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Abstract. Ellipses generate accurate area-proportional Euler diagrams
for more data than is possible with circles. However, computing the re-
gion areas is difficult as ellipses have various degrees of freedom. Numer-
ical methods could be used, but approximation errors are introduced.
Current analytic methods are limited to computing the area of only two
overlapping ellipses, but area-proportional Euler diagrams in diverse ap-
plication areas often have three curves. This paper provides an overview
of different methods that could be used to compute the region areas of
Euler diagrams drawn with ellipses. We also detail two novel analytic
algorithms to instantaneously compute the exact region areas of three
general overlapping ellipses. One of the algorithms decomposes the region
of interest into ellipse segments, while the other uses integral calculus.
Both methods perform equally well with respect to accuracy and time.
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1 Introduction

Area-proportional Euler diagrams are used in various areas, such as genetics [24]
and information search [8], to represent both the set relations (by the intersecting
closed curves) and their cardinalities (by the area of the regions) [5]. Often these
diagrams are drawn for data with two or three sets and are Venn diagrams, like
those in Fig. 1, such that all the possible curve intersections are depicted [28].

Euler diagrams drawn with circles facilitate user comprehension due to their
smoothness, symmetry and good continuation that make the curves easily dis-
tinguishable even at intersections [3]. Most area-proportional Euler diagrams are
thus drawn with circles [28]. However, circles have limited degrees of freedom
(i.e., a centre and a radius) and draw accurate diagrams for any data with two
sets [5] but not three [6]. Polygons are more flexible and draw accurate diagrams
for any 3-set data [6], but their non-smooth curves impede comprehension [2].

Ellipses have more degrees of freedom (i.e., a centre, a semi-minor axis, a
semi-major axis, and an angle of rotation) than circles, but like circles are sym-
metric and smooth. Their helpful features have been long noted [5], but due to
difficulties in computing the region areas of the diagram, a drawing method that
uses ellipses (known as eulerAPE) was only recently devised [19].
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2 Region Areas of Euler Diagrams with Ellipses

Fig. 1. Area-proportional Venn diagrams for three sets, a, b and c, and set relation
cardinalities (A) {a = 100, b = 100, c = 100, ab = 5, ac = 5, bc = 5, abc = 5} and (B)
{a = 17671, b = 65298, c = 3, ab = 19904, ac = 12951, bc = 4, abc = 4816}. These diagrams
were accurately and automatically generated using eulerAPE [19].

Approximate methods could be used to compute the region areas of Euler
diagrams. However, these methods introduce error [15] that could distort the di-
agram and thus violate Tufte’s graphical integrity principle that “representation
of numbers, as physically measured on the surface of the graphic itself, should
be directly proportional to the numerical quantities represented” [27]. Though
humans are biased to area judgement [7], such accuracy and integrity is still im-
portant. Firstly, it is still unclear how areas in such diagrams are perceived and
what inaccuracies are not noticeable. Secondly, it is highly unlikely for an area
to be perceived in a same way by different individuals [18]. Tufte emphasized
that “graphical excellence begins with telling the truth about the data” [27] and
for this reason, he highly criticized metrics that scale objects (e.g., on maps [21])
based on how they could be perceived.

Analytic methods can compute the exact region areas of Euler diagrams, but
none of the current methods are appropriate for three general ellipses. Draw-
ing methods for area-proportional Euler diagrams use optimization search tech-
niques [6] and so, analytic methods that compute the region areas should be
computationally efficient to allow for the generation of accurate diagrams in a
time that maintains user’s attention.

In this paper, we discuss current methods to compute the region areas of
Euler diagrams with ellipses (Section 3) and we describe our two novel ana-
lytic methods to instantaneously (in 10 milliseconds) compute the region ar-
eas of Euler diagrams with three general ellipses (Section 4). Using one of our
analytic methods, eulerAPE (http://www.eulerdiagrams.org/eulerAPE) [19]
draws accurate area-proportional Venn diagrams with ellipses for a large major-
ity of random 3-set data (86%, N=10,000) in a relatively fast time (97% of the
diagrams within 1 second). The two analytic methods for computing the region
areas of three intersecting ellipses have not been previously detailed. Hence, this
forms the research contribution of this paper.

