts. It is for
reasons like these that NMF has become popular.

2.2 General Properties and Characteristics

Looking at (1), we recognize a problem that is convex in either W or H but
not in W and H jointly. In other words, NMF suffers from the fact that the
objective function E(k) usually has numerous local minima. Although a unique
global minimum provably exists [20], there are no algorithms known today that
were guaranteed to find it within reasonable time.

Indeed, (1) is an instance of a constrained Euclidean sum-of-squares prob-
lem and thus NP hard [1, 21]. Consequently, known NMF algorithms typically
approach the problem using iterative procedures. Usually, both factor matrices
are randomly initialized to non-negative values and then refined by means of
alternating least squares or gradient descent schemes.

The former approach goes back to [14] and works like this: first, fixate W and
solve (1) for H using non-negative least squares solvers. Then, given the updated
coefficient matrix, solve (1) for W and repeat both steps until convergence.

The latter idea was first considered in [11] and makes use of the fact that

E(k) =
∥∥∥X −WH

∥∥∥2 = tr
[
XTX − 2XTWH + HTW TWH

]
(3)

so that

∂E

∂W
= 2

[
WHHT −XHT

]
and

∂E

∂H
= 2

[
W TWH −W TX

]
. (4)

Updates for both factor matrices can thus be computed in another alternating
fashion using

W ←W − ηW
∂E

∂W
and H ←H − ηH

∂E

∂H
(5)

where ηW and ηH are step sizes which, if chosen cleverly, guarantee that any
intermediate solutions for W and H remain non-negative [11].

As of this writing, numerous variations of these two ideas have been proposed
which, for instance, involve projected- or sub-gradient methods [12, 15]. Further
details and theoretical properties regarding such approaches can be found in [5].

We conclude our discussion of the properties of NMF by noting that solutions
found through iteratively solving (1) critically depend on how W and H are
initialized [3]. In fact, solutions found from considering (1) are usually not unique
[10]. This can easily bee seen as follows: Let X ≈WH and let D be a scaling
matrix, then X ≈WDD−1H = W̃ H̃ which is to say that NMF “suffers” from
indeterminate scales. Our discussion below will clarify this claim.
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Fig. 2: Illustration of the fact that non-negative data reside in a polyhedral cone.

3 The Geometry of NFM

In the context of NMF, Donoho and Stodden [7] were the first to point to the fact
that any set of non-negative vectors of arbitrary dimensionality resides within a
convex cone which itself is embedded in the positive orthant of the corresponding
vector space (see Fig. 2(a) for 2-dimensional example).

Since practical applications usually deal with finitely many data points, we
note that any finite set of non-negative vectors xj ∈ Rm lies indeed within
a convex polyhedral cone, i.e. within the convex hull of a set of halflines whose
directions are defined by some of the given vectors. This is illustrated in Fig. 2(b)
where the two vectors w1 and w2 that define the edges of the cone coincide with
two of the data points.

These observations hint at NMF approaches where the estimation of W
can be decoupled from the computation of the coefficient matrix H. If it was
possible to identify those p ≤ n data points in X that define the edges of the
enclosing polyhedral cone, they could either be used to perfectly reconstruct the
data or we could select k ≤ p of them that would allow for reasonably good
approximations. These prototypes would form W and the coefficient matrix H
could be computed subsequently. Moreover, as shown in [18], such a decoupling
would enable parallel NMF: Once W had been determined, the data matrix X
could be partitioned into r blocks X = [X1, . . . ,Xr] where Xi ∈ Rm×n/r. For
each block, we could then solve (1) for the corresponding Hi which might be
done on r cores simultaneously.

While the work in [18] approached the selection of suitable prototypes wi

from X by means of random projections, Chu and Lin [4] pointed out another
interesting geometric property of NMF which we illustrate in Fig. 3. It shows
that the cone that encloses the data in X remains invariant under certain simple
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(c) data and pullback onto the simplex
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(d) convex hull on the simplex

Fig. 3: Pulling non-negative data back onto the standard simplex leaves the
geometry of the enclosing polyhedral cone intact.

transformations. In particular, the so called pullback

yj =
xj∑
i xij

(6)

which maps each data point xj ∈ Rm to a point yj in the standard simplex
∆m−1 does not affect the halflines that define the cone.

