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LAGADEC1

1 UMR 6285 Lab-STICC, ENSTA Bretagne, 2 rue Franois VERNY 29806 BREST
CEDEX 9

2 UMR 6285 Lab-STICC, Université Bretagne Sud, Rue de Saint-Maudé BP 92116
56321 LORIENT Cedex

Abstract. Complex systems traditionally involve partners from differ-
ent companies with their own domains of expertise. During design stages,
these partners need to exchange pieces of information and to debate
around architectural and implementation choices.
Model Driven Engineering for System Engineering simplifies system knowl-
edge sharing, while simulation provides sound results to drive debate. As
a consequence, gaining a flexible and dynamic tool that models and sim-
ulates the architecture is highly valuable.
In this paper we focus on the functional architecture design and analysis
steps of the system engineering process. We identify adaptation to ex-
isting system engineering process, tool modularity and interaction with
models as three grounding principles for a flexible system model sim-
ulation tool. We show that meta-modeling and layered architecture for
a simulator are enabling technologies for our three principles. We also
demonstrate the use of these technologies by implementing a simulation
tool in the context of a sea-floor observatory project.

1 Introduction

System engineering is an interdisciplinary activity during which experts from
several domains having an holistic approach look for the near optimal system
design to answer to a client’s needs [6]. Interdisciplinary approach requires the
ability to work with partners with different vocabulary and work techniques.
Looking for a near optimal solution implies identifying and comparing multiple
design solutions for the system. One of the risks in an interdisciplinary context
is that each expert focuses on its domain of expertise and looks for a locally
optimal solution (for its domain) that is not necessarily the globally optimal
solution (for the system seen as a whole) [10]. Adopting an holistic approach
reduces this risk. Holistic approach, interdisciplinarity and near optimal solu-
tion are linked problematics. The holistic view of the system must be shared
amongst experts. Model-Based System Engineering (MBSE) is an approach in
which system engineering artifacts such as the functional architecture are mod-
els [4]. Models are abstractions of the system and can be used to share knowledge



between experts [11]. Collaborative design gives all experts the opportunity to
express their ideas. It is then possible to take into account the opposite point
of views and to find more alternatives of system design. Simulation helps this
collaboration by giving a concrete realization to the discussions [3].
The simulation tool used in the collaborative context should be fitted to work
across domains of expertise. Each expert should find the main terms defined
in its domain. For example, in a sea-floor observatory project, mechanic and
software experts are involved. In such a project sensors are deployed underwa-
ter and tightness is a major requirement. This requirement has a translation in
the mechanic domain and also in the software domain. Mechanically tightness
means that the system has seals and is assembled in a manner that ensures that
water will not enter into the system. In the software domain, tightness means
that there is a way to measure the pressure into the system. In case of an ab-
normal evolution of pressure indicating a failure in tightness, a message is sent
back to supervisors. Mechanical and software models should be put together to
enable the simulation of the tightness function. The simulation outputs should
be adapted to provide output meaningful for mechanics engineers and also for
software engineers.
In this paper, we describe three principles that ground a flexible simulation tool:

– Adaptation to system engineering processes (current, and emergent/future);

– Extensibility of the tooling;

– Interaction with models.

Companies have already defined their system engineering process and use tools
to support the process. Our approach is based on the respect of what has already
been done in the companies. Multiple domains such as mechanics or software are
involved in the design of a system. It is not possible to create a tool taking na-
tively into account all of these domains. Domain experts should be able to add
new functionality to the tool and remove those which are not required. Mod-
els are prototypes. Domain experts are using them to debate over the design
alternatives for the system. They should be able to modify the models accord-
ing to the result of their discussion. To realize our three principles, we describe
a meta-model defining the concepts of a functional architecture. A functional
architecture is the definition of the functions implemented in the system, their
interactions and their structural layout. The meta-model describes the struc-
ture, the communication and the behavior aspects of functions that should be
implemented by the system. In a Model-Based System Engineering approach
the meta-model ensures independence from existing modeling tools. To obtain a
flexible simulation tool, we define a layered and component-based architecture.
Layers group tool functionalities according to their degree of specificity to a do-
main of expertise. Components isolate functionalities and provide a convenient
way to reuse them.
The rest of the paper is organized as follows. Section 2 describes some related
work. Section 3 first provides a motivating example for this work coming from a
sea-floor observatory project we were involved in. Section 4 provides a descrip-



tion of the grounding principles. Section 5 describes the technologies usable to
implement a flexible simulation tool.

