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Abstract. The characteristics of the images produced by advanced scan-
ning technologies has led to medical imaging playing a critical role in
modern healthcare. The most advanced medical scanners combine dif-
ferent modalities to produce multi-dimensional (3D/4D) complex data
that is time-consuming and challenging interpret. The assimilation of
these data is further compounded when multiple such images have to be
compared, e.g., when assessing a patient’s response to treatment or re-
sults from a clinical search engine. Abstract representations that present
the important discriminating characteristics of the data have the poten-
tial to prioritise the critical information in images and provide a more
intuitive overview of the data, thereby increasing productivity when in-
terpreting multiple complex medical images. Such abstractions act as
a preview of the overall information and allow humans to decide when
detailed inspection is necessary. Graphs are a natural method for ab-
stracting medical images as they can represent the relationships between
any pathology and the anatomical structures they affect. In this paper,
we present a scheme for creating abstract graph visualisations that fa-
cilitate an intuitive comparison of the anatomy-pathology relationships
within complex medical images. The properties of our abstractions are
derived from the characteristics of regions of interest (ROIs) within the
images. We demonstrate how our scheme is used to preview, interpret,
and compare the location of tumours within volumetric (3D) functional
and anatomical images.
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1 Introduction

Medical imaging plays an indispensable role in modern healthcare for diagnosis
and in the assessment of a patient’s response to treatment. Technological ad-
vancements have led to the creation of scanners that combine different imaging
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modalities into a single device and are capable of producing high resolution and
multi-dimensional (3D/4D) images. The first mainstream device was the combi-
nation of positron emission tomography (PET) and computed tomography (CT)
to produce a PET-CT scanner that provides volumetric (3D) anatomical (CT)
and functional (PET) data, and enables clinicians to visualise the spatial rela-
tionships between activity in a tumour with PET and the underlying location
from CT [1].

The interpretation of PET-CT images involves the assimilation of informa-
tion from both modalities simultaneously. This entails traversing the 3D image
as an ordered set of 2D slices and mentally reconstructing a spatial understand-
ing of the relationships between the anatomy and any pathology (disease); these
relationships are important for accurate diagnosis, for staging cancer, and classi-
fying different conditions [2]. This interpretation process is time consuming since
most modern scanners produce hundreds (sometimes thousands) of slices per im-
age volume. Alternatively, the images can be fused into a 3D rendering but this
requires several manual image-specific adjustments, e.g., visibility transfer func-
tions [3]. Interpretation is more problematic when clinicians need to interpret
and compare multiple image volumes at the same time, e.g., when comparing
multiple images to assess a patient’s response to treatment or when analysing
the results of a clinical image search engine.

Existing methods for comparing images can be found as part of medical
image retrieval engines [4-6]. Similar to Google Image Search!, most of these
search engines [4,5] present their retrieved images as a grid. Users then must
inspect and compare the pixel information of these images manually to select the
image most relevant to their query. However, such an approach is not feasible for
volumetric (3D) and multi-modality medical images due to the effort required
during interpretation (described above).

Tory and Moller [7] recommended several techniques that could assist hu-
mans in interpreting and analysing visualisations. They suggested that enhanced
recognition of higher level patterns in complex information could be achieved by
creating abstractions from the selective omission and aggregation of the original
data. Since graphs are a natural and powerful way of representing relational in-
formation [8], we propose that medical images could be visualised using graph ab-
stractions of the complex spatial relationships between pathology and anatomy.
In our prior work [6], we investigated this possibility by integrating 2D graph
abstractions as part of a medical image retrieval engine. A user study revealed
that the users found the abstractions helpful in determining which images were
relevant to their query [6]. Users were able to eliminate dissimilar images based
on the tumour locations revealed in the abstraction without needing to inspect
the irrelevant images in detail but the 2D nature of the visualisation meant that
some information was obscured.

In this paper we present a scheme for constructing graph abstractions of
relational information derived from medical images. In our method the proper-
ties of the graph abstractions are derived from the visual characteristics of the

! http://images.google.com
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images they represent. Our aim is to create an abstraction that will act as a
summary or preview of the main content of an image and thus enable users to
decide when detailed inspection is necessary, especially in the context of deter-
mining image similarity [9]. The critical element is to preserve the spatial layout
of the important visual information while simplifying the overall visualisation.
We demonstrate our scheme on PET-CT images of patients with lung cancer.
PET-CT (as given earlier) is representative of modern complex medical images
that stand to benefit most from such abstractions. Our evaluation compares 2D
and 3D graph abstractions of medical images. We also compare the different
information from abstractions showing large objects (organs and tumours) and
smaller key points (landmarks).