We start by introducing basic concepts and definitions in relation to ellipses.
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Region Areas of Euler Diagrams with Ellipses 3

2 Basic Concepts and Definitions

An ellipse is a simple closed curve characterized by (Fig. 2A): a centre, (γ1,γ2);
two semi-axes, α and β, where α ≥ β; an angle of rotation, θ, where 0 ≤ θ < 2π.
Since α ≥ β, α and β are respectively referred to as the semi-major axis and
semi-minor axis. An ellipse is in canonical form if (γ1,γ2) = (0,0) and θ = 0, so
that in the Cartesian coordinate system the ellipse is centred on the origin and
the ellipse’s semi-axes are along the x-axis and y-axis, as shown in Fig. 2B. An
ellipse with any (γ1,γ2) and θ is a general ellipse.

A B

Fig. 2. An ellipse and its properties in (A) general form and (B) canonical form.

The area of an ellipse is
παβ . (1)

The curve of an ellipse using a polar coordinate system with pole (or origin)
(γ1,γ2) and the polar axis a ray from (γ1,γ2) passing through α is defined as

ρ2=
α2β2

β2cos2ϕ + α2sin2ϕ

where ϕ is the polar angle between α and
a ray from (γ1, γ2) passing through a point on the ellipse .

(2)

An ellipse arc (⌢) is a connected portion of the ellipse curve (e.g., ⌢MN in
Fig. 3A). An ellipse sector (Â) is the space bounded by an ellipse arc and two
line segments between the ellipse’s centre and the arc’s endpoints (e.g., ÂMNO
in Fig. 3B). The area of an ellipse sector can be defined using (2) as

1

2

ϕ2

∫
ϕ1

ρ2dϕ =
α2β2

2

ϕ2

∫
ϕ1

dϕ

β2cos2ϕ + α2sin2ϕ

=
αβ

2
tan−1 (

α

β
tanϕ)]

ϕ2

ϕ1

where ϕ1 and ϕ2 are the polar angles of the endpoints of the arc
from α with respect to (γ1, γ2) and 0 < ϕ2 − ϕ1 ≤ 2π .

(3)
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4 Region Areas of Euler Diagrams with Ellipses

A B C

Fig. 3. (A) An ellipse arc, (B) an ellipse sector, and (C) an ellipse segment.

The value returned by (3) is the area of the ellipse sector from ϕ1 to ϕ2 in
an anticlockwise direction along the ellipse curve. Thus, to compute the area of
ÂMNO in Fig. 3B using (3), ϕ1 and ϕ2 should respectively be the polar angles of
M and N from α, which in this case is along the x -axis, with respect to (γ1,γ2),
which in this case is (0,0) or O. If instead, ϕ1 and ϕ2 are respectively the polar
angles of N and M from α with respect to O, the area computed by (3) is the
area of the ellipse minus the area of ÂMNO.

An ellipse segment (⌢−−) is the space bounded by an ellipse arc and a chord
that share the same endpoints (e.g., ⌢−−MN in Fig. 3C). An ellipse sector (ÂMNO)
is composed of an ellipse segment (⌢−−MN ) with the same ellipse arc as the sector
and a triangle (△MNO). Thus, the area of an ellipse segment can be defined as

Area of ⌢−−MN = Area of ÂMNO − Area of △MNO . (4)

The area of ÂMNO in (4) is (3) for the same arc endpoints as that of ⌢−−MN.
The polar coordinates representation of an ellipse curve in (2) assumes that

(γ1,γ2) is at the pole and α is along the polar axis of the coordinate system. So
(2) cannot represent a general ellipse.

The curve of a general ellipse can be defined parametrically as

x(t) = γ1 + α cos θ cos t − β sin θ sin t
y(t) = γ2 + α sin θ cos t + β cos θ sin t

where t is the parameter and 0 ≤ t ≤ 2π and (x(t), y(t))
are the Cartesian coordinates of a point on the ellipse curve .

