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ABSTRACT 
Cross-domain recommender systems aim to generate or enhance 
personalized recommendations in a target domain by exploiting 
knowledge (mainly user preferences) from other source domains. 
Due to the heterogeneity of item characteristics across domains, 
content-based recommendation methods are difficult to apply, and 
collaborative filtering has become the most popular approach to 
cross-domain recommendation. Nonetheless, recent work has 
shown that the accuracy of cross-domain collaborative filtering 
based on matrix factorization can be improved by means of content 
information; in particular, social tags shared between domains. In 
this paper, we review state of the art approaches in this direction, 
and present an alternative recommendation model based on a novel 
extension of the SVD++ algorithm. Our approach introduces a new 
set of latent variables, and enriches both user and item profiles with 
independent sets of tag factors, better capturing the effects of tags 
on ratings. Evaluating the proposed model in the movies and books 
domains, we show that it can generate more accurate 
recommendations than existing approaches, even in cold-start 
situations. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search and 
Retrieval – information filtering. G.1.3 [Numerical Analysis]: 
Numerical Linear Algebra – singular value decomposition. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Recommender systems, collaborative filtering, cross-domain 
recommendation, social tagging. 

1. INTRODUCTION 
Recommender systems [2] have been successfully used in 
numerous domains and applications to identify potentially 
relevant items for users according to their preferences (tastes, 
interests and goals). Examples include suggested movies and TV 
programs in Netflix1, music albums in Last.fm2, and books in 
Barnes&Noble3. 

                                                                 
1 Netflix online movies & TV shows provider, http://www.netflix.com 
2 Last.fm music discovery service, http://www.lastfm.com 
3 Barnes&Noble retail bookseller, http://www.barnesandnoble.com 

Even though the majority of recommender systems focus on a 
single domain or type of item, there are cases in which providing 
the user with cross-domain recommendations could be beneficial. 
For instance, large e-commerce sites like Amazon4 and eBay5 
collect user feedback for items from multiple domains, and in 
social networks users often share their tastes and interests on a 
variety of topics. In these cases, rather than exploiting user 
preference data from each domain independently, recommender 
systems could exploit more exhaustive, multi-domain user models 
that allow generating item recommendations spanning several 
domains. Furthermore, exploiting additional knowledge from 
related, auxiliary domains could help improve the quality of item 
recommendations in a target domain, e.g. addressing the cold-start 
and sparsity problems [7]. 

These benefits rely on the assumption that there are similarities or 
relations between user preferences and/or item attributes from 
different domains. When such correspondences exist, one way to 
exploit them is by aggregating knowledge from the involved 
domain data sources, for example by merging user preferences 
into a unified model [1], and by combining single-domain 
recommendations [3]. An alternative way consists of transferring 
knowledge from a source domain to a target domain, for example 
by sharing implicit latent features that relate source and target 
domains [15][17], and by exploiting implicit rating patterns from 
source domains in the target domain [9][14]. 

In either of the above cases, most of the existing approaches to 
cross-domain recommendation are based on collaborative 
filtering, since it merely needs rating data, and does not require 
information about the users’ and items’ characteristics, which are 
usually highly heterogeneous among domains. 

However, inter-domain links established through content-based 
features and relations may have several advantages, such as a 
better interpretability of the cross-domain user models and 
recommendations, and the establishment of more reliable methods 
to support the knowledge transfer between domains. In particular, 
social tags assigned to different types of items –such as movies, 
music albums, and books–, may act as a common vocabulary 
between domains [6][17]. Hence, as domain independent content-
based features, tags can be used to overcome the information 
heterogeneity across domains, and are suitable for building the 
above mentioned inter-domain links. 

In this paper, we review state of the art cross-domain 
recommendation approaches that utilize social tags to exploit 
knowledge from an auxiliary source domain for enhancing 
collaborative filtering rating predictions in a target domain. 
                                                                 
4 Amazon e-commerce website, http://www.amazon.com 
5 eBay consumer-to-consumer website, http://www.ebay.com  
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Specifically, we focus on several extensions of the matrix 
factorization technique proposed in [6], which incorporates latent 
factors related to the users’ social tags. By jointly learning tag 
factors in both the source and target domains, hidden correlations 
between ratings and tags in the source domain can be used in the 
target domain. Hence, for instance, a movie recommender system 
may estimate a higher rating for a particular movie tagged as 
interesting or amazing if these tags are usually assigned to books 
positively rated. Also, books tagged as romantic or suspenseful 
may be recommended to a user if it is found that such tags 
correlate with high movie ratings. 