Moreover, data points xj on the edges of the cone in Rm will be mapped to
vertices of the convex hull of the yj ∈ ∆m−1 (see Fig. 3). This observation is
crucial, because it suggests that:

The problem of estimating a suitable basis matrix W for NMF can be
cast as a problem of archetypal analysis on the simplex.
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(a) 3D data and simplex projection (b) convex hull on the simplex

Fig. 4: Pullback to the simplex and data convex hull on the simplex.

Archetypal analysis is a latent factor model due to Cutler and Breiman [6]
who proposed to represent data in terms of convex combinations of extremes,
that is, in terms of convex combinations of points on the convex hull of a given
set of data. Recently, it spawned considerable research because it was recognized
that it allows for a decoupled and thus efficient computation of basis elements
and coefficients [2, 8, 13]. Next, we apply what we just established and combine
our geometric considerations with approaches to efficient archetypal analysis so
as to devise an NMF algorithm that notably differs from the techniques above.

4 Yet Another NMF Algorithm

Due to its practical utility, research on NMF has produced vast literature. Yet,
except for only a few contributions (most notably [4, 10]), most NMF algorithms
to date vary the ideas in [11, 14]. Our approach in this section, however, does
not involve constrained optimization. It is related to the work in [4, 10] which
apply geometric criteria to find suitable basis vectors. We extend these ideas
in that we consider basis selection heuristics recently developed for archetypal
analysis and demonstrate that NMF coefficients, too, can be computed without
constrained optimization.

Above, we saw that optimal NMF is an NP hard problem. We further saw that
traditional algorithms attempt to determine matrices W and H simultaneously
but that the geometry of non-negative data allows for a decoupled estimation of
both matrices. While it is comparatively simple to determine coefficients once
basis vectors are available, the difficulty lies in finding suitable basis vectors. We
therefore first discuss estimating W and then address the task of computing H.
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4.1 Computing Matrix W

In order to compute suitable basis vectors for a non-negative factorization of a
given data set X = {xj}nj=1,xj ∈ Rm, we first transform the data using (6) and

obtain a set of stochastic vectors Y = {yj}nj=1,yj ∈ ∆m−1. Figure 4 illustrates
this step by means of an examples of 3-dimensional data.

We note again that if we could determine the vertices w1, . . . ,wp of the
convex hull of Y where p ≤ n, we could perfectly reconstruct the given data as

xj =

p∑
i=1

hijwi, hij ≥ 0 ∀ i. (7)

However, in NMF we are interested in finding k basis vectors where k is usually
chosen to be small. Yet, given the example in Fig. 4, we recognize that for higher
dimensional data the convex hull of Y generally consists of many vertices so that
p likely exceeds k. We are thus dealing with two problems: how to determine the
vertices of Y and how to select k of them such that

n∑
j=1

∥∥∥xj −
k∑

i=1

hijwi

∥∥∥2 (8)

is as small as possible given that all the hij are non-negative?
These problems are indeed at the heart of recent work on archetypal analysis

where it was shown that reasonable results can be obtained using the method
of simplex volume maximization (SiVM) [17, 19] which answers both questions
simultaneously. The idea is to select k points in Y that enclose a volume that
is as large as possible. Given n points, it is easy to show that the k � n points
that enclose the largest volume will indeed be vertices of Y.

Following the approach in [17], we apply distance geometry and note that
the volume of a set of k vertices W = {w1, . . . ,wk} ⊆ Y is given by

V 2(W) =
−1k

2k−1
(
(k − 1)!

)2 det(A) (9)

where

det(A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 . . . 1
1 0 d211 d

2
12 . . . d

2
1k

1 d211 0 d222 . . . d
2
2k

1 d212 d
2
22 0 . . . d23k

...
...

...
...

. . .
...

1 d21k d
2
2k d

2
3k . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
is the Cayley-Menger Determinant whose elements indicate distance between the
elements in W and are simply given by

d2rs = ‖wr −ws‖2. (10)
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(a) basis vectors wi (b) data projected onto conv(wi)

Fig. 5: k = 3 basis vectors found by SiVM through greedy stochastic hill climbing
and projections of data points onto the corresponding convex hull conv(wi).

