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Abstract. When searching for specific nodes in a network an agent hops
from one node to another by traversing network links. If the network is
large, the agent typically possesses partial background knowledge or cer-
tain intuitions about the network. This background knowledge steers the
agent’s decisions when selecting the link to traverse next. In previous re-
search two types of background knowledge have been applied to design
and evaluate search algorithms: homophily (node similarity) and node
popularity (typically represented by the degree of the node). In this pa-
per we present a method for evaluating the relative importance of those
two features for an e�cient network search. Our method is based on
a probabilistic model that represents those two features as a mixture
distribution, i.e. as a convex combination of link selection probabilities
based on the candidate node popularity and similarity to a given tar-
get node in the network. We also demonstrate this method by analyzing
four networks, including social as well as information networks. Finally,
we analyze strategies for dynamically adapting the mixture distribution
during navigation. The goal of our analysis is to shed more light into ap-
propriate configurations of the background knowledge for e�cient search
in various networks. The preliminary results provide promising insights
into the influence of structural features on network search e�ciency.
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1 Introduction

Nowadays, in many aspects of our daily life we, knowingly or unknowingly, deal
with networks. For instance, we participate in large o✏ine and online social net-
works, we often deal with information networks such as Wikipedia and the Web,
or with file sharing peer-to-peer networks. All of these networks are constantly
growing and sometimes consist of billions of connected nodes. In many situa-
tions we, or some other kind of autonomous agents, have to search for specific
nodes in those networks. Apart from being large, these networks also constantly
change. For example, friendship connections in a social network are created and
removed, or new Web sites are created and connected to old ones. Therefore,



search in such large and ever changing networks is a complex and hard task.
The task becomes even harder in networks without a global index such as the
Google index for the Web. For example, peer-to-peer networks do not rely on
the existence of a global index but base their search strategies on the local prox-
imity of a candidate node to a specific target. More recent examples include
autonomous swarms of drones building up ad hoc networks. In those systems,
information has to be passed from one drone to another, while the network is
constantly changing and therefore no central search or routing engine can be
built. In such decentralized networks the search performance heavily relies on
finding resources within as few hops as possible.

In previous research several decentralized search algorithms have been de-
signed. Among others, these include:

– Kleinberg’s algorithm (based on homophily): Informed greedy search works
well on small world networks with a clustering exponent of 2. In his exper-
iments the clustering exponent determined the probability of a connection
between two nodes as a function of their similarity. The simulation was
steered by homophily, i.e. the geographic distance on a network model was
used. [4], [5], [6].

– Adamic’s algorithm (based on popularity): Power-law graphs can be locally
searched by moving to the neighbor node with the highest degree. The costs
of the search scale sub-linearly with the graph size. This property makes this
algorithm interesting when dealing with large networks [1].

– Jensen’s algorithm (based on a fixed combination of homophily and popular-
ity): Using homophily and degree disparity as background information, the
authors construct a simple algorithm for decentralized search. In a couple of
synthetic and real-world networks they were able to outperform Adamic’s as
well as Kleinberg’s algorithm [9].

All of these algorithms perform remarkably well and are typical heuristic
algorithms based on intuitive assumptions on the nature of features needed to
e�ciently search in networks. In this paper we set out to analyze these assump-
tions in greater detail, with a final goal of learning more about the influence of
those two features (homophily and popularity) on the search performance. Thus,
we aim to answer the following research questions:

1. How much information is provided by node homophily and node popularity
and how well can this information be used for e�cient search in networks?

2. How should we mix node homophily and node popularity to maximize the
search performance? Can an adaptive approach to information mixture out-
perform a static mixture that remains constant throughout navigation.

To answer these questions we simulate a decentralized search approach, informed
by a combination of two di↵erent local features, which serve as proxies for node
popularity and node homophily – degree and cosine similarity to the target node.
Additionally, we introduce and analyze adaptive mixing strategies. To evaluate
the navigation performance we create a framework, which allows us to exam-
ine the impact of di↵erent mixtures. Our preliminary results show that in the



majority of analyzed networks homophily provides, on average, more important
and more useful information for e�cient search. However, the optimal results
are only achieved in situations where small amount of popularity information is
also available to the search agent.

