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Abstract. An important task in signal processing and temporal data
mining is time series segmentation. In order to perform tasks such as
time series classification, anomaly detection in time series, motif detec-
tion, or time series forecasting, segmentation is often a pre-requisite.
However, there has not been much research on evaluation of time se-
ries segmentation techniques. The quality of segmentation techniques is
mostly measured indirectly using the least-squares error that an approx-
imation algorithm makes when reconstructing the segments of a time
series given by segmentation. In this article, we propose a novel evalua-
tion paradigm, measuring the occurrence of segmentation points directly.
The measures we introduce help to determine and compare the quality
of segmentation algorithms better, especially in areas such as finding
perceptually important points (PIP) and other user-specified points.

1 Introduction and State of the Art

An important task in signal processing and temporal data mining is time series
segmentation, the division of a time series in a sequence of segments. In order to
perform tasks such as time series classification, anomaly detection in time series,
motif detection, or time series forecasting, segmentation is often a pre-requisite.
Depending on the application, segmentation can have arbitrary goals which can
basically be divided in two sub-categories.

Segmentation for time series reconstruction and representation

The first category is segmentation for time series reconstruction and rep-
resentation purposes. This category often uses algorithms which evaluate the
approximation error in some form and often aim at representing a time series by
a series of linear approximations. The existing algorithms can be categorized in
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one of the two categories off-line or on-line segmentation [13]. Off-line algorithms
have a global view on the data, they therefore know the development of the data
points, and, in theory, can achieve better results than on-line techniques. Popular
examples for off-line techniques include the Top-Down or the Bottom-Up Seg-
mentation [14], or the k-Segmentation [4], which performs a perfect segmentation
of a time series given k segments and an objective function (error function) in
very high computing time. On-line techniques only have a local view on the data
and have to decide about executing a segmentation without knowing the future
development of data points. For many use cases, such as applications with harsh
timing constraints, real-time applications, or the processing of large amounts of
data, only on-line techniques are applicable. In this realm, the Sliding Window
and Bottom-Up (SWAB) algorithm (and variants of it) is widely used [1,14,20].
Surveys comparing several time series segmentation techniques can be found
in [8,9,14,15]. It can be observed, that most segmentation algorithms evaluate
the quality of a segmentation of a time series by the least-squares reconstruction
error that an approximation algorithm makes when approximating the segments
of a time series [7,10,14,16,17].

Segmentation at characteristical points of the time series

The second category contains algorithms which aim at performing a segmen-
tation when the characteristics of the time series change in a certain way. This
category contains applications, such as segmentation for higher efficiency, index-
ing long time series, or finding perceptually important points (PIP) [6] and other
user-specified points. An algorithm of this category is for example the Sliding
Window algorithm, which can deliver reasonably good results [10] very fast using
systems of orthogonal polynomials [12]. Various error criteria can be used in this
approach to determine the segmentation points, e.g., the approximation error or
combinations of polynomial coefficients, such as slope or curvature.

However, there has been little research in the field of evaluation of segmenta-
tion in this realm. The frequently used reconstruction error measure is not opti-
mal, as it usually declines with an increasing number of segments (though more
segments usually are not necessarily related to a good segmentation) and highly
depends on the approximation algorithm and its parameters. Furthermore, it
also is an indirect measure, as it only rates the quality of the reconstruction
rather than the segmentation points itself. To the best of our knowledge, there
does not exist a measure that determines the quality of a segmentation with re-
spect to points the user actually wants the algorithm to segment at. Therefore,
we introduce a scheme for the evaluation which aims at quantifying the seg-
mentation results with respect to user-defined segmentation points (i.e., labeled
points).

The remainder of this article is organized as follows: In Section 2, we in-
troduce a novel interpretation of evaluation of segmentation by treating the
segmentation result as a classification problem. We then discuss measures which
make sense in order to quantify the segmentation results. Section 3 discusses
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Fig. 1. Cases in the classification of segmentation points. The green vertical lines rep-
resents the segmentation zone (SZ) center while the green areas show the valid SZ area.
The black and red lines represent segmentation points determined by a segmentation
algorithm. While the black lines represent valid segmentation points (true positives),
the red lines are false positives. The goal of a segmentation is to hit an SZ close to the
SZ center exactly one time while not producing any segmentation point outside an SZ.