(5)

In (5), t is the angular parameter that determines the position of a particle
moving along the ellipse curve, so that every value of t determines the Cartesian
coordinates (x (t), y(t)) of a point on the ellipse curve. As shown in Fig. 4, given
a point (x, y) on the ellipse curve, the corresponding value of t is determined
by drawing a line perpendicular to α that passes through (x, y) and intersects
with the auxiliary circle (i.e., a circle with radius α and centre (γ1,γ2) that is
the circumscribed circle of the ellipse; in red in Fig. 4) at a point P, and by then
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Region Areas of Euler Diagrams with Ellipses 5

computing the anticlockwise angle from α to the line passing through (γ1,γ2)
and P with respect to (γ1,γ2). The latter angle is the value of t. Since in Fig. 4,
θ = 0 and point (x, y) is on the top right quarter of the ellipse curve, the value
of t for (x, y) can be computed using any one of the following

t = cos−1 (
x − γ1
α

) or t = sin−1 (
y − γ2
β

) . (6)

If θ = 0 and the point (x, y) is on any other quarter of the ellipse curve, the
equations in (6) have to be adapted. For instance, if (x, y) is on the upper left
quarter of the ellipse curve, t is π minus the value of t in (6). If θ ≠ 0, the point
(x, y) has to be rotated by -θ about (γ1, γ2) before an equation of t in (6) or
adaptations of them can be used.

(x,y)

P

t

Fig. 4. Computing parameter t of the parametric representation of the curve of a
general ellipse, given the Cartesian coordinates (x, y) of a point on the ellipse curve.

Alternatively, the curve of a general ellipse can be defined by the set of points
(x, y) on the Cartesian plane that satisfy the implicit polynomial equation

((x − γ1) cos θ + (y − γ2) sin θ)
2

α2
+

((y − γ2) cos θ − (x − γ1) sin θ)
2

β2
= 1 . (7)

This is more complex to handle compared with the parametric representation in
(5) and the implicit polynomial equation that should be satisfied by the set of
points (x, y) that define the curve of an ellipse in canonical form, that is

x2

α2
+
y2

β2
= 1 . (8)

We now discuss available methods, after which we introduce our novel ana-
lytic methods.
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6 Region Areas of Euler Diagrams with Ellipses

3 Available Methods

3.1 Approximate Methods

A numerical quadrature method can be used to compute the region areas of any
number of intersecting curves irrespective of their shape. The drawing method
venneuler [28] uses this method to draw area-proportional Euler diagrams with
circles. In venneuler, each circle is drawn on a 200 × 200 pixel plane and each
pixel on each plane is set to 1 if it is in the circle or 0 if not. The area of each
region in the diagram is the sum of the value of all the pixels on all the planes
that are located in that region.

Such numerical approximation introduce errors in the calculation of the re-
gion areas, as shown in Fig. 5 for an Euler diagram drawn with ellipses. In Fig. 5A
and Fig. 5B, the same diagram is drawn on two identical 200 × 200 grids with a
difference in the placement of the diagrams on the grids. The magnified views
of regions ab, ac, bc and abc indicate that according to Fig. 5A there are 0 grid
squares or pixels that are only in region bc, while according to Fig. 5B there are
3. Similar differences can be noted for the other regions due to a difference in the
positioning of the diagrams on the grids. Using a larger grid and thinner outlines
for the curves could reduce inaccuracies, but such issues will still be inevitable.
Also, small regions (e.g., region bc in Fig. 5) could be considered missing even
though they are depicted. This could impede the drawing method from handling
diagrams with small regions and impede its optimization process from taking
a path that could lead to an improved solution. If, like venneuler, the drawing
method uses a steepest descent optimization approach, the analytic gradient
cannot be computed and the generated diagram is less likely to be accurate.

Fig. 5. The region areas of intersecting ellipses using a numerical quadrature method.

Checking whether a point is in a closed curve could be computationally com-
plex and expensive. With circles, venneuler takes the Cartesian coordinates of
the pixel’s location on the plane and applies them to the implicit polynomial
equation of the circle to verify whether the distance between the circle’s centre
and the pixel is less than the circle’s radius. If the latter is true, the pixel is in
the circle. However, checking if such a pixel is in a general ellipse and conducting
this check for all the pixels on all the planes is computationally expensive, as
ellipses have more degrees of freedom than circles and the implicit polynomial
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Region Areas of Euler Diagrams with Ellipses 7

equation of the curve of a general ellipse (7) is more complex. If instead, the im-
plicit polynomial equation of the curve of an ellipse in canonical form (8) is used,
both the ellipse and the pixel would have to be translated and rotated before
this simpler equation is used. Alternatively, a secant line passing through the
ellipse’s centre and the pixel to be checked could be drawn, and the intersection
points of this line with the ellipse could be computed. If the distance between the
ellipse’s centre and the intersection point that has the same polar angle (from
α about (γ1,γ2)) as that of the pixel is greater than the distance between the
ellipse’s centre and the pixel, then the pixel is in the ellipse. However, all of these
methods are more computationally expensive than those for circles.