Thus, our work makes the following contributions:

1. Methodological : We provide a framework for analyzing various features to
inform search in networks. The framework allows to investigate a wide range
of feature combinations and to assess their search performance by simulating
an agent navigating through a network.

2. Empirical : We apply our framework on real networks and learn about the
importance of homophily and node popularity as features for informing net-
work search.

Outline: The rest of the paper is organized as follows. We summarize investi-
gations done by other researchers in the field in Section 2. Thereafter we shortly
describe the methodology used in the paper in Section 3 followed by the experi-
ments in Section 4 and their results in Section 5. A brief discussion of the results
can be found in Section 6. Finally, we wrap up the paper with an outlook for
the future work in Section 7.

2 Related Work

The research on decentralized search in networks was initiated by the famous
Milgram experiment in the 1960s [10]. In this experiment individuals had to
forward a letter to an unknown person – a stockbroker from Boston. The partic-
ipants were only allowed to send the letter to somebody whom they know by the
first name, i.e. to a friend who possibly can reduce the distance or even knows
the target person. Remarkably, the average number of hops for the successful
letter chains was less then six. Thus, a famous outcome of the experiment was
the so-called ”Six degrees of separation” phenomenon, which states that people
in a large society such as the USA, are connected by friendship chains not longer
than six. Later, Leskovec and Horvitz [7] analyzed a messaging network, namely
MSN Messenger. Their result were similar as Milgram’s – the average length of
connection chains between all pairs of the users is only 6.6.

Another interesting result from the Milgram’s experiment is the fact, that
although they posses only local knowledge of the network, humans are capable
of finding those short connection chains even in a large social network. Various
researchers put more e↵ort into investigation of this phenomenon and developed
so-called decentralized navigation methods.

For example, Kleinberg [4] showed that in small world networks (with small
average shortest path and highly connected groups of similar nodes) homophily
(node similarity) can be exploited to e�ciently find random target nodes. He
observed that small world networks having a clustering exponent of 2 are navi-
gable using a homophily feature. In his research the homophily feature was the



geographic distance on the lattice of the Watts and Strogatz model as defined
in [11].

Later, Adamic [1] showed that networks whose degree distribution follows a
power-law distribution can be e�ciently navigated with knowledge about node
popularity (degrees) only. The algorithm moved in each step to the unvisited
neighbor node with the highest degree. In situation where all neighbors where
already visited a random neighbor was chosen. Compared to a random walk,
which moves in each step to a random node, the algorithm was able to find
nodes within just a few hops. Additionally, the average number of hops scales
sub-linearly in the number of network nodes.

Simsek and Jensen [9] combined homophily and popularity in their algorithm
called expected-value navigation (EVN). For EVN degree and attribute values
of neighbors of the current as well as neighbors of the target node were needed.
Additionally, they assumed that already visited nodes can be identified as such.
In synthetic networks EVN was able to outperform both previously named al-
gorithm.

3 Methodology

In this paper we set out to assess the importance and the role of homophily and
popularity for informing decentralized search in networks. We base our approach
on simulations of an agent that navigates through a network in search for a given
target node. At each simulation step the agent needs to select one node from
the list of neighboring candidate nodes. The selection is based on the available
information about the candidate nodes and follows di↵erent navigation models.
In detail, the simulation is based on three elements:

1. The available information, which we represent in the form of probability
distributions over two features (homophily and popularity) and a particular
mixture distribution of the corresponding probability distributions.

2. A background knowledge model, which defines the mixture distribution and
its adaptation during the simulation.

3. A navigation model, which defines the candidate selection strategy.

Next we describe those three elements in more details.

3.1 Features & Mixture

To create probability distribution we use homophily and popularity as basic
measures. We assume that the networks are undirected and without multiple
links.
Degree: In our paper we use the degree as representation of popularity. Having a
network with A as adjacency matrix (with Aij = 1 if nodes i and j are connected
by a link and Aij = 0 otherwise), the degree is defined as follows:

ki =
nX

j=1

Aij . (1)



Fig. 1: Convex combination: The plot shows two discrete probability distri-
bution p and q. p is uniform distributed, whereas q is non uniform. Varying ↵
(0.25, 0.5, 0.75) one can observe the resulting mixture distributions.

