11" Workshop on

Model Driven Engineering, Verification and Validation
MoDeVVa 2014

Copyright (©) 2014 for the individual papers by the papers’ authors.
Copying permitted for private and academic purposes.
This volume is published and copyrighted by its editors.

Editor’s addresses:

Michalis Famelis

Department of Computer Science
10 King’s College Road

University of Toronto

Toronto, Ontario, Canada M5S 3G4
famelis @cs.toronto.edu

Frédéric Boulanger

Supélec - Département informatique
3 rue Joliot-Curie

91192 Gif-sur-Yvette cedex, France
frederic.boulanger @supelec.fr

Daniel Ratiu

Siemens AG

Corporate Technology
Otto-Hahn-Ring 6

81739 Miinchen, Deutschland
daniel.ratiu@siemens.com

Contents

Prefacel. e \
[Markus Volter |
| Language Workbenches: Opportunities and Challenges for V&V | 1

Jesus J. Lopez-Fernandez, Esther Guerra and Juan de Lara [
| Assessing the Quality of Meta-models| 3

[Erwan Bousse, Benoit Combemale and Benoit Baudry |
| Towards Scalable Multidimensional Execution Traces for xDSMLs | 13

[Loic Gammaitoni, Pierre Kelsen and Fabien Mathey [
| Verifying Modelling Languages using Lightning: a Case Study | 19

[Xiaolilang Wang, Adrian Rutle and Yngve Lamo [
| Scalable verification of model transformations | 29

Julien Brunel, David Chemouil, Laurent Rioux, Mohamed Bakkali and Frédérique [
[Vallée |
| A Viewpoint-Based Approach for Formal Safety [
| & Security Assessment of System Architectures|. 39

[Maria Spichkova, Jan Olaf Blech, Peter Herrmann and Heinz Schmidt [
[Modeling Spatial Aspects of Safety-Critical Systems with Focus ST | 49

[Frank Hilken, Philipp Niemann, Robert Wille and Martin Gogolla [
| Towards a Base Model for UML and OCL Verification | 59

[Sebastian J. I. Herzig and Christiaan J. J. Paredis |
| Bayesian Reasoning Over Models| 69

[Pranav Srinivas Kumar, Abhishek Dubey and Gabor Karsai [
| Colored Petri Net-based Modeling and Formal Analysis |
| of Component-based Applications | 79

Preface

The MoDeV VA workshop series brings together researchers and practitioners in-
terested in combining MDE with validation and verification. The 11" edition took
place on the 30" of September 2014 and was co-located with MODELS’14 in
Valencia, Spain. The special topic of this edition was modeling and reasoning in the
presence of incompleteness, underspecification and the unknown.

Out of the 19 papers submitted and reviewed by at least three members of the
program committee, 9 were selected.

In addition to the presentation of the papers selected by the program committee,
MoDeVVA'’14 featured an invited presentation by Markus Volter, who works as
an independent consultant in the domain of language engineering, modeling and
model-driven software engineering.

This volume contains the abstract of the invited presentation and the final ver-
sions of the selected papers, in the order in which they were presented at the
workshop. The papers where collected using the EasyChair conference system,
formatted according to the LNCS style, and assembled using pdfI&TEX and the
pdfpages package.

Program Committee

Ait Sadoune, Idir, Supélec, France

Balaban, Mira, Ben-Gurion University of the Negev, Israel
Barroca, Bruno, CITI-FCT/UNL, Portugal

Boulanger, Frédéric, Supélec, France

Bouquet, Fabrice, University of Franche-Comté, France
Bousse, Erwan, Université de Rennes 1, France

Cheng, Chih-Hong, ABB Corporate Research, Germany
Derrick, John, University of Sheffield, UK

Famelis, Michalis, University of Toronto, Canada

Fondement, Frederic, Ecole Nationale Supérieure d’Ingénieurs Sud Alsace, France
Jacquet, Christophe, Supélec, France

Legeard, Bruno, Smartesting, France

Licio, Levi, MSDL McGill University, Canada

Merayo, Mercedes, Universidad Complutense de Madrid, Spain
Minea, Marius, Universitatea Politehnica Timisoara, Romania
Ratiu, Daniel, Siemens Corporate Technology, Munich

Salay, Rick, University of Toronto, Canada

Scheidgen, Markus, Humboldt-Universitt zu Berlin, Germany
Sokenou, Dehla, GEBIT Solutions, Germany

Taha, Safouan, Supélec, France

Williams, James, University of York, Great Britain

Wimmer, Manuel, Vienna University of Technology, Austria
Zurowska, Karolina, Queen’s University, Canada

September 3, 2014 Frédéric Boulanger
Gif-sur-Yvette Michalis Famelis
Daniel Ratiu

Language Workbenches:
Opportunities and Challenges for V&V

Abstract of keynote speech at MoDeVVa 2014

Markus Volter

Voelter ingenieurbiiro fiir softwaretechnologie
http://www.voelter.de/

Language workbenches (LWBs) are tools that support the ef-
ficient construction of languages. Several LWBs support modular
extension and composition of languages, as well as flexibly mixing
diverse notational styles in a single model. This has obvious ad-
vantages for V&V: languages of different levels of abstraction and
levels of formality can be integrated, verification-specific extensions
can be modularly introduced and validation is more efficient because
programs can be much more readable as a consequence of domain-
specific notations.

But there are also challenges:

— How can verification tools deal with (potentially unknown) ex-
tensions to the subject languages?

— Can the semantics implied by language extensions be exploited
to speed up the verification?

— Can the semantics of extensions be proven to be equivalent to
their lower-level representation?

In this talk I illustrate the opportunities an challenges based on
mbeddr!, an extensible set of integrated languages for embedded
software development built with the JetBrains MPS language work-
bench.

My hope is that the opportunities help establish LWBs as a tool
in the V&V community, and the challenges inspire discussions in the
workshop and research after the conference.

! http://mbeddr.com/

Proceedings of MoDeVVa 2014 1

Assessing the Quality of Meta-models

Jests J. Léopez-Fernandez, Esther Guerra, and Juan de Lara

Universidad Auténoma de Madrid (Spain)
{Jesusj.Lopez, Esther.Guerra, Juan.delara}Quam.es

Abstract. Meta-models play a pivotal role in Model-Driven Engineer-
ing (MDE), as they define the abstract syntax of domain-specific lan-
guages, and hence, the structure of models. However, while they play a
crucial role for the success of MDE projects, the community still lacks
tools to check meta-model quality criteria, like design errors or adherence
to naming conventions and best practices.

In this paper, we present a language (mmSpec) and a tool (metaBest) to
specify and check properties on meta-models and visualise the problem-
atic elements. Then, we use them to evaluate over 295 meta-models of
the ATL zoo by provisioning a library of 30 meta-model quality issues.
Finally, from this evaluation, we draw recommendations for both MDE
practitioners and meta-model tool builders.

1 Introduction

Model-Driven Engineering (MDE) considers models as the main assets in soft-
ware development. Frequently, such models are not built using general-purpose
modelling languages, like UML, but with Domain-Specific Languages (DSLs).
Recent surveys on the use of MDE in industry [8] observe that nearly 40% of
respondents use in-house DSLs, likely developed using meta-models. Hence, a
critical factor in the success of MDE projects is the quality of the meta-models.
However, the MDE community still lacks flexible tools permitting the specifica-
tion, evaluation and user-friendly report of desired properties of meta-models.

A meta-model is considered of quality if it serves its purpose (contains all
needed abstractions of the domain), and is technically built using sound prin-
ciples (e.g., there are no repeated attributes among all sibling classes) [5]. The
first concern is related to meta-model validation (“are we building the right meta-
model?”) while the second refers to verification (“are we building the meta-model
right?”).

In this paper, we present the language mmSpec and its supporting tool
(metaBest), directed to the specification of desired meta-model properties, their
evaluation, and the visualization of non-conforming parts of meta-models. We
have used this tool to define a reusable library of 30 meta-model quality proper-
ties coming from quality criteria of conceptual schemas [2], naming guidelines [3],
or from our experience. The properties have been classified in four categories
depending on their relevance and nature. Moreover, we have evaluated the prop-
erties over 295 meta-models from the ATL zoo'. The ATL zoo is an open source

! http://www.emn.fr/z-info/atlanmod/index.php/Ecore.

Proceedings of MoDeVVa 2014 3

Assessing the Quality of Meta-models

repository to which any author can contribute, being the authorship of its meta-
models attributed to a wide range of MDE community members. From the results
of this study, we provide suggestions for MDE practitioners and meta-modelling
tool builders.

This paper extends [9] (a tool demo paper) by presenting a library of quality
properties that is evaluated over a repository of meta-models.

The remaining of this paper is organized as follows. First, Section 2 introduces
the mmSpec language and tool, and overviews the library of quality properties.
Section 3 presents the evaluation of the library over the meta-models of the
ATL zoo. Section 4 compares with related research, and Section 5 ends with the
conclusions and future work.

2 Specification of meta-model properties with mmSpec

We have developed a domain-specific language, named mmSpec, to specify meta-
model properties and automate their evaluation on meta-models. In the following
two subsections, we first introduce the main constructs of our language, and then
we describe its use to construct a generic library of quality properties which can
be applied on meta-models to assess their quality in an automatic way.

2.1 Definition and evaluation of meta-model properties

mmSpec allows expressing meta-model properties in a concise, intensional, declar-
ative, platform-independent way. It provides high-level primitives that simplify
the definition of meta-model properties, like first-order qualifiers for the length
of navigation paths or collectors of the composed cardinality in navigation paths.
Moreover, it is integrated with WordNet [11], which allows testing the nature of
words (i.e., nouns and verbs) and synonymy.

The aim of this language and its companion tool (metaBest [9]) is providing
a sound framework for expressing and evaluating quality issues and structural
properties of meta-models. To favour simplicity, mmSpec properties follow a
select-filter-check style that includes:

— A selector of the type (class, attribute, reference or path) and amount (a quanti-
fier like every, some, none or an interval) of elements that should satisfy a given
condition.

— An optional filter over the elements in the selector.

— A condition that is checked over the filtered elements.

Filters and conditions consist of qualifiers which can be negated, combined
through and/or connectives, and point to new selectors, enabling recursive checks.
The main qualifiers allow expressing conditions on the existence of elements, their
name (nature, synonymy, prefix, suffix, camel-phrase), abstractness, multiplicity,
type, length of navigation paths, inheritance relationships, depth and width of
hierarchies and trees of containment relationships, collectors of the composed

Proceedings of MoDeVVa 2014 4

Assessing the Quality of Meta-models

B Metamodel interactive editor 2 =B ™ MetaBest - Meta.. &~
MetaModel validation set
[© DataType
4 @ testSuite.mbm
Property 4 & Best practices (0.0%)
Assessment view [BusinessEntityPropertySel 4 X B02: Every class can be instanced
@ BusinessEntityPropertySet
Test Result view
@ OrganisatiunalUniﬂ
[© PerformerRole]
@ ArtifactRole
testSuitembm =0
Test Editor

-- "No useless classes"
test(metamodel "/tests/BusinessEntityModel.mbup"){

-- "B@2: Every class can be instanced"
every class{abstract} => super-to some class{!abstract}.

}
Fig. 1. Defining and evaluating a meta-model property.

cardinality in navigation paths, reachability from/to classes, and (a)cyclicity.
Altogether, mmSpec promotes first-class primitives for elements (like paths or
inheritance hierarchies) that need to be checked in meta-models frequently.

To evaluate a property on a meta-model, our Java-coded evaluator gathers
the meta-model elements that match the property filter (or all of them, if there
is no filter), verifies which ones meet the condition, and checks whether the size
of the resulting subset is consistent with the selector’s quantifier.

The bottom left of Fig. 1 shows a property using mmSpec. It states that
every class (selector) that is abstract (filter) should have some concrete child class
(condition), or as it is expressed, be super to some class that is not abstract. If
an abstract class does not fulfil this condition, it is useless because it cannot be
instantiated. The meta-model in Fig. 1 (taken from the zoo) does not satisfy the
property, as class BusinessEntityPropertySet is abstract with no children.

Each property can be assigned a description of its intention, which gets shown
in the Test Result view (see right of Fig. 1). While this view summarizes the
results of all evaluated properties, the Property Assessment view highlights the
relevant elements that did (green-coloured) or did not (red-coloured) fulfil a
particular property. In this case, the class BusinessEntityPropertySet is displayed
in red when we double-click on the property in the Test Result view.

The language offers abstraction mechanisms to package properties into func-
tions with parameters. When the functions are called, it is possible to include
a set of elements in place of a parameter. For example, fun(every class{!abstract})
evaluates property fun for all concrete classes in the meta-model.

Finally, metaBest supports batch evaluation of a set of properties over a set
of meta-models, generating a CSV file with the results. In this way, we have
managed to deliver the results of evaluating a library of meta-model quality
issues for a large number of meta-models, as we explain in the following sections.

Proceedings of MoDeVVa 2014 5

Assessing the Quality of Meta-models

Code [Description

Design

D01 |An attribute is not repeated among all specific classes of a hierarchy.

D02 There are no isolated classes (i.e., not involved in any association or hierarchy).

D03 [No abstract class is super to only one class (it nullifies the usefulness of the abstract class).

D04 There are no composition cycles.

D05 [There are no irrelevant classes (i.e., abstract and subclass of a concrete class).

D06 No binary association is composite in both member ends.

D07 There are no overridden, inherited attributes.

D08 Every feature has a maximum multiplicity greater than 0.

D09 |[No class can be contained in two classes, when it is compulsorily in one of them.

D10 No class contains one of its superclasses, with cardinality 1 in the composition end (this is
not finitely satisfiable).

Best practices

BPO01 |[There are no redundant generalization paths.

BP02 |[There are no uninstantiable classes (i.e., abstract without concrete children).

BP03 [There is a root class that contains all others (best practice in EMF).

BP04 [No class can be contained in two classes (weaker version of property D09).

BPO05 |A concrete top class with subclasses is not involved in any association (the class should be
probably abstract).

BP06 |Two classes do not refer to each other with non-opposite references (they are likely opposite).

Naming conventions

NO1 Attributes are not named after their feature class (e.g., an attribute paperID in class Paper).

NO02 Attributes are not potential associations. If the attribute name is equal to a class, it is likely
that what the designer intends to model is an association.

NO03 |[Every binary association is named with a verb phrase.

NO04 Every class is named in pascal-case, with a singular-head noun phrase.

NO05 |Element names are not too complex to process (i.e., too long).

NO06 |[Every feature is named in camel-case.

NO07 |[Every non-boolean attribute has a noun-phrase name.

NO8 Every boolean attribute has a verb-phrase (e.g., isUnique).

NO09 No class is named with a synonym to another class name.

Metrics

MO1 [No class is overloaded with attributes (10-max by default).

MO2 [No class refers to too many others (5-max by default) — a.k.a. efferent couplings (Ce).

MO03 |[No class is referred from too many others (5-max by default) — a.k.a. afferent couplings (Ca).

MO04 [No hierarchy is too deep (5-level max by default) — a.k.a. depth of inheritance tree (DIT).

MO5 |No class has too many direct children (10-max by default) - a.k.a. number of children (NOC).

Table 1. Library of meta-model quality properties.

2.2 A library of quality properties for meta-models

In order to test the quality of meta-models, we have built an mmSpec library
covering typical mistakes (some of them from [2]) that designers tend to commit,
as well as others that may jeopardize a basic level of meta-model quality. The
library has four categories of issues, depending on their nature and relevance:

Design. Properties signalling a faulty design (an error).

Best practices. Basic design quality guidelines (a warning).

Naming conventions. For example, use of verbs, nouns or pascal/camel case.

Metrics. Measurements of meta-model elements and their threshold value, like
the maximum number of attributes a class should reasonably define. Most
metrics are adapted from the area of object-oriented design [6].

Table 1 lists the properties from these categories. To illustrate mmSpec’s
expressiveness, next we show the formulation of a property from each category:

— D02: There are no isolated classes. The encoding of this property is:

Proceedings of MoDeVVa 2014 6

Assessing the Quality of Meta-models

no class => and { sub—to no class, super—to no class,
reach no class, reached—from no class }.

The aim is to check the absence of classes that are not involved in any associ-
ation or hierarchy. Thus, we use the no class selector, and check the following
conditions: the class is orphan (qualifier sub-to with selector no class), childless
(qualifier super-to with selector no class), contains no reference (qualifier reach
with selector no class), and is not pointed by any other (qualifier reached-from
with selector no class).

— BPO03: There is a root class that contains all others. This is a common best-
practice in EMF, where meta-models define a class from which all other classes
can be reached through composition relations. Its encoding is:

strictly 1 class {cont—root {absolute}} => exists.

A class satisfying cont-root is the root of a containment tree; if the root is
absolute, then it contains all classes. This illustrates how mmdSpec provides
primitives that simplify the definition and checking of meta-model properties.

— NO4: Every class is named in pascal-case, with a singular-head noun phrase.
To obtain intuitive class names, these should be composed by a sequence of
words starting with capital letters, and with a singular noun as the last word
[3]. For instance, WashingMachine is a good class name, but Washing_Machine
and MachineWashing are not. The connection of mmSpec with WordNet enables
checking whether a word is a singular noun.

every class => name = pascal—phrase{end{noun{singular}}}.

— MO1: No class is overloaded with attributes. Even in large meta-models, classes
with too many attributes often evidence a questionable design. While some
entities in certain domains might carry a vast load of information, commonly,
this data can be split into smaller entities that are arranged using inheritance
or composition. Thus, the following property states that every class should have
a maximum of 10 non-inherited (linh) attributes.

every class => with {l!inh} [0, 10] attribute.

3 Assessing the quality of existing meta-models

To evaluate our tool and have a measure of the quality of current meta-modelling
practice, we have applied our library of quality properties to the Atlan Ecore
zoo of 295 meta-models. We have chosen this repository as it is representative of
the meta-models that MDE practitioners build in practice. The size of the meta-
models varies from tiny ones with just one class, to meta-models of medium size,
the largest one having 699 classes. This is interesting as one of our goals is to
detect whether the kind of quality issues depends on the meta-model size, and
whether big meta-models are faultier (even if in average) than smaller ones.
Fig. 2 shows the number of quality issues detected in the analysed meta-
models. Interestingly, only 5 meta-models have no issue, while no meta-model
contains more than 22. The average number of issues per meta-model is 7.26.

Proceedings of MoDeVVa 2014 7

Assessing the Quality of Meta-models

40

Regarding the distribu-
tion of issues according to ” /
their kind, Fig. 3 shows how ”
many meta-models fail each Z ~
property from Table 1. De- -
sign is the most relevant cate- " /
gory of properties, as it gath- i / \
ers errors that may poten-
tially lead to a faulty design. 0 s 10 1 Quality ssues
In this sense, the results for
the properties in this category
are good in average, as they have low rate of failure. Indeed, there are two design
properties that every meta-model fulfils: D01 and D02. D01 checks the absence of
repeated attributes in a hierarchy (see D01 in Fig. 4 for a faulty example), while
D02 checks that the upper bound of features is not 0. However, 110 meta-models
fail property D09 (37% of analysed meta-models). This error consists in making
a class to be contained in two other classes, with minimum source multiplicity
1 in one of the containment relationships, as shown in Fig. 4. This is an error
because, at the instance level, an instance of A could never be contained in an
instance of C, as it must be mandatorily contained in an instance of B.

Number of meta-models

Fig. 2. Number of quality issues in meta-models.

Surprisingly for a set of EMF meta-models, the top unmet property is BP03,
an EMF best practice that states the need for a root class whose instances may
contain the whole model tree. Fig. 4 shows an example meta-model that fulfils
this property, and an example that does not. In BP03 (+), A contains B and
C, and hence D (as it is subclass of B), so A acts as absolute root class. On the
contrary, BP03 (-) does not meet the property because A does not contain D.

The next two properties not satisfied by more meta-models are NO3 and
NO4, which are naming conventions. N03 demands the verbalization of binary
association names (e.g., reaches). N04 checks the conventions for class names, as
explained in Section 2.2.

design best practices naming metrics
250 -

214 207 503

Faulty meta-models
~
o
o

146 148
150 A

1

o
S

70 68
42 42

il Ll Illll illlilli

\W’bh‘o% ® O ’\/") ")‘o'\/’\/")b“o PO HS
QQQQQQQQQQQQQQQQQQQ\QOQQQQQQQQQOQQQQQQQQQQ&QQ@@ QQQ&

Fig. 3. Number of meta-models that contain issues of a certain type.

Proceedings of MoDeVVa 2014 8

Assessing the Quality of Meta-models

£ T &

D01 D09 BPO3 (+) BPO3 (1)

Fig. 4. Some quality issues of the library.

100,00% Metrics

80,00%

Error rate

Naming
Best Practices

60,00%

40,00%

Design

20,00%

0,00% T T T T T T T
(I 100 200 300 400 500 600 700

Meta-model size (classes)

Fig. 5. Percentage of non-fulfilled issues in each category, w.r.t. meta-model size.

Regarding the error rate evolution of each category of issues with respect to
the meta-model size (measured in number of classes), Fig. 5 shows that all cat-
egories present an upward error trend as meta-models enlarge. The vertical axis
in this diagram corresponds to the percentage of issues in the category that were
not met by some meta-model. The growth ratio is higher in small/medium size
meta-models (up to 100 classes). Then, the error growth is steadier, particularly
on the design category, which remains around 20% even at the largest meta-
model size. The issues of type metrics grow as the meta-model size increases,
peaking 100% (i.e., all issues of the category fail in large meta-models). This
might be comprehensible, since a greater number of classes usually demands a
greater number of features and relationships. However, properties such as M01,
MO02 or M03 might be considered independent from the meta-model size, as they
take care of the class feature overpopulation, which is a bad practice despite
the meta-model size. More worrisome is the evolution of the best practice cate-
gory. This category reflects less severe concerns than design, but they still are
bad modelling practices. It is worth noting that most meta-models present a 40
to 65% error rate, which together with the design’s - almost permanent - 20%,
denote an average design quality that may be improved.

Fig. 6 shows the distribution of meta-model sizes where each issue type
tends to occur. For most properties, faulty meta-models have between 1 and 200
classes. However, properties M04, BP06, D07 tend to fail in large meta-models.
This is natural in some cases, e.g., D07 checks the presence of overridden at-

Proceedings of MoDeVVa 2014 9

Assessing the Quality of Meta-models

700

600

(-

500

200 F_
L = e e | e

Meta-model size (classes)
]
[=]

0oL Doz ooz Do4 Das Dog Da7 Dos8 Dog D10 | BPO1 | BPOZ | BPO3 | BPO4 | BPOS | BPOG
Maximum 652 699 652 324 108 652 324 106 652 324 692 324 692 699
Quartile 3 203 73 78 120 39 619 40 24 201 132 51 36 127 282
Median 44 48 29 52 27 606 19 15 66 38 21 18 34 128
Quartile 1 16 21 14 34 17 578 11 12 32 14 12 11 15 53
Minimum 1 3 3 1 14 33 1 7 8 il 2 3 4 14

700

600

500

400

300

200 J_‘]
T

;00 ﬁﬂ = B

MNO1 NO2 NO3 NO4 MNOS NOE NO7 NO8 Mg | MO1 Moz | MO3 Mo4 | MOS

Maximum | 652 652 699 699 332 699 699 699 652 699 699 699 699 699
Quartile 3| 128 180 35 57 228 90 68 173 143 217 61 70 345 185
Median 48 45 16 26 189 35 32 55 48 61 9 34 193 70
Quartilel | 16 18 10 14 147 10 13 20 21 28 14 16 101 a7z
Minimum 3 3 2 3 31 3 1 4 10 5 6 6 36 14

Fig. 6. Meta-model size dispersion by property.

tributes in inheritance hierarchies. Instead, properties D06, D09, D10, BP04, N03
tend to occur in small meta-models. The fact that 3 important design properties
fail in small meta-models might mean that such meta-models were built by more
unexperienced designers, compared to large ones. As a matter of fact, properties
with a greater number of failure occurrences (as seen in Fig. 3: D09, BP03, BP04,
NO3, N04, NO7, M02, M03) mainly appear in really small meta-models.

Finally, if we look at the average number of quality issues per class, we
find that the most frequent categories of issues are best practices and naming
conventions (0.18 issue occurrences per class in both cases). Design (0.07 issues
per class) and metrics (0.05 issues per class) are less frequent; nonetheless, if
they are considered together, the error rate seems worrisome at least.

3.1 Discussion

From the analysis of the meta-model repository, we realize that a way to improve
the quality of meta-models is the inclusion of these quality checks in the meta-
modelling tools, for example, to discover problems like D09. Actually, for some
of these problems (like the ones related to metrics) the tool could trigger some
refactoring suggestions. Regarding naming conventions, we noticed the usefulness

Proceedings of MoDeVVa 2014 10

Assessing the Quality of Meta-models

of having integrated “smart” spell checkers (i.e., to check correctness of names
in camel-case).

It is worth mentioning that mmSpec is integrated with metaBup [10], a tool
for the example-based construction of meta-models. This means that the meta-
model builder can check these quality issues during meta-model construction.

4 Related work

We could use OCL instead of mmSpec. However, OCL expressions tend to be
more complex, as OCL lacks primitives (for gathering paths or inheritance hier-
archies) which are part of mmSpec and have been designed to express properties
on meta-models. Moreover, mmSpec supports the visualization of problematic
elements (i.e., properties do not report just true/false). A comparison of OCL
and mmSpec is available at: http://www.miso.es/tools/metaBest.html.

In [7], quality properties are defined as QVT-Relations transformations which
produce a model with the problems in a meta-model. They define a catalog of
problems for MOF-based meta-models, categorized into: syntactic (i.e., well-
formedness constraints), semantic (i.e., poor design choices), and convention.
Interestingly, mmSpec fulfils the features that [7] demands from any automated
model verification approach: it is declarative, generic, flexible (though not stan-
dard), direct, and it has easy-to-inspect reporting facilities. Some of its prim-
itives are specific for meta-model verification and would be difficult to specify
with QVT-Relation patterns.