Alternatively, the ellipses could be represented using regular convex polygons
and a standard polygon intersection algorithm could be used to compute the re-
gion areas. For instance, the drawing method VennMaster computes the region
areas of its Euler diagrams with polygons by applying the Gaussian integra-
tion theorem [17]. However, the region areas are not computed accurately and
small regions are often considered missing. The polygons should have numer-
ous vertices and small edges otherwise the curves would be highly non-smooth,
leading to unreliable approximations of the region areas. Polygon intersection
algorithms for polygons with numerous vertices are also more computationally
expensive than the numerical quadrature method [25].

Monte Carlo methods could also be used to approximate the region areas,
but due to repeated random sampling, they could be computationally expensive.

3.2 Analytic Methods

Analytic methods to compute the region areas of two [4] or three [5] intersecting
circles are available. For more circles, approximation methods are often used. For
ellipses, only two analytic methods are available: one by Eberly [9] and another
by Hughes and Chraibi [14].

Both methods are restricted to two ellipses. Eberly’s method is further re-
stricted to ellipses in canonical form. Hughes and Chraibi’s method can handle
any two general ellipses with any centre and angle of rotation. Both methods
compute the area of the overlapping region by first obtaining the area of the two
ellipse segments making up the region (as shown later in Fig. 6B). The area of
each ellipse segment is obtained by computing the area of an ellipse sector and
then subtracting the area of a triangle, as discussed in Section 2. The derivation
of the area of a sector of an ellipse in canonical form is obtained using integral
calculus. The representation of the ellipse curve is defined in polar coordinates
by Eberly and parametrically by Hughes and Chraibi. To handle general el-
lipses, Hughes and Chraibi first translate and rotate the general ellipses so they
are transformed into canonical form, and then compute the area of the required
ellipse segment using the same equation as that of ellipses in canonical form.

Though an analytic method might seem computationally expensive due to
the various degrees of freedom of ellipses, Hughes and Chraibi’s method has been
efficient enough to compute the area of two overlapping ellipses for simulations
of dynamic systems, such as an orbiting satellite with a solar calibrator [16].
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8 Region Areas of Euler Diagrams with Ellipses

4 Our Analytic Methods

We devised two general analytic methods for three ellipses, both of which can
handle ellipses that are not necessarily in canonical form. These include:

M1. Decomposition into ellipse segments;
M2. Using integral calculus.

These methods differ in the way they compute the area of the overlapping region
between two ellipses and that of an ellipse segment. Similar to Eberly’s [9] and
Hughes and Chraibi’s [14] methods, M1 decomposes the region of interest into
ellipse segments and uses an equation of the segment area of an ellipse in canoni-
cal form. M2 uses integral calculus to directly derive the equation of the required
enclosed region area without the need of any geometric transformations. M1 and
M2 are discussed later.

The general algorithm for computing the region areas of three intersecting
ellipses in a Venn diagram using either M1 or M2 is as follows:

Algorithm 1: ComputeRegionAreasOfThreeIntersectingEllipses (d)

Input: A Venn diagram d with three ellipses.
Output: regionAreas, a set of areas one for every region in d.

1. for each ellipse e in d do
2. ellipseAreas[e] ← area of e by (1)
3. end for
4. for each pair of ellipses e1 and e2 in d do
5. points[e1,e2] ← intersection points of e1 and e2 by Hill’s method [13]
6. overlapAreas[e1,e2] ← area of the overlapping region between e1 and e2

by M1 or M2 and points[e1,e2]
7. interiorPoints[e1,e2] ← the intersection point in points[e1,e2] that

is inside the third ellipse of d
8. end for
9. Decompose the region in all three ellipses of d into ellipse segments es1, es2,
es3 and triangle ts (as in Fig. 6D) using interiorPoints, which defines the
arc endpoints of es1, es2, es3 and the vertices of t

10. regionAreas[e1,e2,e3] ← ∑ areas of es1, es2, es3 by (4) and ts
11. for each pair of ellipses e1 and e2 in d do
12. regionAreas[e1,e2] ← overlapAreas[e1,e2] − regionAreas[e1,e2,e3],

where e3 is the other ellipse in d
13. end for
14. for each ellipse e in d do
15. otherAreas ← ∑ regionAreas[e,e1], regionAreas[e,e2], regionAreas[e,e1,e2],

where e1 and e2 are the two other ellipses in d
16. regionAreas[e] ← ellipseAreas[e] − otherAreas
17. end for
18. return regionAreas

8



Region Areas of Euler Diagrams with Ellipses 9

Algorithm 1 has been implemented for both M1 and M2 and for any possible
representation of a Venn diagram with three ellipses that are not necessarily in
canonical form and that intersect pairwise exactly twice. M1 and M2 as well as
the chosen method to compute the intersection points of the ellipses are discussed
in the next sections.