Cosine Similarity: This feature serves as a proxy for homophily. Equation 2
defines the number of common neighbors of nodes i and j. Using this definition
we compute the cosine similarity �ij of two nodes as defined in Equation 3.
Cosine similarity results in a non-zero value between two nodes if they share at
least one common neighbor.

nij =
X

k

AikAkj . (2)

�(i, j) =
nijp
kikj

. (3)

Mixture Distribution: For the purpose of creating mixtures of these two
features we convert them to probability distributions. Therefore, we calculate a
probability mass function by dividing each feature value by the sum of all values.
Thus, we need only local information for normalization. Precisely for each feature
we divide the value of a node by the sum of all values corresponding to the same
feature (all neighbors). Hence we get for each feature a probability distribution.
For example, the degree normalization we define as following:

qi =
kiPn
i=1 ki

. (4)

Afterwards we apply a convex combination to generate a mixture distribution.
Equation 5 defines the steps necessary to calculate the mixtures, where wl is the
weight of a probability distribution l.

fi =
nX

l=1

wlpi where
nX

l=1

wl = 1 . (5)



We denote the probability distribution of cosine similarity and degree as p and q.
Furthermore we set w1 = ↵ and w2 = 1�↵ since we only have two distributions.
This allows us to configure the mixture distribution over ↵ only. Equation 6
defines the mixture distribution of p and q using ↵.

fi = ↵pi + (1� ↵)qi . (6)

For instance, Figure 1 visualizes di↵erent mixture distributions of p and q. Note
that setting ↵ to 0 results in a mixture distribution equal to q. On the opposite
if ↵ is set to 1, the resulting mixture distribution equals p.

3.2 Background Knowledge Models

Static Mixture: In our first analysis we use a constant ↵ to create mixture
distributions as defined in section 3.1. Recollect ↵ defines the impact of cosine
similarity p and degree p onto the mixture distribution. From now on we refer
to this model as static mixture.

Static Switch: Inspired by human navigation strategies we generate a back-
ground knowledge model, which imitate human behavior. Scientists have dis-
covered that humans have two phases when navigating in a network from one
random node to another [3], [12].

In the first phase, also known as zoom out phase, humans try to reach a
popular and thus highly connected node. As a consequence one characteristic of
this phase is that nodes having a higher degree than the current one are chosen.
Adamic presented such an algorithm in her work and showed that power-law
graphs can be e�ciently searched with it [1]. Setting ↵ to 1 for the mixture
distribution, allows us to mimic this strategy.

Contrary, the second phase of humans, the zoom in phase, is steered by the
similarity of neighbors to the target node. Kleinberg mimicked this behavior and
proved that small networks with a clustering exponent of 2 can be searched by
doing so [4]. We simulate this behavior using the cosine similarity. By setting
↵ to 0, we generate a mixture distribution equal to p. Thus the agent is only
influenced by the similarity.

Recollect that the cosine similarity is always 0 if no neighbor has at least
one common neighbor with the target node. Hence p can be a discrete, uniform
distribution. This case increases the uncertainty of the mixture distribution if ↵
is greater than 0. One can observe this e↵ect in Figure 1. To tackle this problem,
we imitate human behavior again and switch from the zoom out to the zoom in
phase at a fixed point. We simulate this by initializing ↵ to 0 and change the
value to 1 at a certain point. We name this model static switch.

Dynamic Switch: However, the last method lacks of a dynamic transition
point, since network size as well as the degree distribution influence the position
of the optimal transition point. Thus we initialize the simulation with a certain
↵ and set ↵ to 1�↵ as soon as p is not uniformly distributed any more. In other
words this model switches the weights of p and q in the mixture distribution the
moment it reaches a part of the network near to the target node. We call this
background knowledge model dynamic switch.



3.3 Navigation Models

Greedy Search: The simplest node selection mechanism is a greedy selection.
In this strategy the algorithm traverse the network by moving always to the
node with the highest probability of all unvisited neighbors. We reference this
strategy as greedy search.

Stochastic Search: However, the greedy search model never selects nodes with
a slightly lower probability in the mixture distribution than the maximum. To
tackle this we select the next node by drawing randomly from the mixture dis-
tribution. We refer to this as stochastic search. Consequently this model results
in a random walk if the mixture is uniformly distributed. On the other side it
selects the same node as greedy search if one neighbor has a probability of 1 in
the mixture distribution.