further measures not directly related to the classification interpretation, but
nevertheless describe properties of segmentation results. In Section 4, we aim at
giving further insight in how these measures work by conducting some experi-
ments and evaluating our measures for the experimental results. Section 5 wraps
up our findings.
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2 Classification Related Measures

The segmentation of time series can be seen as a classification problem: In each
time step, the algorithm has to decide whether to perform a segmentation (S7)
or not (S7). Consequently, by comparing the performed segmentation to a user-
specified target one, a standard metric such as a confusion matrix (see Table 1)
can be applied. The algorithm will return a vector of predicted labels p, e.g.,
p=1{5",5",58",5"%,..,87} for each evaluated time series with length N. For
the evaluation of a performed time series segmentation, the criteria to determine
the elements of the confusion matrix (shown in Table 1) differ from those of a
standard classification task.

Ground Truth
Positive |Negative| Total
Positive TP FP |TP+FP
Negative| FN TN |FN+TN
Total TP+FN FP+TN

Prediction

Table 1. A standard confusion matrix. Here, we propose an interpretation of the
confusion matrix (normally used for standard classification tasks) for segmentation
problems.

In a naive approach, every point in time is given a ground truth label to form
a vector t € {S*,S7}¥ with only a very small amount of target segmentation
points ST. For the sake of simplicity, our time series here is assumed to consist
of equidistant data points in the time domain (though this is not required for
the evaluation). By comparing p and t pairwisely, the confusion matrix can
be formed. This approach, though, does not account for temporal adjacency.
For most applications, a segmentation p(n) = ST at point in time n of the
time series would be considered as a good-enough hit if the target segmentation
point was located in the immediate neighborhood t(n 4 ¢) = ST, (¢ € Nt
€ is a tolerated deviation). But, in our naive approach, such a result would
lead to both a false positive (FP) and false negative (FN) result as they do not
match exactly. Therefore, the evaluation metric has to be modified to incorporate
temporal neighborhood in a small area around a target segmentation point as
a valid segmentation. Additionally, the evaluation result depends not only on a
single segmentation decision in time, but on the result in conjunction with the
predicted labels in the temporal neighborhood, i.e., while one segmentation at
the right location is desirable, multiple segmentation points at the same location
have to be penalized.

Depending on the nature of the time series and the desired application, ev-
ery segmentation task has its own requirements regarding its temporal accuracy
of the segmentation, e.g., for some tasks, a too early segmentation may be un-
problematic while a late segmentation must not be allowed. For an evaluation it
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Algorithm 1 Calc. of Average Segmentation Count (ASC)

procedure CALCULATEASC(Segmentation Points, All SZ)
Create counter variable v for every SZ
for each Segmentation Point of Segmentation Points do
if Segmentation Point is inside SZ then
Increment variable v of this SZ by 1
end if
end for
return Sum of all v divided by total number of SZ
end procedure

therefore makes sense to model each segment to be determined with an earliest
and latest point which will still be considered as inside an allowed segmentation
zone (SZ). Fig. 1(a) visualizes a sample segmentation zone design, the green
vertical line represents the target segmentation point while the green area shows
the size of the SZ. The black and red lines represent segmentation points deter-
mined by an arbitrary algorithm. In the shown case, one SZ is assigned exactly
one determined segmentation point, therefore it is treated as a true positive
(TP). Another simple case is shown in Fig. 1(b). If the algorithm does not set
a segmentation point in an area where none is expected, the sample is treated
as a true negative (TN). If a SZ is not detected, i.e., no segmentation point is
associated with it, it is treated as a false negative (FN, type II error), (see Fig.
1(c)). False positives (FP, type I error) can be created in two situations: (1) An
SZ is assigned more than one segmentation point, each segmentation point more
than one is then treated as a FP, Fig. 1(d). (2) A segmentation point is found
in an area where no SZ exists, Fig. 1(e).

