
Extensible Global Model Management with Meta-model
Subsets and Model Synchronization

Dominique Blouin, Yvan Eustache and Jean-Philippe Diguet

Lab-STICC, Université de Bretagne-Sud, Centre de recherche, BP 92116
56321 Lorient CEDEX, France

{dominique.blouin, yvan.eustache, jean-philippe.diguet}@univ-
ubs.fr

Abstract. We present an infrastructure for the management of models of
heterogeneous meta-models in model-based development environments. The
infrastructure consists of a Global Model Management (GMM) modeling
language, which allows the capture of the meta-models used in a modeling
environment. Relations between meta-models and subsets of these meta-models
can be declared and interpreted during model evolution for automated global
model management. The infrastructure is implemented in an Eclipse EMF
based EDA (Electronic Design Automation) tool. Its use is demonstrated by the
generation and synchronization of AADL and VHDL code targetting an FPGA
to control a self-balancing toy car.

Keywords: Global Model Management, Model Coordination, Model
Transformations / Synchronization, Triple Graph Grammars, EDA Tools

1 Introduction

Model-based engineering makes use of many models of different kinds to capture all
aspects of a system. As presented in [1], a significant proportion of design errors are
due to inconsistencies between the heterogeneous models used to develop the evolv-
ing system. Mechanisms are required to ensure consistency of models is automatically
maintained, and that proper traceability links can be established between models and
maintained during model evolution. Such mechanisms should be at the heart of every
model-based development tool, and it should be extensible so that modeling tools can
be easily configured to target new domains making use of other modeling languages
and types of relations between models.

In this paper, we present a Global Model Management (GMM) infrastructure to
solve these problems. It is inspired from state of the art research and from experience
gained in developing the Kaolin EDA (Electronic Design Automation) tool [2], which
makes use of several rich modeling languages such as AADL (Architecture Design
and Analysis Language, [3]) and VHDL (VHSIC (Very High Speed Integrated Cir-
cuits) Hardware Description Language, [4]). The tool aims at simplifying the devel-
opment of electronic systems implemented on FPGAs (Field Programmable Gate

mailto:jean-philippe.diguet%7d@univ-ubs.fr
mailto:jean-philippe.diguet%7d@univ-ubs.fr

Arrays) by generating automatically the platform-specific models and VHDL imple-
mentation code from abstract functional AADL models. Our GMM language includes
the concept of meta-model subset as introduced in [5], to declare sets of constraints
restricting the use of complex and rich languages such as AADL and VHDL. Valida-
tion of subset constraints ensure given activities can be performed on models. In addi-
tion, automated model synchronization is provided through an extension of the core
GMM language making use of an enhanced version of MoTE [6], which is based on
Triple Graph Grammars (TGG) [7].

The rest of this paper is divided as follows: the next section introduces the GMM
language and its interpretation semantics. Then, section 3 demonstrates the use of the
GMM infrastructure through an example consisting of a self-balancing radio con-
trolled car whose implementation code is automatically generated using interpreted
GMM relations. Related work is then presented in section 4, followed by the conclu-
sion and perspectives in section 5.

2 The GMM Infrastructure

2.1 The GMM Modeling Language

Many approaches to GMM include the concept of mega-model, for which several
definitions can be found. A unified definition is provided in [8], which has the advan-
tage of being free of implementation details, and can be extended to make use of spe-
cific transformation tools and other artifacts. Our core GMM language (Fig. 1) is
inspired from this work. It includes the central concepts of model and relation. A
model is defined as an element that contains models and relations between models. It
is hierarchical, meaning that it can contain other models as children. This allows for
better structuring of models. For instance, and as explained in [8], large languages
such as UML would benefit from such structuring by having some of their model
elements declared as models (e.g. class diagrams, sequence diagrams, etc.).