2 Related Work

Different formalisms can be used to model a system functional architecture such
as Enhanced Functional Flow Block Diagram (EFFBD) and SysML models.
EFFBDs are an extension of Functional Flow Blocks Diagrams. Functional Flow
Blocks Diagrams define functions and their sequence of execution. EFFBD adds
data flow to the functional architecture modeling [12] and execution through
Timed Petri Nets has been described in [16]. However, once the simulation is
started it is not possible to have interaction with the running model.
SysML [17] enables to model a system architecture throughout the system design
cycle. Functional architecture is modeled using Block Definition Diagrams for
the structure and Activity Diagrams for the behavior. The link between struc-
ture and behavior is obtained through an allocation relationship. SysML models
can be used as entry model for simulation tools [13] through model transforma-
tion. However, in SysML every structural definition (whether implementation
or functional) relies on the concept of block. Using the same concepts at the
functional and implementation level implies that designers should be careful not
introduce implementation details into the functional architecture. The functional
architecture should only describe what the system will do with no implementa-
tion choices so that multiple architectures are investigated to find the best one.
Two different approaches may be used to enable the simulation of models de-
fined in a modeling tool: extend the modeling or simulation tool to introduce
execution capabilities or use one tool to do the modeling, serialize the model in
an interchange format which will be imported in the simulation tool.
Extending a modeling tool can be made using a plugin as suggested by Rad-
jenovic and al. [15]. Their approach is structured in three steps with one design
model, one simulation model and finally the simulation execution. The simu-
lation tool is extended through a plugin enabling to extend the understanding
of multiple input model formalism. However, this approach requires knowledge
of the internal functioning of tooling and access through an API, which is not
always possible with proprietary tools.
On the opposite, Karsai and al in [9] advocate using an interchange format be-
tween modeling and simulation tool. This approach relies on meta-modeling and
model transformations. A model transformation is required to transform the
architecture model into the interchange format and another one is required to
transform the serialized architecture model into a simulation model. The inter-
operability of the tools relies on the interchange format. The interchange format
may be custom as the goal is to provide a model exchange backbone for multiple
tools in the same design process. We favored this approach as we do not want
to modify existing tools which are known by designers. In our case, we have to
adapt to the model serialization format of already used modeling tools.