In [2,4], quality properties of conceptual schemas are formalised in terms
of quality issues, which are conditions that should not happen. Our approach
also aims at detecting errors or bad smells; however, we focus on meta-models
(not schemas). Thus, our library considers all issues in [2] that are meaningful in
meta-modelling, as well as others specific to meta-models (like the existence of
a root for EMF meta-models). While in [2], the method is evaluated on schemas
developed by students, our library is applied to a public repository of meta-
models built by developers. The same authors propose guidelines for naming
UML schemas in [3], for which they provide a tool [1]. Interestingly, [3] presents
a study on the effectiveness of current UML modelling environments for building
schemas (not meta-models), and concludes that by including more quality issues
in the IDEs, the quality of the developed schemas increases.

Some works aim at characterizing meta-model quality. For example, in [5],
the authors adapt the ISO/IEC 9126 for meta-models, proposing concepts like
completeness, conciseness, detailedness or complexity. However, there is no con-
crete proposal on how to measure such properties.

Few works analyse the quality of real meta-models. In [13], the authors take
some basic size metrics (e.g., number of classes) over meta-models from different
repositories (including the ATL zo0o). In the same line, [12] correlates meta-model
metrics, like the usage of inheritance w.r.t. meta-model size. Instead, we focus
on detecting patterns that may indicate flaws in meta-models.

Proceedings of MoDeVVa 2014 11

Assessing the Quality of Meta-models

5 Conclusions and future work

In this paper, we have introduced mmSpec, a language directed to the speci-
fication of properties to be checked on meta-models, and metaBest, a tool to
visualize and report the problematic elements. We have used both to build a
catalog with 30 meta-model quality properties, which has been evaluated over
295 meta-models. The obtained results show that most meta-models contain
some issue; hence, the community would benefit from integrated tool support
(like metaBest) for checking quality properties during meta-model construction.
In the future, we plan to analyse correlations between meta-model flaws, pro-
vide a catalog of quick fixes and recommendations, and support the creation of
user-defined categories for properties. We also plan to develop a further language
for meta-model testing based on constraint solving.
Acknowledgements. This work has been funded by the Spanish Ministry of
Economy and Competitivity with project “Go Lite” (TIN2011-24139).

References

1. D. Aguilera, R. Garcia-Ranea, C. Gémez, and A. Olivé. An eclipse plugin for
validating names in UML conceptual schemas. In ER Workshops, volume 6999 of
LNCS, pages 323—-327. Springer, 2011.

2. D. Aguilera, C. Gémez, and A. Olivé. A method for the definition and treatment of
conceptual schema quality issues. In ER’12, volume 7532 of LNCS, pages 501-514.
Springer, 2012. See also http://helios.1lsi.upc.edu/phd/catalog/issues.php.

3. D. Aguilera, C. Gémez, and A. Olivé. A complete set of guidelines for naming
UML conceptual schema elements. Data Knowl. Eng., 88:60-74, 2013.

4. D. Aguilera, C. Gémez, and A. Olivé. Enforcement of conceptual schema quality
issues in current integrated development environments. In CAiSE, volume 7908 of
LNCS, pages 626—640. Springer, 2013.

5. M. F. Bertoa and A. Vallecillo. Quality attributes for software metamodels. In
QAOOSE’10, 2010.

6. S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Trans. Software Eng., 20(6):476-493, 1994.

7. M. Elaasar, L. C. Briand, and Y. Labiche. Domain-specific model verification with
QVT. In ECMFA, volume 6698 of LNCS, pages 282—298. Springer, 2011.

8. J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empirical assess-
ment of MDE in industry. In ICSE, pages 471-480. ACM, 2011.

9. J. J. Lépez-Fernandez, E. Guerra, and J. de Lara. Meta-model validation and
verification with MetaBest. In ASE, pages 1-4 (to appear). ACM, 2014.

10. J. J. Lépez-Ferndndez, J. Sdnchez Cuadrado, E. Guerra, and J. de Lara. Example-
driven meta-model development. SoSyM, in press, 2014, see also http://wuw.
miso.es/tools/metaBUP.html.

11. G. A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39-
41, 1995.

12. J. D. Rocco, D. D. Ruscio, L. Iovino, and A. Pierantonio. Mining metrics for
understanding metamodel characteristics. In MiSE, pages 55-60. ACM, 2014.

13. J. R. Williams, A. Zolotas, N. D. Matragkas, L. M. Rose, D. S. Kolovos, R. F.
Paige, and F. A. C. Polack. What do metamodels really look like? In FESS-
MOD@MoDELS, volume 1078 of CEUR, pages 55—60, 2013.

Proceedings of MoDeVVa 2014 12

Towards Scalable Multidimensional
Execution Traces for xDSMLs

Erwan Bousse!, Benoit Combemale?, and Benoit Baudry?
! University of Rennes 1, France
erwan.bousse@irisa.fr
2 Inria, France,
{benoit.combemale, benoit.baudry}@inria.fr

Abstract. Executable Domain Specific Modeling Languages (xDSML)
opens many possibilities in terms of early verification and validation
(V&V) of systems, including the use of dynamic V&V approaches. Such
approaches rely on the notion of execution trace, i.e. the evolution of
a system during a run. To benefit from dynamic V&V approaches, it is
therefore necessary to characterize what is the structure of the executions
traces of a given xDSML. Our goal is to provide an approach to design
trace metamodels for xDSMLs. We identify seven problems that must
be considered when modeling execution traces, including concurrency,
modularity, and scalability. Then we present our envisioned approach
to design scalable multidimensional trace metamodels for xDSMLs. Our
work in progress relies on the dimensions of a trace (i.e. subsets of mu-
table elements of the traced model) to provide an original structure that
faces the identified problems, along with a trace API to manipulate them.

1 Introduction

In the recent years, a lot of effort have been made to provide tools and methods
to design executable Domain Specific Languages (xDSMLs) [4,5]. Executability
of models opens many possibilities in terms of early verification and validation
(V&V) of systems, including the possiblity to rely on dynamic V&V approaches
such as debugging, runtime verification [6] or model checking [2].

A central concept in dynamic V&V approaches is the ezecution trace, which
represents the evolution of a system during a run. A trace is the alternate se-
quence of states of the system and events that triggered the state changes. All
previously cited approaches rely on traces: model checking consists in verifying a
property of a system by analyzing all its possible traces, and a counter-example
in the form of a trace is provided if it is not satisfied; runtime verification consists
in checking whether or not a trace satisfies a property; debuggers require traces
to be able to replay faulty scenarios in order to investigate for bugs.

Henceforth, a significant prerequisite for the V&V of executation models is
the definition of the structure of the execution traces of a considered xDSML.
Since an xDSML should define what is the state (also called runtime data) of

Proceedings of MoDeVVa 2014 13

Towards Scalable Multidimensional Execution Traces for xDSMLs

a model during its execution [4], a trace metamodel could potentially be de-
fined based on this information. But many questions remain regarding what
data should contain a trace, or how it should be structured. In this paper, we
identify a number of problems to face when modeling execution traces, and we
present an approach to face these problems. We first introduce in Section 2 a
motivating example, which is an xDSML called RoboML and a simple scenario
involving two robots following one another. Then in Section 3 we list and illus-
trate a series of seven problems linked to trace modeling, including concurrency,
modularity and scalability. In Section 4 we present our approach to generate
scalable and multidimensional trace metamodels. Finally Section 5 concludes
with perspectives.

2 DMotivating example

A sends coordinates A notifies B that
when moving it can move

A status Initial area Moving towards final area

Final area I
AR

vV v v
Initial area | Moving towards final area

Final area

B status

B sends coordinates
when moving

Fig. 1. Scenario of two robots following one another

Our motivating example consists in an xDSML called RoboML, which ex-
tends timed automata with hierarchy, events, and domain specific actions. A
RoboML model consists in a set of communicating timed automata. When exe-
cuted, the current state of the automata changes depending on the current state,
events, clocks and conditions. Additional domain-specific runtime data is avail-
able, such as the GPS coordinates of the robot. Actions triggered on transitions
allow a robot to move, interact and communicate with other robots. The very
simple scenario we consider is based on two robots A and B, each configured
with a RoboML model. Robots are configured to regularly send their coordi-
nates to the other robot when they change their position. Figure 1 illustrates
the scenario, which can be summed up in the following way:

1. Both robots are in an initial area.

2. Robot A moves towards a final area.

3. When arrived, A waits 5 seconds and then sends a message to B to move.
4. Then B moves to the final area.

We want to check the following two properties:

(a) B starts moving 5 seconds after A, not before nor after.
(b) Each time a robot covers 1 meter, it sends a message to the other one with
its new coordinates.

Proceedings of MoDeVVa 2014 14

Towards Scalable Multidimensional Execution Traces for xDSMLs

3 Problems when Modeling Traces

In this section, we present a series of problem that must be dealt when modeling
execution traces, and we illustrate them with the example introduced in the
previous section.

3.1 Trace Contents

The first category of problems concerns the contents of an execution trace, apart
from the state of the executed model and the events that triggered state changes.

(Pb. 1) Concurrency modeling The execution of one or multiple models may
imply concurrent variables within runtime data. In such case, the different states
of these variables may or may not be independent from one another. In our
example, the status of a robot is most of the time completely independent from
the status of the other. However, communications between the robots imply
some kind of ordering between the states of the robots. For instance, we know
that B didn’t start moving before receiving a message from A, thus allowing
us theoretically to verify property (a). A challenge is thus to take into account
these concurrency relationships between variables into the trace structure.

(Pb. 2) User-defined additional information Analyzing the behavior of a sys-
tem requires information about how it changes over time. Yet, in some cases,
properties may concern data that we do not directly have. In our example, prop-
erty (b) concerns the meters covered by a robot, which is not directly available
in the state of the executed model. Such variable could easily be derived from
the evolution of the coordinates of the robot and would belong in the trace to
verify such properties.

(Pb. 3) Scalability in space Execution traces can be arbitrarily large, as some
complex systems are monitored continuously in case a failure occurs. Thus a
challenge is to manage scalability in space when manipulating traces, whether
it is offline (file or database storage) or online (in memory). In our example, a
robot changes its internal state all the time to update its coordinates or listen
to communications, leading quickly to a large amount of states.

3.2 Trace Manipulations

The second category of problems concerns the eventual manipulations of an
execution trace, which may constrain the structure of the trace.

(Pb. 4) Modularity A trace must be constructed during the run of a program,
in order to be manipulated either during or after the run. Modularity of the
trace is a problem for both the construction and the manipulation phases. First,
when tracing a system, one can be interested in observing only a subset of the
variables, which require a non-monolithic and modular trace format. Second,

Proceedings of MoDeVVa 2014 15

Towards Scalable Multidimensional Execution Traces for xDSMLs

when manipulating a trace, one might want to extract a subset of the information
(e.g. a subtrace with only a selection of variables), or conversely to add new
information within the trace (e.g. derived variables). In our example, property (a)
only concerns the movement states of the robots and not their coordinates, thus
extracting a trace with only the former information would be relevant to prove
this property.

(Pb. 5) Manipulation safety Generic trace metamodels exist to model all kinds
of traces for any executable language [1]. However, constructing traces with such
metamodels may lead to inconsistent trace models, since their genericity does
not forbid one to create a trace whose states are not relevant to the concerned
xDSML. In our example, for instance, we may want to ensure that coordinates
are stored as a pair if integers instead of a string.

(Pb. 6) Reuse of trace manipulations To verify properties on traces, or to be
able to write interesting queries to explore them, we must define operations that
manipulate traces. An important need is to be able to reuse such operations
from a trace to another, from a system to another, or even from an xDSML to
another. In our case, verifying property (a) requires an operator that checks all
states that are found 5 seconds after a specific situation, which can be generalized
in a within operator.

(Pb. 7) Scalability in time Traces are eventually analyzed, which requires iter-
ating over the steps of the trace. The potentially large size of a trace compromises
the capacity to make queries in a reasonable time. Moreover, if some variable ref-
erenced in a property only changes lately in a trace, we would still have to iterate
through all steps before noticing that change. This is the case with property (a)
of our example, where B starts moving very lately.

4 Envisioned Approach

In this section, we present the multiple choices we made for our approach to
design scalable multidimensional trace metamodels, and how these choices par-
ticipate in solving the problems stated in the previous section.

4.1 Trace Structure

Our approaches relies on an original way to structure execution traces. We il-
lustrate it informally in Figure 2, and we highlight important choices in the
following paragraphs.

Multiple dimensions A trace can be defined as a single alternate sequence of
states and events. Yet, it is very likely that only a subset of the variables really
change from a state to another. Our idea is thus to consider multiple dimensions
in a trace, each being a set of mutable elements of the executed model. We then

Proceedings of MoDeVVa 2014 16

Towards Scalable Multidimensional Execution Traces for xDSMLs

------------ .

Robot A > lat=10.3 10.4 106 | = = = = = = = - — = =2 >
trace long=14.2 14.5 14.8

State=waiting [[moving [[sending_msg l —————— >
’

:
/ I pr?'cedes

lat=10.3
long=14.2

State=waiting

Fig. 2. Intuitive and partial representation of a multidimensional trace, matching the
very beginning of the robots scenario (until the first coordinates message is sent).

Robot B
trace

receiving_msg

IV h

define a trace as a set of subtraces, each being the evolution of a specific di-
mension within the run. Such structure allow us to solve many problems. First,
by manipulating dimensions separately, we can define concurrency relationships
between them (Pb. 1). More precisely, we consider that states can be linked
by observations (i.e. states that were simultaneous at some point) or synchro-
nizations (i.e. states that changed simultaneously), while events can be linked
by ordering relationship such as precedence or coincidence (we refer to [7] for
more relationships between events). Second, we gain modularity (Pb. 4), as we
can add or remove dimensions depending on the needs. Third, such modularity
helps enriching the trace with additional dimensions (Pb. 2). Finally, this struc-
ture allow us to iterate separately through different dimensions, which should
improve scalability in time (Pb. 7). Figure 2 shows an example: our robot trace
consists in six dimensions (three per robot: covered meters, coordinates, state).
We have a precedence relationship between the sending and the receiving of the
message. Covered meters being not in the runtime data, it is added as a new
dimension derived from coordinates.

Data sharing For scalability in space (Pb. 3), our idea is to maximize data
sharing among steps of the trace, i.e. reduce redundancy from a step to another.
Our approach relies on ideas of our previous work on scalable model cloning [3].
More precisely, each dimension state is stored in a dedicated storage structure
in order to be referenced by the steps of the same dimension.

Domain specific trace metamodel To provide manipulation safety to trace
models (Pb. 5), our solution is to design domain specific trace metamodels,
i.e. metamodels each of which defines precisely what are the traces of a single
xDSML. This choice ensures that all traces are consistent with regard to the
traced language. In addition, we can define the state of a model of a given

Proceedings of MoDeVVa 2014 17

Towards Scalable Multidimensional Execution Traces for xDSMLs

xDSML without relying on unsafe generic types (e.g. EObject when using the
Eclipse Modeling Framework (EMF)). The drawback is that is becomes necessary
to provide one trace metamodel per xDSML, but we plan to overcome this by
providing a generative approach.

4.2 Trace API

Generating trace metamodels has multiple advantages as stated in the previous
section. However, the main drawback is that operations defined for a given trace
metamodel are not compatible with a different trace metamodel (Pb. 6). Fol-
lowing the same trend as recent first-class traces approaches [8], our solution is
to generate, along with a trace metamodel, a complete API with trace specific
operations in order to refine, query, explore, or transform a trace. Operations
such as filter, merge, slice, during, etc. are part of this API.

5 Conclusion

Verification and validation of executable models is a challenge that requires
the modeling of execution traces. We identified seven problems that must be
considered when modeling traces, and we presented our idea of multidimensional
traces coupled with a trace manipulation API. Such traces take into account
concurrency, scalability, modularity among other aspects. Further work will be
the implementation of the approach and its application to RoboML.

Acknowledgement. This work is partially supported by the ANR INS Project
GEMOC (ANR-12-INSE-0011).

References

1. Luay Alawneh and A Hamou-Lhadj. Execution traces: A new domain that requires
the creation of a standard metamodel. Advances in Software Engineering, 2009.

2. Christel Baier and Joost-Pieter Katoen. Principles Of Model Checking.

3. Erwan Bousse, Benoit Combemale, and Benoit Baudry. Scalable Armies of Model
Clones through Data Sharing. MODELS 2014, Valencia, Spain, 2014.

4. Benoit Combemale, Xavier Crégut, and Marc Pantel. A Design Pattern to Build
Executable DSMLs and associated V&V tools. The 19th Asia-Pacific Software
Engineering Conference, 2012.

5. Benoit Combemale, Julien Deantoni, Matias Vara Larsen, Frédéric Mallet, Olivier
Barais, Benoit Baudry, and Robert France. Reifying Concurrency for Executable
Metamodeling. In International Conference on Software Language Engineering,
2013.

6. Martin Leucker and Christian Schallhart. A brief account of runtime verification.
Journal of Logic and Algebraic Programming, 2009.

7. Frédéric Mallet. Clock constraint specification language: Specifying clock constraints
with UML/MARTE. Innovations in Systems and Software Engineering, 4, 2008.

8. Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks. Expositor: Scriptable time-
travel debugging with first-class traces. ICSE 2013, San Francisco, CA, 2013.

Proceedings of MoDeVVa 2014 18

Verifying Modelling Languages using Lightning:
a Case Study

Loic Gammaitoni, Pierre Kelsen, and Fabien Mathey

University of Luxembourg

Abstract. The formal language Alloy was developed to provide fully
automatic analysis of software designs. By providing immediate feed-
back to users it allows early detection of design errors. The main goal
of the Lightning tool is to apply the power of Alloy’s automatic analy-
sis to the domain of software language engineering. The tool allows to
represent abstract syntax, concrete syntax and semantics of a modelling
language in Alloy. In this paper we describe the verification capabilities
of Lightning with the help of a concrete modelling language, namely the
language of structured business processes.

1 Introduction

The formal language Alloy was developed to ”capture the essence of software
abstractions simply and succinctly, with an analysis that is fully automatic,
and can expose the subtlest of flaws” [9]. By allowing continuous automatic
analysis during the design process software modellers can uncover design errors
quickly. This design process, which could aptly be called ”agile modelling”, also
stimulates the modellers since it provides immediate feedback.

The goal of the Lightning tool[1] is to apply the power of the Alloy language
and its tool, the Alloy Analyzer, to the domain of software language engineering.
It was already shown earlier [12] that Alloy is a suitable language for defining
syntax and semantics of modelling languages . The Lightning tool can be viewed
as a first practical validation of ideas presented in that work.

One can consider Lightning as an important step towards a language work-
bench based on Alloy. The emphasis of the tool is currently on automatic vali-
dation of language definitions using Alloy’s SAT-based analysis. All basic com-
ponents of a modelling language can be defined in the tool: abstract syntax,
concrete syntax and semantics. Concrete syntax is currently restricted to visu-
alising language models. Semantics can be specified in the style of operational
semantics and its execution can be visualised as well. All specifications of lan-
guage components and accompanying transformations are defined in Alloy. The
tool is, however, not limited to language specifications expressed in Alloy since
it allows importing metamodels expressed in Ecore (feature not described in the
present paper). For Lightning to become a full-fledged language workbench [5],
more sophisticated editor support has to be provided (only exists in rudimentary
form in the present version) as well as code generation facilities to interface with
existing programming languages.

Proceedings of MoDeVVa 2014 19

Verifying Modelling Languages using Lightning: a Case Study

The main purpose of this paper is a description of the verification capabilities
of the Lightning tool. We will examine how the tool assists the user in writing
correct language specifications.

This paper is organised as follows: we first describe the case study we will
use in this paper. In section 3 we introduce the Lightning tool. We then de-
scribe how Lightning assists the user in designing the abstract syntax (section
4), concrete syntax (section 5), and semantics (section 6). We wrap up the paper
with a discussion of our contribution in the context of related work and present
concluding remarks and future work in the final section.

2 Case Study

In this paper, we illustrate Lightning’s verification features by designing a Struc-
tured Business Process (SBP) language.

Fig. 1. A Structured Business Process

SBPs consist of tasks representing actions performed towards the completion
of the process and of control nodes structuring the process. Those tasks and
control nodes are interconnected using transitions so that the following holds:

— The process has a unique start and end, represented by the Start and End
control nodes, so that no transition is incoming to Start or outgoing from
End.

— Each task has exactly one incoming and one outgoing transition.

— XOR and AND are control nodes used to delimit blocks representing the
nesting of processes. The difference between XOR and AND is purely se-
mantical. While AND means that all sub-processes (outgoing transitions)
need to be processed, XOR specifies that exactly one of them has to be
processed.

Proceedings of MoDeVVa 2014 20

Verifying Modelling Languages using Lightning: a Case Study

— XOR and AND control nodes have one incoming and more than one outgoing
transition if they are used to open a new block (in which case they are called
XOR split and AND split), or more than one incoming and one outgoing
transition if they are used to close a new block (in which case they are called
XOR join and AND join)

— A Block opened by an AND split or XOR split needs to be closed by an
AND join or XOR join, respectively.

— The process is acyclic (all tasks are traversed at most once)

An example business process representing a model expressed in this language is
represented in fig. 1 using traditional notation from the business process com-
munity.

This choice of case study is based on the fact that:

— The SBP’s specification has been formalized in [17], thus providing a precise
description of the syntax and semantics of this language.

— It has sufficient complexity to illustrate the usefulness of our tool.

— It is practically relevant since many existing business processes are express-
ible in this form [17].

This case study has been implemented using Lightning in the context of a
master thesis. The concrete verification examples presented in this paper have
actually been encountered during that work.

3 Lightning

The Lightning tool is a language workbench based on Alloy. It is distributed as
an Eclipse plugin '. It provides support to formally express all the components
of a language (Abstract Syntax, Concrete Syntax, and Semantics), and allows
to verify these using Alloy’s SAT based model finding mechanism. Amongst the
notable features of Lightning are :

— A complete Alloy editor (with outline, error markers and syntax highlighting)
— Ecore support
— An editor allowing to modify generated instances.

The signature trait of Lightning, however, is to allow incremental language de-
velopment (depicted in fig. 2) by coupling the instance generation of Alloy with
the domain specific visualization and model execution induced by the concrete
syntax and semantics definition, respectively . This approach facilitates the iden-
tification of design errors [7].

In the following sections, we will delve into the details of the design process
shown in fig. 2 and describe associated verification tasks.

! Freely available at : http://lightning.gforge.uni.lu

Proceedings of MoDeVVa 2014 21

© 000U WN -

Verifying Modelling Languages using Lightning: a Case Study

CsM

ASM /)Language model

Design generation
SM Legend
3
2 ASM: Abstract Syntax Model
CSM: Concrete Syntax Model
errore SM : Semantics Model
1 detection

Fig. 2. Spiral diagram depicting how languages are incrementally designed in Lightning

4 Abstract Syntax Design

In Lightning the abstract syntax of a language consists of an Alloy model defining
the set of valid language models. We can view this model as the metamodel of the
language. In our SBP case study, the abstract syntax model (ASM) defines con-
cepts of the language (Tasks, Flows, Control nodes, ...), relations between those
concepts (e.g., Flows have Nodes as source and target), and well-formedness rules
expressed as constraints (e.g., to ensure acyclicity of the process). The following
is an excerpt of the abstract syntax model:

abstract sig Node{}
abstract sig Control extends Node{}
one sig Start extends Node{}{this not in Flow.target}
one sig End extends Node{}{this not in Flow.source}
sig Task extends Node{}
sig AND_JOIN, AND_SPLIT,XOR_JOIN,XOR_SPLIT extends Control{}
sig Flow{
source: Node,
target: Node
by
fact acyclic{
all n: Node | n not in n. ((target).source)
}

Listing 1.1. Abstract Syntax Model excerpt

We can use Alloy’s instance generation mechanism to verify the abstract syntax.
This scenario corresponds to the cycle labelled 1 in fig. 2. Figure 3 depicts one
of the language models thus obtained from our SBP specification. Although it
is still possible to interpret this model correctly, it is a bit tedious since it is
not presented in the traditional way but reflects the structure of the abstract
syntax. The more complex a language model is (in terms of number of elements
and links present), the harder it becomes to comprehend it. This is why it is
advised to start defining the concrete syntax of a language (transit to cycle 2 in
fig. 2) once its models become hard to check through their default visualization.

In the next section we define how domain specific visualizations are specified
in Lightning.

Proceedings of MoDeVVa 2014 22

Verifying Modelling Languages using Lightning: a Case Study

source: 10
target: 10

Fig. 3. Raw visualization of a language model (using Alloy’s Magic Layout)

5 Concrete Syntax Design

The Concrete Syntax of a language consists of an Alloy model defining a trans-
formation from the previously defined Abstract Syntax Model (ASM) to a prede-
fined Visual Language Model (VLM). This definition follows the approach that
Kleppe describes in [13]. This VLM, named LightningVLM and also expressed
in Alloy, consists of:

— A set of visual elements that can be linked and composed

— Layout and color declarations that can be used as properties of visual ele-
ments

— Well-formedness rules that enforce that any instance can be correctly ren-
dered once interpreted by the tool (by preventing the presence of cyclic
compositions, for example)

The transformation model enforces that all of its instances contain a given
ASM instance and its corresponding VLM instance via the use of mapping rules
and integration predicates; these predicates specify the values of fields of atoms
in the VLM instance. The VLM instance can then be interpreted by Lightning
in order to be rendered graphically. This process is the essence of the concrete
syntax support the tool provides and is depicted in fig. 4. Note that in the current
version of Lightning the concrete syntax is used only for visualisation and cannot
be directly edited.

In order to be processed in a reasonable time, the Alloy model defining this
ASM to VLM transformation can be written following a sub-syntax of Alloy,
such that interpretation can be used rather than SAT-solving. This approach
called functional module is introduced in [8].

Below we provide a selection of the mapping rules and their integration pred-
icates (prefixed with the prop.- keyword) defined in order to provide a concrete
syntax to our SBP language.