If the general intersecting ellipses do not always intersect each other exactly
twice, an extended version of Algorithm 1 would have to be implemented, so that
the various ways in which the ellipses can intersect would be handled (there can
be from zero up to four intersection points between two ellipses [9]). The method
we have chosen to compute the intersection points [13] returns all the intersection
points (i.e., zero up to four) between any two general ellipses. So the algorithm
can easily be extended by: (i) identifying the way each pair of ellipses intersect
from the number of intersection points between the two ellipses; (ii) decomposing
the relevant regions into ellipse segments and basic geometry shapes like triangles
or rectangles whenever necessary; (iii) using either M1 or M2 to find the area of
the overlapping region between two ellipses and the area of ellipse segments; (iv)
using (1) to compute the area of the ellipses; (v) using basic algebra to add and
subtract areas wherever necessary to calculate the region areas. In such cases, a
region in the diagram could be made up of multiple connected components and
so, its area would be the sum of the area of all of these components.

Fig. 6. Computing the area of the overlapping region between two ellipses and the area
of the region that is in all three ellipses using M1 and M2.

4.1 M1: Decomposition Into Ellipse Segments

To compute the area of the overlapping region of two general ellipses, M1 de-
composes the region into two ellipse segments, as in Fig. 6B. As explained in
Algorithm 1 and Fig. 6D, the region in all three ellipses is similarly decomposed
into ellipse segments and a triangle.

Equations defining the area of a segment of an ellipse in canonical form
can easily be derived and could be less complex than the ones for a general
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10 Region Areas of Euler Diagrams with Ellipses

ellipse. Such equations are already available. For example, Eberly [9] and Hughes
and Chraibi [14] provide two different equations based on the area of a sector
of an ellipse in canonical form. Eberly’s equation uses the polar coordinates
representation of the ellipse curve, while that of Hughes and Chraibi uses the
parametric representation of the ellipse curve.

M1 uses (4) to compute the area of an ellipse segment which, similar to
Eberly’s equation, uses the polar coordinates representation of the ellipse curve
in (2). As shown in Fig. 6B and Fig. 6D, the arc endpoints of an ellipse segment
are two of the intersection points of the three overlapping ellipses, which define
the arc in an anticlockwise direction along the ellipse curve (the importance of
this direction is explained in Section 2 in relation to (3)). The arc endpoints and
the ellipse are rotated by an angle of -θ about (γ1, γ2) and translated to (0,0), so
that the transformed ellipse is in canonical form. Rotation and translation are
affine transformations and so, the ellipse’s properties, its area and the area of
the required ellipse segment are preserved. The polar angle of each transformed
endpoint from α with respect to (0,0) is then computed, and together with
the transformed ellipse, these polar angles are used to compute the area of the
required ellipse segment using (4).

4.2 M2: Using Integral Calculus

M2 derives an equation of the area of the required enclosed region from definite
integrals that compute the area under an ellipse curve (or line) between two
given points. The equation of the curve of a general ellipse is used and so, M2
does not require any of the geometric transformations used in M1 to get the
ellipse in canonical form.

Let e1 and e2 be two ellipses that intersect at points i1 and i2, such that the
overlapping region is enclosed by an ellipse arc from i1 and i2 in an anticlockwise
direction along e1 and an ellipse arc from i1 and i2 in an anticlockwise direction
along e2. In M2, the area of the overlapping region between e1 and e2 is

Area under curve e1 from i1 to i2 + Area under curve e2 from i2 to i1 . (9)

This is illustrated in Fig. 6C for ellipses a and b in Fig. 6A, where a and b are
respectively e1 and e2 in (9), and iab1 and iab2 are respectively i1 and i2 in (9).