3 Motivating Example

The MeDON [7] project aims at designing a proof of concept for a sea floor ob-
servatory in coastal areas. A sea-floor observatory is made of a set of underwater
sensors and of computing servers. The scientific goal of the MeDON observa-
tory is to passively detect sound sources in the area of Brest in France without
defining their location. Hydrophones are deployed to acquire underwater sounds.
Algorithms were defined to detect contributions to underwater sound above the
mean sound level.
During the design phase of the MeDON project, experts from electronic, software
and electronic fields among others were involved. Experts worked in their spe-
cific field of expertise and had interactions together only during progress study
meetings each six month. There was no knowledge repository to store a common
view of the observatory design. Decisions impacting every fields of expertise were
made according to field specific goals without coordination with other experts.
Some of these decisions had huge impacts on work already done. For example, a
deployment site was chosen at the beginning of the project. However, this choice
had to be modified due to energy supply shortage. This choice was necessary
but it implied rework on the deployment of the data computing softwares and
on the choice of the servers. With a functional architecture independent from
any technology, it would have been possible to reuse a lot of engineering work.
Besides, a better communication between experts about the possibility of power
supply shortage would have led to the definition of at least two alternatives ar-
chitectures. So, when the change occurred, the switch of architecture would have
been anticipated.
The MeDON project is now being upgraded to include the localization of the
sound sources. Learning from our experience, we decide to use a SysML-based
system architecture model to define the system architecture and to have a shared
view on the system. An algorithm based on the difference of sound arrival time
between each hydrophone has been selected to locate sound sources. The sound
is acquired by at least three hydrophones in a two dimensional approximation of
space. One of the hydrophones is chosen as reference. Each hydrophone acquire
sound signals. The acquired sound is then analyzed to detect the presence of
a signal higher than the noise. If one is found it is considered as a detection.
For each detection on each hydrophone a difference is made between the time of
reception on the hydrophone and on the reference. It is then possible to have a
location of the sound source [18]. We model a functional decomposition of the
algorithm with SysML. The Figure 1 shows the Block Definition Diagram we
obtained. A Passive Acoustic Monitoring system PAMSystem is made of Acqui-
sition and Computing functions. The Acquistion must contain a RawAcquisition
function to acquire the raw signal. The Computing function must contain a Lo-
calization function which perform the localization. The Detection function ana-
lyzes the signal from RawAcquisition to check for a value higher than the mean
signal value. This function can be grouped either into the Acquisition function
or the Computing function. This is an architecture alternative that should be
investigated. We instantiated the architecture in which the Detection function



Fig. 1. Block Definition Diagram of a Passive Acoustic Monitoring System

is grouped into the Acquisition function. The result is shown Figure 2. In this

Fig. 2. Internal Block Definition of a Passive Acoustic Monitoring System

work we adopted an approach mixing data scientists’ point of view for the block
definition and the point of view of software engineers for the data flow. However,
this is not enough. We must take into account the point of view of experts from
the other domains involved in a sea-floor observatory such as electrical experts.
Besides, the tooling is not dynamic and flexible enough to enable users to model
and simulate alternative of architecture.

4 Grounding Principles for a flexible simulation tool

In this section, we will introduce three principles underlying the development of
our simulation tool. First, we know that industrial companies have well defined
system engineering processes. So we think that our tool has to adapt to these
processes and not the other way round. Second, we think that the users’ needs
will continuously evolve so the simulation tool must follow these evolutions. As
a consequence, the simulation tool must be extensible. Third, we would like that
the model and the simulation become an active support for reflections. This
leads to interactions with models.



4.1 Adaptation to Deployed System Engineering Process

The ISO 15288 standard [1] defines the activities performed during the system
engineering process. We draw our interest on the functional architecture design
step. The functional architecture describe the functions implemented in a system.
These functions come from the requirement analysis made with the users. The
functions defined through the requirements analysis will be organized in several
alternatives of functional architectures. Definition and comparison of functional
architecture alternatives are essential as the choices made at this step of the
process drive the whole system realization. Simulation is one tool to perform
this comparison.
Simulation relies on the modeling activity. Models define the abstraction level of
the simulation and serve as entry point. A model driven approach for simulation
is made of four steps [2]:

1. Conceptual Modeling: definition of the system model at a given abstraction
level.

2. Tool independent simulation modeling: translation of the previous model
into a simulation formalism such as Discrete Event. The independence from
simulation tool enable reuse of the model.

3. Tool specific simulation model: translation of the previous model into a
model using the concepts defined in the chosen simulation tool.

4. Implementation.

In our case, the functional architecture can already be modeled using languages
such as SysML [5]. These languages are already used in companies’ system en-
gineering process. In order to be adopted, a tool must comply with industrial
processes [8]. The modeling of the functional architecture is equivalent to the
conceptual modeling step. It is made with existing tools so that we comply with
companies’ process and tools. As a result, the simulation tool is decoupled from
the functional architecture modeling tool while sticking to the system engineer-
ing process. A meta-model is provided to describe the elements of the functional
architecture to simulate. Intermediate models compliant with the defined meta-
model are independent from any simulation tool. The intermediate models can be
obtained through model transformations from system engineering tool knowing
their meta-models.