—

=

/x each task 1is represented by a rectangle, and each node has its
corresponding label x/

one sig Transformation{

mapTask: Task one —> one RECTANGLE,

mapNodeText: Node one —> one TEXT

/* a task is represented by a rectangle with a white
background that contains the corresponding text */
pred prop-mapTask(n: Task, r:RECTANGLE) {

r.layout = VERTICALLAYOUT

r.color = WHITE

QOO U WwN
—~

Proceedings of MoDeVVa 2014 23

Verifying Modelling Languages using Lightning: a Case Study

Transformation Flexible
Model visualization
Instance of

VLM
Interpretation

transformation instance

Fig. 4. Visualization process using a transformation from ASM to VLM

r.composedOf[0] = Bridge.mapNodeText [n]

/x the text is black, not styled, and is labeled
after the label of the node it represents */
pred prop-mapNodeText(n: Node, t:TEXT) {

t.color = BLACK

t.isltalic = False
t.isBold = False
t.textLabel [0] = n

Once the concrete syntax is defined in this way, it becomes easier to detect
errors in an instance model. Figure 5 depicts the language model previously
shown in fig. 3, visualized this time using its concrete syntax definition.

Taskso

Tasks$1

AND_JOINSO

Tasks2 |-= Tasks3

Fig. 5. Visualization of the instance depicted in fig. 3 using its concrete syntax defini-
tion

Only one glance at fig. 5 suffices to notice that our SBP language is under-
specified. Indeed, in this language model, two XOR splits are converging into

Proceedings of MoDeVVa 2014 24

==

H O OO Utk W -

Verifying Modelling Languages using Lightning: a Case Study

a single join. Moreover this join, which is an AND join, doesn’t have the same
nature than the converging splits. In order to fix this design error, we need to
associate splits and joins together. We do this via the definition of control boxes:

sig ControlBox {
split: Control,
join: Control

(

// SPLIT AND JOIN HAVE SAME NATURE

split in AND.SPLIT and join in AND_LJOIN) or
(split in XOR.SPLIT and join in XOR_JOIN)

// PAIRING EACH SPLIT WITH A GIVEN JOIN

all s: (succ[split]) | s in (preds[join])
all j: (pre[join]) | j in (succs[split])

Adding the concept of a control box to the abstract syntax and repeating
the instance generation shows us that the error has been well identified and
fixed. The error processing we just discussed illustrates a transit to the cycle
1 of fig. 2., i.e., to the case where an error found in the visualisation reveals
an error in the underlying abstract syntax. Of course the transformation model
describing the visualisation may be faulty itself. In this case the error in the
visual representation may point to an error in the concrete syntax model. This
situation corresponds to a transit to the cycle 2 of fig. 2, leading to redesigning
the Concrete Syntax model. Checking if the error seen in the concrete syntax
visualization is also present in the concrete-syntax-less visualization (described
in the previous section) allows to decide whether or not the error has been
introduced by the concrete syntax definition.

6 Semantics Definition

Lightning currently offers the possibility to define the operational semantics of
languages.
The semantics definition in Lightning consists of:

— a Semantics Model (SM) in which the concepts of state and trace are defined.
A step predicate is specified that expresses the condition that one state
follows another state in the trace.

— a Semantics visualization transformation model, reusing most of the rules
present in the ASM to VLM transformation but adding rules to represent
the properties of the semantics state.

For our case study each state consists of a set of nodes that are currently
active in the execution of the business process. The corresponding field of the
Alloy signature is called currentNodes. That is, for a given state s, the expression
s.currentNodes denotes the set of active nodes in state s. The visualisation rep-
resents the currently active nodes by highlighting them in the business process
model.

To verify the correctness of the operational semantics, one can visualize its
possible executions. To illustrate this verification, let us consider the following
predicate as a first attempt to define the semantics of XORs:

Proceedings of MoDeVVa 2014 25

—

Verifying Modelling Languages using Lightning: a Case Study

pred XORNodes(current: Node,s2: State) {
current in XOR_SPLIT and one node: current.(” source).target | node
in s2.currentNodes

This predicate ensures that given a current node that is a XOR_SPLIT, the
set of current nodes belonging to the next semantics state contains exactly one of
the nodes directly following the XOR_SPLIT (mutual exclusion). Figure 6 gives
an example of an erroneous execution.

(a) (b) (c)

XOR_SPLITS0 XOR_SPLIT$0

TaskS5 Taskso Task$s TaskSo TaskSs

Fig. 6. Erroneous execution of a business process model

Although the transition from (a) to (b) is performed as expected, the transi-
tion from (b) to (c¢) shows us that our XOR semantics is underspecified. Indeed,
the predicate previously shown enforces that only one of the nodes directly fol-
lowing an active XOR_SPLIT should be part of the current nodes. This predicate
thus does not specify the state of the other nodes, thus allowing extraneous nodes
to appear in the set of current nodes for a given state. To fix this, one simply
needs to enforce that the set of current nodes of a given state is contained in the
set of successors of all the current nodes present in the previous semantics state
(code omitted for lack of space).

The example above illustrates the case where an error in the concrete syntax
representation of the semantic state points to an error in the underlying semantic
model. This case corresponds to the cycle 3 of fig. 2.

7 Discussion and Related Work

The term ”language workbench” was made popular by Martin Fowler [6]; it
denotes a tool that supports the efficient definition, reuse and composition of
languages and their IDEs [5]. The Lightning tool may be viewed as a language
workbench that is based on the formal language Alloy (although not a full-
fledged one as mentioned in the introduction). Because of its formal basis it
differs from existing language workbenches such as MetaEdit+[11], MPS[18],
and Spoofax[10]. Few workbenches currently support formal semantic analysis;
notable exceptions are Kermeta [2] and Atom 3 [4] for which some formal analysis

Proceedings of MoDeVVa 2014 26

Verifying Modelling Languages using Lightning: a Case Study

is available via a translational semantics (to Maude for Kermeta [3] and to Alloy
for AToM3 2, [19]).

Our work is based on the premise that developing modelling languages ben-
efits from the lightweight formal modelling approach offered by Alloy because
it gives language developers immediate feedback on design decisions using auto-
matic formal analysis and thus allows to detect design errors early. We can thus
view Lightning as an attempt to provide agile modelling of software languages
in a way similar to the initial intent of Alloy, namely providing agile modelling
of software designs.

Because our tool is based on Alloy it also inherits the inherent limitations
of Alloy. Indeed verification is based on instance finding via SAT solving. The
effectiveness of this approach intimately depends on the small scope hypothesis,
stating that most of the design errors can be found in small models. Assuming
the small scope hypothesis holds, the approach will allow to reduce the scopes of
signatures in Alloy so that a correct answer can be found in reasonable time. Of
course a negative answer in the search of a counterexample does not exclude the
possibility that there may be one but may point instead to the need for trying
out larger scopes, resulting of course in longer running times.

In the context of language design, though every aspect of a language is written
in Alloy, the performance limitations of Alloy we just mentioned only apply
to the generation of language models (ASM instances). The visualisation and
semantics, benefiting from functional modules, can be processed efficiently [§].

8 Conclusion

We have presented in this paper how Lightning allows the application of a
lightweight verification technique based on Alloy from the earliest stages of a
domain specific language design process to its completion. In particular we have
given concrete examples of verification tasks that were carried out during the
design of a language for structured business processes.

Regarding future work much remains to be done. One obvious hindrance to
the use of our tool is the fact that it requires prior knowledge of Alloy. We are
currently trying to see to what extent we can provide graphical interfaces to
most of the modelling tasks in the tool. In particular we have already partially
implemented such an interface for defining transformations.

Another fundamental question that needs to be investigated concerns per-
formance. Indeed, once the metamodel becomes a bit larger (with, say, tens of
signatures) Alloy’s instance generation tends to slow down appreciably. Recent
work on model slicing (such as [14,15]) in the context of UML/OCL models)
suggests that in many cases instance generation can be made more efficient by
generating instances for subparts of the metamodel and then combining these
partial instances into an instance of the whole metamodel. We plan to investigate
this type of approach in the context of our work.

2 A newer version of the tool named AToMPM [16] is available

Proceedings of MoDeVVa 2014 27

Verifying Modelling Languages using Lightning: a Case Study

References

N

11.

12.

13.

14.

15.

16.

17.

18.

19.

Lightning tool web site, http://lightning.gforge.uni.lu.

Kermeta tool web site, http://www.kermeta.org.

Moussa Amrani. A formal semantics of kermeta. Formal and Practical Aspects of
Domain-Specific Languages: Recent Developments, 2012.

Juan De Lara and Hans Vangheluwe. Atom3: A tool for multi-formalism and
meta-modelling. In Fundamental approaches to software engineering, pages 174—
188. Springer, 2002.

Sebastian et al. Erdweg. The state of the art in language workbenches. In Martin
Erwig, Richard F. Paige, and Eric Wyk, editors, Software Language Engineering,
volume 8225 of Lecture Notes in Computer Science, pages 197-217. Springer In-
ternational Publishing, 2013.

Martin Fowler. Language workbenches: The killer-app for domain specific lan-
guages. http://martinfowler.com/articles/languageWorkbench.html.

Loic Gammaitoni and Pierre Kelsen. Domain-specific visualization of alloy in-
stances. In ABZ, pages 324-327, 2014.

Loic Gammaitoni and Pierre Kelsen. Functional Alloy Modules. Technical Report
TR-LASSY-14-02, University of Luxembourg; http://hdl.handle.net/10993/16386.
Daniel Jackson. Software abstractions. MIT Press Cambridge, 2012.

. Lennart CL Kats and Eelco Visser. The spoofax language workbench: rules for

declarative specification of languages and IDEs. In ACM Sigplan Notices, vol-
ume 45, pages 444-463. ACM, 2010.

Steven Kelly, Kalle Lyytinen, and Matti Rossi. Metaedit+ a fully configurable
multi-user and multi-tool CASE and CAME environment. In Advanced Informa-
tion Systems Engineering, pages 1-21. Springer, 1996.

Pierre Kelsen and Qin Ma. A lightweight approach for defining the formal semantics
of a modeling language. In Model Driven Engineering Languages and Systems,
pages 690-704. Springer, 2008.

Anneke Kleppe. Software Language Engineering: Creating Domain-Specific Lan-
guages Using Metamodels. Addison-Wesley Professional, 2008.

Asadullah Shaikh, Robert Clarisé, Uffe Kock Wiil, and Nasrullah Memon.
Verification-driven slicing of uml/ocl models. In Proceedings of the IEEE/ACM
international conference on Automated software engineering, pages 185-194. ACM,
2010.

Asadullah Shaikh, Uffe Kock Wiil, and Nasrullah Memon. Uost: Uml/ocl aggres-
sive slicing technique for efficient verification of models. In System Analysis and
Modeling: About Models, pages 173—192. Springer, 2011.

Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner Hansen, Simon
Van Mierlo, and Hiiseyin Ergin. Atompm: A web-based modeling environment. In
Demos/Posters/StudentResearch@ MoDELS, pages 21-25, 2013.

Silvano Colombo Tosatto, Guido Governatori, and Pierre Kelsen. Towards an
abstract framework for compliance. Proceedings of the 17th IEEE International
EDOC 2013 Conference Workshops, pages 79-88, 2013.

Markus Voelter and Vaclav Pech. Language modularity with the mps language
workbench. In 34th International Conference on Software Engineering (ICSE),
pages 1449-1450. IEEE, 2012.

Thomas De Vylder. Feature modelling: A survey, a formalism and a transformation
for analysis. University of Antwerp.

Proceedings of MoDeVVa 2014 28

Scalable Verification of Model Transformations

Xiaoliang Wang, Adrian Rutle, and Yngve Lamo

Bergen University College (Norway)
{xwa, aru, yla}@hib.no

Abstract Model transformations are crucial in model driven engineer-
ing (MDE). Automatic execution of model transformations improves
software development productivity. However, model transformations sho-
uld be verified to ensure that the models produced or the transforma-
tions satisfy some expected properties. In a previous work we presented
a verification approach of graph-based model transformation systems
based on relational logic. The approach encodes model transformation
systems as Alloy specifications which are examined by the Alloy Ana-
lyzer. But experiments showed scalability and performance problems in
the approach when complex relations were present in the systems. To
solve these problems, we extend our previous work by using three tech-
niques: 1) we change the encoding to decrease the arity of relations in
the derived Alloy specifications; 2) we decompose the expressions for the
pattern matching into sub-expressions using unique elements; 3) we use
annotations to decrease the complexity of the metamodel and the model
transformation rules. The results of our experiments indicate that the
new techniques lead to better scalability and performance.

Keywords: Model transformations; verification of model transforma-
tions; scalability problem; verification performance.

1 Introduction

In model driven engineering (MDE), models are the first class entities of the soft-
ware development. They are used to specify the domain under study, to generate
program code, to document software, etc. Ideally, models in a development phase
can be generated automatically from models in a previous phase by model trans-
formations. Such automation makes MDE appealing by increasing productivity.
However, errors may exist in model transformations and be propagated to sub-
sequent phases resulting in erroneous models and software. Thus, verification of
model transformations is a necessary task to ensure correctness, i.e. the produced
models or the transformations satisfy some expected properties.

In our previous work [22], we presented a verification approach of graph-based
model transformation systems based on relational logic. A model transformation
system, which consists of a metamodel and model transformation rules, is en-
coded automatically as an Alloy specification. Then the specification is examined
by the Alloy Analyzer to verify if the system satisfies some properties within a
user-defined scope. We verified conformance, safety and reachability properties

Proceedings of MoDeVVa 2014 29

Scalable verification of model transformations

by checking the Direct Condition and the Sequential Condition [22]. However,
the previous approach suffered from a scalability problem. Complex relations in
metamodels and transformation rules caused relations of high arity present in
the derived Alloy specifications. As a consequence, the Alloy Analyzer could not
examine the specifications when using larger scopes.

To handle the scalability problem we change the encoding procedure, espe-
cially the part for matching the left and right patterns of the model transform-
ation rules, to get rid of relations with high arity. A side effect of this change is
that we get longer expressions for the pattern matching. This leads to increased
verification time and worse performance. To handle the performance problem
we extend our approach with two techniques: decomposition and annotation.
With the first technique, we divide the expressions for the pattern matching
into sub-expressions using unique elements. With the second technique, we use
annotations to specify state information. This will decrease the complexity of
the relations and the amount of the constraints in the metamodel.

Section 2 recalls the verification approach and presents some related back-
ground information. Sections 3, 4 and 5 present the changes in the encoding
procedure, the usage of unique elements and the usage of annotations, respect-
ively. In Section 6, we describe several experiments and present the results to
show the effect of the new techniques. Related work is discussed in Section 7 and
finally concluding remarks and future work are presented in Section 8.

2 Background

In this section, we recall the verification approach for graph-based model trans-
formation systems detailed in [22]. Since the verification approach is based on
Alloy [1] and the running example is specified in the Diagram Predicate Frame-
work (DPF) [11,12,19,21], we give first a brief introduction to these frameworks.

2.1 Alloy

Alloy is a specification language and an analyzing tool for relational models.
The language is declarative, suited for describing complex model structures and
constraints based on relational logic. Artifacts in a model are defined in Alloy
as signatures while relations among them are defined as fields of the signatures.
Some predefined signatures are offered, like Int. Constraints on specifications
are defined as facts while reusable constraints with parameters are defined as
preds. The Alloy Analyzer is a constraint solver which verifies Alloy specifications
by first translating them into SAT problems and then resolving them using a
SAT solver. It can find instances which are well-typed by (and are satisfying
the constraints of) the specifications using the run command. One can also use
the check command to find counterexamples violating some properties. Notice
that Alloy performs a bounded check, i.e. for each signature, a user-defined scope
bounds the number of its instances.

2.2 Diagram Predicate Framework (DPF)

DPF provides formalization of (meta)modelling and model transformation based
on graph transformations [13] and category theory [5]. (Meta)models in DPF are

Proceedings of MoDeVVa 2014 30

Scalable verification of model transformations

represented by diagrammatic specifications consisting of an underlying graph
and a set of constraints. Fig. 1 is the metamodel of Dijkstra mutual exclusion
algorithm [10], in which P, T, R and {F1, F2} represent process, turn, resource
and the flags of a process while [xor] and [injl, etc. are the constraints [22]
Each constraint is formulated by a predicate from a predefined signature. A
model is valid, i.e. the model conforms to its metamodel if there is a typing
morphism from the underlying graph of the model to the underlying graph of
the metamodel, and the model satisfies all the constraints of the metamodel.

nonActive active’

G ©®

e O—@® @—®
o < [
3 @

B O—®]

seftum

setFlag
A
Y

7 [xor] N

nonActive active

% check 0 6 orit 0
S| : o)
Sleree o ellere
active nonActive

®
@-@-6r ~® ®

ol Start

A
Y

Figure 1: Metamodel

Figure 2: Transformation rules

A model transformation system consists of a metamodel (Fig. 1) together
with a set of model transformation rules (Fig. 2). The transformation rules
specify how a source model can be transformed to a target model. A model

transformation rule p : L R R, consists of the left pattern L, the right
pattern R and the coordination pattern K, together with two injective graph
morphisms [and r. A model transformation consists of a sequence of direct
model transformations (application of one model transformation rule). The ex-
ecution of transformations follows the classic Double-Pushout (DPO) approach
as in [13]. That is, for each match m of L in the source model S, we create a
match n of R in T using two pushout constructions. DPF also provides a frame-
work to specify constraint-aware model transformation rules [21]. That is, the
transformation rules may contain constraints which may be used to control the
matches and to decide what to create in the target model.

2.3 Verification Approach

In [22], as a running example we represented Dijkstra’s mutual exclusion al-
gorithm as a model transformation system (see Fig. 1 and 2). The approach uses
an encoding procedure to translate the system to an Alloy specification. The
metamodel and the transformation rules are encoded as corresponding signa-
tures and predicates in the Alloy specification as follows:

Proceedings of MoDeVVa 2014 31

S W N e

Scalable verification of model transformations

1. Assume that there are m nodes and n edges in the structure of the metamodel.
Each node N;, i€[1..m] is encoded as a signature Sy, while each edge Ej,
j€([l.n] as a signature Sg; with two fields src:one Ef and trg:one Ef.
The Alloy keyword one encodes that each edge has exactly one source (tar-
get) node E? (Ejt) Models are encoded as signatures Sg with two fields
nodes:set Sy, + -+ + Sn,, and edges:set Sg, + --- + Sg, encoding the
contained nodes and edges.
The DPF predicates are encoded as preds in Alloy while constraints as facts.
3. Direct model transformations are encoded as a signature Trans with 7 fields:
the rule applied rule, the source and target model source, target, as well as,
the deleted and added elements : dns and ans (nodes), des and aes (edges).
4. Each rule application is encoded as a predicate rule;[trans] stating that the
transformation trans applies rule 7. In this predicate, we encode that the
source (target) model has exactly one match of the left (right) pattern in
which some matched elements are deleted (added) according to the rule.
5. In order to ensure that each direct model transformation applies only one
rule, for each type in the metamodel, a number restricts how many of its
instances are deleted (added).

o

sig Sn,{} //For each node N;, i€[l..m]

sig Sp;{src:one Ej, trg:ome E;} //For each edge E;, j€[l..n]

sig Sg{nodes:set Sy; + ... + Sn,,, edges:set Sg +... + Sg,}

sig Trans{rule:one Rule, source,target:one Graph, dns,ans:set SN1+...+S'Nm,
des, aes:set Sg;+...+Sg,}

fact{all t:Trans | rule;[t] or ... or rule.[tl}

After applying the encoding procedure, we verify the system by using the
Alloy Analyzer to examine the specification. The Alloy Analyzer searches for
counterexamples by executing the command check{constraint} for scope. If
no counterexample is found, the property is verified correct within the scope.
Otherwise, a counterexample can be visualized to assist the designer to correct
the system. In [22]| we verified conformance, safety and reachability properties by
checking the Direct Condition (i.e. every direct model transformation produces
a valid target model) and the Sequential Condition (i.e. if the direct condition
is not satisfied, for each counterexample there exists a sequence of direct model
transformations that will produce a valid target model).

2.4 Challenges in Verification

The Alloy Analyzer performs a bounded check within a state space determ-
ined by the scope. Given an Alloy specification consisting of m signatures, a
scope [s1, 82, ..., $m] bounds the size of the ith signature to s;. For a relation
of arity n, the size of the state space containing all the possible instances is
2°(3"7, si)™ |16]. The encoding procedure, especially the encoding of the pat-
tern matching, leads to relations of high arity in the Alloy specifications. This
impairs scalability since relations of high arity hampers verification within large
scopes, e.g. in [22] the highest scope was 4. In the following section, we present a
new encoding for the pattern matching which reduces the arity of the relations
in the Alloy specifications.

Proceedings of MoDeVVa 2014 32

W N

G W N

Scalable verification of model transformations

3 Changes in the Encoding Procedure

A direct model transformation is the application of one model transformation
rule. As a result, the source (target) model has a match of the left (right) pattern
of the rule with elements deleted (added) according to the rule. Assuming that
the left (right) pattern of a transformation rule is a connected graph containing

edges ey, ..., e, and nodes vy, . .., v, (if the pattern is a disconnected graph, each
connected subgraph is encoded separately), the pattern matching is encoded as
one ey, ..., em|p(er, ..., emn), where p(ey, ..., e,) is the relational expression

about structure match and change. The Alloy keyword one enforces that only one
pattern is present in the source (target) model. For example, the right pattern
of the rule setFlag in Table 2 is encoded as follows:

one a:active&t.aes, s:setTurn&t.aes, pf:PFl&t.aes, f:F1R&t.aes |

let p=a.src, fl=pf.trg, r=f.trg |

p=a.trg and s.src=p and s.trg=p and pf.src=p and f.src=fl1 and f1 in F1&t.ans
and r in R&(t.source.nodes-t.dns) and p in P&(t.source.nodes-t.dns)

The quantification one ey, ..., e, in the relational formula causes relations of
high arity in the Alloy specification. The Alloy Analyzer cannot handle such
quantification with larger scopes, especially when using the keyword one [22].
After studying the encoding procedure, we find that the keyword one is not
necessary because the number restriction on the deleted (added) elements implies
that only one pattern is present in the source (target) model (see item 5 in
Section 2.3). Therefore, we could use some instead of one. Since the expression
some e, ..., emlp(er, ..., ey) equals to some e1]...|some ey |pler, ..., em),
we can split the existential quantification and evaluate the quantifiers one by
one. In this way, we obtain Alloy specifications without high-arity relations. For
example, the right pattern of the rule setFlag can now be encoded as:

some a:active&t.aes|let p=a.srcl|

p in P&(t.source.nodes-trans.dns) and p=a.trg

and some s:setTurn&t.aes|s.src=p and s.trg=p

and some pf:PFl&t.aes|let fl=pf.trgl|pf.src=p and f1 in F1&t.ans
and some f:F1R&t.aes|let r=f.trgl|f.src=fl and r in R&(t.source.nodes-t.dns)

Thus, the scalability problem due to high-arity relations can be solved by
the above mentioned change of the encoding. However, this leads to longer ex-
pressions for the pattern matching, which in turn will lead to poor performance
during verification. In the following two sections, we introduce two techniques
to address this problem and improve the performance. Note that in Section 6
we summarize the gains in translation time and verification time due to the
optimization techniques discussed in the following sections.

4 Decomposition of Patterns
In order to get rid of long expressions for the pattern matching, we decompose
them into sub-expressions during the encoding procedure using unique elements.

A deleted (added) element is unique if it is the only instance of its type deleted
(added) during a direct model transformation. Usually some unique elements

Proceedings of MoDeVVa 2014 33

G WN e

Scalable verification of model transformations

share a common structure. Consider the right pattern of the rule setFlag, in a
transformation applying the rule, the added arrow :active in Fig. 2 is the only
instance of active which will be added. The edges :setTurn and : P—:F1 are
unique elements sharing the same :P. In addition, the unique elements :P—:F'1
and :F'1—:R share the same :F'1. In the previous section, we encoded the pattern
matching so that the whole pattern needed to exist in the target model. Here,
we require that the three sub-patterns :ative , setTurn
and exist in the target model. The : P in the first two sub-patterns
are the same and the :F'1 in the last two sub-patterns are the same because the
unique elements share them. After decomposition using the unique elements, the
right pattern of the rule setFlag is encoded as:
some a:active&t.aes|let p=a.srcl|lp in (t.source.nodes-t.dns) and p=a.trg

and some pf:PF1l&t.aes|let fl=pf.trgl|pf.src=p and f1 in t.ans
some s:setTurn&t.aes|let p=s.srclp in (t.source.nodes-t.dns) and p=s.trg

and some pf:PF1l&t.aes|let f1=PF10.trgl|pf.src=p and f1 in t.ans

some e:F1R&t.aes|let fl=e.src,r=e.trgl|fl in t.ans and r in (t.source.nodes-t.
dns)

Now we use the following lemma to prove that the decomposition is valid.

Lemma 1. Assume a pattern L is divided into two sub-patterns Ly and Lo
where L1 U Ly = L and L1 N Ly = AL containing unique elements. In addition,
the source and target nodes of the edges contained by AL are also contained by
AL. We can prove that G has a match of L iff G has matches of g1:L1—G and
92:Lo—G, where g1|aL = g2|AL-

Proof. = Straightforward AL
< [1:AL—Lq, l5:AL— L4 are the two inclusion maps. Due to the Z(l)g
assumptions, the square (1) in the right figure is a pushout. I Lo
Since g1|aL = g2|arL, we can get l1; g1 = la; ga. Therefore, \glisl‘v e
there is a unique map !¢:L—G. G
In the new encoding procedure we identify sub-patterns sharing the same
unique elements. In this way, long expressions for the pattern matching are
decomposed into sub-expressions, thus gaining better translation time.

5 Annotation in Transformation Systems

In this section, we use annotations to specify state information in the metamodel
and the transformation rules. The encoding procedure is changed correspond-
ingly. The complexity of the metamodel is decreased since we reduced the amount
of signatures and constraints.

5.1 Changes of Metamodel and Rules

In Section 2, arrows (e.g. nonActive, start) and nodes (e.g. F0) were used to
specify the states of a process. In this way, complex relations appeared in the
models. Furthermore, we needed to add extra constraints to correctly specify
states; the metamodel in Figure 1 had 28 constraints. In order to reduce the
number of the signatures and constraints, we use annotations to specify the

Proceedings of MoDeVVa 2014 34

Scalable verification of model transformations

Rule L K R
i T] ST @ | @)
[inj][surj] . <start> setTurn
<nonActive> <nove> <nonActive>
Figure 3: Metamodel st (D—(R) (DGR (T)—>(R)
Predicate [Visualization @P
<Flag> | PXF0>|<F1>|<F2> st2 o check
| PADAB)| (DAD)| (D=AD—B)
<IsActive: active>\<nonActive> enter @ @ @
s il £y EEETS
<At> <start>[<setTurn> @ @ @ @ @ @
|<check>\<crit> s SreACTveS
exit F . F
Table 1: The signature X
used for annotation Table 2: Transformation Rules

state information; the new metamodel contains only 10 constraints. A similar
technique was used in [20] to specify states of workflow instances.