2 Methods

2.1 Scheme for Creating Graph Abstractions

Figure 1 shows the overview of our abstraction scheme. As a first stage we
detect regions of interest (ROIs) within the images. These regions can be single
pixels (e.g., key points) or they can be a collection of pixels that represent a
particular object (e.g., pixels representing an organ). We then extract features
from individual ROIs. Spatial relationships are calculated using location of the
ROIs and their proximity to others. The ROI features and relationships are used
to construct a graph abstraction which is then visualised.

In the following subsections, we describe two realisations of our scheme. The
first realisation is an abstraction of the relationships between objects within the
images. The second realisation is an abstraction of the relationships between key
points within the images. Both realisations follow the same overall process but
use different techniques to detect the ROIs, extract the features, and construct
the graphs. We currently do not perform any post-processing in our two reali-
sations to allow us to examine the base visualisations so we can determine what
optimisations are necessary.

We chose to abstract objects for the first realisation because these objects
represent the structures defined in cancer staging literature [2,10]. However,
accurate volumetric segmentation techniques are needed for object delineation.
Such techniques are currently not available for all image modalities or objects.
For this reason, we chose key points for the second realisation because they are
powerful tools for recognising similar structures in different images regardless of
scale and orientation transformations [11]. This is useful when comparing medical
images due to the naturally occurring variation in patients (e.g., different organ
sizes).

2.2 Abstraction of Objects

Given that our examples are patients with lung cancer we chose as ROIs the
tumours and major anatomical structures above the diaphragm. We extracted
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Fig. 1: Overview of the process to create graph abstractions of medical images.

the left and right lungs from the CT images using a well-established adaptive
thresholding segmentation algorithm [12]. We also extracted the brain and medi-
astinum from the CT images using manual connected thresholding. The tumours
in the PET images were segmented by first detecting the locations with a lo-
cal peak radiotracer uptake (high image intensity) and then performing 40%
connected thresholding in the neighbourhood of the peaks [13].

We analysed the 3D ROIs and extracted from each the volume (size), centroid
(absolute location), and distance to other ROIs. It is possible to extract more
features from these ROIs, e.g., as described by Kumar et al. [14]. Here, we
list only those features used specifically in this paper for creating our graph
abstractions.

The visualisation was created as follows:

1. Each object (segmented ROI) was represented by a single node on the graph.
2. The position of each graph node was derived from the coordinates of the
centroid of the ROL.

. The proximity of the ROIs was used to determine the edge links [14].

. The size of each graph node was based upon the volume of the ROIs.

5. The colour of each graph node was determined according to the structure it
represented (e.g., all tumours were given the same colour).

6. The final position and size of each node (and the lengths of the edge links)
were adjusted according to the size of the rendering.

=
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2.3 Abstraction of Key Points

We used a 3D equivalent of the Gaussian pyramid method of Lowe [11] to detect
key points in the form of Difference-of-Gaussian extrema in each of the image
volumes. Each key point was represented by a 3D coordinate, a scale factor, and
orientation parameters. We filtered the key points to retain only those CT points
that were in proximity to PET key points, and vice versa. Two key points were
determined to be in close proximity if the 3D distance between the coordinates
of the two points was less than or equal to any of their scale factors. This filtering
step eliminated key points that did not contribute to any relationship between
tumour and anatomy.

We then extracted scale-invariant feature transform (SIFT) descriptors using
a 3D SIFT feature extractor [15] on these key points. We used k-means clustering
separately on the PET and CT descriptors to divide these descriptors into 200
groups (100 for CT and 100 for PET) [16].

The visualisation was created as follows:

1. Each key point was represented by a single node on the graph.

2. The position of each graph node was derived from the key point’s 3D coor-
dinates.

3. Two nodes were linked by an edge if they were in close spatial proximity to
each other. Proximity was determined in the same way as the filtering step
described above.

4. The colour of each node was determined by the group to which its descriptor
belonged. As such, two nodes with descriptors in the same group would have
the same colour.

5. The final position and size of each node (and the lengths of the edge links)
were scaled according to the size of the rendering.

2.4 Implementation

We produced 2D and 3D visualisations of the graphs derived from our abstraction
scheme. The 2D visualisation of our abstraction was implemented using the Java
Universal Network/Graph (JUNG) library [17]. The 3D graph abstraction was
implemented using WebCoLa [18].

3 Results and Discussion

Figure 2 shows four coronal PET-CT slices from a patient study. The PET and
CT images have been fused (overlaid) and a colour table is used to highlight the
PET functional information. The areas of high activity (bright yellow spots) in
the thorax indicate the presence of lung tumours in all the slices. There were
seven tumours segmented from this volume; several are not shown in any of these
slices. Note that these images show the patient ‘facing forward’ and as such the
patient’s left side appears on the right side of the images, and vice versa.
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Fig. 2: Four coronal slices from the PET-CT study to be abstracted. The PET and CT
images have been ‘fused’. The bright yellow spots in the chest are potential tumour
sites.