Due to the fact that in most cases there will be a lot more elements where
there is no segmentation (S~) than elements where there is a segmentation (S),
we can assume a heavily imbalanced dataset regarding the class distribution,
invalidating basic measures such as accuracy defined by

TP + TN
ACC = 1
TP + FP+ TN + FN’ 1)
as it does not consider the distribution of the classes at all. A well-known measure
to describe classification performance is the Receiver-Operating-Characteristic

(ROC) curve, describing the development of the false-positive rate (FPR)

FP
FPR = 5p 1N @)
and the true-positive rate (TPR)
TP
TPR = oo (3)

This measure is also valid for imbalanced datasets, though only a small area of
the total ROC curve is covered. The FPR remains problematic as it will adopt
only small values.
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Algorithm 2 Calc. of Absolute Segmentation Distance (ASD)

procedure CALCULATEASD(Segmentation Points, All SZ)
Initialize variable ASD with 0
for each Segmentation Point of Segmentation Points do
if Segmentation Point is inside SZ then
Add Dist. between Segmentation Point and this SZ center to ASD
end if
end for
return ASD divided by number of found Segmentation Points
end procedure

Other prominent measures describing the confusion matrix in one single value
beside accuracy are the Area Under (ROC) Curve (AUC) and F,,-score mea-
sures such as the Fj score (both evaluated in [19]) or the Matthews correlation
coefficient (MCC). The F} score calculated by

2TP

F =
'~ (2TP + FP + FN)

(4)

describes the harmonic mean of precision and sensitivity, which in turn means
that the amount of TN is not taken into account. The MCC published in [18]
calculates a correlation of a two-class classification prediction and is regarded as
a balanced measure which can even be used if the class sizes are very different
[3]. The MCC takes into account all elements of the confusion matrix and is
calculated by

TP-TN — FP-FN

MCC = . (5)
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

It adopts values from —1 to +1, where +1 represents perfect correlation, 0 a
result not better than random guess and —1 absolute disagreement between
prediction and ground truth. In contrast to the Fy score, MCC also incorporates
the TN, thus representing the overall structure of the confusion matrix in more
detail. In general, it is regarded as a good measure for unbalanced classification
problems [3].

To determine the overall quality of a segmentation result, the Fy score and the
MCC seem to be the most promising measures, they have different advantages
and disadvantages, though they behave similar in general [2]. The MCC does not
just account for (in)correct predictions, but measures correlation, which means
that it takes into account systematic mispredictions by adopting values smaller
than 0. This can be seen as an advantage for the MCC. Furthermore, it considers
all elements of the confusion matrix, consequently representing the classification
result in more detail. While this sounds appealing for standard classification
tasks, for segmentation the incorporation of the standard case “TN” may turn
out as a distracting factor in the evaluation. Depending on the nature of the
data, segments are set in different frequencies, resulting in a different proportion
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Algorithm 3 Calc. of Average Direction Tendency (ADT)

procedure CALCULATEADT (Segmentation Points, All SZ)
Initialize variables PreSeg and PostSeg with 0
for each Segmentation Point of Segmentation Points do
if Segmentation Point inside SZ then
Add 1 to PostSeg if after SZ center or
add 1 to PreSeg if before SZ center
end if
return PostSeg / (PostSeg + PreSeg)
end for
end procedure

of positives and negatives, modifying the MCC. In addition, factors such as the
sampling rate of a time series can have an impact on the MCC, resulting in
more negatives only (doubling the sampling rate of the same process leads to
about twice as many TN). In other words, while the MCC considers the whole
time series, the F score just accounts for what the segmentation algorithm does
(correct and false). Consequently, we think that the F score is more appropriate
for the evaluation of most segmentation tasks. Depending on the segmentation
task, other forms of the F,, score can make sense (e.g., the F» score putting
twice as much emphasis on recall). When it comes to adjusting a segmentation
algorithm to different applications (with different constraints regarding FN and
FP), it also makes sense to use Precision and Recall

TP

Prec. = TP +FD. TP, (6)
TP

Ree. = 751X, (@)

To set the operating point of an algorithm, the goal may not be the overall opti-
mal classification performance (e.g., regarding F; score), but achieving the best
possible performance when constraining one type of error. These two measures
give insights on how an algorithm performs regarding only type I or type II error,
respectively, and thereby help to determine the desired operating point.