Fig. 3 shows the metamodel using the annotation technique. The nodes R,
P, T are the same as in Fig. 1. Annotations, e.g. <nonActive>, <Active> and <F1>,
are used to specify state information instead of graph structures (like nodes and
edges). We use three groups of annotations; for instance the group <Flag> with
three annotations <Fo>, <F1> and <F2>. Each group has an applicable type ¢ in
the metamodel. In an instance, each element typed by t can be marked with
only one annotation from the group. In the example, all the annotation groups
can be applied to instances of the type P.

Since the transformation rules in a model transformation system are defined
based on the metamodel, changing the metamodel requires also changing the
transformation rules. Different from the transformation rules in Section 2, the
rules are now defined with constraints as shown in Table 2. This implies that
we need to use constraint-aware model transformations as detailed in [21]. We
use colors to denote whether an element is deleted (red), added (green) or not
changed (black). The rules are almost the same as in Section 2; the difference is
that the structures representing state information are replaced with annotations.

5.2 Annotation Encoding

Annotations can be encoded as normal node and edge signatures using Alloy
primitive type Int with minor changes as follows:
1 sig SEG{src:one N, trg:one Int}{trg>=0 and trg<n} //n is the number of

annotations contained within the group
2 sig Graph{nodes:set Sn,;+...+Sn,, +Int, edges:set SEl+...+SEn+SEG}

1. In each annotation group AG, each annotation is indexed with a unique
number. For each AG, an edge signature S% is created, where its src field
is IV, the applicable type of the group; while the ¢rg field is the corresponding
signature index. The edge signature encodes that a node is marked with an
annotation from the AG.

2. The signature Graph contains implicit elements Int and S EG besides explicit
elements Node; and Edge;, as shown in line 2 in the listing above.

Proceedings of MoDeVVa 2014 35

B> wN e

Scalable verification of model transformations

The three AG in the metamodel in Fig. 3 are encoded as follows:

sig AP_Flag{src:one P, trg:one Int} {trg>=0 and trg<2}

sig AP_At{src:one P, trg:one Int} {trg>=0 and trg<4}

sig AP_IsActive{src:one P, trg:one Int} {trg>=0 and trg<3}

sig Graph{nodes:set P+R+T+Int, edges:set PR+TP+TR+AP_Flag+AP_At+AP_IsActivel}

6 Experiments and Results

In this section, we present experiments to study how the three techniques tackle
the scalability problem and improve the performance. The first experiment shows
how the change of encoding affects the scalability. The last two experiments show
the effect of each optimization separately (see Table 3). All the experiments per-
form conformance verification and are executed on an Intel® Core™i5-2410M
@2.30GHz*4 machine with 4GB RAM. The left column shows the scope, and
each group of 3 columns shows the result of applying the techniques. Since the
Alloy Analyzer uses SAT solver, we present the time cost for translation from
Alloy specification to a SAT problem (TR), the verification time to solve the
SAT problem (VE) and the total time (TO). Note that the table shows the total
time for verifying all the constraints.

The results show that after changing the encoding procedure the approach
scales better since we can verify the transformation system for larger scopes
(even larger than 14). The results also indicate that the verification with the
new encoding procedure is time consuming with large scopes; e.g. with scope 14
the TR is 33.8 minutes while the VE of is 8.5 minutes for all the 28 constraints.

With the decomposition technique, VE decreases to 30 seconds and the TR
is around 3 minutes for the 28 constraints. The annotation technique shows even
better performance: since the annotation approach reduces the constraints in the
metamodel from 28 to 10, within scope 14, the TR reduces to 10125 ms, while
the VE decreases to 16041ms for the 10 constraints.

Table 3: Summary of verification performances (unit:millisecond)

Scope|| Old Encoding New Encoding Decomposition Annotation
TR |VE |[TO TR VE TO TR |VE TO TR |VE TO
3 [[6235 [3084 {9319 [[4489 1615 6104 4357 [1831 6188 1497 [599 [2096
4 [|9655 {5236 [14891 [{6530 1679 [8209 3535 [1552 [5087 1786 [944 2730
5 13194 [2891 16085 3506 [2365 [5871 2320 |751 3071
6 29257 [5809 [35066 4189 [4668 [|8857 2357 980 [3337
7 60861 9974 [70835 5652 7769 13421 [[2703 [1056 [3759
8 114951 [21960 [136911 [[7173 [14622 [21795 [[2906 [1544 [4450
9 209371 [52176 [261547 [[{10066 [41465 [51531 |[[3331 [2421 [5752
10 357734 90784 [448518 |[[12576 [45531 [58107 |[[3792 [5866 [9658
11 581151 [162532 [743683 [[15246 (92928 [108174 |[5272 [5081 [10353
12 910631 [307525 [1218156 [[19387 [71090 [90477 |[[6766 [9291 [16057
13 1408900 (307081 [1715981 [|24797 [243451 [268248 |[8123 [13673 [21796
14 2030142 [509732 [2539874 [[30336 [180909 [211245 [[10125 [16041 [26166

Note that although the decomposition technique does not lead to as good
performance as application of annotation, it is more generic in the sense that
it could be applied to any model transformation system. But the annotation
approach can only be used when state information is present in the system.

Proceedings of MoDeVVa 2014 36

Scalable verification of model transformations

7 Related Work

The literature related to the verification of model transformation systems is
becoming abundant. Some works propose verification approaches specialized for
specific languages. For example, verification of DSLTrans [6] and ATL transform-
ation [17] are studied in [18] and [7], respectively. Both languages are termin-
ating and confluent by nature. Because of this, both works verify model syntax
relations [2], which verify whether certain elements of the source model have
been transformed into elements of the target model. Different from these works,
our approach applies for verification of graph-based model transformations and
properties without being restricted to a certain transformation language.

GROOVE [14] verifies graph-based model transformations using model check-
ing. In this approach, the initial state must be given and it works only for finite
state spaces. In addition, it encounters the state space explosion problem which
is well-known in model checking. Simone et al. [8] uses relational structures to
encode graph grammars and FOL to encode graph transformations. In this way,
they provide a formal verification framework to reason about graph grammars
using mathematical induction, which needs mathematical knowledge. Guerra et
al. [15] proposed an automatic verification approach based on visual contract. In
this approach, test input models are generated by a constraint solver and proper-
ties specified as contracts are verified by their algorithm on those input models.
Similarly, our work use constraint solver techniques and is input independent [2].
By contrast, the approaches with constraint solvers are incomplete in the sense
that the properties are verified within a certain coverage of instances. However,
it can be used to quickly find bugs in a system and provide feedbacks about
which parts of the system cause the errors. Furthermore, we do not build the
whole state space. This avoids the state space explosion problem which the model
checking approaches encounter. There are also several previous works [3,4,9] for
verification of transformation systems with Alloy. But they only give encoding
of specific examples, without offering a general encoding procedure.

8 Conclusion and Future Work

In this paper we have presented an extension of our previous work [22] to tackle
scalability and performance issues by employing three techniques: changing the
encoding procedure, decomposing patterns into sub-patterns and applying an-
notation to represent state information. The experimental results show that the
techniques improve the scalability and performance (i.e. translation and verifica-
tion time). In the future we will examine how the approach can be used to verify
other properties like liveness, deadlock, etc. Furthermore, more cases will be ex-
amined to study the effects of the optimization techniques and evaluate how the
approach performs for more complex model transformation systems. Currently,
we encode direct model transformations applying only one rule, but in future
we would like to encode model transformations which apply rules concurrently
(composition of direct model transformations).

Proceedings of MoDeVVa 2014 37

Scalable verification of model transformations

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Alloy. Project Web Site. http://alloy.mit.edu/community/.

M. Amrani, L. Lucio, G. Selim, B. Combemale, J. Dingel, H. Vangheluwe, Y. L.
Traon, and J. R. Cordy. J.r.: A tridimensional approach for studying the formal
verification of model transformations. In Proc. of VOLT, 2012.

K. Anastasakis, B. Bordbar, and J. M. Kiister. Analysis of Model Transformations
via Alloy. In Proc. of MoDeVVa, 2007.

L. Baresi and P. Spoletini. On the Use of Alloy to Analyze Graph Transformation
Systems. In Proc. of ICGT, 2006.

M. Barr and C. Wells. Category Theory for Computing Science (Q"d Edition).
Prentice-Hall, Inc., 1995.

B. Barroca, L. Lucio, V. Amaral, R. Félix, and V. Sousa. DSLTrans: A Turing
Incomplete Transformation Language. In Proc. of SLE, 2010.

F. Biittner, M. Egea, and J. Cabot. On verifying ATL transformations using off-
the-shelf SMT solvers. In ACM/IEEE MODELS 2012, LNCS, 2012.

S. A. da Costa and L. Ribeiro. Verification of graph grammars using a logical
approach. Science of Computer Programming, 77:480-504, 2012.

Z. Demirezen, M. Mernik, J. Gray, and B. Bryant. Verification of DSMLs Using
Graph Transformation: A Case Study with Alloy. In Proc. of MoDeVVa, 2009.
E. W. Dijkstra. Solution of a Problem in Concurrent Programming Control. Com-
mun. ACM, 1965.

Z. Diskin. Encyclopedia of Database Technologies and Applications, chapter Math-
ematics of Generic Specifications for Model Management I and II. Information
Science Reference, 2005.

Z. Diskin, B. Kadish, F. Piessens, and M. Johnson. Universal Arrow Foundations
for Visual Modeling. In Diagrams 2000: 1°* International Conference on Diagram-
matic Representation and Inference, 2000.

H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Springer. Springer-Verlag New York, Inc., 2006.

A. H. Ghamarian, M. J. de Mol, A. Rensink, E. Zambon, and M. V. Zimakova.
Modelling and analysis using GROOVE. International journal on software tools
for technology transfer, 2012.

E. Guerra, J. de Lara, M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger,
J. Schénbéck, and W. Schwinger. Automated Verification of Model Transforma-
tions Based on Visual Contracts. Autom. Softw. Eng., 20(1), 2013.

D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2006.

F. Jouault, F. Allilaire, J. Bézivin, and 1. Kurtev. ATL: A model transformation
tool. Sci. Comput. Program., 72(1-2), 2008.

J. D. S. M. Levi Lucio and H. Vangheluwe. A technique for symbolically verifying
properties of graph-based model transformations. Technical Report SCOCS-TR~
2012, McGill University, 2013.

A. Rutle. Diagram Predicate Framework: A Formal Approach to MDE. PhD thesis,
Department of Informatics, University of Bergen, 2010.

A. Rutle, W. MacCaull, H. Wang, and Y. Lamo. A metamodelling approach to
behavioural modelling. In Proc. of BM-FA, 2012.

A. Rutle, A. Rossini, Y. Lamo, and U. Wolter. A formal approach to the specific-
ation and transformation of constraints in MDE. JLAP, 2012.

X. Wang, Y. Lamo, and F. Biittner. Verification of graph-based model transform-
ation using Alloy. In Proc. of GTVMT, 2014.

Proceedings of MoDeVVa 2014 38

A Viewpoint-Based Approach for Formal Safety &
Security Assessment of System Architectures

Julien Brunel!, David Chemouil!, Laurent Rioux?,

Mohamed Bakkali®, and Frédérique Vallée?

! Onera/DTIM
F-31055 Toulouse
firstname.lastname®@onera.fr
2 Thales Research & Technology
F-91767 Palaiseau, France

laurent.rioux@thalesgroup.com

3 All4Tec F-53001 Laval, France
firstname.lastname®all4Tec.net

Abstract. We propose an model-based approach to address safety and security
assessment of a system architecture. We present an integrated process where sys-
tem engineers design the model of the system architecture, safety and security
engineers specify the propagation of failures and attacks inside each component
of the architecture using their dedicated tool. They also define the failure modes
that have to be merged from both disciplines. The underlying analyses are then
performed using Alloy. We instantiate this approach with the system engineering
tool Melody from Thales, and the risk analysis supporting tool Safety Architect
from All4Tec. We illustrate this work on a system that implements a landing ap-
proach of an aircraft.

1 Introduction

Safety and security are commonly identified disciplines in system and software engi-
neering. In critical embedded system engineering, the fact to spend a lot of effort in
safety engineering is a common practice, in particular because these systems generally
need to be certified. Standards specify a complete and precise safety process to follow
in order to be certified. More recently, architects have begun considering security with
more attention. Indeed malicious attacks on the system may cause failures and catas-
trophic events. So, there is a need to not only assess the safety properties but also the
security properties of critical embedded systems to create a dependable system archi-
tecture. However, the literature shows the difficulties to combine these disciplines in
engineering [4].

In [3], we showed that it is possible to assess some properties of a critical embedded
system architecture by using the lightweight formal language Alloy. This is a promis-
ing solution but industrial companies may not accept to require safety and security
engineers to create and maintain Alloy formal models. One problem is then to rely on
Alloy for formal analysis while hiding it to end-users. On the other hand, safety stan-
dards are also evolving to encourage the use of design models (MBSE, Model based

Proceedings of MoDeVVa 2014 39

A Viewpoint-Based Approach for Formal Safety & Security Assessment of System Architectures

System Engineering), as well as formal techniques and tools to assess properties inside
these models (MBSA, Model based System Assessment).

This article introduces a proposal for a viewpoint-based approach to integrate formal
assessment with Alloy in a modelling context. Remark that we focus on the feasibility
of the whole approach rather than on viewpoint-based engineering per se (e.g. over-
all consistency, name management, abstraction layers...) hence our approach is quite
simple w.r.t. the current state-of-the-art on viewpoints [5].

Now since safety engineering and security engineering rely on specific tools, we
propose a solution with 3 viewpoints:

— A design layer where system architects design the system architecture (here with
the Thales in-house tool called “Melody”);

— A safety/security layer where safety engineers and security engineers (based on
extensions for security of the “Safety Architect” tool) can model their safety and
security properties (dysfunctional and security attack model);

— A third layer which consists in a formal model (here an Alloy model) to assess
safety and security properties of the system architecture.

Our approach is currently done by hand as this work is a feasability study, the purpose of
which is mainly to focus on viewpoints and formal validation, rather than implementing
model transformations which would be rather simple here. Notice that, as of today, the
feedback of the assessment results to the system architecture design are still under study
and then not addressed in this article.

2 LPYV case study

This case-study is concerned by the architecting of a new Thales Avionics aircraft em-
bedded system designed to support an LPV landing approach. Localizer Performance
with Vertical guidance (LPV) is the highest precision GNSS aviation instrument ap-
proach procedure currently available without specialized aircrew training requirements.
LPV is designed to provide 16 meter horizontal accuracy and 20 meter vertical accuracy
95 percent of the time. Its architecture is represented by Fig. 2.

We can summarize the behavior of this sub-system as follows. Two Global Naviga-
tion Satellite Systems (GPS and GALILEO) send a signal to SBAS processing func-
tions. After correlations of both positions information, the SBAS sends the aircraft
position (lateral and vertical) to two occurrences of the LPV processing function. The
data produced by LPV processing functions are sent to three displays (three occur-
rences of a function Acquire). In each display, a comparison of the data received from
LPV1 and LPV2 is performed. In case of inconsistency, an alarm is triggered by a
function Monitor. The crew chooses which of the two LPV processings is used by
each display (function SelectSource, not represented in Fig 2). Besides, each display
receives the data computed by the other two displays. Then, the function Crosscheck
compares the data of the current display with the data of the two others and resets the
current display in case it differs from the other two displays.

This initial architecture was designed taking into account a number of safety re-
quirements; two of these are recalled below.

Proceedings of MoDeVVa 2014 40

A Viewpoint-Based Approach for Formal Safety & Security Assessment of System Architectures

Galileo

Fig. 1. LPV architecture

Safety 1 Loss of LPV capability. No single failure must lead to the loss of LPV capa-
bility.

Safety Misleading information integrity. The architecture must control the value of the
LPYV data provided by each calculator and between each screen and find mitigation
in case of erroneous data.

We also want to ensure that the above architecture is resilient to a number of malev-

olent attacks. Any combination of the following attacks has been considered.

Attack 1 One malicious GPS signal (a fake signal that SBAS considers to come from
GPS).

Attack 2 One constellation satellite signal is scramble.

Attack 3 The RNAV ground station is neutralized, meaning that no more RNAV signal
can be send to the plane.

We will see in Sect. 5 that these requirements are easily expressible (and checked)
in Alloy.

3 Model Based Safety & Security Assessment

3.1 Model Based System Engineering (MBSE)

System Engineering of aerospace electronic devices and systems (e.g. avionics, flight or
aircraft systems control, mission computers) is submitted to high constraints regard-
ing safety, security, performance, environment, human factors and more; all of these
deeply influence systems architecture design and development, and are to be reconciled
in a relevant system architecture. The model-based system engineering (MBSE) is an
efficient approach to specifying, designing, simulating and validating complex systems.
This approach allows errors to be detected as soon as possible in the design process, and
thus reduces the overall cost of the product. Uniformity in a system engineering project,

Proceedings of MoDeVVa 2014 41

A Viewpoint-Based Approach for Formal Safety & Security Assessment of System Architectures

which is by definition multidisciplinary, is achieved by expressing the models in a com-
mon modeling language.

Due to its position of large mission-critical systems supplier for aerospace, de-
fense & security markets, THALES invests a lot in system engineering.In particular,
THALES has developed its own MBSE method named ARCADIA [11,10]. ARCADIA
is based on architecture-centric and model-driven engineering activities, supported by
a tool called Melody.

3.2 Model Based Safety Assessment

Model-based safety assessment is nowadays more and more considered in order to im-
prove the safety analysis of complex systems. It relies on the idea that safety assessment
activities can follow the design process in a parallel flow using the system functional
and physical architectures as a common basis. The system model, either functional or
physical, is used to capture the overall architecture and the interactions between its
components. This abstract view of the system may be enriched with safety information
using dedicated annotations in order to describe possible dysfunctional behaviors.

Safety Architect is a tool achieving risk analysis of complex systems using func-
tional or physical architectures. Safety Architect allows the user to automatically gen-
erate the Fault Tree through a “local analysis” (see Fig. 2). The local analysis consists in
linking with logical links (“and”, “or”) failure modes of the outputs of each component
to the failure modes identified on the component inputs. During the local analysis, the
user can also describe the component internal failures effects on its outputs.

In parallel, the user can also identify safety barriers that prevent the development
of a single fault up to particular failure mode that could lead to a hazardous event,
participating thus to the safety objectives compliance. The user must also define which
failure modes of the system outputs have to be considered as hazardous events. These
events are the subject of the “global analysis” provided by the tool Safety Architect.

During the global analysis, a dysfunctional simulation of the system is executed
by propagating failures along the dataflow dependencies of components and until a
hazardous event is reached. The results of this propagation are formulated through Fault
Trees, the roots of which are all the previously identified hazardous events.

© pimanor [¢ Intemal Failure B

€ A
© sensoror |l ¥

3 Barrer 1)

Itis an implicit barier

Fig. 2. Example of local analysis

Proceedings of MoDeVVa 2014 42

A Viewpoint-Based Approach for Formal Safety & Security Assessment of System Architectures

3.3 Formal techniques

Formal techniques can be used to support safety and security assessment. Thanks to
their mathematical foundation, they allow to prove some requirements, which provide
a better confidence than more classical validation activities such as testing and manual
review. A number of verification techniques have been developed over the last decades.
They may differ on their expressiveness, their computational complexity and their ap-
plication domain.

In this work, we have chosen Alloy [6], which is a formal system-modelling lan-
guage amenable to automatic analyses. Alloy has recently been used in the context of
security assessment, for instance to model JVM security constraints [8], access control
policies [9], or attacks in crytogrpahic protocols [7]. Besides, we proposed in earlier
work a preliminary study of the safety assessment of the LPV system with the study of
a few security attacks [2,3].

The AltaRica [1] language, which is widely use for safety assessment, would have
been another possible choice. However, we decided to take benefit from the model-
based aspect of Alloy and its expressiveness for the specification of the properties to
check. Indeed, Alloy allows to define easily the metamodel of the avionic architectures
we will analyze instead of encoding them in terms of AltaRica concepts. Moreover, the
specification of the properties we want to check are expressed in relational first-order
logic with many features adapted to model-based reasoning.

4 Proposed approach for MBS&SA

4.1 Main principles

The approach we propose in this article consists in decoupling the system architecture
model from safety & security models. This way, every engineer (be it an architect, a
security or a safety engineer) can focus on her concerns solely, with dedicated tools and
terminology. As of now, we chose to use two separate models: one for the safety con-
cern and the second for the security concern. The main motivation for this separation is
that safety and security domains are quite different in terms of practices, concepts used
and wording. As the safety and security models rely on the system architecture model,
we extract required information (e.g. functions interactions, ports and their links, data)
from the architecture model and we set up initial safety and security models in Safety
Architect. Starting from this, safety and security engineers complete their model by
adding safety and security dysfunctional behavior. The safety and security models con-
tain two kinds of information: the dysfunctional behavior and the properties (safety or
security) to be validated. For us, a safety dysfunctional behavior represents how errors
are propagated in the system architecture and a security dysfunctional behavior rep-
resent how security attacks are propagated in the system architecture. And the safety
and security properties are mainly safety and security requirements that the system ar-
chitecture must satisfy (e.g. integrity of the output data must be preserved even under
specific attacks). Finally, these two models are combined to produce a formal Alloy
model containing all the necessary input. Then, the Alloy Analyzer can formally vali-
date the safety and security properties. If a property is violated, the Alloy Analyzer will

Proceedings of MoDeVVa 2014 43

A Viewpoint-Based Approach for Formal Safety & Security Assessment of System Architectures

1
Security\\
Engineer Security

1
1
! 1
: Model : 1
System ! | :
| 1
Architecture | . - 1 Alloy
Model ! 1 : Model
ooy | G e |
I . !
d h !
! 1
! 1
! 1
! 1

Alloy
Analyzer

f / Model
>]
) .}
Architect Safety e e e e = = a
Designers Engineer

Fig. 3. Proposed approach

show a readable corresponding counter-example. This way, the engineers can identify
the best way to correct the architecture to solve this identified issue.

4.2 Melody to Safety Architect

The first model transformation yields an initial Safety Architect model from the system
design model. This transformation is trivial as it only reflects the structural part of the
architecture. Melody functions are mapped to Safety Architect in functions. Ports give
input and output ports, while data links yield data links.

4.3 Safety Architect to Alloy

We now present (a fragment of) the Alloy formalization of the language used in Safety
Architect. Essentially, we define sets and relations between them: the former are called
signatures in Alloy while the latter are described as fields inside the said signatures.
First, we define a notion of status which is a signature the elements of which repre-
sent types of failures: Absent, Err (erroneous) and Mal (malicious) while OK just
represents that no failure happened.

enum Status { OK, Err, Abs, Mal }

Then, blocks are mapped to functions endowed with possibly-many input and output
ports as well as one status which is used to represent the notion of internal failure from
Safety Architect:

abstract sig Function { input: set IPort, output: set OPort, status: Status }

Finally, ports also come with a status and can either be input or output ports. An output
port may be connected to many input ports, as expressed by the field flow:

abstract sig Port { status: Status }
abstract sig [Port extends Port {}
abstract sig OPort extends Port { flow: set [Port }

Proceedings of MoDeVVa 2014 44

A Viewpoint-Based Approach for Formal Safety & Security Assessment of System Architectures

Notice that the notion of internal failure from Safety Architect is mapped to the status
in Function, although other formalizations would have been possible.

Along with these signatures, we have some Alloy facts which enforce static invari-
ants on possible instances of this formalization. We do not describe them here as they
are rather obvious (e.g. a block should have at least one port; if two ports are connected,
then they should bear the same value and status...).

5 Case study evaluation

The LPV model is imported into Safety Architect modeler as shown in Fig. 4. The
objective is to have either the safety view or the security view or the combination of
both views as needed.

| @ Monitorl
ffffffff R

) RNAVZ

Fig.4. LPV model in Safety Architect

5.1 Safety model

The safety analyses are based on logical equations using three generic failure modes
proposed by Safety Architect on each input (in green) of a block:

A Absent (Absent data while it should be present)

E Erroneous (Non correct supplied data)

U Untimely (Data supplied while it shouldn’t be)

If necessary, specific failure modes can also be defined on the input. The Untimely
failure mode is defined by default but we did not use it in this case study.

For example we can say for the Safety analysis (Fig. 5, left) that one of the two
ways to observe the “Erroneous” failure mode on the output “oLPVprocessingl” is to
have the “Erroneous” failure mode on the input “iLPVprocessingl” and the “Absent”
failure mode on the input “BaroAltimeter1” or the “Absent” failure mode on the input
“RNAV1”.

Proceedings of MoDeVVa 2014 45

A Viewpoint-Based Approach for Formal Safety & Security Assessment of System Architectures

Fig. 5. Safety analysis of the block LPVprocessing1 [left] / Security analysis of the block SBAS1
(Attack 4) [middle] / Combination of the Safety and Security analysis of the block SBAS1 [right]

5.2 Security model

For security analysis, Safety Architect proposes three other generic failure modes on
each input of a block:

A Absent (Absent data due to an external attack)
M Malicious (Data injected during an external attack)
E Erroneous (Malicious detected data)

Let us consider for example the security analysis of the block SBASI1 illustrated by
Fig. 5 (middle). It covers “attack 4” (an attack combining attack 1 and attack 2 scenarios
i.e. when SBAS considers a fake signal coming from GPS and one constellation signal
is scrambled). One can see that the “Erroneous” failure mode of the output “oSBAS1”
is obtained iff the “Malicious” failure mode on the input “GPS” or the “Malicious”
failure mode on the input “Galileo” holds.