Algorithm 1 SiVM through greedy stochastic hill climbing

randomly select W ⊂ Y
for yj ∈ Y do

for wi ∈ W do
if V

(
W \ {wi} ∪ {yj}

)
> V

(
W

)
then

W ←W \ {wi} ∪ {yj}

We note again that NMF is an NP hard problem and that there is no free
lunch. That is, even if we reduce the estimation of W to the problem of selecting
suitable vertices in Y, we are still dealing with a subset selection problem of the
order of

(
n
k

)
. Aiming at efficiency, we resort to a greedy stochastic hill climbing

variant of SiVM that was proposed in [9]. It initializes W by randomly selecting
k points from Y then iterates over the yj ∈ Y and tests if replacing any of the
wi ∈ W by yj would lead to a larger volume. If so, the replacement is carried out
and the search continues. Pseudocode of this procedure is shown in Algorithm 1
and Fig. 5(a) shows k = 3 basis vectors found in our example.

Concluding this subsection, we note that the basis vectors wi determined
from the simplex projected data yj are all stochastic vectors whose entries are
greater or equal than zero and sum to one. In contrast to conventional NMF
approaches they are thus comparable in nature and do not suffer from ambiguous
scales.

4.2 Computing Matrix H

Once a set W = {w1, . . . ,wk} of k basis vectors has been selected from the
simplex projected data yj , every original data point xj that lies within the
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(a) polyhedral cone spanned by the wi
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(b) data xj and their projections x̂j

Fig. 6: Non-negative data and polyhedral cone spanned by k = 3 basis vectors
found through SiVM. If each xj is projected to its closest point x̂j on this cone,
it is easy to determine coefficients hij ≥ 0 such that xj ≈ x̂j =

∑
i hijwi.

polyhedral cone spanned by the wi can be perfectly reconstructed as

xj =
k∑

i=1

hijwi, hij ≥ 0 ∀ i. (11)

However, points outside that polyhedral cone cannot be expressed using non-
negative coefficients. Typically, the best possible non-negative coefficients would
therefore be determined using constrained least squares optimization. Here, we
consider a different idea namely to project every xj to its closest point in the
polyhedral cone of the wi and to determine coefficients for the projected point.

To achieve this, we first project the yj onto the convex hull of the wi in the
simplex ∆m−1 and note that there are highly efficient computational geometry
algorithms for this purpose [16, 22]. Figure 5(b) shows the corresponding result
for our running example.

Let zj denote the closest point of yj in the convex hull of the wi. We then
rescale the zj to unit length, i.e.

zj ←
zj

‖zj‖
(12)

and compute
x̂j = zj ·

(
zT
j xj

)
(13)

for all the original data vectors and thus obtain the point x̂j in the polyhedral
cone of the wi that is closest to xj . The corresponding result in our example
can be seen in Fig. 6 which shows the original data and their projections onto
the polyhedral cone spanned by the k = 3 basis vectors found previously.
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The x̂j are then gathered in a matrix X̂ and a unique coefficient matrix H
that, by nature of the x̂j , will only contain non-negative entries is computed as

H =
(
W TW

)−1
W T X̂ (14)

so that we indeed obtain two factor matrices W and H for which WH ≈X.

5 Conclusion

In this paper, we first discussed traditional approaches to non-negative matrix
factorization and pointed out some of the difficulties that arise in this context.
We then assumed a geometric point of view on the problem and showed in a
step by step construction that it is possible to compute NMF of a data matrix
without having to resort to sophisticated methods from optimization theory.

We believe that there are several advantages to our approach. First of all,
it is computationally simple and allows for parallelization. Second of all, it is
intuitive and easy to visualize and thus provides alternative avenues for teaching
this material to students. Third of all, it also creates new perspectives for NMF
research. While traditional, optimization-based approaches to NMF are very well
understood by now and most related recent publications are but mere variations
of a common theme, the idea of matrix factorization as search for suitable basis
vectors by means of geometric objectives such as maximum volumes raises new
questions. For instance, in ongoing work we are currently exploring the role of
entropy in NMF. Given the pullback onto the simplex, it is obvious to consider
the entropy of the resulting stochastic vectors as a criterion for their selection
as possible basis vectors. Indeed, points with lower entropy are situated closer
to the simplex boundary and therefore seem appropriate candidates for basis
vectors. Corresponding search algorithms are under development and we hope
to report results soon.
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