3 Segmentation Zone Measures

Besides the measurements related to classification, there exist also other proper-
ties of segmentation algorithms which are worth examining. An important mea-
sure is the Average Segmentation Count (ASC), determining how many times an
algorithm triggers a segmentation while being inside a SZ on average. The ASC
can be calculated by Algorithm 1. The value of ASC ideally is close to 1, a value
lower 1 means too little segments are set inside SZ while a value greater 1 means
too many segments are found. It is normed by the SZ count, resulting in an easily
understandable result (“per SZ, the algorithm sets ASC segments on average”).
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Fig. 2. Segmentation experiment I using excerpt from a real data example [5] (sym-
metric SZ with total size 180). A basic Sliding Window algorithm using a fast poly-
nomial approximation [11] is utilized (Window Size = 90; Segmentation Criteria:
average < 1970, slope < 5, curvature > 10™%, re-segmentation suppression 150 steps).
The segmentation points colored in black represent true positives while the red seg-
mentation points represent false positives. The last Segmentation Zone is not hit at all,
resulting in a false negative. The confusion matrix that can be calculated by summing
up the four respective cases is shown in Table 2.

Furthermore, not only the number of segmentation points is important, but also
how accurately they hit the target segmentation. To determine the distance be-
tween target segmentation point and found segmentation point, we introduce a
measure called Absolute Segmentation Distance (ASD) calculated by Algorithm
2. It is normed by the number of segmentation points found. Finally, it could be
of interest whether an algorithm tends to set its segmentation points too early
or too late. To specify this characteristic of a segmentation algorithm, we intro-
duce a measure called Average Direction Tendency (ADT) which is described
in Algorithm 3. It describes a quotient of early and late segmentation points
(“ADT% of segmentation points are too late”). If the algorithm tends to set its
segments too early, the value will be below 0.5 while a late segmentation will
result in a value greater 0.5. It is useful to use this measure in conjunction with
the ASD measure to quantify the amount of segments and the direction of the
deviation.

4 Examplary Evaluation

Now we want to briefly show the measures in action to get a better overall
impression of how the measures perform. In order to do that, we extracted a
time series from a real data set [5] showing activity data with a chest-mounted
accelerometer and defined segmentation zones which we expect our segmenta-
tion algorithm to find. We used a basic Sliding Window segmentation algorithm
evaluating polynomial approximations of the window content using fast update
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Fig. 3. Segmentation experiment I using excerpt from a real data example [5] (sym-
metric SZ with total size 180). A basic Sliding Window algorithm using a fast polyno-
mial approximation [11] is utilized with two criteria (Window Size = 90; Segmentation
Criteria: (1) average < 1958, slope < 107*, curvature > 10™%, re-segmentation sup-
pression 300 steps; (2) average > 1972, slope > 1072, re-segmentation suppression 200
steps). The segmentation points colored in black represent true positives while the red
segmentation points represent false positives. It can be seen easily that this experiment
produces less false positives and no SZ is missed. The confusion matrix that can be
calculated by summing up the four respective cases is shown in Table 3. It can be ex-
pected that in the evaluation an improvement in relation to segmentation experiment
I (Fig. 2) can be observed.

formulas as proposed in [10]. The capabilities of the approximation regarding
run-time can be found in [12], an implementation of the approximation algorithm
can be downloaded at [11]. To show how the measures behave, we performed
the segmentation with two parameter combinations, one of which performs sig-
nificantly better. The result of the time series for the first (worse) parameter
combination (Experiment I) is shown in Fig. 2. As we can see from the image,
the algorithm tends to set too many segmentation points, some of which are not
inside a specified segmentation zone. The points outside the zones are counted
as False Positives (FP). Additionally, some segmentation zones are hit multiple
times. While the black (valid) segmentation points are counted as True Positives
(TP), all further segmentation points are also treated as FP. Furthermore, one of
the segmentation zones is not hit at all. This zone is counted as a false negative
(FN). From the segmentation results, we can create a confusion matrix as shown
in Table 2. Next, we performed the segmentation with a different, apparently
better parameter combination (Experiment I, Fig. 3). All zones are hit exactly
one time, every segmentation therefore counts as exactly one TP. We can see,
that one determined segmentation point lies outside a segmentation zone. Con-
sequently, it is treated as a FP. The confusion matrix for this segmentation is
shown in Table 3.
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Ground Truth
Positive|Negative
Positive 3 9
Negative 1 6987

Table 2. Example confusion matrix resulting from the segmentation performed in Fig.
2. Standard performance measures can now be applied to the matrix.

Prediction

Ground Truth
Positive|Negative
Positive 4 1
Negative 0 6995

Table 3. Example confusion matrix resulting from the segmentation performed in Fig.
3. Standard performance measures can now be applied to the matrix.