Models need to be related to each other, so a mega-model must be able to contain
relations between its contained models. A relation also owns an intention, which de-
scribes the intended use of the relation. Inspired from [9], we further distinguish be-
tween factual and obligation relations. A factual relation must be deleted as soon as
its intention is not satisfied anymore. For example, if the intent of the relation is to
provide traceability between two models, then if one model is deleted, the relation
must be deleted because its intention is not satisfied anymore. On the opposite, an
obligation relation defines that something should always hold but does not necessarily
do so between the related models. Therefore, obligation relations should not be de-
leted when their intention does not hold, but provide means for (re-)establishing the
validity of the relation. This is represented by the establish validity operation, which
takes as input a modeling environment and an execution context. The modeling envi-
ronment provides all models concerned by the relation, so that they can be processed
to (re-)establish validity. The execution context describes the context in which the
validity of the relation should be established. It captures the type of operation that was

performed on a source model of the modeling environment that was changed thus
requiring validity to be re-established. Predefined types of operation follow the basic
CRUD (Create, Read, Update and Delete) types used for database persistence. The
establish validity operation returns a collection of models of the environment that
have been updated as a consequence of (re-)establishing the validity of the relation.

Fig. 1. The core GMM language

A model may be in an error state. For example, a model concerned by a relation
may not be valid, and this information stored in the model can be processed by an
obligation relation when re-establishing validity. In addition, the relation can itself
update the error state on the models to indicate for example what prevents the validity
of the relation to be established. This error information can then be displayed to users
of the modeling tool, for instance through markers of the Eclipse environment.

The models that are concerned by a GMM relation must be determined in some
way. For this purpose, the relation policy class is introduced. Subclasses can provide
specific ways of relating models, for example, by determining that two models of
different meta-models are related only when the file names of their resources have the
same base file name, with meta-models being identified by file extensions.

A relation between models does not necessarily exist in isolation. Some relations
may require other relations to hold. For example, a transformation chain can be seen
as a set of chained obligation relations that must be executed one after the other to
establish the validity of the chain of concerned models. For this reason, a GMM rela-
tion can declare chained relations.

A meta-model (Fig. 2) represents a specific type of model to which a model can be
related through a conformance relation. It is also a place where useful information can
be stored to be used by tools processing models of the meta-model. For instance,
model comparison, which often needs to be customized per meta-model, can be speci-
fied by attaching model comparison settings to a meta-model.

Rich modeling languages such as UML or AADL often support a large number of
activities (performance analysis, code generation, etc.). As pointed out in [5] for

AADL, guidance on how a language should be used for a given set of activities to be
performed is essential to ensure tools interoperability. The authors of [5] proposed a
DSML to capture subsets of modeling languages, and a revised version of this DSML
is integrated in our GMM language, which introduces the concept of meta-model
subset (Fig. 2). It consists of a set of constraints expressed in terms of the cardinality
of a set of model elements of a given model. Various ways can be provided to con-
struct sets of model elements, but this is still an ongoing work. The objective is to
express subsets in a way that their constraints can be interpreted by tools without
evaluation on a specific model, for customization according to a given subset. For
example, the AADL graphical editor used in Kaolin can interpret a subset to automat-
ically hide any element of the palette whose classifier is forbidden by the subset.

Fig. 2. The GMM concepts for meta-models and meta-model subsets

Following [5], meta-model subsets can be related to each other according to four
types of relationships (inclusion, incompatibility, equivalence and intersection). A
subset can be composed of other subsets through inclusion relations. It can also be
associated with a given set of activities, thus allowing the analysis of tools interopera-
bility according to their associated activities and subsets compatibility and equiva-
lence.

A meta-model subset can be associated with a subsetted meta-model declared for a
given meta-model. Models conformed to a subsetted meta-model are first validated
against the meta-model, and then against the constraints provided by the associated
meta-model subset.

2.2 Extension for Model Synchronization.

Model transformations are first class entities in model-based development. In
GMM, they are represented as specific relations between models. Other types of op-
erations between models could also be represented such as merge and refactoring, but
it remains to be explored. Most model transformations are unidirectional and work in

a batch mode, i.e. from a set of input models they can only create an output model
instead of updating an existing model. This is not sufficient since once generated, a
model may need to be modified as it provides a different view of the system that may
need to be updated by users. Hence, modifications must be reflected back in the
source model to maintain consistency. Often this must be performed without re-
instantiating the source model, since it may contain information that is not represented
in the target model. Incremental transformations, which update only parts of a model,
are therefore required. This is called model synchronization.

