
Integrating Language and Ontology Engineering

Bruno Barroca‡, Thomas Kühne∗, Hans Vangheluwe†‡

† University of Antwerp, Belgium
‡ McGill University, Montréal, Canada

∗ Victoria University of Wellington, New Zealand

Keywords: Ontologies, FTG+PM, Properties, Meta-modeling Environments,
Description Logics, Semantic Mapping, Verification spaces

Abstract. Creating new modeling environments has become a relatively
low-cost investment thanks to meta modeling environments and language
workbenches that can automatically synthesize environments from lan-
guage specifications. However, the currently existing tools are focused on
language syntax and execution/simulation rather than providing means
to reason with semantic properties from the real world. It appears that
reasoning opportunities as they arise in ontology research (e.g., based on
description logics) are currently not exploited in the field of language en-
gineering. In this vision paper, we explore the integration of the hitherto
rather isolated areas of language engineering and ontology engineering
in order to exploit the potential of using reasoning for models expressed
in user-defined languages.

1 Introduction

The automated generation of modeling and programming environments can look
back at a long history – starting in the 1980’s [1] – of providing means to de-
fine the syntax and semantics of languages. Recently, influences from model-
driven development made it easier to define semantics more flexibly by means of
model-to-model transformations. However, most semantics definitions are still
concerned with execution or simulation.

Despite the common trend of increasing the return on investment by improv-
ing languages and tools, it appears that the basic ’grammar-ware’ principles of
meta modeling environments has not changed in over 30 years. However, we
can observe that the ability to chain transformations has enabled modelers to
learn more about their models – and thus the systems under study – than would
have been economically feasible in former days by defining a single transforma-
tion towards a particular platform: i.e., generating a compiler. The Formalism
Transformation Graph + Process Modeling (FTG+PM) [2] approach from the
area of multi-paradigm modeling is the most explicit example for this style of
modeling in which the output of one transformation is used as the input for
another one.

Proceedings of MPM 2014 77

The crucial aspect of this approach is that from an initial set of models, we
can have orthogonal transformations with totally different intents. In particu-
lar, each path in the transformation graph is designed to, from the initial set of
models, illuminate a particular set of properties of the system under study/de-
velopment, e.g., regarding termination, liveliness or even safety [3].

In this context, the main trend from the language engineering area, is to
establish a trace between the property checking results (in the leaves of a given
transformation chain) and the original model so that, for instance, the results
can be suitably interpreted by the modeler in a particular domain. In this pa-
per, we test yet another approach on this problem: we argue that one should
explicitly associate the properties of interest as an ontological type (i.e., intro-
duce ontological types explicitly as first-class citizens), and then test/check its
conformance by means of transformation(s) to the respective semantic domains
w.r.t. those properties.

To this end, we explore at the conceptual level, the integration of two hith-
erto unrelated areas: First, language engineering, with its support for model
representation and transformation, and second, ontologies with their rich tool
set for describing and inferring properties. In Section 2 we introduce a railway
system, that we will use as a running example to illustrate both challenges and
our proposed solution. In section 3, we present the context of the problem and
the ingredients that contribute to our proposed solution which is presented in
Section 4. Finally, we conclude in Section 5.

2 Case Study: The Railway System

Railway transportation is only one of the many sectors that have benefited from
the application of computer automation techniques ranging from early auto-
mated railway control to train scheduling [4].

2.1 General Requirements

First and foremost a railway system needs to support transport of people or
goods between endpoints. This basic function, however, is accompanied by ad-
ditional constraints and boundary conditions. For example, a railway system
must be affordable by end users and profitable for operators, placing certain
constraints on energy consumption, personnel cost, etc. Moreover, as with any
system where lives and or loss of large monetary investments are at stake, safety
is a critical concern. Preventing trains from derailing or colliding is crucial for a
railway system.