5.3 Safety and security model

The safety and security model combines both the safety and security views. By default,
this is implemented as follows (but the user may modify this discretely depending on
domain knowledge):

— Failure modes with the same name are identified;

— The set of logical equations of the resulting model is the union of the sets (of logical
equations) of the safety and security views. However, if an equation in the safety
view concerns the same output port and failure mode than an equation in the se-
curity view, there is only one resulting equation: the disjunction of both equations.
The rationale is that we want to keep the two different ways for the output port to
propagate the said failure.

An example is shown in Figure 5 (right). Combining the safety and security views
in one model allows us to merge the two propagations into a unique propagation. The
latter shows the intersection between both views; it also allows the safety or the security
engineer to identify which safety or security (or both) failure modes may contribute to
the appearance of a Feared Event.

Proceedings of MoDeVVa 2014 46

A Viewpoint-Based Approach for Formal Safety & Security Assessment of System Architectures

5.4 Alloy code generation

We already presented in Sect. 4.3 how Safety Architect concepts (blocks, ports, failure
modes) are translated into Alloy. We now show what is the Alloy representation of (an
excerpt of) our case study and how to specify safety and security requirements.

Let us consider the block illustrated in Sect. 5.3 (SBAS1). Firstly, we have to de-
clare it (as a Function) and its three ports.

one sig SBAS1 extends Function {}
one sig 0SBAS1 extends OPort {}
one sig iGPS_SBAS]1, iGalileo_SBAS]1 extends IPort {}

We then express the connections between (ports of) functions as an Alloy constraint
(a conjunction of equality between ports). Then we translate the failure propagation
inside the block as Alloy facts as follows.

let oSBAS1 = { GPS = Abs and Galileo = Abs implies Lost
else GMS = Mal or Galileo = Mal implies Err
else OK }

Finally, we can express requirements to check directly as Alloy assertions. Note that
from the identification of feared event in the Safety Architect model, we could easily
generate patterns of requirements that would express that no single failure leads to this
feared event, of that no attack of a certain type lead to this feared event, or that no
combination of failure and attack lead to this event, etc.

For instance, the following assertion states that a fake GPS signal (attack 1 described
in Sect. 2) has no bad influence on the system (the data sent by the three displays,
represented by variables oSelectedi, are still correct).

assert fake-GPS-has-no-bad-influence {
(all f: Function | f.status=OK and GPS.status=Mal)
implies oSelectedl.status = OK and oSelected2.status = OK
and oSelected3.status = OK }

This requirement can be verified by Alloy Analyzer with the command
check fake-GPS-has-no-bad-influence.

We have expressed and checked the safety requirements described in Sect. 2 and the
security requirement relative to the attacks described in Sect. 2 in a similar way. It turns
out that the system is robust to any single failure and to any simple attack (attack 1, 2
or 3). We also checked the consequences of any combination of two attacks: depending
on the considered combination, either the system is robust or an alarm, not represented
in this article, is launched. The same conclusion holds for any combination of an attack
and a function failure.

6 Conclusion and future work

In this article, we proposed a model-based approach to address safety and security as-
sessment of a system architecture. We proposed a way to make system engineers, safety

Proceedings of MoDeVVa 2014 47

A Viewpoint-Based Approach for Formal Safety & Security Assessment of System Architectures

engineers and security engineers collaborate in order to perform safety and security as-
sessment in the easiest possible way.

Now we see the feasibility and the interest of this approach, the next step is to

implement it. We will need to address classical but important problems, such as the
traceability between the Safety Architect models and the Melody model. For instance,
after an evolution of the system architecture performed under Melody, we will have to
ensure that the failure propagation inside blocks described with Safety Architect does
not need to be entirely redefined.

References

2.

10.

11.

A. Arnold, G. Point, A. Griffault, and A. Rauzy. The altarica formalism for describing
concurrent systems. Fundamenta Informaticae, 40(2,3):109-124, Aug. 1999.

J. Brunel, D. Chemouil, N. Mélédo, and V. Ibanez. Formal modelling and safety analysis of
an avionic functional architecture with alloy. In Embedded Real Time Software and Systems
(ERTSS 2014), Toulouse, France, 2014.

. J. Brunel, L. Rioux, S. Paul, A. Faucogney, and F. Vallée. Formal safety and security assess-

ment of an avionic architecture with alloy. In Proceedings Third International Workshop on
Engineering Safety and Security Systems (ESSS 2014), volume 150 of Electronic Proceed-
ings in Theoretical Computer Science (EPTCS), pages 8—19, 2014.

. D. G. Firesmith. Engineering safety- and security-related requirements for software-

intensive systems: tutorial summary. In International Conference on Software Engineering -
Volume 2 (ICSE 2010), pages 489-490. ACM Press, 2010.

. IEEE Architecture Working Group. ISO/IEC/IEEE 42010 Systems and software engineering

- Architecture description. The latest edition of the original IEEE Std 1471:2000, Recom-
mended Practice for Architectural Description of Software-intensive Systems, 2011.

. D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, 2006.
. A. Lin, M. Bond, and J. Clulow. Modeling partial attacks with alloy. In B. Christianson,

B. Crispo, J. Malcolm, and M. Roe, editors, Security Protocols, volume 5964 of Lecture
Notes in Computer Science, pages 20-33. Springer Berlin Heidelberg, 2010.

. M. Reynolds. Lightweight modeling of java virtual machine security constraints. In M. Frap-

pier, U. Glasser, S. Khurshid, R. Laleau, and S. Reeves, editors, Abstract State Machines, Al-
loy, B and Z, volume 5977 of Lecture Notes in Computer Science, pages 146—-159. Springer
Berlin Heidelberg, 2010.

. M. Toahchoodee and I. Ray. Using alloy to analyse a spatio-temporal access control model

supporting delegation. Information Security, IET, 3(3):75-113, Sept 2009.

J.-L. Voirin. Method and tools to secure and support collaborative architecting of constrained
systems. In 27th Congress of the International Council of the Aeronautical Science (ICAS
2010), 2010.

J.-L. Voirin and S. Bonnet. Arcadia: Model-based collaboration for system, software
and hardware engineering. In Complex Systems Design & Management, poster workshop
(CSD&M 2013), 2013.

Proceedings of MoDeVVa 2014 48

Modeling Spatial Aspects of
Safety-Critical Systems with Focus®”

Maria Spichkova', Jan Olaf Blech!, Peter Herrmann?, and Heinz Schmidt!

1 RMIT University, Melbourne, Australia
{maria.spichkova, janolaf.blech, heinz.schmidt}@rmit.edu.au
2 Norwegian University of Science and Technology (NTNU), Trondheim, Norway
herrmann@item.ntnu.no

Abstract. This paper presents an approach for modeling and verifi-
cation of components controlling behaviour of safety-critical systems in
their physical environment. In particular, we introduce the modeling lan-
guage Focus®Tthat is centred on specifying time and space aspects. Ver-
ifications can be carried out using the interactive semi-automatic proof
assistant Isabelle. The approach is exemplified by means of a railway
system scenario.

1 Introduction

Many safety-critical systems (SCSs) consist of mobile units autonomously mov-
ing in their physical environment. Modeling such systems requires not only the
definition of the software part but also a specification of interactions with the
physical environment. In consequence, the models need to capture timing and
spatial aspects that should provide a basis for formal verification of safety prop-
erties. In most cases, however, we do not need the whole representation of an
SCS but only those parts relevant to a concrete purpose. Thus, an appropriate
model should give an overview of core system properties and allow an effective
inconsistencies funding, reducing modeling and verification effort.

For modeling SCSs suitably, it is essential to have a well developed theory cov-
ering real-time and space requirements since mistreating or excluding them can
lead to specification errors due to difficulties of choosing a correct abstraction.
Moreover, in many cases reasoning about time to represent a real-time system
makes the specification more readable (in comparison to an untimed representa-
tion), simplifies the argumentation about its properties, and gives a formal basis
for verification. A suitable representation of SCSs should also make it possible
to model information flow not only in time but also in space, because the spatial
aspect may influence the delays of interactions between subcomponents of the
system as well as between the system and the environment. This point is im-
portant for cost reduction of interoperability testing at the integration phase of
the development process. Further, for a versatile application of a notation, the
selection of a suitable space-time coordinate system should be relatively free.

The modeling language that we use in our approach is Focus®T. It allows
us to create concise but easily understandable specifications and is appropriate

Proceedings of MoDeVVa 2014 49

Modeling Spatial Aspects of Safety-Critical Systems with Focus ST

for application of the specification and proof methodology presented in [19, 25].
This methodology allows writing specifications in a way that carrying out proofs
is quite simple and scalable to practical problems. In particular, a specification
of an SCS can be translated to a Higher-Order Logic and verified by the inter-
active semi-automatic theorem prover Isabelle [17] also applying its component
Sledgehammer [4]. Sledgehammer employs resolution based first-order automatic
theorem provers (ATPs) and satisfiability modulo theories (SMT) solvers to dis-
charge goals arising in interactive proofs. Another advantage is a well-developed
theory of composition as well as the representation of processes within a sys-
tem [20]. The collection of Focus®Toperators over timing aspects and their
properties specified and verified using the theorem prover Isabelle is presented
in the Archive of Formal Proofs [21]. In this work we focus on modeling of spatial
aspects.

Related Work: One of the most well-established models for the specification and
verification of real-time system design is timed automata, introduced by Alur
and Dill [1,2]. A timed automaton is a finite automaton extended by real valued
clocks that are applied to measure the time elapsed since certain events occurred.
The clocks are used in so-called clock invariants that restrict the time, a timed
automaton may rest in a particular state without executing certain transitions.
Timed automata assume perfect continuity of clocks which may not suit the
purposes of the work presented here, especially if we deal with an embedded
system with instantaneous reaction times. Furthermore, they do not prevent
Zeno runs [12], i.e., executing an infinite number of transitions in a finite period
of time. To solve this, the idea of robust model checking was introduced by
Puri [18] and revised in other approaches, e.g., [8]. In this paper, we suggest
another solution: We use asynchronous channels between timed automata and
argue about possibly infinite message sequences towards an automaton at some
time interval. This can be represented by using an infinite sequence of finite
time intervals as input for a timed automaton. Any timed transition system
can be discretised without loss of generality [14]. For this reason, we apply a
discrete model of time where any granularity defining the concrete meaning of
a time interval according to the system requirements can be used. We can even
switch from one time granularity to another using predefined operators. A great
advantage of the proceeding is that it excludes Zeno runs.

Related work regarding spatial aspects has been done with respect to logic
and tools. A process algebra like formalism for describing and reasoning about
spatial behavior has been introduced in [10,11]. Process algebras come with a
clear and formal semantics definition and are aimed towards the specification of
highly parallel systems. Here, disjoint logical spaces are represented in terms of
expressions by bracketing structures and carry or exchange concurrent processes.
Results on spatial interpretations can be found in [15]. Many aspects of spatial
logic are in general undecidable. A quantifier-free rational fragment of ambient
logic (corresponding to regular language constraints), however, has been shown
to be decidable in [26]. Work on spatial model checking by ourselves is pre-
sented in [6, 7]. Furthermore, this approach was coupled with the model-based

Proceedings of MoDeVVa 2014 50

Modeling Spatial Aspects of Safety-Critical Systems with Focus ST

YV AVehicle, AVehicle, — AVehicle
ol i 2 3
' ' y
| | |
" i r, i ~ ”f5 i e
i B) S) B
S0 —-@-! & ---&-| & —-—- - - |RTrack
| I I
5+ v v v
0 25 60 100 120 X

Fig. 1. Automatic transport system

engineering technique Reactive Blocks [16] such that reactive systems (e.g., SCS
controllers) can be developed using models and be checked for spatial properties
before generating executable code [13].

Scenario: Due to the well specified degrees of freedom enforced by rail tracks,
trains have been a popular target for verification work (see, e.g., [3]). This makes
them also an appropriate target to introduce the main idea of modeling and
verification of spatial aspects. Here, we present a small example from this area
that is depicted in Fig. 1. A train RTrack shuttles on a rail track that is crossed
by three roads. On each road, an autonomous vehicle AVehicle is operating. All
four mobile units are characterized by a number of constraints on their location,
speed, movement direction, etc. To avoid collisions, the train sends a wait signal
to the respective AVehicle while passing one of the corresponding critical points
tr; close to the crossings (1 < ¢ < 6). If a critical point is ahead of a crossing in
the direction of the train, the wait signal expresses a time interval, for which the
AVehicle has to stop if it is heading towards the crossing and is far enough to
stop in due time. The time interval may depend on the speed of the train giving
it sufficient time to pass the crossing. If a critical point is behind a crossing, wait
contains value 0 indicating that the vehicle may immediately continue moving.
The fact that an AVehicle is only stopped for a certain time interval at most,
provides a challenge on the space-related behavior since we have to guarantee
that the train already left the crossing when the time interval passed. This poses
the following questions: How should we model spatial properties of this system in
a readable way? Does this modeling technique allow formal verification of safety
properties? Is this model also appropriate to specify and verify a large number of
components, e.g., for the case that we have not three but one thousand AVehicle
components? In this paper we will answer these questions by presenting our
modeling approach in Focus®T.

Proceedings of MoDeVVa 2014 51

Modeling Spatial Aspects of Safety-Critical Systems with Focus ST

2 Spatial Aspects in Focus®”

The Focus®T language was inspired by Focus [9], a framework for formal speci-
fication and development of interactive systems. In both languages, specifications
are based on the notion of streams. However, in the original Focus input and
output streams of a component are mappings of natural numbers N to single
messages,whereas a Focus®” stream is a mapping from N to lists of messages
within the corresponding time intervals. Moreover, the syntax of Focus®T is
particularly devoted to specify spatial (S) and timing (T) aspects in a compre-
hensible fashion, which is the reason to extend the name of the language by 7.
The Focus®T specification layout also differs from the original one: it is based
on human factor analysis within formal methods [22, 23].

We specify every component using assumption-guarantee-structured tem-
plates. This helps avoiding the omission of unnecessary assumptions about the
system’s environment since a specified component is required to fulfil the guar-
antee only if its environment behaves in accordance with the assumption. In a
component model, one often has transitions with local variables that are not
changed. Also, outputs are often not produced, e.g., when a component gets
no input or some preconditions necessary to produce a nonempty output are
violated. In many formal languages this kind of invariability has to be defined
explicitly in order to avoid underspecified component specifications. To make our
formal language better understandable for programmers, we use in Focus®” so-
called tmplicit else-case constructs. That means, if a variable is not listed in the
guarantee part of a transition, it implicitly keeps its current value. An output
stream not mentioned in a transition will be empty. Further, we do not require
to introduce auxiliary variables explicitly: The data type of a not introduced
variable is universally quantified in the specification such that it can be used
with any data value.

The Focus®T specifications are a special form of timed automata that we
name Timed State Transition Diagrams (TSTDs). A TSTD can be described in
both diagram and textual form. For easier argumentation, we can further repre-
sent it by a special kind of tables including a number of new operators that work
on time intervals. For a real-time system S with a syntactic interface (Is > Og),
where Ig and Og are sets of timed input and output streams respectively, a
TSTD corresponds to a tuple (State, stateg, Is, Os, —), in which State is a set
of states, statey € State is the initial state, and — C (State x Is x State x Og)
represents the transition function of the TSTD.

An input action for a TSTD is the set of current time intervals of the input
streams of the system, while the output action is the set of corresponding time
intervals of the output streams of the system. Focus distinguishes between weak
causal systems and strong causal systems (see [9]). In the former case, the output
must be produced within the same time interval the input is consumed while in
the latter one the output has to be produced within a delay of at least one time
unit. The exact delay needs to be defined according to the timing requirements
on the specified system.

Proceedings of MoDeVVa 2014 52

Modeling Spatial Aspects of Safety-Critical Systems with Focus ST

Spatial Aspects: In addition to the representation of timing properties in the
language, we define a special type of components specifying real objects that can
physically change their location in space, so-called sp-objects. Each sp-object is
associated with three special variables storing its current location (i.e., central
point of the object), speed and direction of movement. For simplicity, the variable
speed is defined over the set of natural numbers N, while location is of type
Space and defines a coordinate having two or tree dimensions according to the
system’s needs. In our two-dimensional example, Space is a tuple of two Cartesian
coordinates zz and yy. Finally, direction is defined over the type Directions
= {0,...,359} which represents the angle in the Cartesian coordinate system.
In comparison to the local variables declared within components, these three
variables are global and can be used to specify physical interaction of components
in a system.

A system model may be constrained by restricting the directions and speed
of an sp-object. This allows us to verify whether the specified behaviour ex-
cludes the possibility that the object enters restricted areas during time intervals
marked as dangerous, e.g., collisions with other sp-objects.

Focus®T specification: Figure 2 depicts the textual representation of the sp-
object specification pattern for the component AVehicle introduced in the sce-
nario section of the introduction. This component is strong causal with a delay
of one time unit, and has the three input channels wait and tSpeed of type N as
well as tDir of type Directions declared in the interface part of the specification
using label “in”. The ports tSpeed and tDir are used to notify changes of the
target speed and the target direction of the object. If AVehicle is too close to
a potential obstacle, e.g., the crossing with RTrack, it is signalled via the wait
port to stop for a number of time units. Thereafter it continues moving with the
previous speed. Label “out” defines the output channel resp of type Event that
consists a single element event used to signal the start of motion by the vehicle.

Let us name some of the operators used to specify time intervals in our
streams: () denotes an empty list, i.e., a single time interval without any events,
and (z) a list consisting of the element x; ft.l describes the first element of a list
I; s* represents the ith time interval of the stream s.

Empty brackets after the component’s name mean that AVehicle does not
have any parameters. The component uses the local variable timer referring to
the current timer value (the special value 0 means that the timer is not active
while 1 indicates that it has to time out). By Ispeed, we store the speed the
object carried before needing to stop. The variable timer is initially set to be 0
while the initial value of Ispeed is not specified.

The keyword “asm” lists the assumption, AVehicle demands from its envi-
ronment, i.e., specified using the Focus®? operator msg,, at most one message
is received via each of the ports wait, tSpeed and tDir at any time interval.

The section “gar” contains the transitions and other formulas. Here, variable
settings before executing (i.e. at some time interval ¢) a transition are marked
by simple variable identifiers, e.g., timer, while the operator ' refers to their
setting afterwards, e.g., timer’ denotes the value of the timer variable at the time

Proceedings of MoDeVVa 2014 53

Modeling Spatial Aspects of Safety-Critical Systems with Focus ST

— spObject AVehicle ()

in wait, tSpeed : N, tDir : Directions

out resp : Event

local timer, lspeed € N

init timer = 0

asm msg, (wait) A msg, (tSpeed) A msg, (¢tDir)
gar

Initl resp® = ()
VteN:
1 wait’ = () A timer =0 —
Upd(speed, tspeed') A Upd(direction, tDir') A Move()

3 wait’ # () A ft.wait’ > 0 A timer = 0 — timer’ = ft.wait’ A lspeed = speed A speed’ = 0

7 wait' = (0) A timer # 0 — resp' Tt = (event) A timer’ = 0 A speed’ = Ispeed

Fig. 2. Textual representation of specification pattern AVehicle

interval t+1. The initial condition Initl specifies that the output channel resp is
empty at the beginning. Formula 1 models a transition that if AVehicle does not
receive a wait-signal at the time interval ¢ and its timer is inactive, the component
moves according its target direction and speed values. This is expressed by the
function Move() that updates the value of the variable location. The function
Upd defines the updates of the variables speed and direction according to the
events in the input streams tSpeed and tDir at time interval ¢. Moreover, due to
the implicit else-case construct discussed above, the timer does not change its
value and the output stream resp is an empty list. Formula '3 specifies the start
of the timer if RTrack approaches the crossing. In this case, AVehicle receives a
number k£ > 0 via the port wait. The timer is started by setting its variable to
k while the vehicle is stopped (speed’ = 0) and the previous speed is stored in
the auxiliary variable lspeed. Transition 7 specifies that if AVehicle receives 0
via the port wait (i.e., it does not need to wait for the RTrack any more) while
its timer is active, the timer will be set off and, at the next time interval, the
event-signal will be sent indicating that the vehicle resumes moving again into
its target direction. We omit here the rest of the specification due to lack of
space.

Fig. 3 shows the diagrammatic version of the TSTD for AVehicle. It contains
all transitions that we label with the same numbers as in the textual representa-
tion. To increase readability of the graphical representation, we distinguish three
types of the transition labels by coloured representation: Inputs and constraints
on the current local variables’ values are marked blue, outputs and changes of

Proceedings of MoDeVVa 2014 54

Modeling Spatial Aspects of Safety-Critical Systems with Focus ST

wait = <0> wait' = <0>

iSpeed' = x, tDir = y resp'™! = <event>, timer' = 0

resp'™! = <event>, timer' = 0 speed” = lspeed

Upd(speed,x), Upd(direction,y) timer > 1, wait' = <>
Move() timer- -

timer = 1, wait' = <>

resp't! = <event>, timer' = 0

timer = 0 speed' = Ispeed

resp() =<>

timerOff

vait' = <k>, k>0
timer' =k

timer = 0, wait' = <>
tSpeed' = x, tDir' =y
timer' = ()

Upd(speed, x), Upd(direction,y), Move() Ispeed’ = speed, speed’ = ()

wait' = <k>, k> 0
timer' =k

V

Fig. 3. Timed State Transition Diagram for AVehicle

general (non-spatial) local variables’ values green, and changes of spacial aspects
black.

3 Verification Constraints on Spatial Aspects

We can restrict directions and speed of an sp-object by adding constraints. Pred-
icates are associated with every component. Per default, they are specified as
true but can be restricted to represent precise bounds of a component. To cal-
culate whether a collision of sp-objects is possible, we assign to each sp-object
a global constant rad that describes radius of the maximal space the object can
“cover” in the worst case. The maximal space the object can occupy at the time
t, is denoted by the variable rzone of the type Zone. This variable is defined as
a tuple (minX, minY , mazrX, mazY) of natural numbers which are calculated
according to the values of speed, location and rad. The rad value of a composite
component is defined by analysing which space its subcomponents can occupy
in the worst case: S.rad = maz(WCX, WCY)/2 with WCX and WCY being
the maximum extensions of all of the subcomponents of S in direction z resp. y.
We represent the set of all the components’ constraints by a table, to in-
crease readability and to check schematically whether constraints on a composed
component correspond to the constraints on its subcomponents, e.g.,

VS, C: C € subcomp(S) —
(S.rzone.minX < S.C.rzone.minX A S.rzone.minY < S.C.rzone.minY) A

(S.rzone.mazX > S.C.rzone.mazX A S.rzone.mazY > S.C.rzone.mazY’)

VEk,S,C:C € subcomp(S) —
(k < S.rzone.minX — (k+ S.C.rad) < S.C.location.zx)

To analyse spatial properties, we need to specify the rules how the locations
of the objects can change over time. The location of the sp-object C at the

Proceedings of MoDeVVa 2014 55

Modeling Spatial Aspects of Safety-Critical Systems with Focus ST

Table 1. Set of the spatial constraints

Component||rad|locationRestr speedRestr|directionRestr

AVehicler ||2 |location.zx = 25 |speed < 10|direction = 90 V direction = 270
AVehicles ||2 |location.zx = 60 |speed < 15|direction = 90 V direction = 270
AVehicles ||2 |location.zz = 100|speed < 20|direction = 90 V direction = 270
RTrack 4

location.yy = 50 direction = 0V direction = 180

beginning of the next time interval can be computed from its speed, direction
of movement and the current location. In particular, we specify a trajectory of
the object during a time interval ¢ to be a straight line, thus, it can be de-
scribed by the coordinates of two locations, at the beginning of the current and
the next time interval: C.tr = [C.location, C'.location’]. Then, we can describe
the space where the object C' can be during the time interval ¢ (let denote it
C.rzonelnterval) by a set of coordinates:

{(a,b) | 3(a1,b1) € CtrAnar—C.rad < a < a1+ C.rad ANby— C.rad < b < b1+ C.rad}

If C.speed = 0 holds, the component C does not move (i.e., C.location’ =
C.location) such that C.rzonelnterval describes the rzone space in this case.

Restrictions on location, speed and direction can be specified both point-
wise and by using minimum and maximum limits, where a variable can have
any value within the defined interval. Let us explain this by using the scenario
introduced in Sect. 1. Its spatial contraints are listed in Tab. 1. It is easy to
see from this table and Fig. 1 that the four mobile units can occupy 100 units
on the z coordinate and 85 units on the y coordinate. Thus, S.rad is assigned
with the value 50. By defining an additional constraint for the space that can be
used by the overall example system S, we implicitly restrict the corresponding
constraints of its components, e.g.,

0 < S.rzone.minX A S.rzone.maxX < 120 A
5 < S.rzone.minY A S.rzone.maxY < 90

implies that for the component AVehicle; holds not only location.zz = 25 but
also 7 < location.yy < 88 (taking its own value rad = 2 into account). Repre-
senting the spatial aspect of a component as a pair of coordinates and a radius,
we specify possible collisions between two objects C; and C5 during the time
interval ¢t by PCollision®(Cy, Cy). Thus, an important property for this system
is that collisions between the RTrack and AVehicle components are excluded,
ie. for all t € Nand 4,5 € {1,2,3} the following holds

—PCollision* (RTrack, AVehicle;) N —=PCollision' (AVehicle;, AVehicle;)

Since in our example, the AVehicle objects move on parallel roads, the property
on the right side holds trivially. If a possible collision is detected, the corre-
sponding case should be analysed carefully both on an abstract (logical) and

Proceedings of MoDeVVa 2014 56

Modeling Spatial Aspects of Safety-Critical Systems with Focus ST

on a physical level: Due to our overapproximation of space, not every situation
labelled as possibly dangerous on the abstract level indeed corresponds to a
real physical collision but, on the other side, any real physical collision must be
detectable on the abstract level.

We have used the interactive theorem prover Isabelle/HOL [17] to analyse
whether collisions between the RTrack and AVehicle components are excluded.
For example, direction and location constraints together with behaviour specifi-
cations imply that the mobile units can collide, if we underspecify the coordinates
of the critical points try, ..., trg as well as the initial locations.

Due to similarity of specifications of separate components, the model of the
presented system is scalable not only for specification but also for verification
purposes. Even if we have not three but thousand AVehicle components, proofs
of their spatial behavioural properties can be reused or generated.