Only a few model transformation tools can currently satisfy these requirements.
Among these tools, MoTE [6] can transform models in either directions using batch
or synchronization mode. In addition, an enhanced version of MoTE has recently
been developed [10], providing several improvements required for synchronize mod-
els of rich languages such as AADL. Being fully EMF-based, MoTE can be easily
integrated into our GMM infrastructure in the form of a language extension (Fig. 3).

Fig. 3. The GMM extension for model synchronization with MoTE

The extension consists of a MoTE synchronization relation, which factually relates
two models through their meta-models (binary meta-model related relation). At the
same time, it is also an obligation relation establishing that the two related models
must be maintained valid by ensuring their consistency. This is achieved by a MoTE
TGG engine used by the MoTE synchronization relation.

2.3 GMM Model Interpretation

Our GMM language and its interpreter are deployed in the Eclipse Integrated Devel-
opment Environment (IDE) as depicted in Fig. 4. A mega-model declaring the meta-
models, their subsets and their relations is stored in the workbench configuration di-
rectory. A GMM controller listens for model change or read events (e.g. editor open-
ing) sent by the Eclipse platform. For a given model source of a received event, the
controller instantiates a modeling environment containing the models in the work-
space and an execution context whose operation type reflects the type of the event. It
then calls the GMM engine that interprets all relations declared in the mega-model
that concern the models of the modeling environment. Obligation relation is currently
the only type of relations interpreted in our GMM language. The GMM engine calls
the establish validity operation passing the created modeling environment and execu-

tion context objects. For a MoTE synchronization relation, the operation consists of
calling the appropriate operation on the associated MoTE TGG engine according to
the specified execution context and for each target model of the modeling environ-
ment. For an execution context with a read operation, this means that the model
loaded in memory may be updated in a next operation. If the model corresponding to
the source model does not exist, the relation calls the engine to perform a batch trans-
formation to create the model. Otherwise, a check consistency operation on the TGG
engine is performed. Both of these operations cause a TGG correspondence model to
be created between the models and stored in the TGG engine’s memory. Later on,
when the model is updated, a resource change event is sent to the GMM controller,
which is translated into an execution context of type Update sent to the GMM engine.
The MoTE relation then calls the TGG engine to synchronize the target models of the
modeling environment. When a model is deleted, the corresponding model may be
deleted or not, as specified by the relation‘s deletion properties.

Fig. 4. The GMM infrastructure integrated in the Eclipse platform

The MoTE synchronization relation also takes care of creating appropriate errors
carried by the models in case inconsistencies are detected during the creation of the
TGG correspondence model. Model objects that are not mapped by the correspon-
dence model are inspected according to a model elements coverage policy associated
with the relation, which determines if unmapped elements should have been mapped
or not. In the former case, this indicates that the models are inconsistent, and appro-
priate errors are set for the model elements. The MoTE relation will not process mod-
els until the inconsistencies are resolved through manual update of the models. The
relation makes use of a cache of the model objects, which are linked by the corres-
pondence models stored in the TGG engine memory. Changes made by any tool to a
model are first merged into the cache, which preserves the object instances, thus en-
suring the links of the correspondence model used to synchronize the models remain
valid. The merge layer is implemented with EMF Compare [11], using comparison
settings defined per meta-model declared in the mega-model.

3 Example

This section presents an example illustrating the use of the GMM infrastructure,
where many details are omitted due to lack of space. It consists of an electronic sys-

tem implemented on an FPGA to control a self-balancing toy car (hereafter RC Car)
from a smart phone (lower left part of Fig. 5). AADL is used to specify PIM and PSM
models for the system. From the AADL PSM, a VHDL model is generated, which can
be taken as input by FPGA vendor tools for synthesizing the circuit in the FGPA.

AADL is a component-based language for modeling both the software and hard-
ware parts of embedded systems. It supports the specification of systems as an assem-
bly of software and hardware components divided into categories. Software categories
are thread, thread group, data, process and subprogram. Hardware categories are pro-
cessor, virtual processor, memory, device, bus and virtual bus. Hardware and software
component classifiers can be declared in libraries or hierarchically organized in sys-
tems for reuse. AADL components interact through features (interaction points) and
connections, which together model data or control flows between components.