We observe that it is possible to separate the requirements into what hap-
pens, i.e., trains moving between endpoints, and how it happens, e.g., without
collisions. Generally speaking, we can distinguish between the mechanics of a sys-
tem (i.e., its execution semantics), and properties that can be associated with
the mechanics (with verification semantics).

Proceedings of MPM 2014 78

Integrating Language and Ontology Engineering

2.2 Execution Semantics

In the following, we will use a language to define a railway network (c.f. [5])
to describe the system mechanics. A railway network comprises a collection of
railway tracks organized into sections and connecting different train stations.
In order to avoid collisions, only one train is allowed in one section at a time.
Signals control when trains may enter and leave sections. The combination of
signals, their control logic, and track switches is called the interlocking system
and its purpose is to prevent conflicting train movements.

The behavior of such an interlocking system is specified in a control table
which embodies information about conflicting train routes. A formal description
of the control table in combination with information about the physical railway
layout could be regarded as a prescriptive model for the execution behavior of
the interlocking system.

2.3 Verification Semantics

While one could use the execution behavior of an interlocking system to simulate
the latter, this would only enable the detection of errors in the interlocking
system through testing. In order to gain certainty regarding the absence of any
potential conflicting train movements, it is necessary to formalize the respective
safety requirement and ensure that it is satisfied by the interlocking system under
study.

Somsak achieves the automated verification of an interlocking system by
translating it into a colored petri net (CPN) which can then be automatically
verified using CPN tools, a Petri Net model checker [5]. Each railway track repre-
sents a resource that should only be used by one train in order to avoid collisions,
and can therefore be directly mapped to a place in the CPN formalism. Despite
the fact that Somsak only verified three scenarios, this work is a good example
of how domain models (such as interlocking systems) can be automatically and
systematically verified by reusing effective algorithms developed in other domain
such as CPNs.

Note that safety concerns are just one example for the utility of verification
semantics. The railway operators may also be interested in the economics of
running the railway system and thus may want to convince themselves that
certain track layouts will achieve a desired throughput. In general, many such
properties will have to hold for a given system and will be required to occur in
conjunction, i.e., the system should be both economical to run and be safe to
use.

3 Linguistic Models versus Ontologies

It is worthwhile pointing out that both execution and verification represent two
different interpretations of one and the same model. Two different semantic
domains are used in order to answer different sets of questions regarding the same
model. The execution semantics tells us what may happen for a given interlocking

Proceedings of MPM 2014 79

Integrating Language and Ontology Engineering

system, while the verification semantics tells us whether the entirety of all that
may happen for a given interlocking system satisfies a particular property.

3.1 Natural vs. Verification Semantics

Intuitively, it appears that the execution semantics could be regarded as the
natural “meaning” of an interlocking system, while the verification semantics
appears to subject the interlocking system to a test. However, intuition is not
reliable and in the following we thus strive to identify intrinsic differences be-
tween these two kinds of semantics.

Both kinds of semantics obviously fulfill the minimal criterion of being map-
pings that are functional and total [6]. At first sight, it may furthermore appear
as if the two different kinds of semantics were on the same footing and thus
interchangeable. In our example, there appears to be a symmetric relationship
between

– the subset of safe interlocking systems,
– the subset of executions of safe interlocking systems, and
– the subset of elements in the verification space that satisfy the property

“safe”.

On closer examination, however, it becomes apparent that the roles of the two
different semantics cannot be swapped as there is an asymmetric dependency.
On the one hand, the space of all possible execution behaviors, as defined by
the execution semantics, can be partitioned by the properties it may satisfy.
In our example, the set of safe interlocking systems can be derived from the
subset of “safe” elements in the verification space and only then find a subset of
safe interlocking system executions in the overall set of all possible executions
of interlocking systems. On the other hand, it is not true that the verification
space can be usefully partitioned from the execution semantics. In our example,
this is trivial, since following our assumptions, we have no other way to decide
about the “safety” of a given interlocking system execution.