Enrich et al. [6] presented several recommendation models that 
exploit different sets of social tags when computing rating 
predictions, namely tags assigned by the active user to the item for 
which the rating is estimated, and all the tags assigned by the 
community to the target item. Despite their good performance, 
these models do have difficulties in cold-start situations where no 
tagging information is available for the target user/item.  

In this paper, we propose a method that expands the users’ and 
items’ profiles to overcome these limitations. More specifically, 
we propose to incorporate additional parameters to the above 
models, separating user and item latent tag factors in order to 
capture the contributions of each to the ratings more accurately. 
Furthermore, by modeling user and item tags independently we 
are able to compute rating predictions even when a user has not 
assigned any tag to an item, or for items that have not been tagged 
yet. For such purpose, we adapt the gSVD++ algorithm [10] –
designed to integrate content metadata into the matrix 
factorization process– for modeling social tags in the cross-
domain recommendation scenario. 

Through a series of experiments in the movies and books 
domains, we show that the proposed approach outperforms the 
state of the art methods, and validate the main contribution of this 
work: A model that separately captures user and item tagging 
information, and effectively transfers auxiliary knowledge to the 
target domain in order to provide cross-domain recommendations. 

The reminder of the paper is structured as follows. In section 2 we 
review state of the art approaches to the cross-domain 
recommendation problem, focusing on algorithms based on matrix 
factorization, and on algorithms that make use of social tags to 
relate the domains of interest. In section 3 we provide a brief 
overview of matrix factorization methods for single-domain 
recommendation, and in section 4 we describe their extensions for 
the cross-domain recommendation case. In section 5 we present 
and discuss the conducted experimental work and obtained 
results. Finally, in section 6 we summarize some conclusions and 
future research lines. 

2. RELATED WORK 
Cross-domain recommender systems aim to generate or enhance 
personalized recommendations in a target domain by exploiting 
knowledge (mainly user preferences) from other source domains 
[7][19]. This problem has been addressed from various perspectives 
in several research areas. It has been faced by means of user 
preference aggregation and mediation strategies for the cross-
system personalization problem in user modeling [1][3][16], as a 
potential solution to mitigate the cold-start and sparsity problems in 
recommender systems [5][17][18], and as a practical application of 
knowledge transfer techniques in machine learning [9][14][15]. 

We can distinguish between two main types of cross-domain 
approaches: Those that aggregate knowledge from various source 
domains to perform recommendations in a target domain, and 

those that link or transfer knowledge between domains to support 
recommendations in the target domain. 

The knowledge aggregation methods merge user preferences (e.g. 
ratings, social tags, and semantic concepts) [1], mediate user 
modeling data exploited by various recommender systems (e.g. user 
similarities and user neighborhoods) [3][16], and combine single-
domain recommendations (e.g. rating estimations and rating 
probability distributions) [3]. The knowledge linkage and transfer 
methods relate domains by common information (e.g. item 
attributes, association rules, semantic networks, and inter-domain 
correlations) [5][18], share implicit latent features that relate source 
and target domains [15][17], and exploit explicit or implicit rating 
patterns from source domains in the target domain [9][14]. 

Cross-domain recommendation models based on latent factors are a 
popular choice among knowledge linkage and transfer methods, 
since they allow automatically discovering and exploiting implicit 
domain relations within the data from different domains. For 
instance, Zhang et al. [20] proposed an adaptation of the matrix 
factorization model to include a probability distribution that 
captures inter-domain correlations, and Cao et al. [4] presented a 
method that learns similarities between item latent factors in 
different domains as parameters in a Bayesian framework. Aiming 
to exploit heterogeneous forms of user feedback, Pan et al. [15] 
proposed an adaptive model in which the latent features learned in 
the source domain are transferred to the target domain in order to 
regularize the matrix factorization there. Instead of the more 
common two-way decomposition of the rating matrix, Li et al. [14] 
used a nonnegative matrix tri-factorization to extract rating patterns 
–the so-called codebook– in the source domain. Then, rather than 
transferring user and item latent factors, the rating patterns are 
shared in the target domain and used to predict the missing ratings. 