4 Conclusions

This paper presents the Focus®? approach for modeling and verification of
safety-critical systems using specifications based on time intervals and spatial
aspects. Several features have been demonstrated using an example system based
on interacting autonomous vehicles. We focus on timing and spatial aspects as
well as readability of the specifications and ease of verification of core properties.
For the proofs, we have applied the interactive semi-automatic proof assistant
Isabelle.

Our future research direction comprises work on the modeling levels for SCSs,
that reflect the idea of remote integration/interoperability testing in a virtual
environment [5,24] as well as automatisation of proof generation for spatial be-
havioural properties from the system model. Moreover, we want to combine
this verification technique with the modeled-based engineering tool Reactive
Blocks [16] to facilitate the practical development of the control software for
space-aware SCSs.

References

1. R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126:183-235, 1994.

2. R. Alur and P. Madhusudan. Decision Problems for Timed Automata: A Survey.
In SEM, pp. 1-24, 2004.

3. P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. Météor: A Successful Ap-
plication of B in a Large Project. Formal Methods (FM’99), vol. 1708 of LNCS,
Springer, 1999.

4. J. C. Blanchette, S. Béhme, and L. C. Paulson. Extending Sledgehammer with
SMT Solvers. Journal of Automated Reasoning 51(1):109-128, 2013

5. J. O. Blech, M. Spichkova, I. Peake, H. Schmidt. Cyber-Virtual Systems: Simu-
lation, Validation & Visualization. In 9th International Conference on Evaluation
of Novel Approaches to Software Engineering (ENASE 2014), 2014.

Proceedings of MoDeVVa 2014 57

Modeling Spatial Aspects of Safety-Critical Systems with Focus ST

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

J. O. Blech and H. Schmidt. BeSpaceD: Towards a Tool Framework and Method-
ology for the Specification and Verification of Spatial Behavior of Distributed Soft-
ware Component Systems. In arXiv.org, http://arxiv.org/abs/1404.3537, 2014.
J. O. Blech and H. Schmidt. Towards Modeling and Checking the Spatial and
Interaction Behavior of Widely Distributed Systems. In Improving Systems and
Software Engineering Conference, 2013.

P. Bouyer, N. Markey, and O. Sankur. Robust Model-checking of Timed Automata
via Pumping in Channel Machines. Formal Modeling and Analysis of Timed Sys-
tems, Springer, 2011.

M. Broy and K. Stglen. Specification and Development of Interactive Systems:
Focus on Streams, Interfaces, and Refinement. Springer, 2001.

L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). Information
and Computation, 186(2), 2003.

L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II). Theoretical
Computer Science, 322(3):517-565, 2004.

R. Gémez and H. Bowman. Efficient Detection of Zeno Runs in Timed Automata.
Formal Modeling and Analysis of Timed Systems, Springer, 2007.

F. Han, J. O. Blech, P. Herrmann, and H. Schmidt. Towards Verifying Safety
Properties of Real-Time Probability Systems. In Formal Engineering approaches
to Software Components and Architectures (FESCA), EPTCS, 2014.

T. Henzinger, Z. Manna, and A. Pnueli. What Good are Digital Clocks? In Collog.
on Automata, Languages and Programming, pp. 545-558. Springer, 1992.

D. Hirschkoff, E. Lozes, D. Sangiorgi. Minimality Results for the Spatial Logics.
In Foundations of Software Technology and Theoretical Computer Science, LNCS
2914, Springer, 2003.

F. A. Kraemer, V. Slatten and P. Herrmann. Tool Support for the Rapid Compo-
sition, Analysis and Implementation of Reactive Services. Journal of Systems and
Software, 82(12):2068-2080, 20009.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS 2283, Springer, 2002.

A. Puri. Dynamical Properties of Timed Automata. Discrete Event Dynamic
Systems, 10(1-2):87-113, 2000.

M. Spichkova. Specification and Seamless Verification of Embedded Real-Time Sys-
tems: FOCUS on Isabelle. PhD thesis, TU Miinchen, 2007.

M. Spichkova. Focus on Processes. Tech. Report TUM-11115, TU Miinchen, 2011.
M. Spichkova. Stream Processing Components: Isabelle/HOL Formalisation and
Case Studies. In Archive of Formal Proofs, ISSN 2150-914x, 2013.

M. Spichkova. Human Factors of Formal Methods. In ITADIS Interfaces and Human
Computer Interaction (IHCI). 2012.

M. Spichkova. Design of Formal Languages and Interfaces: “Formal” Does Not
Mean “Unreadable”. Emerging Research and Trends in Interactivity and the
Human-Computer Interface. IGI Global, 2013.

M. Spichkova, H. Schmidt, and I. Peake. From Abstract Modelling to Remote
Cyber-Physical Integration/Interoperability Testing. In Improving Systems and
Software Engineering Conference. 2013.

M. Spichkova, X. Zhu, and D. Mou. Do We Really Need to Write Documentation for
a System? In International Conference on Model-Driven Engineering and Software
Development, 2013.

S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A Logic You Can Count on. In
Symposium on Principles of programming languages, ACM, 2004.

Proceedings of MoDeVVa 2014 58

Towards a Base Model
for UML and OCL Verification*

Frank Hilken, Philipp Niemann, Robert Wille, and Martin Gogolla

University of Bremen, Computer Science Department
D-28359 Bremen, Germany
{fhilken,pniemann,rwille,gogolla}@informatik.uni-bremen.de

Abstract. Modelling languages such as UML and OCL are more and
more used in early stages of system design. These languages offer a huge
set of constructs. As a consequence, existing verification engines only
support a restricted subset of them. In this work, we propose an ap-
proach using model transformations to unify different description means
within a so called base model. In the course of this transformation, com-
plex language constructs are expressed with a small subset of so-called
core elements. This simplification enables to interface with a wide range
of verification engines with complementary strengths and weaknesses.
Our aim is that, guided by a structural analysis of the base model, the
developer can choose the most promising verification engine.

1 Introduction

In recent years Model-Driven Engineering (MDE), has become more and more
important. In this context, the Unified Modelling Language (UML) and the
Object Constraint Language (OCL) are de facto standards to describe systems
and their behaviour. Identifying errors early in the design of such systems using
validation and verification techniques is an important task, though finding the
right verification approach is not trivial, since most approaches concentrate on
only one UML diagram type and restrict the set of supported diagram types and
language constructs.

In this paper, we propose the idea of a so-called base model that, using model
transformations, combines the information of several UML diagram types into
a single diagram and reduces the set of language constructs to a minimum. The
language constructs are split into three categories: (1) core elements that are
directly used in the base model; (2) transformed elements that are represented
in the base model using only core elements, reducing the used amount of language
constructs; and (3) unsupported elements that are excluded because of their low
relevance or because of their infeasibility in the context of verification. The base
model can be seen as a substantially reduced version of UML with a strong focus
on compatibility to verification engines.

* This work was partially funded by the German Research Foundation (DFG) under
grants GO 454/19-1 and WI 3401/5-1 as well as within the Reinhart Koselleck project
DR 287/23-1.

Proceedings of MoDeVVa 2014 59

Towards a Base Model for UML and OCL Verification

On the basis of the base model, we perform a structural analysis separated
into several categories in order to identify the most promising verification en-
gine for the particular model under development. Once a verification engine is
chosen, further model transformations can remove remaining incompatibilities
in the same manner as from the source model to the base model. All previously
mentioned transformations are performed on the UML and OCL layer in order
to have a unified process for every verification engine.

The structure of the paper is as follows. In Sect. 2, the base model is discussed
including the process flow, definitions and transformations. Section 3 describes
the analysis of the base model and how a solver is chosen. Lastly, the transfor-
mations for the solving engine are shown in Sect. 4. In Sect. 5, we discuss related
work before concluding the paper in Sect. 6.

2 A Base Model for UML and OCL Verification

The base model provides an interface between arbitrary UML/OCL model de-
scriptions and validation and verification tools. The goal of the base model is
to represent a unified basis for model descriptions combining various UML dia-
gram types while retaining a maximum compatibility to the original model and
to solvers.

Figure 1 shows the process flow when using such a base model. The source
model description consists of various UML diagrams enhanced with OCL expres-
sions in order to specify the system and its behaviour. All diagrams conjoined are
transformed and combined into a base model. Using the base model, a structural
analysis can provide hints for an appropriate solver selection. Once the solver
is chosen, the base model is transformed into a solver-specific base model elimi-

R ~ Model Description|
I

I
1
i | Class Diagram | | State Machine | | Activity Diagram | | Sequence Diagram u:l

I
I
I
I
”

Base Model

structural analysis

Solver Hint

Solver Decision

Y
Solver-Specific Base Model
(in UML/OCL)

| Verification Engine |

Fig. 1. Process flow employing the base model

Proceedings of MoDeVVa 2014 60

Towards a Base Model for UML and OCL Verification

nating modelling constructs not explicitly supported by the solver and replacing
them with simpler representations. All transformations are automatic and do
not require manual interaction unless the user wants to choose a specific solving
engine. Finally, the solver specific base model serves as input for the verification
engine.

We define the basis of the source model description to be a class diagram
optionally enhanced with operations specifying model behaviour. Other diagram
types, such as state machines, activity diagrams and sequence diagrams, can
further define the system and its behaviour. The result of the model description
transformation is a class diagram with optionally employed operations using
pre- and postconditions to describe the system’s behaviour. The information of
the various diagram types is transformed into either class invariants or pre- and
postconditions of the operations. Additionally, the base model only features a
reduced set of UML and OCL features, the core elements. Elements that are
not part of these are transformed into simpler representations using only core
elements to increase compatibility to solving engines.

Ezxample 1. For instance, an aggregation from the source model is transformed
into an association plus an invariant, demonstrated in Fig. 2 with a simple mother
child relationship.

Person.allInstances() —forAll(p |
Motherhood Motherhood p.child—closure (child) —excludes (p))

. . ,/ ... additional Constraints
child child

<
mother mother

Fig. 2. Transformation of an aggregation into association plus constraint

A structural analysis on the base model is now able to determine the rel-
evance of certain criteria and can give hints about which solving engines are
most effective. This is described in more detail in Section 3. A developer can
combine these hints and their knowledge about the system to choose the most
appropriate solver. Alternatively, if the user interaction is not desired, the solv-
ing engine that the analysis has determined to be best can be chosen directly. In
the case that the solving engine does not support all features present in the base
model, these elements are further transformed into solver compatible elements,
resulting in the solver specific base model. Most likely, these transformations are
required to enable the usage of such verification engine anyway and therefore
does not influence the scalability. Additionally, note that all transformations are
performed on the UML and OCL layer and only have to be implemented once
instead of individually for each solving engine.

Proceedings of MoDeVVa 2014 61

Towards a Base Model for UML and OCL Verification

Table 1. UML elements in the base model (symbols: v' core element; o transformed
element (using only core elements); X unsupported element)

Class features Association features Operation features

v Class v Binary Association v Operation (non query)
o Abstract Class o N-ary Association v/ Parameter
o Inheritance o Aggregation X Return Value
o Multiple Inheritance o Composition v Pre-/Postcondition
v’ Attribute v Multiplicity x Nested Operation Call

o Initial Value o Association Class o Query Operation

o Derived Value o Qualified Association v Parameter
v/ Enumeration x Redefines, Subsets, Union| v Return Value
v’ Invariant X Recursion

2.1 Elements of the Base Model

To create a unified model representing the input model description with a maxi-
mum compatibility to verification engines, the base model has a reduced feature
set of UML and OCL elements. Table 1 shows the supported UML elements in
the base model and marks those elements that are transformed into a more ba-
sic representation. The supported elements form a basis to represent most UML
features either directly or using the available elements plus invariants and are
supported by the majority of solving engines. Many transformations of complex
model elements into the core elements are described in [7].

The essential elements of the base model are defined by the class and associa-
tion features. The core elements, representing the “atoms” of the base model, are
enumerations, classes with their attributes and invariants, and binary associa-
tions with their multiplicities. Most of these elements cannot be represented by
simpler description means. Other structural features, such as association classes
and aggregations, are transformed into representations using the core elements.
Very specific features, like redefines and subsets, are not supported for now.

The operation features define the behaviour of the base model using opera-
tions with optional parameters and pre- and postconditions. Return values are
not supported until nested operation calls are, which we can not handle currently.
Query operations are integrated into the expression they are used in, which is
also the reason why we do not support recursion for these.

As for OCL, we support a basic set of features to cover the majority of
OCL expressions. The data types Boolean and Integer are fully supported.
Strings are only represented by an ID, allowing for a comparison on an in-
stance level, but not on a character level. This also excludes string opera-
tions like concat. We also support the OCL collection types Set(T), Bag(T),
Sequence(T) and OrderedSet(T) with the essential collection operations, in-
cluding but not limited to: constructors and manipulation operations including
and excluding; membership tests includes and excludes; quantifiers forAll
and exists; count operations size, isEmpty and notEmpty; filters select and
reject; and closure.

Proceedings of MoDeVVa 2014 62

Towards a Base Model for UML and OCL Verification

The advantages of the transformation at this early stage are numerous. First
and foremost, the solving engines do not require an encoding for the different
UML elements. Instead, only the base elements have to be supported. The im-
plementation of the transformation of the complex elements is only required
once on the UML and OCL layer. Therefore, it is easier to provide support for
more solving engines and they are easier interchangeable. There might be cases,
in which a solving engine has a better encoding for a feature than the trans-
formation in the base model, but we expect the transformed elements (marked
with a o symbol) to be affected least. Also, the assignment of elements to their
respective category may change if case studies expose an advantage.

Secondly, the unification provides a solid baseline for the structural analysis
to give optimal hints. The unification also helps to break down the model into
the relevant categories like quantifiers and special OCL constructs, such as the
closure expression.

Reasons, why certain elements are not part of the base model at all, are
their incompatibility to be represented within the base elements and their high
complexity which is not supported by many solving engines, e.g. nested operation
calls. Also, elements depending on other unsupported elements are not part of
the base model, e.g. return values for non query operations which are only useful
if an operation invokes another operation to work with its return value. Note
the difference between the transformation of UML and OCL features in the base
model and the elimination of UML and OCL features in the solver specific base
model, whose sole reason is the compatibility to the solving engine.

2.2 Incorporation of Various Diagram Types

The various diagram types of UML provide different information about the
model. A class diagram defines the data structure and operations of a system.
State machines, for example, are able to further restrict operation invocations in
addition to the operation preconditions. They can also define additional effects
of operations as well as state invariants for object states. Activity diagrams pro-
vide operation behaviour in form of an implementation. Sequence diagrams again
restrict the operation execution order on a different layer than state machines.

Most verification engines specialize on one of these diagram types or require
a specific combination of them to be able to accept the system definition. We
want to combine the information of the various diagram types into one base
model using model transformations, accumulating all information. This way, the
requirements for the verification engine are kept minimal and the selection of
solvers increases.

In a first step, we plan to incorporate the information of protocol state ma-
chines — without events — into the base model, thereby combining class diagrams
with operations and state machines.

Ezample 2. An example model specifying a Toll Collect! system is defined in
Fig. 3. It consists of a class diagram (Fig. 3a) and a state machine (Fig. 3b).

! www.toll-collect.de/en/home.html

Proceedings of MoDeVVa 2014 63

Towards a Base Model for UML and OCL Verification

E State machine ... nxﬁ' E

Truck::TruckLife {protocol})

!

Class diagram nr‘ ﬂ' E (I J
Truck [iself.current = null))
num : String
Connection trips : Sequence(Point) enter(entry : Point)/
" south deby [iegen mave(target : Point)f
Point * north init(@Num : String) pay(amnu;wt Integer)/f

name : String enter(entry : Point) exit(y
init(@Name : String) move(target : Point)
northConnect(aNorth : Point) Current pay(amount : Integer) debt
southConnect(aSouth : Point) 0.lcurrent *truck exit() [SR

(a) Class diagram with operations (b) State machine

Fig. 3. Toll Collect example system

The system features a network of points on which trucks can enter and move
around. For each visited point the debt of a truck increases. To leave the network,
a truck has to pay its debt. The state machine ensures that the truck can only
enter the network when it is not currently in it and only move around and exit
the network when it is inside. The state invariants of the state machine further
enforce these properties.

To transform the state machine into the class diagram, the states are rep-
resented as an enumeration. An additional attribute sm_trucklife is added to
the corresponding class to save the current state. These changes are illustrated
and highlighted in the class diagram in Fig. 4. Using the enumeration attribute,
the state invariants can be represented as class invariants that only trigger if
the object is in the required state. Constraints given by the transitions of the
state machine, including guards and postconditions, are transformed into pre-
and postconditions of the operation definitions in the class diagram, as shown
on the right in Fig. 4.

3 Solver Selection

So far, various approaches for the verification of UML and OCL models have been
presented [2,4,13]. The main idea of these approaches is to encode verification
problems in a language that can be passed to a dedicated solving engine and
interpret the results at the level of UML and OCL.

In this context, a large variety of languages and solving engines has been
suggested. Approaches using theorem provers like Isabelle [2], reformulating the
problem as a Constraint Satisfaction Problem (CSP) [4], using intermediate lan-
guages like Alloy or Kodkod [1,13] though finally resulting in an instance of

Proceedings of MoDeVVa 2014 64

Towards a Base Model for UML and OCL Verification

Class diagram |:w ﬁl E . .
E -- state invariant noDebt
enumeration . .
T"ruc‘; Tmckm’; Truck context Truck inv:
noDebt num : String sm_trucklife = #noDebt
trips : Sequence(Point, . .
debt Connection P e implies current = null
debt : Integer
south (S truckife - Truck TruckLl Truck it 0
Point * north init(aNum : String) -- op. Truck::exit
name : String enter(entry : Point) pre: sm_trucklife = #debt
init(aName : String) move(target : Point) s =
. ost: sm_trucklife =
northConnect(aNorth : Point) Current - pay(amount : Integer) P
southConnect(aSouth : Point) 0.1 current truck exit() #noDebt

Fig. 4. State machine information integrated into class diagram

Boolean Satisfiability (SAT), or using a direct encoding in the more general lan-
guage of Satisfiability Modulo Theories (SMT) [12] have been proposed.

All these solving engines rely on different abstractions and accordingly em-
ploy complementary solving schemes. Hence, it is important to choose an appro-
priate solver for a given UML and OCL description and verification problem.
For instance, Kodkod and Alloy have been designed for problems of relational
logic. They support set theory including transitive closure, and are, thus, es-
pecially suitable for OCL constraints expressing relations between model ele-
ments. In contrast, SMT offers theories for the efficient handling of bit-vectors
(Integers) and corresponding arithmetic operations, while CSP particularly sup-
ports abstract data types (e.g., collections/lists). Beyond that, there are different
approaches to cope with quantifiers (existential and universal) like Quantified
Boolean Formulas (QBF) [6] or integration of quantifiers into bit-vector logic in
the SMT-solver Z3 [5].

In order to benefit from these particular, complementary strengths, we sug-
gest a structural analysis of the model, especially of the OCL expressions, with
respect to collection types (e.g., Set(T) and Sequence(T)), arithmetic com-
ponents (4, —, *, /), relational components (e.g., size() and closure()) and
quantifiers (forAll and exists). This analysis shall provide hints which solver
might be most adequate for the verification of the given base model. As ade-
quateness can hardly be quantified in terms of absolute scores, the results shall
be presented to the developer in an interactive procedure. First, the above crite-
ria are listed together with their relevance for the given model (high, moderate,
low or none) as determined by the structural analysis. These values may then
be adjusted by the developer in order to incorporate her own rating. In a sec-
ond step, a recommendation is given which solvers are most appropriate for the
given problem based on how their strengths and weaknesses fit to the profile of
relevance derived in the first step. This feedback shall also contain information
about model elements that are not directly supported by the solvers (e.g. Reals,
Strings, or certain OCL constructs) and will be ignored or transformed into sim-
pler means. Assisted by this advice, the developer can finally decide on which
solving paradigm might be most appropriate to use. Alternatively, the developer
may also let this decision be made by the framework automatically.

Proceedings of MoDeVVa 2014 65

Towards a Base Model for UML and OCL Verification

4 Solver-Specific Base Model

Though many different solving technologies are available, basically all approaches
do not cover the complete OCL language. They rather restrict themselves to a
subset for which an encoding exists, i.e. a model transformation to the solver
level. Consequently, before passing the base model to the chosen solver, unsup-
ported model elements have to be transformed.

Ezxample 3. Consider the collection type Sequence (Point), as contained in the
Toll Collect example model from earlier (c.f. Fig. 3a). If the chosen solver tech-
nology does support sequences (e.g. Kodkod, Alloy, or CSP) no transformation is
necessary at this step and the base model is passed to the verification engine un-
changed. However, if the chosen solver does not support sequences, these are to
be transformed. This can be done by introducing two new classes PointSequence
and PointSequenceElement, organized as a linked list with references to the be-
ginning and the end of the sequence, shown in Fig. 5. The resulting solver-specific
base model is then passed to the verification engine and finally to the solver.

Class diagram

Truck
nurn : String
debt : Integer truck trips PointSeguence

0.1 1|first: PointSegquenceElement

initlaM o Stri
e il last : PointSequenceElement

enter(entty : Point) Trips
moveltarget : Point) appendlaFPaoint : Paoint)
paylamount : Integer)

byel) : Integer previous
01 List

PointSequenceElement
data : Point

Fig. 5. Replacing OCL collection type Sequence by introducing a new UML class

UML and OCL are rich languages with many facets which makes it hard
to (1) determine an encoding for each component (e.g. the encoding of collec-
tions in SMT [11]) and (2) requires a large effort to realize these encodings
in (prototypic) implementations. Addressing this issue, the transformation to a
solver-specific base model can also help to lower the threshold for incorporat-
ing new solving engines. More precisely, by providing a whitelist of supported
UML and OCL components, the range of tractable model elements can be en-
larged by OCL transformations (e.g. using select to express reject or using
COL—size()=0 for COL—isEmpty()) or by more substantial, structural modifi-
cations (e.g. transforming the collection type Sequence(T) to separate classes).

Proceedings of MoDeVVa 2014 66

Towards a Base Model for UML and OCL Verification

Though these transformations are performed automatically, the developer shall
be able to access which kind of transformation is performed. This allows for a
judgement whether they may interfere with the addressed verification task or
whether they are applied to secondary components of the model only.

5 Related Work

There are several contributions that can be related to our present work. The
fundamental idea of a base model within a generic verification methodology for
system descriptions expressed in terms of UML and OCL has been presented
in [14]. Verification of other description means than class diagrams has been
addressed by many approaches, e.g. [8], while using OCL in order to express
complex UML class diagram properties by simpler means, has been discussed
in [7]. Validation and verification of such model transformations, e.g. using the
ATLAS Transformation language (ATL) [3], is an active field of research. A
comparison of such verification techniques has been presented in [9]. Also to the
solver end, a similar, but more quantitative comparison between different solving
paradigms has been conducted [10]. The results indicate a predominance of SMT,
especially for large benchmarks. However, this comparison only considers a single
class of models of the same type which are only varied in size, and a further
comparison is needed for models of other types.

6 Conclusion and Future Work

In this work, we presented a model transformation of heterogeneous model de-
scriptions to a unified base model, which enables to consider more comprehensive
descriptions for verification. In the course of this transformation, a small set of
core elements is used to express a large and rich set of UML and OCL constructs.
In doing so and excluding several language constructs due to their minor rele-
vance or general infeasibility with respect to verification, we expect to improve
compatibility to verification engines without significantly restricting model sup-
port. We have exemplarily shown the incorporation of state machines into the
base model by means of an example. Details of this transformation as well as
the transformation of other diagram types are left for future work.

Beyond that, we have identified and suggested categories of modelling con-
structs that may affect the performance of verification engines, if these are ap-
plied to models that contain a considerable amount of those constructs. However,
their actual impact on solving times and performance has not been examined
thoroughly so far and remains open for further research.

Finally, by providing further transformations of the base model, we are able
to obtain solver-specific base models employing only language constructs that are
supported by the addressed solver. Instead of leaving the implementation of these
transformations to the verification engines, they are performed transparently at
a higher level of abstraction. This allows us to interface with a wider range of
solvers, potentially at the price of a little overhead and loss of performance.

Proceedings of MoDeVVa 2014 67

Towards a Base Model for UML and OCL Verification

Overall, the base model framework provides us with a generic interface between
heterogeneous model descriptions and verification engines.

References

1.

10.

11.

12.

13.

14.