The first step to design a system in Kaolin is to create an AADL functional model
independent of any execution platform (diagram of Fig. 5). It is then transformed into
an AADL PSM, which describes the FPGA chosen by the user and the synthesized
functions taking into account execution platform-specific details. The GMM language
is used to specify the AADL and VHDL meta-models, including three subsetted meta-
models for the AADL PIM and PSM, and for a subset of VHDL that can be handled
by FPGA synthesis tools (synthesizable VHDL).

Fig. 5. The self balancing toy car and an AADL functional diagram for its control system

The objective of the AADL functional subset is to ensure AADL is used correctly
for PIMs to be transformed into AADL PSMs, The functional subset includes a first
subset that restricts the AADL language to its software part, which consists of forbid-
ding the use of hardware constructs (processor, virtual processor, memory, bus, de-
vice and bus access). Additional constraints are then added to the functional subset to
ensure only AADL threads and data subcomponents are used and contained in a sin-
gle AADL process (Fig. 5).

From a functional AADL model, an AADL PSM is generated, conformed to an ex-
ecution platform subsetted meta-model ensuring execution platform models are prop-
erly defined to be transformed into synthesizable VHDL code. Similar to the PIM
subset, the PSM subset includes a subset restricting the constructs to hardware AADL

elements. Then, another subset describing how FPGAs must be modeled with AADL
is provided, following an AADL extension developed to model FPGAs [12]. It in-
cludes the AADL hardware subset. Finally, the last required subset is Synthesizable
VHDL, which cannot be described here due to the lack of space. Other VHDL subsets
ensuring simulatability, testability and reusability, and as implemented by tools such
as the Leda RTL checker [13] could also be modeled with our GMM language.

Once the required subsetted meta-models have been created, relations between
models conformed to these subsetted meta-models can be declared to transform /
synchronize the models. These relations are implemented as MoTE synchronization
relations, allowing to maintain the consistency of models as they are updated, but also
to check their consistency. The most complex relation is the functional to FPGA ex-
ecution platform relation, which generates from an AADL PIM (Fig. 5) an AADL
PSM (Fig. 6) describing the content of the synthesizable component of the specific
FPGA platform selected by the user.

Fig. 6. An AADL execution platform model generated from the RC Car functional model

Each thread of the functional model is transformed into a processor subcomponent,
which exhibits execution platform details such as clock and reset signals. The gener-
ated AADL FPGA component extends a template for the selected FPGA target. Grey

elements on the diagram are inherited from the template, which in this case includes a
clock. Green elements on the diagram have been added after the transformation to
take into account requirements for the specific FPGA. In this case, 2 UART (Univer-
sal Asynchronous Receiver/Transmitter) controllers (in green) have been added to fix
communication incompatibility between the brain controller and FPGA ports pre-
defined in the template. Adding these controllers is currently performed by a Java
procedure called at the end of the transformation, but the intent is to implement this as
a GMM relation. In this way, new refinement relations can be integrated in the mega-
model to target other execution platform specific needs.

4 Related Work

Several approaches have been proposed for GMM, most of them making use of mega-
models. A summary is presented in [8], with our GMM language derived from the
proposed unified definition. In [9], dynamical traceability management is proposed
through the categorization of relations into factual and obligation types, which was
also introduced in our language. In [14], another infrastructure for GMM is proposed
and implemented in Eclipse, which combines mega-models with model weaving.
However, it only supports basic functionality such as model navigation through tra-
ceability links. Automated production of the links and model synchronization are not
supported. Our work enhances these approaches with meta-model subsets and model
synchronization based on automated traceability link production. Our approach is also
extensible so that new relations and tools can be integrated as needed.

A difficulty in GMM is to identify the relationships that are needed between mod-
els. The GEMOC initiative [15] proposes an initial categorization of relations in three
different forms: interoperability, collaboration, and composition. Interoperability
supports the exchange of information across models with minimum coupling between
the models. It seems similar to model weaving proposed in [14]. Collaboration rela-
tionships support coupled development of models, where the development of a model
directly influences the form of other models. This is similar to our synchronization
relation, which influences the form of the associated models by maintaining their
consistency during model evolution. Finally, composition relationships combine in-
formation from several models to create new forms of models. This is similar to EMF
views [16], where several meta-models can be combined to provide new views on
models, similar to database views.