Despite the ability of matrix factorization models to discover 
latent implicit relations, there are some methods that use tags as 
explicit information to bridge the domains. Shi et al. [17] argued 
that explicit relations established through common social tags are 
more effective for such purpose, and used them to compute user-
user and item-item cross-domain similarities. In this case, rating 
matrices from the source and target domains are jointly factorized, 
but user and item latent factors are restricted so that they are 
consistent with the tag-based similarities.  

Instead of focusing on sharing user or item latent factors, Enrich et 
al. [6] studied the influence of social tags on rating prediction. 
More specifically, the authors presented a number of models based 
on the well-known SVD++ algorithm [11], to incorporate the effect 
of tag assignments into rating estimations. The underlying 
hypothesis is that information about how users annotate items in 
the source domain can be exploited to improve rating prediction in 
a different target domain, as long as a set of common tags between 
the domains exists. In all the proposed models, tag factors are 
added into the latent item vectors, and are then combined with user 
latent features to compute rating estimations. The difference 
between these models is the set of tags considered for rating 
prediction. Two of the proposed models use the tags assigned by 
the user to a target item, and the other model takes the tags of the 
whole community into account. We note that the first two models 
require the active user to tag, but not rate the item in the target 
domain. In all the models, the transfer of knowledge is performed 
through the shared tag factors in a collective way, since these 
factors are learned jointly for the source and the target domains. 
The results reported in the movies and books domains confirmed 
that shared knowledge can be effectively exploited to outperform 
single-domain rating predictions. 
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The model we propose in this paper follows the same line as 
Enrich et al. [6], in the sense that tags are directly integrated as 
latent factors into the rating prediction process, as opposed to 
Shi’s and colleagues’ approach [17], which estimates the ratings 
using only user and item factors. The main difference of our 
model with the approaches presented in [6] is the way in which 
the rating matrix is factorized. Rather than using a single set of tag 
factors to extend the item’s factorization component, we introduce 
additional latent variables in the user component to separately 
capture the effect of tags utilized by the user and the tags assigned 
to the item. For this purpose, we adapt the gSVD++ algorithm 
[10], which extends SVD++ by introducing a set of latent factors 
to take item metadata into account for rating prediction. In this 
model, both user and item factors are respectively enhanced with 
implicit feedback and content information, which allows 
improving the accuracy of rating predictions. 

3. OVERVIEW OF MATRIX 
FACTORIZATION METHODS 
Since the proposed cross-domain recommendation model is built 
upon a matrix factorization collaborative filtering method, in this 
section we provide a brief overview of the well-known standard 
rating matrix factorization technique, and the SVD++ and 
gSVD++ algorithms, which extend the former by incorporating 
implicit user feedback and item metadata, respectively. 

3.1 MF: Standard rating matrix factorization 
Matrix factorization (MF) methods [8][12] are a popular approach 
to latent factor models in collaborative filtering. In these methods, 
the rating matrix is decomposed as the product of low-rank 
matrices of user and item latent features. In its most basic form, a 

factor vector	 ∈ ℝ is assigned to each user , and a factor 

vector	 ∈ ℝ	to each item	, so that ratings are estimated as: 

̂ =  +  (1)

where the term		is a baseline estimate that captures the 
deviation of user and item ratings from the average, and is defined 
as: 

 =  +  +  (2)

The parameter  corresponds to the global average rating in the 
training set, and  and  are respectively the deviations in the 
ratings of user  and item  from the average. The baseline 
estimates can be explicitly defined or learned from the data. In the 
latter case, the parameters of the model are found by solving the 
following regularized least squares problem: 

min∗,∗,∗
  −  −  −  − 



,∈ℛ
+  +  + ‖‖ + ‖‖ 

(3)

In this formula, the parameter  controls the amount of 
regularization to prevent high model variance and overfitting. The 
minimization can be performed by using gradient descent over the 
set ℛ of observed ratings [8]. This method is popularly called 
SVD, but it is worth noticing that it is not completely equivalent 
to the singular value decomposition technique, since the rating 
matrix is usually very sparse and most of its entries are actually 
not observed. 