4.2 Adaptation to User’s Needs

Complex system design requires work from experts coming from multiple do-
mains. Each expert has its own view on the system through its domain vocabu-
lary and also on the metrics given by the simulation. The simulation tool must
be able to take into account the differences between domains. Experts need a
tool adjusted to the current situation they are facing. Experts should be able to
add new functionalities to the simulation tool and remove the ones they are not
using.
This requires a modular approach like the one used in the Linux Kernel. The



Linux kernel is made of a set of modules. Each module has an unique purpose
such as handling a USB device or printing. A module can be loaded and un-
loaded. However, some modules are essential to the stability of the system and
they can not be unloaded.
Like the Linux kernel, the simulation tool should be made of modules that can
be loaded and unloaded by domain experts as required by their current task.
Besides, a distinction between modules should be made. Some modules are at
the basis of the simulation and so should not be unloaded. Other modules deal
with domain specific activities and may be loaded and unloaded at will.

4.3 Interaction with Functional Architecture Models

Interaction with models consists in observing the simulation and its results and
in modifying the simulated model. These activities serve the purpose of:

– Enabling to define new alternatives of functional architecture by debating;
– Simulating the different alternatives;
– Comparing the results of the simulation.

One of the goal of functional architecture is to define groupings of functions. In
the simulated models the functions groups should be modifiable to perform tests
on different alternatives. A function can be seen as an assembly of basic oper-
ations. The order in which the basic operations are performed or their nature
should be modifiable. Those interactions with models are risky: deadlocks can
be created by the modifications. Furthermore, modifications may cause a loss of
coherency between the simulated model and the simulation results. The simu-
lation results must be linked to the simulated model. So the simulation engine
must take into account all the modifications performed on the model so that the
simulation results are still valid.
Tests on the structure of the model should be performed to avoid these risks. At
runtime, a deadlock check should also occur. The modeled elements themselves
should also provide pieces of information about which modifications users are
allowed to perform on them. Unauthorized modifications should be blocked by
the model elements.

5 Enabling technologies for the Guiding Principles

In this section, we will introduce the technologies used to implement the three
principles. Meta-modeling and model transformation implements the adaptation
to system engineering process. Layered architecture helps to implement tool
extensibility.

5.1 Meta-Modeling and Model Transformations

We defined a meta-model describing functional architecture models. This meta-
model shown Figure 3 is based on the function description in [14]. Functions are



Fig. 3. Meta-model defining a functional architecture

seen as actions performed by a system and are allocated to constituent of the
system. We extracted the definition of the functions and elaborate on it. Our
meta-model is made of the definition of the functional structure, the communi-
cation between functions and the behavior of functions.
The functional structure is described by a Composite pattern between the Func-
tionComponent, LeafFunction and LogicalFunctionGroup meta-classes. The meta-
class LeafFunction describes the basic functions of the system. A logical function
group (LFG) can be made of other LFGs and of basic functions. in the example
of our sea-floor observatory, we have a LFG called Acquisition that groups two
LeafFunctions RawAcquisition and Detection. The two latter are LeafFunctions
as they are not further broken down.
Basic functions can communicate through communication links. Each commu-
nication link has a behavior to define if the communication will be synchronous
or asynchronous. To bring flexibility in modeling the behavior of functions, we
reified the concept of communication link. We decouple the behavior of the com-
munication from the behavior of the function. Changes in the function behavior
will not affect the way communications are performed. LeafFunctions know each
link through an alias. There is one link per exchange between two functions. This
mechanism is similar to ports in a component-based modeling. Unlike ports, our
modeling of links do not allow broadcast. However, it eases the analyses of the
exchanges between functions as exchanges between a sender and multiple re-
ceivers must be explicitly modeled.
The behavior of a function can be described as a sequential list of basic oper-
ations such as sending or receiving data and performing a computation. The
sending operation is described by the name of the communication link on which
the data are sent. The receiving operation is described by the name of the com-
munication link from which the data are read. The computation operation is
described by the computation duration.
To adapt ourselves to the process and tools used in the industry, the meta-model
define an intermediate representation of functional architecture. The functional
architecture is modeled using companies’ internal modeling tool. Model trans-
formations extract the data relevant to functional architecture from companies’
model and create a new model compliant with our meta-model. This new model
is used to define the simulation to perform independently from the companies