This asymmetric dependency may constitute an obstacle for purposes of our
conceptual integration. Fortunately, there exist technologies are a good fit in
order to

(a) enable the anchoring of natural semantics to models, and
(b) support the definition and organization of semantic properties

3.2 Language Engineering

A linguistic type model – often referred to as “metamodel” – is ideal for enabling
the attachment of natural semantics to models. Following our example, if we
define a “Railway DSL” grammar and well-formedness constraints combined in
the form of a linguistic type model, then we can determine the structure of all
elements that may occur in an interlocking system model. The linguistic type

Proceedings of MPM 2014 80

Integrating Language and Ontology Engineering

model is thus ideally suited to be used as the basis for transformation definitions
such as semantic mappings.

Existing metamodeling environments can synthesize complete environments
for configuring scenarios – such as the topology of the railway network, position-
ing of signaling devices, the control table logic, etc. – and even use the linguistic
type model as the basis for subsequent transformation (language) definitions [7].

Conformance of a model to a linguistic type model is typically granted by
construction. In special cases of “freehand” (as opposed to syntax directed)
editing and language evolution it may be necessary to check whether a model
conforms to a linguistic type model, but in most cases the model is the result
of using the linguistic type model as a generator, e.g., by structured editing or
model generation.

3.3 Ontology Engineering

An ontology comprises and organizes a number of concepts and may use de-
scription logic to express concept properties and relationships. While ontologies
in general contain very different kinds of concepts – of which so-called moment
types (properties) are only a particular subset – the technology associated with
them appears to be eminently suited to accommodate a taxonomy of properties
derived from the various verification semantics.

The most popular ontology language is the Web Ontology Language (OWL),
which along Common Logic (CL), and the Resource Description Framework
(RDF) is included in the Ontology Definition MetaModel (ODM) proposed by
the Object Management Group (OMG). The most advanced kind of reasoning
in ontology engineering is achieved by means of description logics (DLs). DLs
is a family of knowledge representation languages, which are used as logical
formalisms to support reasoning, e.g., in the context of the Semantic Web. DLs
are less expressive than first order logics, hence they are amenable to decidable
and efficient reasoning mechanisms.

The most interesting feature of these languages is their ability to infer new
knowledge, i.e., make implicit knowledge explicit. DLs language extensions span
from introducing the notion of time as partial-order relations such as in tem-
poral extensions [8]; introducing vagueness or incomplete concepts, such as in
fuzzy logics extensions [9]; introducing the notion of concepts with probability
values [10]; to introducing the ability to express possibility of event occurrence,
such as on possibilistic extension [11].

Conformance of a model to an ontological type, in contrast to linguistic
type model conformance, is never granted by construction. A conformance check
always requires the application of a certain interpretation – i.e., a semantic
mapping whose choice depends on the specific property that is to be validated
against – and then the subsequent ascertainment of whether or not the property
(or properties) associated with an ontological type hold(s) for the element that
is the result of the semantic mapping.

In general, ontological types are agnostic to the particular domain they are
applied to. For instance, in our example the safety property essentially embod-

Proceedings of MPM 2014 81

Integrating Language and Ontology Engineering

ies “absence of collisions” and could also be applied to a assembly line scenario
in which workpieces are transported and merged by conveyor belts. A different
semantic mapping would be required from an assembly line model into the ver-
ification space, but ascertaining whether the collision-free property holds based
on the respective element in the verification space by using a Petri Net model
checker would be identical to the railway example. For that, just consider that
instead of trains to Petri Net tokens, we would now have products to Petri Net
tokens; and instead of railway tracks to Petri Net Places, we would now have
conveyor belts to Petri Net Places; and the property to check is whether there
exist some situation in the entire set of possible situations where there are two
Tokens in the same Place.