For simplicity purposes, in the following we omit the baseline 
estimates. They, nonetheless, can be easily considered by adding 
the  term into the rating estimation formulas. 

3.2 SVD++: Adding implicit user feedback to 
the rating matrix factorization method 
The main motivation behind the SVD++ algorithm, proposed by 
Koren [11][13], is to exploit implicit additional user feedback for 
rating prediction, since it is arguably to use a more available and 
abundant source of user preferences. 

In this model, user preferences are represented as a combination 
of explicit and implicit feedback, searching for a better 
understanding of the user by looking at what items she rated, 
purchased or watched. For this purpose, additional latent factors 
are combined with the user’s factors as follows: 

̂ =   + ||

  
∈

 (4)

In the previous formula,	 ∈ ℝ,  ∈ ℝ,  ∈ ℝ represent 

user, item, and implicit feedback factors, respectively.		is the 
set of items for which the user		provided implicit preference, 
and		is the number of latent features. 

Similarly to the SVD algorithm, the parameters of the model can 
be estimated by minimizing the regularized squared error loss 
over the observed training data: 

min∗,∗,∗
  −   + ||


  
∈




,∈ℛ

+ ‖‖ + ‖‖ +  


∈
 

(5)

Again, the minimization problem can be efficiently solved using 
stochastic gradient descent. 

3.3 gSVD++: Adding item metadata to the 
rating matrix factorization method 
The gSVD++ algorithm [10] further extends SVD++ considering 
information about the items’ attributes in addition to the users’ 
implicit feedback. 

The model introduces a new set of latent variables  ∈ ℝ	for 

metadata that complement the item factors. This idea combined 
with the SVD++ algorithm leads to the following formula for 
computing rating predictions: 

̂ =  + ||  
∈




 + ||

  
∈

 (6)

The set  contains the attributes related to item	, e.g. comedy 
and romance in the case of movie genres. The parameter  is set 
to 1 when the set  ≠ ∅, and 0 otherwise. We note that in the 
previous formula, both user and item factors are enriched with 
new uncoupled latent variables that separately capture information 
about the users and items, leading to a symmetric model with four 
types of parameters. Again, parameter learning can be performed 
by minimizing the associated squared error function with gradient 
descent: 

min
∗,∗,∗,∗

  −  + ||  
∈




 + ||

  
∈





,∈ℛ

+ ‖‖ + ‖‖ +  


∈
+  



∈
 

(7)
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The use of additional latent factors for item metadata is reported 
to improve prediction accuracy over SVD++ in [10]. In this paper, 
we adapt this model to separately learn user and item tag factors, 
aiming to support the transfer of knowledge between domains. 

4. TAG-BASED MODELS FOR CROSS-
DOMAIN COLLABORATIVE FILTERING 
In this section, we first describe the tag-based cross-domain 
collaborative filtering models presented in [6], which are an 
adaptation of the SVD++ algorithm, and next introduce our 
proposed model, which is built upon the gSVD++ algorithm. 

4.1 Adaptation of SVD++ for Tag-based 
Cross-domain Collaborative Filtering  
The main hypothesis behind the models proposed in [6] is that the 
effect of social tags on ratings can be shared between domains to 
improve the rating predictions in the target domain. In that work, 
three different adaptations of the SVD++ algorithm were explored 
that utilize tags as implicit user feedback to enhance the item 
factors, as opposed to user factors like in the original model. 

The first of the algorithms proposed by Enrich et al. is the 
UserItemTags model, which only exploits the tags  that the 
active user  assigned to the target item : 

̂ =   +
1

||
 

∈
 (8)

We note here that if the user has not tagged the item, i.e.,  =
∅, then the model corresponds to the standard matrix factorization 
technique. Also, even though the tag factors  are only combined 
with the item factors	, the user and item factorization 
components are not completely uncoupled, since the set  still 
depends on the user	. 