tools used for modeling the functional architecture at the beginning.
Our meta-model was designed in the context of the sea floor observatory exam-
ple and uses vocabulary of data processing such as Computation. However, it
can be easily extended to suit more generic needs. An Action meta-class can be
created. The Computation meta-class will inherit from it. The class Communi-
cationBehavior can be renamed in LinkBehavior. Classes detailing the behavior
of flows inheriting from LinkBehavior can be created.

5.2 Layered Architecture

To obtain tool extensibility we rely on a layered architecture each layer being
made of software components. In a layered architecture each layer uses services
from the lower level layer and provides services to the upper level one. It is then
possible to build a new service providing business oriented data built from tool
services. Components have a well-defined interface. Their functional responsibil-
ities are clearly identified. It is possible to switch two components with the same
data inputs and outputs. Components may also have the ability to be loaded at
runtime. New functionalities can then be added to the tool at runtime.
Using a layered and component-based architecture has several advantages. First,
using component enable to co-locate pieces of code having the same role. When
a modification is required, locating the area in the code that must be modified
is easy. Second, using layers and components requires to clearly identify the in-
terfaces between the components. This enables to write new components and
integrate them in the simulator. The only condition is to comply with the in-
terfaces. However, using layers and components for the architecture have some
disadvantages. The complexity of the architecture of the simulator may be in-
creased. Information useful in a component may follow a complex path before
gaining the targeted component.
We decompose the simulation tool into three layers as shown Figure 4. The Core

User Specific Tools

Input/Output Tools
Sequence Diagram

Generator
Model Importer

Core Concepts

Simulation Engine

Fig. 4. Decomposition in layers of the tool

Concepts layer contains the simulation engine component. This component con-
tains the implementation of the meta-model.
The functional architecture is modeled outside our simulation tool and model



transformations are performed to import it in our tool. A model importer com-
ponent should be responsible for performing the model transformation. Besides,
the simulation should generate output rendered into an user friendly format.
An export module per output format should be implemented. All those compo-
nents are located into the Input/Output Tools layer on top of the Core Concepts
layer. The Company Specific Tools layer will contain the different components
developed specifically for the users’ needs. For example, a component may be
written to compute the global waiting time the different functions and display
the obtained value.
An example of component decomposition is the integration of a sequence dia-
gram utilities. Sequence diagrams enable to visualize message exchanges between
functions. We defined two components: one that displays directly a sequence di-
agram and one which creates a log file using a format readable by an external
tool in such as the sdedit tool3. A component approach is well suited because in
both case information about the message exchanges are the same i.e. the iden-
tity of the sender, the message name, and the identity of the receiver. Besides,
the behaviors of both component are really different, the first manage a display
and the second one write data in a file. The link between the execution engine
and the components is made through an interface detailing the data structure
exchanged between simulator components.

6 Conclusion

In this paper we presented the three necessary principles to obtain a flexible sim-
ulation tool at the functional level. First, we think that such a tool should adapt
to the system engineering processes already in use in companies and not modify
it. Second, we advocate for a tooling able to be adapted to specific needs. Third,
the simulation tool must enable to play with the models simulated. We also
gave a list of enabling technologies. Meta-modeling and model transformations
may support the adaptation to existing system engineering process. Flexibility is
achieved through the independence from deployed tooling. Module-based tooling
enable the adaptation of the tool to the user needs. Flexibility is achieved by the
ability to load and unload modules at will according to the project environment.
A future work is to extend our functional architecture metamodel. We want to
reify the composition link between the LogicalFunctionsGroup and the Function-
Component metaclasses. It will then be possible to add pieces of information to
specify the link such as an alternative identifier. This identifier will ease the
process of implementing, simulating and comparing functional architecture al-
ternatives.
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