Softmax Search: Nevertheless, the randomness of mixture distributions can
vary. To either increase or decrease the uncertainty of a distribution we use a
softmax function. The softmax function we apply onto our mixture distributions
is defined as following:

gi =
e�fiP
i e

�fi
. (7)

This function increases the randomness of a distribution if � is smaller than
1, whereas it decreases the uncertainty using values greater than 1. Figure 2
demonstrates the impact of various values for �. Consequently we have the ability
of continuous varying our navigation model. For example, a high � results in
greedy search, � = 1 in stochastic search, and setting � to zero produces a
random walk. We refer to this model as softmax search with � as a parameter.

4 Experiments

4.1 Dataset

For our experiments we use four networks:
Wikipedia for Schools is a subset of Wikipedia articles especially designed

for the education of school children. It consists of 4.6 thousand articles (ver-
tices) connected by 119.8 thousand hyper links (edges). The network is directed
and belongs to the category of information networks. A power-law distribution
provides the best fit for the degree distribution.

Furthermore we use a subset of Facebook created out of so called ego-networks
where user represents vertices. Additionally, friendship between two users creates
an edge in the network between those users. This dataset contains 3.9 thousand
users, 88.1 thousand friendships and can be categorized as social network. Its
degree distribution follows a log-normal distribution.

As a second social network we test our algorithm on a subset of Twitter con-
sisting of 76.2 thousand users and 126.9 thousand edges. Contrary to Facebook,
this dataset is directed. This is due the fact that in this social network user A



Fig. 2: Softmax function: One can see the impact of di↵erent values for � of
the softmax function defined in Equation 7. Values smaller than 1 have a flatting
e↵ect, whereas values higher than 1 concentrate more probability mass around
modes – thus reducing the uncertainty. � = 0 results in a uniform distribution.
Setting � = 1 does not modify the distribution.

can follow user B without the requirement that B follows A. The best fit for the
degree distribution is a log-normal distribution.

The last network is a co-authorship network, namely DBLP, which consists of
317 thousand authors (vertices) and 1 million co-authorship connections (edges).
The degree distribution of the network can be fit best with a log-normal distri-
bution.

We calculated the best fit for the degree distribution of these networks with
the method proposed by Clauset [2]. The plot containing the degree distributions
of all four networks can be found in Figure 3c.

4.2 Experimental Set-up

For each network we generate as many missions as there are nodes in the network.
Each mission consists of two randomly chosen nodes reachable from each other.
The hop plot and a plot of the shortest path lengths for all missions are shown
in Figure 3.

The task of the algorithm is to navigate from one node to the other within
as few hops as possible. We consider paths longer than 20 hops or containing
revisits of nodes as unsuccessful. Furthermore our framework tries to avoid al-
ready visited nodes in each navigation by removing them from the candidate
nodes. In our experiments we combine each navigation model with each back-
ground knowledge model once. This results in 9 experiments for each network.
As evaluation metrics we gauge the success rate and stretch. The success rate
is the fraction of successful solved missions, whereas the stretch is the length
of the produced paths divided by their corresponding shortest paths lengths. In
other words the stretch defines the factor of how much longer produced paths
are compared to their shortest path.



(a) Hop Plot (b) Shortest Distances (c) Degree Distributions

Fig. 3: Properties of Networks & Missions : Figure 3a shows the hop plots
of all missions. Lengths of shortest distances of all missions for each network are
plotted in Figure 3b. Notice how long shortest distances of missions in the DBLP

are compared to Wiki for Schools. Figure 3c shows the degree distributions of
the networks.

5 Results

Figure 4 shows all results of our experiments. We exclude plots presenting the
stretch, since they only emphasize the outcome of the success rate. Rows in
Figure 4 are ordered by navigation models, whereas columns refer to the used
background knowledge model.