Anastasakis, K., Bordbar, B., Georg, G., Ray, I.. UML2Alloy: A challenging model
transformation. In: Model Driven Engineering Languages and Systems, pp. 436—
450. Springer (2007)

Brucker, A.D., Wolff, B.: The HOL-OCL book. Tech. Rep. 525, ETH Zurich (2006)
Biittner, F., Cabot, J., Gogolla, M.: On validation of ATL transformation rules
by transformation models. In: Proceedings of the 8th International Workshop on
Model-Driven Engineering, Verification and Validation. p. 9. ACM (2011)

Cabot, J., Clariso, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: Software Testing Verification and Validation Work-
shop, 2008. ICSTW’08. IEEE International Conference on. pp. 73-80. IEEE (2008)
De Moura, L., Bjgrner, N.: Z3: An Efficient SMT Solver. In: Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Counstruction and Analysis of Systems. pp. 337-340.
TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg (2008)

Giunchiglia, E., Narizzano, M., Tacchella, A.: Qube: A system for deciding quan-
tified boolean formulas satisfiability. In: Automated Reasoning, pp. 364-369.
Springer (2001)

Gogolla, M., Richters, M.: Expressing UML Class Diagrams Properties with OCL.
In: Clark, T., Warmer, J. (eds.) Advances in Object Modelling with the OCL, pp.
86-115. Springer, Berlin, LNCS 2263 (2001)

Kaufmann, P., Kronegger, M., Pfandler, A., Seidl, M., Widl, M.: Global State
Checker: Towards SAT-Based Reachability Analysis of Communicating State Ma-
chines. In: Boulanger, F., Famelis, M., Ratiu, D. (eds.) MoDeVVa@MoDELS.
CEUR Workshop Proceedings, vol. 1069, pp. 31-40. CEUR-WS.org (2013)

Lano, K., Kolahdouz-Rahimi, S., Clark, T.: Comparing verification techniques for
model transformations. In: Proceedings of the Workshop on Model-Driven Engi-
neering, Verification and Validation. pp. 23-28. ACM (2012)

Saadatpanah, P., Famelis, M., Gorzny, J., Robinson, N., Chechik, M., Salay, R.:
Comparing the effectiveness of reasoning formalisms for partial models. In: Pro-
ceedings of the Workshop on Model-Driven Engineering, Verification and Valida-
tion. pp. 41-46. ACM (2012)

Soeken, M., Wille, R., Drechsler, R.: Encoding OCL Data Types for SAT-Based
Verification of UML/OCL Models. In: Gogolla, M., Wolff, B. (eds.) TAP. Lecture
Notes in Computer Science, vol. 6706, pp. 152-170. Springer (2011)

Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying UM-
L/OCL Models Using Boolean Satisfiability. In: DATE. pp. 1341-1344. IEEE
(2010)

Straeten, R.V.D.; Puissant, J.P., Mens, T.: Assessing the Kodkod Model Finder
for Resolving Model Inconsistencies. In: France, R.B., Kiister, J.M., Bordbar, B.,
Paige, R.F. (eds.) ECMFA. Lecture Notes in Computer Science, vol. 6698, pp.
69-84. Springer (2011)

Wille, R., Gogolla, M., Soeken, M., Kuhlmann, M., Drechsler, R.: Towards a
Generic Verification Methodology for System Models. In: Macii, E. (ed.) DATE.
pp- 1193-1196. EDA Consortium San Jose, CA, USA / ACM DL (2013)

Proceedings of MoDeVVa 2014 68

Bayesian Reasoning Over Models

Sebastian J. I. Herzig and Christiaan J. J. Paredis

Model-Based Systems Engineering Center (MBSEC),
G.W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology, Atlanta, GA, USA

sebastian.herzig@gatech.edu, chris.paredis@me.gatech.edu
http://www.mbsec.gatech.edu

Abstract. A crucial part of verifying and validating models is the iden-
tification of inconsistencies. Inconsistencies can exist whenever models
overlap semantically. Such overlaps are predominant in model-driven en-
gineering, where the use of multiple viewpoints leads to a variety of in-
complete representations of one or more aspects of a system. While the
commonly employed rule-based approaches to identifying inconsistencies
can be effective, state of the art methods for inferring or determining
semantic overlaps are not. Techniques relying on unification algorithms
or a unifying ontology make strong assumptions, are error prone and can
be costly to maintain. In this paper, an alternative approach based on
Bayesian reasoning is proposed. We show how Bayesian inference com-
bined with pattern matching can be used to infer likely semantic overlaps
in models. The approach is illustrated and evaluated using the inference
of semantic equivalences as an example of inferring one type of semantic
overlap.

Keywords: inconsistency management, Bayesian reasoning, verification
and validation, model composition

1 Introduction

When designing and developing complex systems, one common practice in model-
driven engineering is for stakeholders to study the system from a variety of dif-
ferent viewpoints. Such viewpoints are defined by a number of factors, including
the context, level of abstraction and concerns of interest [1]. Concerns of interest
addressed from different viewpoints may overlap, leading to semantic relations
and, hence, semantic overlaps among the corresponding views and models. Re-
dundant definitions, for instance, imply semantic equivalence. Knowledge of such
relations is required when verifying and validating models, particularly because
violations of their intended semantics can lead to inconsistencies. While semantic
overlaps can certainly be minimized by separating concerns as much as possible,
a complete separation of concerns is rarely (if ever) possible.

Several methods for identifying semantic overlaps are proposed in the related
literature. However, the associated cost, the strong assumptions made, and the
fact that many of the techniques are error prone, renders them impractical for

Proceedings of MoDeVVa 2014 69

Bayesian Reasoning Over Models

most scenarios. For example, unification algorithms are typically based on name
or predicate matching and can fail whenever homonyms or synonyms are en-
countered. Rule- or logical inference based approaches rely on rule antecedents
to be matched completely. However, particularly when reasoning over incom-
plete information and knowledge, antecedents may not always (fully) match.
This can lead to results and conclusions that are unintuitive to a human but
logically correct [15]. In fact, there may be cases in which a human would have
considered a partial match to provide sufficient evidence to suggest that the
consequent of the rule should apply. Such behavior suggests that it is useful to
account for uncertainty in automated reasoning processes. In this paper, we use
this as a motivation for introducing a novel, Bayesian inference - based inexact
reasoning approach for constructing probabilistic arguments about model-based
information and knowledge, and apply the developed concepts to the problem
of identifying semantic overlaps.

The remainder of the paper is organized as follows: section 2 briefly introduces
the running example. Our conceptual approach is developed in section 3. A
corresponding algorithm is introduced and evaluated in sections 3.3 and 3.4.
Section 4 reviews similar approaches and compares them to our work. The paper
closes with a short discussion and conclusions in section 5.

2 Running Example: Inferring Semantic Equivalence

To illustrate our conceptual approach, we apply it to the problem of inferring
semantic overlaps. A semantic overlap implies the existence of a semantic re-
lationship between two or more utterances of one or more languages. There
are numerous kinds and types of semantic relationships. Some well-known re-
lationships from object-oriented modeling are meronomous (part-whole, has a),
hyponymous (“is a”, i.e., type-of), causal and instance-of relations [12]. Partic-
ularly in Model-Driven Engineering (MDE), Model-Based Systems Engineering
(MBSE), and generally multi-view and multi-paradigm software engineering, the
additional category of synonymy-related relationships — which includes semantic
equivalence — is of interest in identifying model correspondences and for the pur-
pose of defining model transformations. We say that two or more expressions are
semantically equivalent if they share a common semantic mapping (meaning).
In our running example, we assume that a number of UML models are given.
As illustrated in figure la, some of these models contain classes with proper-
ties that have default values assigned. It is assumed that, across the different
models, some of these properties may be semantically equivalent, but knowl-
edge of their equivalence is not explicitly captured. The task is to find those
pairs of properties that are likely to be semantically equivalent. Because models
describing engineering systems (software and physical systems) are often hetero-
geneous in nature, and a great number of very different formalisms is typically
employed, we also assume the existence of a (bi-directional) mapping to some
common representational formalism for all models. For purposes of illustration
and mathematical elegance, and to build on previous work, directed, attributed

Proceedings of MoDeVVa 2014 70

Bayesian Reasoning Over Models

Class in Model 1 Graph Representation
of SomeClass1

SomeClass1

somePropertyl : Type = value

Class in Model 2

SomeClass2

someProperty2 : Type = value

(a) (b)

Fig. 1. Running example: (a) UML classes with properties that have default values
assigned; (b) automatically generated graph representation of SomeClass! (extract).

(and typed) multi-graphs are used as a common representational formalism [9].
This is illustrated in figure 1b.

3 Bayesian Reasoning in Models Represented by Graphs

Bayesian reasoning is often considered similar to human reasoning [13]. Tllus-
trative of this are situations in which humans are asked to classify objects.
Without any information about the object (other than its existence), a human’s
belief about the class that the object belongs to is his or her subjective belief,
which is typically formed on the basis of past experience. Once exposed to the
object, a human tends to look for certain features, each of which provides further
clues towards which class the object is likely to belong to. These features can
be identified by observing the object — a process that can be interpreted as the
collection of additional information (or evidence) that can be used to update a
belief to form a posterior belief. We argue that the same principles can be applied
to reasoning over model-based information and knowledge.

3.1 Bayesian Inference & Belief Networks

In Bayesian probability theory, beliefs are updated with new information by
applying Bayes’ theorem [2]. The belief to be updated is then also referred to as
the prior belief. Assuming that A, B and C are observed events, and given a prior
belief about A, the posterior belief about A can be updated with observations
B and C using Bayes’ theorem:

P(A,B,C) P(A) P(B,C | A)

P(A] B,C) = P(B,C) P(B,0) ' e

Determining the joint probabilities required to compute equation 1 is non-
trivial. In part, this is due to values of joint probability distributions rarely being
readily accessible. Also, when determining the joint probabilities by means of

Proceedings of MoDeVVa 2014 71

Bayesian Reasoning Over Models

P(TIN,E) = 0.999
P(TIN,=E) = 0.01
P(T|-N,E) = 0.999
P(T|=N,=E) = 0.001

P(V|T,E) = 0.98
P(V|T,—E) = 0.01
P(V|-T,E) = 0.5
P(V|-T,—E) = 0.001

P(N|E) = 0.92
P(N|=E) = 0.01

N := Names are similar / dissimilar

T := Types are compatible / incompatible

P(E) = 0.001 V := Values are equal / not equal

E := Properties are semantically equivalent/ different

Fig. 2. Bayesian belief network for the running example — nodes denote random vari-
ables, arrows denote influences.

factorization, the number of terms required is (in general) very large, even for a
small number of random variables [11].

Bayesian belief networks address both the problem of representing the joint
probability distribution over a set of random variables and performing inference
with these. Formally, a Bayesian belief network is a tuple (G, P), where P is a
joint probability distribution over a set of random variables V and G is a directed
acyclic graph whose nodes are random variables in V. Directed edges are used to
indicate influence or causal relationships, which express local dependence among
random variables [11].

In addition to the DAG property, (G,P) must also satisfy the Markov con-
dition. The Markov condition states that each variable is (locally) conditionally
independent of its non-descendants given its parent variables. This condition,
along with information about the conditional dependence significantly reduces
the number of terms required to fully define the joint probability distribution P
represented by a Bayesian belief network. Therefore, to determine the joint prob-
ability through simple enumeration, the product of the conditional probabilities
of all random variables X; € V given values of their parents pa (X;) (whenever
these conditional distributions exist) must be determined [11] (see equation 2):

P=PX;=2,Xy=15,..) = [[P(X;i = 2; | pa(Xy)) . (2)

This reduces the set of unknowns to only the conditional distributions of the
random variables in V given values of their parents in the Bayesian network.
These distributions are known as the parameters of a Bayesian network.

Figure 2 illustrates both the structure and the parameters of the Bayesian
network used for the running example. Note the use of the short hand notation
P(X; =0) = P(X;) and P(X; = 1) = P(—X;) for binary random variables X;.
The network is assumed to be constructed by a human and encodes the assump-
tion that knowing whether or not a particular pair of properties has similar (or

Proceedings of MoDeVVa 2014 72

Bayesian Reasoning Over Models

dissimilar) names (N), compatible (or incompatible) types (T), and equal (or
unequal) values (V) is influenced by whether or not the pair of properties is se-
mantically equivalent (or different) (E). In addition, it is assumed that whether
or not names are similar influences the probability of types being compatible
which, in turn, influences the probability of values being equal. The parame-
ter values shown reflect the subjective beliefs of the same human. For example,
at the time of specifying the network parameters, the human believes that the
probability of any pair of properties being semantically equivalent is 0.1%.

3.2 Using Pattern Matching to Measure Random Variables

Using the information provided in the Bayesian network illustrated in figure 2,
as well as equations 1 and 2, a number of interesting diagnostic inferences can be
performed. For instance, consider an experiment where the random outcome w €
{2 is a pair of properties from the space of all pairs of properties (2. Say one can
determine (by observing the object) that the pair of properties (w) has similar
names, unequal values and compatible types. Furthermore, say that, due to a lack
of available information and knowledge, we cannot be certain about the semantic
equivalence of the two properties. Taking all of this new information into account,
the probability of semantic equivalence for this particular pair of properties
(which, without the observations is only the belief of any pair of properties being
semantically equivalent: i.e., P(FE)) can be updated. Mathematically, this equates
to determining P(F | N,-V,T). Note that P(E | N,-V,T) is a meaningful
statement about the probability of semantic equivalence of any pair of properties
for which it can be determined with certainty that their names are similar, types
compatible and values not equal.

By the earlier assumption that all models are represented by a graph, the
definition of the UML class properties considered in the running example must
also be represented by a graph (at least at some level of abstraction — see fig-
ure 1b). Determining whether or not any two properties represented by a graph
fulfill a certain condition (e.g., such as both properties having similar names)
can be done computationally by means of graph pattern matching. Therefore,
we argue that the process of collecting more information about, e.g., a particular
pair of UML class properties can be mapped to querying a graph pattern.

To illustrate this result more formally, let (£2, F, P) represent the probability
space over which all random variables X; € V in the Bayesian network are de-
fined. We define the sample space {2 as the set of all pairs of property definitions
Ng prop in the graph G representing models: 2 = Ng prop X NG prop- Further-
more, we define the o-algebra as F = 2 (where 2 denotes the power set).
By definition, a random variable is a mapping X; : {2 — F from the sample
space to some measurable space E. Therefore, an e € F must be measurable for
any w € (2. By definition of the measurable preimage X;l(e) € F,anec€ FEis
measured whenever an event f € F is observed. To fully define the mapping, it
is sufficient to determine which pairs of properties are elements of the preimages
of a random variable. Per our definition of the random variable N, the preimage
of N~1(0) is the set of all pairs of properties with similar names, i.e., all w € §2

Proceedings of MoDeVVa 2014 73

Bayesian Reasoning Over Models

Event Associated Pattern Pfatte':n
N : (?pl name ?n) (?p2 name ?n) or
=N : (?pl name ?nl) (?p2 name ?n2) notEqual(?nl, ?n2)
T @ (7pl type ?7t) (?p2 type ?t)
=T . (7pl type ?t1) (?p2 type ?t2) notEqual(?tl, ?t2) T
\Y : (?pl value ?vl) (?p2 value ?v2) equal(?vl, ?v2)
=V : (?pl value ?vl) (?p2 value ?v2) notEqual(?vl, ?v2) o%
© |
E ¢ (7pl e(?uwa'l entTo ?p2) —
-E : (?pl differentFrom ?p2) Name” Graph
(Extract)
(a) (b)

Fig. 3. (a) Patterns used in running example; (b) graph representation of the pattern
associated with event N with example node variable bindings for a single match.

which have similar names. We argue that determining the pairs of properties
(i.e., the w;s) for which this is the case, is computationally possible by encoding
the necessary knowledge in an appropriate pattern.

Figure 3 illustrates the patterns used for the running example in a datalog-like
syntax. Variables are unique by name and are indicated by a 7 as prefix. Graph
triples — i.e., two nodes (a subject and an object) connected by a directed edge
(a predicate) — are separated by brackets and are written in the form (subject
predicate object). Note that notEqual (x, y) and equal(x, y) are functors
that perform semantic equality checks on their arguments (for instance, 1 and
1.0 are considered semantically equal).

Note carefully that, per the definition of the probability space, every property
can and, in a state of perfect information and knowledge, must have a name, type
and value. This means that all pairs of properties must be a part of one of the
preimages X ! (e). In demonstrating our approach, only binary random variables
were used. However, we recognize that multi-valued random variables may be
more appropriate in other cases. Also note that, in a state of incomplete or
inconsistent information, only a subset of the members of each of the preimages
of the random variables can be determined using only the knowledge encoded in a
pattern. Additional resources need to be committed to determine set membership
for the other pairs of properties. Committing additional resources may require
human intervention and the adding of additional information to the models.

3.3 Algorithm

By exploiting the structure of the Bayesian network, inference of probability
distributions can be performed quite efficiently, e.g., using the junction tree al-
gorithm [11]. Less trivial is the process of collecting information about a particu-
lar pair of properties — i.e., computationally determining which information and
knowledge should be taken into account when determining the probability of se-
mantic equivalence for a particular pair of properties. For instance, for a pair of

Proceedings of MoDeVVa 2014 74

Bayesian Reasoning Over Models

Algorithm 1: Infer propositions and associated probability distributions
given a set of changes to a graph and a Bayesian network.

Algorithm doInference(Graph G, Triples T, BayesianNetwork B)
for t € T do
InfContext +— observe(q, t, events(B), true) ;
for observations € InfContext do
ObservedRVs «— observations.getRandomVariables() ;
for rv € (B.getRandomVariables() \ ObservedRVs) do
L D +— D U B.inferDistribution(rv, ObservedRVs) ;

L return D

Procedure observe(Graph G, Triple t, Events E, Boolean expand)
for e € E do
p +— pattern(e) ;
TL «— 0 ;
if tripleMatchesPartOfPattern(p, t) then
while (m +— G.nextMatch(t, p)) # 0 do
B, +— m.getBindingsToShared Variables() ;
Obs[Bs] «— Obs[Bs] U (e, variableBindings(m)) ;
if ezpand then
for b € B; do
L L T1 <— T U G.findTriplesAbout(b) ;

for t; € T1, do
L Obs «— Obs U observe(g, t;, E \ e, false) ;

L return Obs

properties that has no values assigned, but similar types and names, P(E | N, T)
constitutes a meaningful, and, using the Bayesian network, inferable probability
of semantic equivalence, since it takes all of computationally determinable in-
formation into account — that is, all of information that can be extracted from
the graph solely using graph pattern matching. To determine the probability of
semantic equivalence for each individual pair of properties, a naive algorithm
would have to iterate over all pairs of properties and, for each pair, a number of
graph searches would need to be performed to determine matches to all patterns
associated with the random variables. In addition, a potentially large number of
inferences in the Bayesian network need to be performed.

Given the complexity of these operations, we propose an incremental algo-
rithm (see algorithm 1) which considers only the changes made to an input graph.
The changes are provided in the form of a set of graph triples. The incremental
behavior of the algorithm is valid for as long as the structure of the Bayesian net-
work does not change (note that a change in the parameters would only require a
re-computation of the posterior beliefs). Verbally, algorithm 1 attempts to mea-
sure all random variables within the context of a single triple by matching the

Proceedings of MoDeVVa 2014 75

Bayesian Reasoning Over Models

associated patterns, followed by performing inference in the Bayesian network.
This procedure is called iteratively over the set of added triples: first, the current
triple is compared to all patterns. If the triple can be matched against any part
of a pattern, a full pattern match in the graph is performed. For each match
to the pattern, the value of the random variable and a context defined by the
bindings to the common, shared pattern variables (in the running example: ?p1
and 7p2) is stored in a map. To find matches to the other patterns within one
variable binding context, a list of triples directly related to the nodes and edges
bound to the variables shared across patterns is compiled (i.e., triples with one
of the bound elements as a subject, predicate or object). The pattern matching
procedure is then repeated over this list.

3.4 Proof-of-Concept Implementation & Algorithm Evaluation

In previous work, we have developed a model-based reasoning framework called
CONSYSTENT [9]. CONSYSTENT uses the Resource Description Framework (RDF)
as an underlying formalism for representing models by graphs. RDF represen-
tations of models are automatically generated. This generated RDF data is col-
lected and stored in a central RDF store (Apache Fuseki).

For the purpose of demonstrating the technical feasibility of our approach,
and to test our algorithm, we have extended this existing infrastructure with
two additional components: firstly a simple Bayesian network library support-
ing inference with discrete random variables, and secondly a custom reasoning
engine which implements Apache Jena’s Reasoner interface. The expressiveness
for defining patterns using the Apache Jena datalog-like rule language is pre-
served by internally rewriting the patterns used for measuring random variables
as rules with empty rule headers.

A preliminary evaluation of the algorithm and its implementation was per-
formed using three sets of models. In each scenario, different quantities, kinds
(UML, Simulink) and sizes of models were used. Samples of the inference results
were drawn at random and inspected manually. Two important reflections have
been made: firstly, common inferences (such as pairs of properties, for which
the only observation is type inequality) can lead to a very large number of in-
ferences, even for small models. This indicates that patterns need to not only
be designed carefully, but heuristics may need to be employed to further define
which inferences are considered wvaluable. Such heuristics can then form a basis
for a classifier that decides which inferences to present to a modeler for further
consideration. Secondly, due to the algorithm iterating over the set of all triples,
some inferences are performed multiple times. However, this is not considered
an issue — rather, it is a likely indicator of a non-optimality of the algorithm.

4 Related Work

In the related literature, most approaches to reasoning over (model-based) infor-
mation and knowledge are based on logical inference. Inference of semantic over-
laps typically makes use of unification algorithms, which exploit representation

Proceedings of MoDeVVa 2014 76

Bayesian Reasoning Over Models

conventions. This includes predicate matching, of which the work by Finkelstein
et al. is an example [6]. Additionally, Triple Graph Grammars (TGG) and, more
generally, correspondence models have been used for similar purposes [7]. The
approaches are similar in that syntactic matching is performed. Rules are used to
define correspondences and transformations, which are typically based on struc-
tural semantics. In some instances, models are enhanced with stereotypes [14]
or elements from a common, shared ontology [8]. However, all of these methods
make a number of strong assumptions: for example, in name- or predicate-based
approaches, spelling mistakes or the use of synonyms can produce false negatives.
False positives may be produced as a result of homonyms. Common, shared on-
tologies can be criticized based on the argument that necessitating tagging of
models with elements of the ontology is highly labor intensive and agreement of
the ontology among stakeholders is difficult to achieve [15]. Secondly, unifying
ontologies can quickly grow unmanageably large at which point they become
expensive to maintain.

Approaches to inferring semantic overlaps that are based on similarity anal-
ysis can be considered complementary to our work. In [3,5] probabilistic ap-
proaches to mediating database schemas are introduced. Probabilistic inference
has also been investigated in semantic web applications. For instance, in [10],
an extension to RDF was proposed to support uncertain inferences by associat-
ing probabilities with both implications and statements. PR-OWL, a proposed
probabilistic extension to the Web Ontology Language (OWL) to define Bayesian
networks, is introduced in [4]. The disadvantage to most of these approaches is
that they are either not Bayesian — which, by definition, does not provide a
suitable basis for admissible decision rules [2] — or are incomplete, or provide no
working implementation.

5 Discussion & Conclusions

In this paper, the use of Bayesian inference in combination with pattern matching
is demonstrated and applied to the problem of inferring (likely) semantically
equivalences. Identifying semantic overlaps — and generally reasoning over models
— is an essential part of identifying inconsistencies and, hence, indispensable to
verification and validation of models.

Logical inference can fail in scenarios where incomplete, underspecified and
inconsistent views of models are consolidated. Bayesian inference, on the other
hand, can always draw useful conclusions. Combining Bayesian inference and
pattern matching as described in this paper can be viewed as an extension to
the more commonly applied approach of using implications (or, generally, rules)
to perform logical inference, and model- and graph-transformations: any out-
come with probability 1 or 0 can be said to have been logically entailed by
the evidence considered. For these reasons, applications such as spam filtering
employ a similar combination of Bayesian inference and pattern matching to
improve the effectiveness of the reasoning task at hand.

Proceedings of MoDeVVa 2014 77

Bayesian Reasoning Over Models

To the best of knowledge of the authors, the combination of Bayesian in-
ference and graph pattern matching has, to the date of writing this paper, not
been used within the context of reasoning about properties of engineering mod-
els. However, we strongly believe that such an approach is promising, particu-
larly for large-scale model-driven development applications. This is supported
by the fact that Bayesian inference allows for rational assessment of important
properties, e.g., related to the state of consistency and validity, of incomplete,
underspecified and inconsistent models.

Acknowledgments. This work was supported by Boeing Research & Technol-
ogy. The authors would like to thank Michael Christian (The Boeing Company),
Dr. Vinod Cheriyan (MBSEC) and the anonymous reviewers for their feedback.

References

1. ISO / IEC 42010 Systems and Software Eng.: Architectural Description (2007)

2. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer (1985)

3. Berlin, J., Motro, A.: Database Schema Matching using Machine Learning with
Feature Selection. In: Advanced information systems engineering. pp. 452-466.
Springer (2002)

4. Costa, P.C., Laskey, K.B.: PR-OWL: A Framework for Probabilistic Ontologies.
Frontiers in Artificial Intelligence and Applications 150, 237 (2006)

5. Doan, A., Domingos, P., Halevy, A.Y.: Reconciling Schemas of Disparate Data
Sources: A Machine-learning Approach. SIGMOD Rec. 30(2), 509-520 (May 2001),
http://doi.acm.org/10.1145/376284.375731

6. Finkelstein, A.C., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsis-
tency Handling in Multiperspective Specifications. IEEE Transactions on Software
Engineering 20(8) (1994)

7. Giese, H., Wagner, R.: From Model Transformation to Incremental Bidirectional
Model Synchronization. Software & Systems Modeling 8(1) (2009)

8. Hehenberger, P., Egyed, A., Zeman, K.: Consistency Checking of Mechatronic De-
sign Models. In: Proceedings of IDETC/CIE (2010)

9. Herzig, S.J., Qamar, A., Paredis, C.J.: An Approach to Identifying Inconsistencies
in Model-based Systems Engineering. Procedia Computer Science (2014)

10. Meiser, T., Dylla, M., Theobald, M.: Interactive Reasoning in Uncertain RDF
Knowledge Bases. In: Proceedings of the 20th ACM international conference on
Information and knowledge management. pp. 2557-2560. ACM (2011)

11. Neapolitan, R.E.: Probabilistic Reasoning in Expert Systems: Theory and Algo-
rithms. CreateSpace Independent Publishing Platform (2012)

12. OMG: OMG Unified Modeling Language (OMG UML). Tech. rep. (2011), http:
//www.omg.org/spec/UML/2.4.1/Infrastructure/PDF

13. Pearl, J.: Fusion, Propagation, and Structuring in Belief Networks. Artificial intel-
ligence 29(3), 241-288 (1986)

14. Shah, A.A., Kerzhner, A.A., Schaefer, D., Paredis, C.J.: Multi-View Modeling to
Support Embedded Systems Engineering in SysML. In: Graph Transformations
and Model-Driven Engineering, pp. 580—601. Springer (2010)

15. Spanoudakis, G., Zisman, A.: Inconsistency Management in Software Engineer-
ing: Survey and Open Research Issues. Handbook of Software Engineering and
Knowledge Engineering 1 (2001)

Proceedings of MoDeVVa 2014 78

Colored Petri Net-based Modeling and Formal
Analysis of Component-based Applications

Pranav Srinivas Kumar, Abhishek Dubey and Gabor Karsai

Institute for Software Integrated Systems
Department of Electrical Engineering and Computer Science
Vanderbilt University, Nashville, TN 37235, USA
{pkumar, dabhishe, gabor}@isis.vanderbilt.edu

Abstract. Distributed Real-Time Embedded (DRE) Systems that ad-
dress safety and mission-critical system requirements are applied in a
variety of domains today. Complex, integrated systems like managed
satellite clusters expose heterogeneous concerns such as strict timing re-
quirements, complexity in system integration, deployment, and repair;
and resilience to faults. Integrating appropriate modeling and analysis
techniques into the design of such systems helps ensure predictable, de-
pendable and safe operation upon deployment. This paper describes how
we can model and analyze applications for these systems in order to ver-
ify system properties such as lack of deadline violations. Our approach
is based on (1) formalizing the component operation scheduling using
Colored Petri nets (CPN), (2) modeling the abstract temporal behavior
of application components, and (3) integrating the business logic and the
component operation scheduling models into a concrete CPN, which is
then analyzed. This model-driven approach enables a verification-driven
workflow wherein the application model can be refined and restructured
before actual code development.