While the above described language agnosticism allows ontological types and
their definition to be reused, it also means that it is not straightforward to asso-
ciated further ontological types to a model: for instance, consider the situation
where the only classification information known for a given model is a single on-
tological type. The latter can classify models from a whole range of languages so
it is not clear which semantic mapping (of many potentially applicable) would
have to be applied in order to validate it (the model) against another onto-
logical type. In contrast, if the linguistic type of a model is known (typically
by-construction in most modeling environments) then it is trivial to determine
which semantic mappings are available for it.

4 Integrating Languages with Ontologies

So far we have identified a particular subkind of semantics with associated prop-
erties that gives rise to ontological types (i.e., verification semantics), and fur-
thermore observed that linguistic types complement the latter. In the following,
we describe what a complete framework that encompasses language engineering
and ontology engineering could look like. Such an integrated approach is clearly
desirable since it allows us to not execute, simulate, and test models w.r.t. the
respective referents in the real world, but also to go beyond and reason about
their properties.

For instance, in our example, we could specify a railway ontology based on
notions concerning the economic efficiency and/or safety of railway topologies.
We could then infer the most economical, but also safe, train schedules using for
instance design space exploration techniques.

A complete framework for modeling with both linguistic and ontological
types, would typically use multiple formalism integration – in the style of FTG+PM
– and would have a number of desirable features:

(a) While transforming models across different formalisms, we should be able
to trace the properties that are being lost, preserved or created during such
transformations;

(b) It is rather likely that ontological types will be reusable across domains
(e.g., safety in the context of rail transportation and collision-free schedules

Proceedings of MPM 2014 82

Integrating Language and Ontology Engineering

in the context of assembly lines). This will greatly increase the return on
investment for developing the respective analysis approaches.

4.1 Conceptual Framework

We start our conceptualization from the well known model developed in [12] that
explores how linguistic symbols are related to the objects they represent.

Based on this conceptualization, our first attempt is presented in Figure 1 on
the left, where ‘System’ replaces the real world object, the ‘Ontological Type’
replaces thoughts (also called reference or Concept), and finally the ‘Linguistic
Type’ replaces symbol (also called ‘Sign’). Moreover, we present in the center of
the triangle, the model element, which in the modeling world is the first-class
entity that relates the System under study/development with both Ontological
and Linguistic types.

Linguistic
Type

re
p

re
se

n
ts

System

Ontological
Type

m
(Sentence)

m
(Sentence)

[[m]]
(Sentence)

Linguistic
Type

Semantic
Domain

Language

[[]]

Ontological
Type

Property

re
q

u
ir

es

Fig. 1. A base conceptual framework (on the left), and a refined version (on the right).

The Figure 1 on the right, extends our first attempt, where we unfold the ‘on-
tological instance-of’ relation between a given model m and its ontological type
(denoted in the Figure as ‘Ontological Type’). Notice that we start from a situa-
tion where although linguistic types are taken for granted (i.e., by-construction)
in modeling environments, the same is not true for ontological types. The un-
folding of this relation is therefore done by means of a semantic mapping [[]]
to a verification platform where a set of properties (denoted in the Figure as
‘Property’) relevant w.r.t. that given ‘Ontological Type’ can be verified. This
relevance is stressed in the Figure with the relation ‘requires’, which means that
a given ‘Ontological Type’ depends or includes as part of its intension, a given
set of properties.

One way of transversing the left side of this diagram is therefore, by assuming
that we know which Properties are required by a given Ontological Type, so
that we can choose the most appropriate verification platform and devise a
semantic mapping [[]] which can be realized by means of a model transformation.
This model transformation is then able to automatically transform arbitrary

Proceedings of MPM 2014 83

Integrating Language and Ontology Engineering

models m given that they do conform (in the linguistic sense) to a given meta-
model (or grammar) depicted in the Figure as ‘Linguistic Type’. The resulting
transformed model denoted as [[m]] by construction of the transformation itself
should also conform linguistically to the language from the verification platform
(denoted as ‘Semantic Domain Language’). The circle in this diagram is closed
by the satisfaction relationship (denoted as |=) between [[m]] and the Property
is established, which means that we can now conclude that the given model m
is indeed an ontological instance of the given Ontological Type.