5 Conclusion and Perspectives

Our experiment in using GMM for our EDA tool shows that several benefits can be
obtained through explicit representation of the used meta-models and subsets, along
with relations between models. Interpretation of relations ensures models are properly
managed during their evolution to prevent errors introduced early in the development
process. We think every model-based IDE should include a GMM infrastructure. One
advantage of our GMM is that it was developed using rich and realistic modeling

languages, which revealed important needs such as meta-model subsets and improved
automated model synchronization.

However, many aspects of our infrastructure require improvements. Despite our
enhancements, the TGG language would benefit from a complete review to improve
aspects such as reuse of TGG elements across several TGGs. The study of other types
of relations as proposed in [15] is also of interest, and in particular the integration of
EMF views in GMM implementing meta-model composition relations. Finally, model
to meta-model conformance could be enforced during meta-model evolution,
represented as a conformance relation of obligation type, making use of frameworks
such as Edapt [17].

6 References

1. P. H. Feiler, Model-based Validation of Safety-critical Embedded Systems, Aerospace
Conference, pp. 1-10, 2010.

2. Y. Eustache, D. Blouin, M. Lanoë, J-P. Diguet, P. Coussy, Kaolin, a Model-based EDA
Tool to Program, Reuse or Retarget Embedded Systems on FPGAs, Data Automation and
Tests in Europe (DATE) conference, University Booth, 2014.

3. SAE International, Architecture Analysis and Design Language (AADL),
http://standards.sae.org/as5506b/.

4. IEEE Standard VHDL Language Reference Manual, ANSI/IEEE Std 1076-1993, 199.
5. V. Gaudel, A. Plantec, F. Singhoff, J. Hugues, P. Dissaux, J. Legrand, Enforcing Software

Engineering Tools Interoperability: An Example with AADL Subsets, IEEE International
Symposium on Rapid System Prototyping (RSP), pp. 59-65, 2013.

6. The Model Transformation Engine (MoTE), http://www.mdelab.de/mote/.
7. A. Schürr, Specification of graph translators with triple graph grammars, in Graph-

Theoretic Concepts in Computer Science, LNCS Volume 903, pp. 151-163, 1995.
8. R. Hebig, A. Seibel, H. Giese, On the Unification of Megamodels, Proc. of the 4th Interna-

tional Workshop on Multi-Paradigm Modeling (MPM), volume 42 of ECEASST, 2011.
9. A. Seibel, S. Neumann, H. Giese, Dynamic hierarchical mega models: comprehensive tra-

ceability and its efficient maintenance, Softw. Syst. Model, Volume 9, Issue 4, pp. 493-
528, 2010.

10. D. Blouin, A. Plantec, P. Dissaux, F. Singhoff, J-P. Diguet, Synchronization of Models of
Rich Languages with Triple Graph Grammars: An Experience Report, International Con-
ference in Model Transformation (ICMT), pp. 106-121, 2014.

11. The EMF Compare Framework, http://www.eclipse.org/emf/compare/.
12. D. Blouin, D. Chillet, E. Senn, S. Bilavarn, R. Bonamy, C. Samoyeau, AADL Extension to

Model Classical FPGA and FPGA Embedded within a SoC, International Journal of Re-
configurable Computing (IJRC), 2011.

13. The Leda RTL Checker, http://www.synopsys.com/tools/verification/.
14. F. Jouault, B. Vanhooff, H. Bruneliere, G. Doux, Y. Berbers, J. Bezivin, Inter-DSL coor-

dination support by combining megamodeling and model weaving, Proceedings of the
2010 Symposium on Applied Computing (SAC), 2010.

15. B. Combemale, J. DeAntoni, B. Baudry, R. B. France, J-M. Jezequel, J. Gray, Globalizing
Modeling Languages, Computer, vol.47, no.6, pp.68-71, June 2014.

16. The EMF Views Project, http://emfviews.jdvillacalle.com/.
17. The Edapt Project, http://www.eclipse.org/edapt/.

http://standards.sae.org/as5506b/
http://www.mdelab.de/mote/
http://www.eclipse.org/emf/compare/
http://www.synopsys.com/tools/verification/
http://emfviews.jdvillacalle.com/