1 Introduction

Safety and mission-critical DRE systems are used in a variety of domains such
as avionics, locomotive control, industrial and medical automation. Given the
increasing role of software in such systems, growing both in size and complexity,
utilizing predictable and dependable software is critical for system safety. To
mitigate this complexity, model-driven, component-based software development
has become an accepted practice. Applications are built by assembling together
small, tested component building blocks that implement a set of services. Models
describe what these component blocks are, what interfaces they have, how they
are built, how they interact and how they are deployed to realize the domain-
specific application.

Complex, managed systems, e.g. a fractionated spacecraft following a mission
timeline and hosting distributed software applications expose heterogeneous con-
cerns such as strict timing requirements, complexity in deployment, repair and
integration; and resilience to faults. High-security and time-critical software ap-
plications hosted on such platforms run concurrently with all of the system-level
mission management and failure recovery tasks that are periodically undertaken
on the distributed nodes. Once deployed, it is often difficult to obtain low-level

Proceedings of MoDeVVa 2014 79

Colored Petri Net-based Modeling and Formal Analysis of Component-based Applications

access to such remote systems for run-time debugging and evaluation. These
types of systems therefore demand advanced design-time modeling and analysis
methods to detect possible anomalies in system behavior, such as unacceptable
response time, before deployment.

Our team has designed and prototyped a comprehensive information archi-
tecture called Distributed REal-time Managed System (DREMS) [1,2] that
addresses requirements for rapid component-based application development. In
prior work, we have described the design-time modeling capability [3], and the
component model used to build and execute applications [4]. The formal mod-
eling and analysis method presented in this paper focuses on applications that
rely on this foundational architecture.

The principle behind this design-time analysis here is to map the structural
and behavioral specifications of the system under analysis into a formal domain
for which analysis tools exist. Using an appropriate model-based abstraction,
the mapping from one domain to another remains valid under successive refine-
ments in system development, including code generation. Application develop-
ers use domain-specific modeling languages to model the component assembly,
component interactions, component execution code, operation sequencing, and
associated temporal properties such as estimated execution times, deadlines etc.
Using such application-specific parameters in the design model, a Colored Petri
net-based (CPN) [5] analysis model is generated. The analysis must ensure that,
under the assumptions made about the components and the component architec-
ture, the behavior of the system remains within the safe operational region. The
results of this analysis will enable system refinement and re-design if required,
before actual code development.

The remainder of this paper is organized as follows. Section 2 presents ex-
isting research relating to this paper; Section 3 provides a brief background on
the DREMS Infrastructure and on the CPN formalism; Section 4 discusses the
problem statement that is evaluated; Section 5 describes how this architecture
is abstracted and modeled using CPN; Section 6 investigates the utility and
scalability of state space analysis; Section 7 briefly describes how the analysis
model is generated; Sections 8 and 9 present future extensions to the proposed
approach and concluding remarks respectively.

2 Related Research

In recent years, much of the proliferating work in the development of mission-
critical distributed real-time systems addresses the need for Safety and Verifi-
cation driven Engineering. Structural properties of the system are established
using domain-specific modeling tools. Design models are transformed into rel-
evant analysis models to study possible behaviors of the system and identify
anomalies. When analyzing timing behavior, typically several exaggerated as-
sumptions such as upper bounds on task execution times, service rates, maxi-
mum resource consumption etc are made. The results of system analysis using
these assumptions are equally pessimistic. However, real-time systems with high
criticality necessitate such assumptions to avoid the consequences of poor design.

Proceedings of MoDeVVa 2014 80

Colored Petri Net-based Modeling and Formal Analysis of Component-based Applications

Predictability of system behavior is achieved by obtaining upper bounds on the
system properties.

Petri nets and their extensions have proven to be a powerful formalism for
modeling and analyzing concurrent systems. System designs represented using a
domain-specific modeling languages are often translated into Petri nets for for-
mal analysis. High-level formalisms such as AADL models have been translated
into Symmetric Nets for qualitative analysis [6] and Timed Petri nets [7] to check
for real-time properties such as deadline misses, buffer overflows etc. Similar to
[7], our CPN-based analysis also makes use of observer places [8] that monitor
the system behavior and look for real-time property violations and prompt com-
pletion of operations. However, [7] only considers periodic threads in systems
that are not preemptive. Our analysis covers a broader range of thread inter-
action patterns geared towards component-based applications operating on a
hierarchical scheduling scheme requiring higher-level modeling concepts to cap-
ture component interaction in a distributed setup.

In the context of component-based systems, for complete real-time analysis,
significant information must be obtained about the component assembly, the
interaction patterns and the temporal behavior of components. The real-time
model of the system is composed of real-time models of its constituent parts, each
with its own temporal behavior. Using abstract model descriptors, [9] describes a
real-time model for component-based systems, including semantic and quantita-
tive meta-data about component real-time behavior. Using the MAST transac-
tional modeling methodology [10] and analysis tools in the MAST environment,
schedulability checks and priority assignment automation are performed. Note
here that for every real-time application, a separate and independent real-time
analysis model is generated for each mode of operation and analyzed separately.

For classes of component-based systems whose component assembly and ap-
plication structure change dynamically over time, design-time verification is ob-
served to be insufficient. Incremental re-verification strategies [11] have been
applied to dynamic systems to augment traditional compositional verification
by identifying the minimal set of components that require re-verification after
dynamic changes. Since our approach considers design-time deployment plans
that are static, our analysis does not consider dynamic changes to component
assembly at run-time, but it will be subject of future work.

3 Background

DREMS Components: Design and implementation of component-based soft-
ware applications rests on the principle of assembly: Complex systems are built
by composing re-useable interacting components. Components contain functional,
business-logic code that implements operations on state variables. Ports facilitate
interactions between communicating components. A component-level message
queue, with associated infrastructure code, controls the scheduling of operations
of the individual components. Figure 1la shows the basic DREMS component.
Each DREMS component supports four basic types of ports for interaction
with other collaborating components: Facets, Receptacles, Publishers and Sub-
scribers. A component’s facet is a unique interface that can be invoked either

Proceedings of MoDeVVa 2014 81

Colored Petri Net-based Modeling and Formal Analysis of Component-based Applications

Invoke operation
on Ca B

DREMS Middleware
Component A Framework
Data Publisher

Enqueue

S

Component Executor Code
[Business Logic]
Component Scheduling Queue
= Ll

Fault Timers &
Manager Sl
Variables

DREMS Component

Data Subscriber

operation

opl | op2 | op3 op5 | op6 | op?

Schedule

opd

C B- Queue

a

Receptacle [Component B
bector | I
Thread Schedule)
component time

executor Temporal Partition Scheduling

Middleware Framework

(a) DREMS Component (b) Component Operation Scheduling
Fig.1: DREMS Infrastructure

synchronously via remote method invocation (RMI) or asynchronously via asyn-
chronous method invocation (AMI). A component’s receptacle specifies an in-
terface required by the component in order to function correctly. Using its recep-
tacle, a component can invoke operations on other components using either RMI
or AMI. A publisher port is a single point of data emission and a subscriber
port is a single point of data consumption. Communication between publishers
and subscribers is contingent on the compatibility of their associated topics (i-e.
data types). More details on this component model can be found in [4].
Component Operation Scheduling: An operation is an abstraction for the
different tasks undertaken by a component. These tasks are implemented by the
component’s executor code written by the developer. As shown in Figure 1b,
in order to service interactions with the underlying framework and with other
components, every component is associated with a message queue. This queue
holds instances of operations (‘messages’) that are ready for execution and need
to be serviced by the component. These operations service either interaction re-
quests (seen on communication ports) or service requests (from the underlying
framework). An example for the latter is the use of component timers that can
periodically (or sporadically) activate an operation. Each operation is character-
ized by a priority and a deadline. The deadline here is the maximum acceptable
time between the release of a component operation and the completion of that
operation, measured starting from when the operation is enqueued onto the
component’s message queue. To facilitate component behavior that is free of
deadlocks and race conditions, the component’s execution is handled by a single
thread. This single-threaded execution helps avoid synchronization primitives
such as internal lock variables that lead to tenuous code development.

The DREMS OS scheduler enforces an ARINC-653 [12] style temporal and
spatial partition scheme in order to schedule components grouped into processes.
Temporal partitions, as shown in Figure 1b, are periodic fixed intervals of the
processor time. Note that there are two levels of scheduling in DREMS: (1) Each
component operation in the component-level is scheduled using a component-
level scheduler, and (2) each component executor thread, on the system-level, is

Proceedings of MoDeVVa 2014 82

Colored Petri Net-based Modeling and Formal Analysis of Component-based Applications

scheduled by the OS in one of the temporal partitions, granting a slice of the
CPU’s time to those threads.
3.1 Colored Petri Nets
Petri nets [13] are a graphical modeling tool used for describing and analyzing a
wide range of systems. A Petri net is a five-tuple (P, T, A, W, M0) where P is a
finite set of places, T is a finite set of transitions, A is a finite set of arcs between
places and transitions, W is a function assigning weights to arcs, and MO is
the initial marking of the net. Places hold a discrete number of markings called
tokens. A transition can legally fire when all of its input places have necessary
number of tokens, and when fires it produces tokens for its output places.
With Colored Petri nets (CPN) [5], tokens carry values of specific data types
called colors. Transitions in CPN are enabled for firing only when valid colored
tokens are present in all of the typed input places, and valid arc bindings are
realized to produce the necessary colored tokens on the output places. The firing
of transitions in CPN can check for and modify the data values of these colored
tokens. Furthermore, large and complex models can be constructed by composing
smaller sub-models as CPN allows for hierarchical description. This extended
paradigm can more easily model and analyze systems with typed parameters.

4 Problem Statement

Consider a set of mixed-criticality component-based applications that are dis-
tributed and deployed across a cluster of embedded computing nodes. Each com-
ponent has a set of interfaces that it exposes to other components and to the
underlying framework. Once deployed, each component works by executing op-
erations placed on its component message queue. Each component is associated
with a single executor thread that handles these operation requests. These ex-
ecutor threads are scheduled in conjunction with a known set of highly critical
system threads and low priority best-effort threads. Furthermore, the application
threads are also subject to a temporally partitioned scheduling scheme. System
assumptions include (1) knowledge of the sequence of computational steps of
known duration that are executed inside each component operation, (2) knowl-
edge of the worst-case estimated time taken by each computational step, and
(3) the estimated worst-case time taken to initiate a remote function call and to
process the response, accounting for network-level delays. Using this knowledge
about the system, the problem here is to ensure that the temporal behavior of all
the application components lies within the bounds laid out by the system spec-
ifications. Ideally, this is achieved by verifying such system properties as lack of
deadline violations for component operations. For scenarios where the system
design isn’t complete, e.g. application thread priorities are unknown, the paper
describes the utility of an approach to identifying the subset of system behaviors
that satisfy timing requirements and provide useful information to designers, e.g.
partial thread execution orders.

5 Colored Petri net-based Modeling

This section briefly describes how CPN can be used to build an extensible, scal-
able analysis model for component-based software applications. To edit, simulate
and analyze this model, we use the CPN Tools [14] tool suite.

Proceedings of MoDeVVa 2014 83

Colored Petri Net-based Modeling and Formal Analysis of Component-based Applications

Timers preempt and unblock threads

Component
Threads

find candidate timers
Timer ey

Waiting to Enqueue C:ﬂ";::;‘;"‘ Schedule Execute
Enqueue Operation Queues Thread Thread

Interactions

find candidate threads
find interaction

Component Operation Scheduling schedule thread

Running
Threads

Blocked block thread
Threads

engueue operation

Component Thread Execution

Fig. 2: Hierarchical CPN Analysis Model

The CPN model captures the behavioral semantics of our component model
described in [4], using knowledge of several factors that resolve the deployment
of the component-based application. These factors include the following system
properties: (1) configuration of temporal partition scheduling on each node of
the distributed system, (2) location of each component being deployed (which
temporal partition and which computing node) (3) properties of the component
executor threads (thread priority), (4) properties of timers (period and offset),
and (5) component interactions and assembly (i.e. the wiring’).

Figure 2 shows a top-level structure of the CPN-based analysis model. The
place Component Threads holds a token with a list of all executor threads re-
sponsible for component interactions. This list is maintained based on thread
priorities on each node so that the highest priority ready thread is always cho-
sen first by the OS scheduler. Timers maintains a list of all infrastructural timers
in the application. All timer expiries at a specific clock value! are handled by the
transition Timer Ezpiry. A timer can be used in our component model to trigger
the execution of a component operation. DREMS components are dormant by
default. Once initialized, a component executor is not eligible to run until there
is an operation added to the component message queue. To start a sequence of
component interactions, periodic or sporadic timers can be used to trigger an
operation of a component.

If a timer triggers a component execution, this component is identified as a
candidate for scheduling by Schedule Thread. This transition always schedules
the highest priority thread that is ready to execute in the active partition on
each node. If two threads of equal priority are eligible, the scheduler picks one
at random and maintains a round-robin scheduling scheme. If the highest pri-
ority thread is not already servicing an operation request, the highest priority
operation from its message queue is dequeued and scheduled for execution.

The Component Message Queues place is a list that manages the message
queues of all components across all nodes. Every time a component thread exe-

! The clock values are integers.

Proceedings of MoDeVVa 2014 84

Colored Petri Net-based Modeling and Formal Analysis of Component-based Applications

Temporal
Partition
Schedule

TIMER_OP @) DDS_OP Partition 1 Partition 2 Partition 1 Partition 2

[Period = 80 ms]

DDS Listen
RMI Query
DDS Publish | 8 ms Waiting for

response

Process
Response

(a)_y RMI_OP
fe--3 Remote Method
i (5) [12 ms]

Calculate
Trajectory

Sensor Trajectory Planner

Receive
Notification
& make RMI

call

Process RMI Response &
Calculate new Trajectory

(a) Component Assembly (b) Timing Diagram

Fig. 3: Trajectory Planning Application

cutes an operation, the completion of this operation could trigger another com-
ponent into execution. For instance - the completion of an RMI query on a client
component triggers a server-side RMI operation that this server will have to ex-
ecute. Such interactions are derived from the modeling tools and appropriate
tokens are generated in place Interactions. When executing component threads,
Execute Thread checks to see if the execution has any effect on the running
thread or on other threads. Therefore, when the client thread completes an RMI
query, this thread is moved to Blocked Threads and a server RMI operation is
placed in Waiting to Enqueue. Later, when the server thread is scheduled, the
client is unblocked appropriately.

6 State Space Analysis

Given a CPN model (that was generated from a component architecture and
deployment model), a state-space of the system can be constructed using the
semantics of CPN. This state space is infinite, however, in practice, it is often
sufficient to consider some finite subset, starting from a initial state up to a
few hyperperiods of the partition scheduler. In order to describe the utility of
state space analysis, we consider a simple trajectory planning application (TPA).
The component assembly for this application is shown in Figure 3a. A Sensor
component periodically publishes on a trigger topic, notifying the Trajectory
Planner of the existence of new sensor data. Once the notification is received,
the Trajectory Planner makes an RMI call to retrieve the data structure of sensor
values, using which the satellite trajectory is updated. The sequence of steps in
each of these operations is referred to as the business logic of the operation.
This business logic is modeled using a textual language in the modeling tools, in
which the designer specifies the macro execution steps in a component operation
along with worst-case estimated time taken on each step. Figure 3b shows the
expected timing diagram.

The analyzable states of this system are observed in the markings of the
various CPN places in the model. Using the built-in state space analysis in CPN
Tools a bounded state space of the system is generated. Using both standard

Proceedings of MoDeVVa 2014 85

Colored Petri Net-based Modeling and Formal Analysis of Component-based Applications

and user-defined queries, this state space is searched to check system properties
like lack deadline violations and deadlocks, bounds on response times etc.

Deadline Violation Detection: Each time a component operation is sched-
uled, the clock value of the node is recorded as the "start time" of the operation.
If this operation is incomplete when the clock reaches the operation’s deadline, a
deadline violation is detected. Using the SearchNodes function in CPN Tools, the
deadline violations on any component operation can be identified by observing
all component operations each time the node-specific clock progresses. In Figure
3b, the DDS OP on the Trajectory Planner takes 56 ms to complete, measured
from when the operation was enqueued and marked as ready. If the deadline
of this operation is set to 50 ms, a state space search would reveal a deadline
violation when the clock reaches 51 ms.

Worst-case Trigger-to-Response Time Calculation: For a known trig-
ger operation and desired response operation, the worst-case trigger-to-response
time can also be calculated from the generated state space. Using the names of
the trigger and response operations, a state space node that presents the earliest
completion of the trigger operation and the latest completion of the response
operation within the set period is identified. In the Trajectory Planning applica-
tion, considering the TIMER__OP to be the trigger and the trajectory planning
DDS _OP to be the response, the worst-case response time is found to be 68 ms
(Trigger completes earliest at 8 ms and response completes latest at 76 ms).

Partial Thread Execution Order Generation: In development scenarios
where an application developer is aware of the operation-specific timing require-
ments but not thread priorities, the analysis is capable of identifying partial
thread execution orders that satisfy the requirements. If all unknown thread pri-
orities are set to a common value, the generated partial state space will then
encapsulate the set of non-deterministic thread execution orders that arise from
the scheduling. Using timing requirements of the form - Once Operation A on
Component A on Node A completes, Operation B on Component B on Node
B must complete within 150 ms, a state space node satisfying this requirement
can be identified by querying the generated state space. A backtrace from this
node enables assigning thread priorities to ensure the satisfaction of the timing
requirement.

Scalability Testing: The size of the generated state space is dependent on
the amount of concurrency in the behavior. If all the executing threads had
unique priorities, the thread execution order is a constant as the scheduling
is priority-based. However, for large systems with groups of applications and
increased concurrency, an equally large state space is required to observe the
tree of possible thread executions and operational behaviors. This analysis model
has been identified to scale well for medium-sized applications, tested up to 100
components distributed on up to 5 computing nodes. Table 1 summarizes these
results.

Proceedings of MoDeVVa 2014 86

Colored Petri Net-based Modeling and Formal Analysis of Component-based Applications

Table 1: Scalability Results

Scenario|Nodes |Partitions |Threads /|Hyper- |State |Generation
/ Node Partition |periods [Space |Time
TPA 5 2 1 10 180 0.981s
Sample2| 2 5 5 10 124,469 | 14.1m
Sample3| 5 5 4 10 485,552 | 36.5m

7 Analysis Model Generation

As mentioned in Section 5, the control flow and timing details of component op-
erations are directly integrated into the design-time modeling framework. Using
the formal domain-specific model of the system, the configuration of the partition
scheduling and component assembly are derived and translated into meaningful
CPN tokens. The business logic of each component operation is expressed using
a textual language with one attribute per interaction per instance of each com-
ponent being deployed. Model interpreters parse through this complete design
model, instantiating CPN model templates and combining these instances to
generate a single integrated .cpn file to analyze the entire system.

8 Future Work

In order to generalize this analysis model and provide flexibility, one possible ex-
tension to this approach is to cater to other commonly used scheduling schemes,
such as EDF, for component operation scheduling; and novel interaction pat-
terns (e.g. reliable broadcast). Also, the current analysis approach inherits the
benefits and the drawbacks of using pessimistic estimates for execution times.
Another possible extension to this approach would be to provide a stochastic
schedulability analysis allowing for a trade-off between reliability and cost of
resources required by the system.

9 Conclusions

Distributed real-time systems operating in dynamic environments, and running
mission-critical applications face strict timing requirements to operate safely.
This paper presents a Colored Petri Net-based approach to capture the archi-
tecture and temporal behavior of such applications for both qualitative and
quantitative schedulability analysis. This analysis model includes a compact,
scalable representation of high-level design, accounting for the dynamics of real-
time thread execution while exploiting knowledge of component execution code.
Exhaustive state space search enables verification and validation of useful and
necessary system properties, reducing development costs and increasing reliabil-
ity for such time-critical systems.

Acknowledgments

The DARPA System F6 Program and the National Science Foundation (CNS-
1035655) supported this work. Any opinions, findings, and conclusions or rec-

Proceedings of MoDeVVa 2014 87

Colored Petri Net-based Modeling and Formal Analysis of Component-based Applications

ommendations expressed in this material are those of the authors and do not
reflect the views of DARPA or NSF.

References

1.

10.

11.

12.

13.

14.

Dubey, A., Emfinger, W., Gokhale, A.} Karsai, G., Otte, W., Parsons, J., Szabo, C.,
Coglio, A., Smith, E., Bose, P.: A Software Platform for Fractionated Spacecraft.
In: Proceedings of the IEEE Aerospace Conference, 2012, Big Sky, MT, USA, IEEE
(2012) 1-20

. et al.,, T.L.: Distributed real-time managed systems: A model-driven distributed

secure information architecture platform for managed embedded systems. IEEE
Software 31 (2014) 62-69

Dubey, A., Gokhale, A., Karsai, G., Otte, W., Willemsen, J.: A Model-Driven
Software Component Framework for Fractionated Spacecraft. In: Proceedings of
the 5th International Conference on Spacecraft Formation Flying Missions and
Technologies (SFFMT), Munich, Germany, IEEE (2013)

Otte, W.R., Dubey, A., Pradhan, S.; Patil, P., Gokhale, A., Karsai, G., Willemsen,
J.: F6COM: A Component Model for Resource-Constrained and Dynamic Space-
Based Computing Environment. In: Proceedings of the 16th IEEE International
Symposium on Object-oriented Real-time Distributed Computing (ISORC ’13),
Paderborn, Germany (2013)

Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer (2009)

Renault, X., Kordon, F., Hugues, J.: From aadl architectural models to petri nets:
Checking model viability. In: Object/Component /Service-Oriented Real-Time Dis-
tributed Computing, 2009. ISORC ’09. IEEE International Symposium on. (2009)
313-320

Renault, X., Kordon, F., Hugues, J.: Adapting models to model checkers, a case
study : Analysing aadl using time or colored petri nets. In: Rapid System Proto-
typing, 2009. RSP ’09. IEEE/IFIP International Symposium on. (2009) 26-33
Alpern, B., Schneider, F.B.: Verifying temporal properties without temporal logic.
ACM Trans. Program. Lang. Syst. 11 (1989) 147-167

Lopez, P., Medina, J., Drake, J.: Real-time modelling of distributed component-
based applications. In: Software Engineering and Advanced Applications, 2006.
SEAA ’06. 32nd EUROMICRO Conference on. (2006) 92-99

Harbour, M.G., Garcia, J.J.G., Gutierrez, J.C.P., Moyano, J.M.D.: Mast: Modeling
and analysis suite for real time applications. In: In 13th Euromicro Conference on
Real-Time Systems. (2001) 125

Johnson, K., Calinescu, R., Kikuchi, S.: An incremental verification framework
for component-based software systems. In: Proceedings of the 16th International
ACM Sigsoft Symposium on Component-based Software Engineering. CBSE 13,
New York, NY, USA, ACM (2013) 33-42

ARINC Incorporated Annapolis, Maryland, USA: Document No. 653: Avionics
Application Software Standard Inteface (Draft 15). (1997)

Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77 (1989) 541-580

Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing, M.S.,
Westergaard, M., Christensen, S., Jensen, K.: Cpn tools for editing, simulating,
and analysing coloured petri nets. In: Proceedings of the 24th International Con-
ference on Applications and Theory of Petri Nets. ICATPN’03, Berlin, Heidelberg,
Springer-Verlag (2003) 450-462

Proceedings of MoDeVVa 2014 88

Author Index
B

Bakkali, Mohamed ...t 39
Baudry, BENOMt ...ttt [13]
Blech, Jan Olafot A9
Bousse, Erwant
Brunel, Julien o B9
C

Chemouil, David ... s
Combemale, BENOTtottt et e e 13
D

De Lara, JUAN ...ttt]
Dubey, Abhishek i
G

Gammaitoni, LOTC ..ottt e e [19]
Gogolla, Martin . ..ottt ettt e e 9]
Guerra, Bsther ..o B
H

Herrmann, Peterttt e 49
Herzig, Sebastian ttt [69]
Hilken, Frank — e B9
K

Karsai, Gabor
Kelsen, PIBITE . ..ottt e e e e e [19]

Kumar, Pranav Srinivas

L

Lamo, Yngve
Lépez Fernandez, Jesus J.

M

Mathey, Fabien iuiii i e [19]
N

Niemann, Philipp .. .ooonii e e 59|
P

Paredis, CRIiStHAAN . ..o oottt et e e e e e e [69]

89

R

RIOUX, LAUTENE .« . e oottt et e e e e e e e e e 39
Rutle, AdIIAn ..ottt 29
S

Schmidt, HEINZ ..ot e e e A9
Spichkova, Maria iiiriti e e A9
A%

Vallée, Frédériqueot e
A%

Wang, Xiaoliangooii
Wille, RODEIT ..ottt e 39

90

	Preface
	Language Workbenches: Opportunities and Challenges for V&V
	Assessing the Quality of Meta-models
	Towards Scalable Multidimensional Execution Traces for xDSMLs
	Verifying Modelling Languages using Lightning: a Case Study
	Scalable verification of model transformations
	A Viewpoint-Based Approach for Formal Safety & Security Assessment of System Architectures
	Modeling Spatial Aspects of Safety-Critical Systems with Focus ST
	Towards a Base Model for UML and OCL Verification
	Bayesian Reasoning Over Models
	Colored Petri Net-based Modeling and Formal Analysis of Component-based Applications
	Author Index