It is important to mention here that in practice, there might be several dif-
ferent properties that a given Ontological Type may require. Therefore, we can
expect to have several different orthogonal semantic mappings [[]] using possibly
different kinds of verification mechanisms (and their associated semantics) in or-
der to be able to finally establish that ontological instance relationship between
a model and an ontological type.

4.2 Framework Instantiation

After describing the general terms of our conceptual framework, we will now look
at its instantiation in the particular case of our railway transportation example.

railway m

[[railway m]]

Railway
MM

CPN MM

[[]]

Safe

Collision-
free

re
q

u
ir

es

Railway
MM

CPN MM

Collision-
free

Safe

Fig. 2. Instantiation of the conceptual framework on the railway transportation exam-
ple (on the left), and the respective solution-partition space (on the right).

At the bottom left of Figure 2 (on the left), we see that the system under
study is an interlocking system in conjunction with a train scheduling system.
The model railway m at the bottom right, represents this system. The linguistic
type of railway m is the meta-model “Railway MM” to which it conforms syn-
tactically. At the top right is an interpretation of railway m that was chosen in
order to enable a reachability analysis. Such an interpretation can be achieved
by means of a model transformations of model railway m into a corresponding
Colored Petri Net [[railway m]]. The latter also has its own linguistic type (the
meta-model “CPN MM”) to which it conforms syntactically.

Proceedings of MPM 2014 84

Integrating Language and Ontology Engineering

The analysis of [[railway m]] is performed by unfolding the complete state-
space (e.g., by using the model-checking engine of a CPN tool). This state-space
is then queried for a property “Collision − free”, e.g., checking whether any
collision scenarios exist. This property “Collision−free” is depicted at the top-
left. Model railway m can be said to be an ontological instance of the ontological
type “Safe” (i.e., be called “safe”) if and only if its interpretation [[railway m]]
satisfies property Collision− free.

Finally, we show in Figure 2 (on the right) the solution space partitioning
complements the commuting diagram on the left. Notice that solutions are sys-
tems in the real world. On the one hand, given the ‘requires’ relation, the set
of safe solutions is a subset of collision-free solutions: in other words, ‘safe’ is
a stronger concept which may depend not only on being collision-free but also
from other concepts. On the other hand, given the semantic mapping [[]], the set
of solutions represented by models conforming to the Railway MM will always
be a subset of the total set of the solutions represented by models conforming
to the Colored Petri Nets CPN MM. Finally, given the above sets, we conclude
that the set defined by the commuting diagram on the left is defined by the
intersection of all of the sets defined on the right: i.e., a solution which has both
a Railway model representation and its respective CPN representation, which is
proven to be collision-free, and therefore an ontological instance of type Safe.

5 Conclusions

In this vision paper, we have proposed to integrate the technological spaces
of language engineering and ontology engineering in a manner that strengthens
language engineering to include concepts and techniques from ontology engineer-
ing. While modelers have already been successfully checking models for semantic
properties with various approaches in the past, to the best of our knowledge our
approach is the first to introduce ontological types with semantic properties as
first-class citizens and proposes to arrange them in taxonomies, thus exploiting
semantic relationships.

We have identified differences between ordinary, “natural” semantics and
verification semantics, observing that semantics of the latter kind are agnostic
to languages and partition sentences in a language. We have chosen to refer to
types that achieve such partitions as “ontological types”, referencing the fact that
they are based on semantic properties, rather than on syntactic conformance.

We could only touch upon the potential of using model exploration and infer-
ence engines to leverage a taxonomy of ontological types to a tool that supports
the identification of models that satisfy properties in multiple dimensions.