Figure 3 shows a 2D graph abstraction of the objects inside the PET-CT
volume shown in Figure 2. The grey nodes represent tumours while the coloured
nodes represent different anatomical structures. The abstraction shows that all
the tumours were identified in the right lung (brown node) and that several
of these tumours invaded the mediastinum (red node). This was the abstraction
that we integrated into a PET-CT image retrieval engine in our previous work [6].

The 3D graph abstraction of the objects in the same PET-CT image is shown
in Figure 4. The 3D abstraction reduces the occlusion of the tumour nodes in
Figure 3. It is also easier to see where a tumour occurs in 3D space (above or
below an organ, in the anterior or posterior parts of the body, etc.). The 3D ab-
straction had an improved ability, over the 2D abstraction, when discriminating
between images based upon the anatomical location of tumours.

Figure 5 shows a 3D graph abstraction of the key points inside the PET-
CT volume. There were 518 nodes in the abstraction corresponding to 518 key
points from an image containing almost 6 million pixels. Due to the number of
key points, this abstraction is filled with large groups of interconnected nodes
thus leading to a large number of edge crossings. However, it is also possible to
see nodes (key points) that form components of the graph that are connected to
the central component by a small number of vertices. These components, marked
with blue arrows, indicate interrelated points of interest within the image that
are isolated from other areas.

Figure 6 shows the 3D graph abstraction of a different PET-CT image. The
abstraction was generated using the same camera position in Figure 5. There
were 360 nodes in the abstraction. The blue arrows indicate components of the
graph that are connected to the central part of the visualisation by a small num-
ber of vertices. The low level of correspondence among these structures suggests
a low degree of similarity between the two PET-CT images abstracted by these
graphs. This conclusion was supported by the clinical reports. This abstraction
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Fig.3: A 2D graph abstraction of the objects within Figure 2.

Fig.4: A 3D graph abstraction of the objects within Figure 2.

therefore made it possible to compare images based on the arrangement and
groupings of the key points within the images.

Both the object and key point graph abstractions provide new views of the
content of the PET-CT image. The object abstractions depict the location of
the tumours and the structures that they affect. These abstractions summarise
information that a clinician could potentially use when staging a cancer or when
determining if a patient’s prognosis is improving [2]. The key point abstractions
can show the complex interrelations within the image. An important property of
these images is when a portion of the graph is not highly connected with other
parts of the graph; then depending on the image features, such components may
be areas of further investigation, e.g. sites of new disease, tumour necrosis, etc.
The 3D abstraction of these key points offers the opportunity for node merging
or clustering to identify large objects of interest in different images because key
points were originally used for object recognition [11].
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Fig.5: A 3D graph abstraction of the key points within Figure 2. The blue arrows
indicate components of the graph representing isolated areas of interest in the image.

A limitation of our abstractions is the densely connected graph (see central
parts of Figures 5 and 6). The densely connected graph is a result of the ver-
tex layout being dependent upon the physical location of the image key points.
Important information could then be hidden within these dense graphs, e.g., tu-
mours within the mediastinum (the mediastinum is the central part of the chest).
Grouping vertices that represent similar image features and that are pairwise ad-
jacent into a single “super-vertex” would improve clarity in the visualisation of
key points. This is a clique detection problem, which is computationally expen-
sive.

Another limitation is that our abstractions may obscure detailed pixel infor-
mation. However, since each node corresponds to a physical location within the
image, it is possible to create links between the abstractions and the pixel data.
In this manner, the abstraction can be used as a map of the important areas
in the image. We implemented such a map for a PET-CT retrieval engine [6];
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Fig.6: A 3D graph abstraction of the key points within a different PET-CT image. The
blue arrows point to isolated components. A comparison with Figure 5 shows that the
abstractions (and thus their corresponding PET-CT images) are not similar.

clicking on an abstract node would outline the ROI in multiple views of the
corresponding PET-CT image. Linking nodes on the abstraction to the pixel
data is an interaction that can facilitate a more detailed understanding of the
complex pixel data [7].

4 Conclusions

We present a scheme for creating graph abstractions that summarise the content
within medical images. We provided 2D and 3D examples of our abstractions
applied to 3D PET-CT images of patients with lung cancer. Our abstractions
showed how complex image content could be summarised and interpreted.

In future work, we will adapt our abstractions to more complex diseases, e.g.,
lymphoma, which can have multiple clusters of tumours throughout the body.
The abstraction of these images will be more complex and will require further
optimisation of the properties and graph layout. We will investigate enhance-
ments to our abstraction by hierarchically grouping related nodes based on the
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spatial location of nodes in relation to body regions (head, thorax, abdomen,
limbs) and by clustering cliques into a single representative node.
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