The most interesting result is, that the cosine similarity p seems to be more
important for an e�cient navigation than the degree information q. Independent
of the navigation model and network a fixed value for ↵ near 0.9 seems to be a
good choice. As imagined the optimal amount of hops after witch to switch from
0 to 1 for ↵ depends on the network. For instance, the static switch model applied
onto the DBLP - which is a sparse network with a high diameter - benefits from
more steps to nodes with higher degrees during the first phase of the navigation.
Additionally, for the DBLP, this holds for all navigation models. On the other
side in Wikipedia for Schools the best performance is reached by switching to
↵ = 0 before the first hop is made. However, the dynamic switch model in
combination with a low value for ↵ outperforms all other strategies. This applies
to all networks independent of the navigation model. This emphasizes, that in
the first steps the uncertainty of mixture distributions with ↵ greater than 0 is
increased by the cosine similarity. Additionally, in the zoom in phase the degree
information q likely steers in the opposite direction than the cosine similarity q.
Consequently the zoom in phase also benefits from the dynamic switch model.
This is due to the circumstance, that in power-law or log-normal networks a
random selected node is likely to have low degree. Thus most missions have a
low degree target node.

Anyhow, the di↵erence between greedy search, stochastic search, and soft-

max search shows how determined the mixture distributions are. Using softmax

search we can continuously adapted the uncertainty of the mixture distribution.
In the last row of Figure 4 the parameter � of the softmax function is set to 50.



greedy search

stochastic search

softmax search

Fig. 4: Results: The figure shows the results of our simulations. Each row cor-
responds to one navigation model. We use the success rate as evaluation metric.
The left column contains the results produced by the static mixture model. In
this plot the x-axis defines the ↵ parameter as specified in section 3.1. The cen-
ter column ↵ shows the outcome of the static switch model, where the transition
point is on the x-axis. In the right column results of the dynamic switch model
can be found. The initial value of ↵ corresponds to the x-axis.

Consequently navigation behavior between greedy search and stochastic search

is obtained.
Additionally to the success rate we gauge the normalized entropy of the

mixture distributions. A normalized entropy of 1 is produced by uniform mixture
distributions. On the other side, mixture distributions containing a value of 1,
induce a normalized entropy of 0. Figure 5 shows the average normalized entropy
for value of ↵ between 0 and 1. Moreover on the left side � is set to 1, whereas
on the right a value of 50 is used. Notice the high normalized entropy of the
DBLP at ↵ = 1 on both plots. This may be due the low density of the network



Fig. 5: Normalized entropy of mixtures: These plots depict the average nor-
malized entropy of the mixture distributions produced during the simulation for
each network. The left plot contains the gauged normalized entropy of unmod-
ified mixture distributions. Contrary, the on the right the softmax function of
Equation 7 is applied - using 50 as � - onto the mixture distributions. Definitely
the normalized entropy on the right plot is lower than on the left. This is a
consequence of the reduced uncertainty of the mixture distributions through the
applied softmax function.

which consequently results in situations where only a small amount of candidate
nodes are available. Moreover this nodes are likely to have a high di↵erence in
the probability distribution. This is especially the case for cosine similarity.

6 Discussion

In our experiments the cosine similarity plays a more important role (best ↵ =
0.9) than the degree information. We believe that this is caused by the properties
of the networks we use. All of them are small and have low diameters (3 - 8). Due
to these properties the probability of having a neighbor which has a common
neighbor with the target node is higher than it would be in larger networks with
bigger diameters. Additionally, even if the cosine similarity of all neighbors is
zero, the resulting navigation behavior - a random walk - has a high probability
of moving to high degree nodes. For example, the famous page-rank algorithm
takes advantage of this e↵ect to identify popular nodes in a network [8]. Thus,
a uniform mixture distribution favours high degree nodes.

Therefore, we strongly believe that simulations steered by cosine similarity
- in power-law or log-normal networks - naturally include a zoom out phase.
Nevertheless, additional information of the degree of neighbors may cut down
the hops needed for the zoom out phase. Moreover, this intuition is supported
by the observation, evident in our experiments where the dynamic switch model
in combination with a low initial ↵ outperformed all other models.

7 Future Work

One limitation of our research is that the cosine similarity is not a complete local
measure of homophily. It includes information about the neighbors of both the



current and the target node. Hence we are working on a metric more suitable as
a proxy for local homophily. For example, a measure which can only determine
if the target is in it’s neighborhood or in the neighborhood thereof. This would
also allow us to adjust the scope of local knowledge. Furthermore, we plan on
applying our framework onto synthetic - especially non power-law/log-normal -
networks in future work.
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