Nevertheless, in this paper we have contributed towards finding optimal ways
of combining linguistic type models with ontologies w.r.t. previous attempts [13,
14], which are rather more focused (with again) more syntactic issues than con-
ceptual ones. We also believe that our proposal is suitable to shed further light
on the most precise characterization of ontological vs linguistic classification as
presented in [15]. However, our use of the prefix “ontological” should not be

Proceedings of MPM 2014 85

Integrating Language and Ontology Engineering

construed as meaning that our notion of “ontological types” is exactly the same
as the “ontological types” discussed in [15]. While there is certainly large over-
lap, it remains to be seen whether our notion full subsumes the other, or rather
represent as subset of that may be best characterized as “moment ontological
types”.

References

1. T. Teitelbaum and T. Reps, “The Cornell Program Synthesizer: A syntax-directed
programming environment,” Commun. ACM, vol. 24, pp. 563–573, Sept. 1981.

2. S. Mustafiz, J. Denil, L. Lúcio, and H. Vangheluwe, “The FTG+PM framework
for multi-paradigm modelling: An automotive case study,” in Proceedings of the
6th International Workshop on Multi-Paradigm Modeling, MPM ’12, (New York,
NY, USA), pp. 13–18, ACM, 2012.

3. L. Lucio, S. Mustafiz, J. Denil, H. Vangheluwe, and M. Jukšs, “FTG+PM: An inte-
grated framework for investigating model transformation chains,” in SDL Forum,
pp. 182–202, 2013.

4. J. Pachl, Railway Operation and Control. VTD Rail Publishing, 2nd ed., 2009.
5. S. Vanit-Anunchai, “Modelling railway interlocking tables using coloured petri

nets,” in Coordination Models and Languages (D. Clarke and G. Agha, eds.),
vol. 6116 of Lecture Notes in Computer Science, pp. 137–151, Springer Berlin Hei-
delberg, 2010.

6. D. Harel and B. Rumpe, “Meaningful modeling: What’s the semantics of “seman-
tics”?,” IEEE Computer, vol. 37, no. 10, pp. 64–72, 2004.

7. T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and M. Wimmer, “Systematic
transformation development,” Electronic Communications of the EASST, vol. 21,
2009.

8. A. Artale, E. Franconi, M. Mosurovic, F. Wolter, and M. Zakharyaschev, “Tempo-
ral description logic,” in Handbook of Time and Temporal Reasoning in Artificial
Intelligence, pp. 96–105, MIT Press, 2001.

9. U. Straccia, “A fuzzy description logic for the semantic web,” in Fuzzy Logic and
the Semantic Web. Capturing Intelligence, Elsevier (2006) 73–90.

10. Z. Ding and Y. Peng, “A probabilistic extension to ontology language OWL,” in
In Proceedings of the 37th Hawaii International Conference On System Sciences
(HICSS-37), Big Island, 2004.

11. G. Qi, J. Z. Pan, and Q. Ji, “A possibilistic extension of description logics,” in In
Proc. of DL’07, 2007.

12. C. Ogden and I. A. Richards, “The meaning of meaning: A study of the influence
of language upon thought and of the science of symbolism.,” 8th ed. 1923. Reprint
New York: Harcourt Brace Jovanovich, 1923.

13. B. Henderson-Sellers, “Bridging metamodels and ontologies in software engineer-
ing,” J. Syst. Softw., vol. 84, pp. 301–313, Feb. 2011.

14. E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Retschitzegger, and M. Wim-
mer, “Lifting metamodels to ontologies - a step to the semantic integration of mod-
eling languages,” in In Proceedings of the ACM/IEEE 9th International Confer-
ence on Model Driven Engineering Languages and Systems (MoDELS/UML 2006,
pp. 528–542, Springer, 2006.

15. T. Kühne, “Matters of (meta-) modeling,” Software and Systems Modeling, vol. 5,
no. 4, pp. 369–385, 2006.

Proceedings of MPM 2014 86

Integrating Language and Ontology Engineering