To compute the area of the region located in all three ellipses, M2 decomposes
the region into ellipse segments and a triangle, as in M1 and as shown in Fig. 6D,
where the arc endpoints of the ellipse segments and the vertices of the triangle
are defined by the intersection points of the three overlapping ellipses. Given a
segment of an ellipse e with an arc from i1 and i2 in an anticlockwise direction
along e and a secant line l intersecting e at i1 and i2, M2 defines the area of the
ellipse segment as

Area under curve e from i1 to i2 + Area under line l from i2 to i1 . (10)
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This is illustrated in Fig. 6E for the segment of ellipse a between iac2 and iab2
that is located in all three ellipses of Fig. 6A, where a is e in (9) and iac2 and
iab2 are respectively i1 and i2 in (9).

The area under a curve between two given points is defined by a definite in-
tegral. The curve of a general ellipse can be defined in different ways (Section 2).
However, it is not always so straightforward to handle some representations. For
instance, the implicit polynomial in (7) has to be converted to an explicit polyno-
mial before it can be used to find the area under an ellipse curve. The parametric
representation in (5) can be used as is and determining the antiderivative of this
representation is straightforward. So M2 uses the parametric representation of
the curve of the general ellipse in (5), that is x(t) and y(t), and defines the area
under the curve of a general ellipse e from (x1, y1) to (x2, y2) on e as follows:

If ∣x1 − x2∣ > ∣y1 − y2∣

If y = F (x) is the explicit definition of e as a function of x and x(t1)= x1 and
x(t2)= x2, the area under the curve e from (x1, y1) to (x2, y2) is

x2

∫
x1

F (x)dx =
t2

∫
t1

F (x(t))x′(t)dt =
t2

∫
t1

y(t)x′(t)dt =

t2

∫
t1

(γ2 + α sin θ cos t + β cos θ sin t) (−α cos θ sin t − β sin θ cos t)dt =

K1 sin 2t +K2 sin t +K3 cos 2t +K4 cos t +K5t]
t2
t1

where K1 =
αβ cos 2θ

4
, K2 = −γ2β sin θ , K3 =

(α2 + β2) sin 2θ

8
,

K4 = γ2α cos θ , K5 = −
αβ

2
.

(11)

Else (i.e., ∣x1 − x2∣ ≤ ∣y1 − y2∣)

If x = F (y) is the explicit definition of e as a function of y and y(t1)= y1 and
y(t2)= y2, the area under the curve e from (x1, 1) to (x2, y2) is

y2

∫
y1

F (y)dy =
t2

∫
t1

F (y(t))y′(t)dt =
t2

∫
t1

x(t)y′(t)dt =

t2

∫
t1

(γ1 + α cos θ cos t − β sin θ sin t) (−α sin θ sin t + β cos θ cos t)dt =

K1 sin 2t +K2 sin t +K3 cos 2t +K4 cos t +K5t]
t2
t1

where K1 =
αβ cos 2θ

4
, K2 = γ1β cos θ , K3 =

(α2 + β2) sin 2θ

8
,

K4 = γ1α sin θ , K5 =
αβ

2
.

(12)
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The value of t1 and t2 corresponding to (x1, y1) and (x2, y2) respectively is
computed as discussed in Section 2 in relation to (5) and (6).

Similarly, the area under a line l from (x1, y1) to (x2, y2) on l where m and
c are respectively the gradient and y-intercept of l is defined as:

If ∣x1 − x2∣ > ∣y1 − y2∣

If y =mx + c explicitly defines l as a function of x, the area under l from
(x1, y1) to (x2, y2) is

x2

∫
x1

(mx + c)dx =
mx2

2
+ cx]

x2

x1

(13)

Else (i.e., ∣x1 − x2∣ ≤ ∣y1 − y2∣)

If x =
y − c

m
explicitly defines l as a function of y, the area under l from

(x1, y1) to (x2, y2) is

1

m

y2

∫
y1

(y − c)dy =
1

m
(
y2

2
− cy)]

y2

y1

(14)

However, to compute the region area of the overlapping ellipses, the inter-
section points of the ellipses are required.

4.3 Computing the Intersection Points of the Ellipses

All the intersection points of the ellipses in a diagram can be obtained by com-
puting the intersection points of every ellipse pair.

An ellipse is a curve and so, the various methods of computing the intersection
points of two curves [11, 25] can be adapted for the intersection points of two
ellipses. Numerical methods, such as Bézier and internal subdivision [29], Bézier
clipping [26] and the Newton-Raphson method, could also be used. However,
as explained earlier, numerical approximation methods introduce error and can
distort the diagram.