Prediction

To the confusion matrix elements, we can now apply the classification re-
lated measures described in Section 2. For both confusion matrices 2 and 3,
we evaluated the Accuracy (ACC), the Fy score, and the Matthews Correla-
tion Coefficient (MCC). Additionally, we applied our new segmentation zone
measures to the segmentation results, namely the Average Segmentation Count
(ASC), the Absolute Segmentation Distance (ASD) and the Average Direction
Tendency (ADT). The results are shown in Table 4. In addition we added some
baseline results for algorithms performing a segmentation at no point in time
(NeverSeg), on every time step (AlwaysSeg) or on random with p(S*) = 0.5. In
this table, the classification related measures are shown on the left hand side,
while the segmentation zone measures are shown on the right hand side of the
table. As we can clearly see, ACC is unable to discriminate between the results
of experiment I and 1. The Precision drastically increases from a value of 0.25
to 0.80. The Recall also increases from 0.75 to 1.00, as no FP are produced in
Experiment II. The F} score has a range between 0 and 1, here the values are
0.375 or 0.888, respectively. We can see a clear difference between result I and
I1I. The MCC behaves numerically similar: In experiment I, the value is 0.433,
while experiment /7 results in a value of 0.894. Both the F} score and the MCC
behave very similar here. In the realm of the segmentation zone measures, we can
see that the algorithm behaves more appropriate with respect to the specified SZ
in experiment I1. The ideal value of ASC is 1 (one found segment for each SZ).
While experiment I returned too many segments, segmentation I7 yields better
results. For the ASD measure, we can see that the segmentation became more
accurate regarding the SZ center. It improved from about 70 data samples from
the center to only 45 samples on average. Last, the ADT also changed, though
this is not a measure for segmentation quality, but more a description of the
algorithm characteristics: In experiment I, the quotient between early and late
segmentation points was roughly balanced (0.5 would be perfectly balanced) with
a value of 0.4, which means a slight overweight for early segmentation points. In
experiment I1, all segmentation points were too early.
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Acc. |Prec.| Rec.| F1 |MCC||ASC|ASD|ADT
NeverSeg (0.999/1.000{0.000{0.000{0.000 (| 0.0 | 0.00 -
RandomSeg|0.500{0.001{1.000{0.001{0.000|| 90.0 {90.00| 0.5
AlwaysSeg [0.001{0.001{1.000{0.001{0.001 |{180.0{90.00| 0.5

Exp. (I) ]0.999|0.250(0.750{0.375]0.433 || 1.25 |70.40| 0.4
Exp. (II) [0.999]0.800{1.000|0.888(0.894 || 1.00 (44.75| 0.0

Table 4. Segmentation measures extracted from experiments of Fig. 2, Fig. 3, and the
respective confusion matrices (Table 2, Table 3). Additionally, some baseline measures
were added, showing algorithms performing segmentation at no point in time (Nev-
erSeg), on every time step (AlwaysSeg) or random with p(S*) = 0.5 (RandomSeg).
As we can see, the accuracy (ACC) clearly falls short of describing the segmentation
result. Precision and Recall differ significantly, both favoring Experiment /1. The F;
score and the MCC behave similarly, though the MCC takes into account the TN in
contrast to Fi. The other measures ASC and ASD improve from Experiment I to
I1. The segmentation characteristic of the algorithm changes as well, from a balanced
segmentation to an early segmentation, as ADT describes.

All in all, these measures help to quantify the quality of a segmentation
result. Depending on the application of the segmentation, different measures
may be more or less important. Often, a combination of multiple measures helps
to specify the characteristics of the segmentation algorithm.

5 Conclusion and Outlook

In this article, we proposed several new evaluation criteria for time series seg-
mentation in the realm of segmentation for the sake of finding specific points
such as perceptually important points (PIP), which we categorized in classi-
fication related measures and segmentation zone measures. We think our new
measures will help to compare the quality of various segmentation approaches
better, especially for applications such as motif detection and other applications
where the detection of user-defined points turn out to be important. We hope
authors will adopt these measures to further increase the comparability of seg-
mentation algorithms. In our future work we aim to evaluate new algorithms for
time series segmentation using the introduced measures. We also thought about
defining gradual segmentation zones (e. g., by using gaussians) to further specify
the quality of a segmentation algorithm.
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