The most common analytic methods include: (i) the resultant-based method
using for instance Bezout’s resultant [9, 10]; (ii) the Gröbner basis method [11];
(iii) the matrix-based method [13]. These methods have been used for various
areas (e.g., the resultant-based method [14]; the Gröbner basis method [23]; the
matrix-based method [1]).

Methods (i) and (ii) are more complex than (iii) as the roots of a quartic
polynomial have to be solved using Ferrari’s solution or other methods [12]. For
example, Hughes and Chraibi’s [14] analytic method for the region areas of two
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intersecting ellipses uses a numerical implementation of Ferrari’s solution [22] to
find the roots of the quartic polynomial. However, we only require the real roots
and so, finding all the roots of a quartic polynomial is a waste of computational
resources [12].

Using the matrix representation of conic sections and homogeneous trans-
formation matrices, method (iii) can compute the intersection points of the two
ellipses without referring to any quartic polynomials. This method has now been
extended to efficiently identify whether two solid ellipsoid intersect [1]. Thus, for
our analytic methods, we use Hill’s method [13] to compute the ellipses’ inter-
section points.

5 Evaluation of Our Methods

M1, M2 and an approximate method were used to compute the region areas of
8000 Venn diagrams with three ellipses whose properties were randomly gener-
ated and which intersect exactly twice pairwise. Some of these randomly gener-
ated diagrams had very small region areas that are barely visible like regions c
and bc in Fig. 1B. The computed areas were then compared. The approximate
method represented the ellipses as regular convex polygons and used a standard
polygon intersection algorithm to find the area of the regions and to compute
the intersection points.

The same areas were obtained by our analytic methods, M1 and M2 (with
an occasional insignificant difference of less than 10−4). The average percentage
error of the areas provided by the approximate method with respect to any one
of our analytic methods was 1.04%. M1 and M2 returned the same area for
small regions like those in Fig. 1B, but the approximate method disregarded
these regions as if they were missing and the represented set relations were non-
existent.

M1 and M2 computed the areas in around 10 milliseconds on an Intel Core
i7 CPU @2GHz with 8GB RAM, OS X 10.8.4 and Java Platform 1.6.0 51. This
response time is 10 times less than the 0.1 second limit for an instantaneous
response [20], and similar to that of numerical methods (e.g., venneuler’s [28]
response time is 1 millisecond using a numerical quadrature method on a Mac-
Book Pro @2.5Ghz with 2GB RAM and Java Platform 1.5). Thus, our analytic
methods can also be used for any other application, including simulations of
dynamic systems, where both accuracy and efficiency is important.

6 Conclusion

We have discussed methods to compute the region areas of Euler diagrams drawn
with ellipses. We first reviewed current available methods, namely approximate
and analytic methods, and we then described our two novel analytic methods to
compute the region areas of three general intersecting ellipses.

Methods that automatically draw area-proportional Euler diagrams with
three curves require a mechanism to compute the region areas of diagrams in
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relatively fast time. A recent drawing method eulerAPE [19] demonstrated the
benefits of ellipses in drawing such diagrams accurately and with smooth curves.
However, the region areas must first be computed accurately and an analytic
method is thus required. Current analytic methods are restricted to two ellipses
and so our methods are the first to calculate region areas for three ellipses.
One method decomposes the regions into ellipse segments and the other uses
integral calculus, but both return accurate region areas instantaneously (in 10
milliseconds), even when the diagram has very small regions as in Fig. 1B.

We implemented Algorithm 1 that measures the region areas of Venn dia-
grams with three curves and ellipses that intersect exactly twice pairwise. We
describe how to handle other Euler diagrams with three curves, but this extended
version is not yet implemented.

The regions of an Euler diagram with any number of ellipses can be de-
composed into ellipse segments and possibly a polygon (e.g., a triangle or a
quadrilateral). The area of the overlapping region between two ellipses and that
of an ellipse segment can be computed with our methods, while the area of an
ellipse and that of a polygon can be computed using standard geometry for-
mula. Thus, our methods can easily be extended to instantaneously compute
the region areas of Euler diagrams with any number of ellipses. Methods that
draw area-proportional Euler diagrams with more than three ellipses can then
be devised.
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