An improvement over the model was also presented in [6], based 
on the observation that not all the tags are equally relevant (i.e. 
discriminative) to predict the ratings. The proposed alternative is 
to filter the tags in the set  that are not relevant according to 
certain criterion. In that work, the Wilcoxon rank-sum test is 
performed for each tag to decide if the mean rating significantly 
changes in the presence/absence of the tag in the dataset. In this 
model, rating predictions are computed in an analogous manner: 

̂ =   +
1

||
 

∈
 (9)

Here, the set  ⊆  only contains those tags for which 
the p-value of the abovementioned test is	 < 0.05. This method 
was called as UserItemRelTags. 

As noted by the authors, the previous methods are useful when the 
user has tagged but not rated an item. However, these methods do 
not greatly improve over the standard matrix factorization 
technique in the cold-start situations where new users or items are 
considered. Aiming to address this limitation, a last approach was 
proposed, the ItemRelTags model: 

̂ =   +
1

||  
∈

 (10)

Now, the set  contains all the relevant tags assigned by the 
whole community to the item	, with possible repetitions. Tags 
that appear more often contribute with more factors to the 

prediction, and  is the number of times tag  was applied to 
item	. In this case, the normalization factor is || =
∑ ∈ .  

We note that the set  does not depend on the user, and that 
the user and item components of the factorization are fully 
uncoupled. This has the advantage that tag factors can also be 
exploited in the rating predictions for new users for whom tagging 
information is not available yet, improving over the standard 
matrix factorization method. The ItemRelTags model, however, 
does not take into account the possibility that the user has tagged 
different items other than the one for which the rating is being 
estimated. In such cases, it may be beneficial to enrich the user’s 
profile by considering other tags the user has chosen in the past as 
evidence of her preferences. In the next subsection, we propose a 
model that aims to exploit this information to generate more 
accurate recommendations. 

Similarly to the SVD++ algorithm, all of the above models can be 
trained by minimizing the associated loss function with stochastic 
gradient descent. 

4.2 Adaptation of gSVD++ for Tag-based 
Cross-domain Collaborative Filtering 
Although the previous recommendation models can successfully 
transfer tagging information between domains, they suffer from 
some limitations. The UserItemTags and UserItemRelTags models 
cannot do better than the standard matrix factorization if the user 
has not tagged the item for which the rating is being estimated, 
while the ItemRelTags model does not fully exploits the user’s 
preferences expressed in the tags assigned to other items. 

In this paper, we propose to adapt the gSVD++ algorithm by 

introducing an additional set of latent variables  ∈ ℝ that 
enrich the user’s factors and better capture the effect of her tags in 
the rating estimation. Specifically, we distinguish between two 
different sets of tags for users and items, and factorize the rating 
matrix into fully uncoupled user and item components as follows: 

̂ =  +
1
||

 
∈




 +
1
||

 
∈

 (11)

The set  contains all the tags assigned by user	 to any item. 
Respectively,  is the set of tags assigned by any user to item	, 
and plays the role of item metadata  in the gSVD++ 
algorithm. As in the ItemRelTags model, there may be repeated 
tags in each of the above tag sets, which we account for by 
considering the number of times a tag appears in  or , 
respectively. In (11),  is the number of items on which the user 
 applied tag	, and  is the number of users that applied tag  to 
item	. As previously, tag factors are normalized by || =
∑ ∈  and	|| = ∑ ∈ , so that factors  and	 do not 

dominate over the rating factors  and	 for users and items with 
a large number of tags. 

In the proposed model, which we call as TagGSVD++, a user’s 
profile is enhanced with the tags she used, since we hypothesize 
that her interests are better captured, and that transferring this 
information between domains can be beneficial for estimating 
ratings in the target domain. Likewise, item profiles are extended 
with the tags that were applied to them, as in the ItemRelTags 
model. 

The parameters of TagGSVD++ can be learned from the observed 
training data by solving the following unconstrained minimization 
problem: 

36



min
∗,∗,∗,∗

 , , ∈, ∈
,∈ℛ

= min
∗,∗,∗,∗

 1
2  −  +

1
||

 
∈




 +
1
||

 
∈





,∈ℛ

+ 2‖‖
 + ‖‖ + ‖‖

∈
+‖‖

∈
 

(12)

The factor 1 2⁄  simplifies the following derivations with no effect 
on the solution. As in the previous models, a minimum can be 
found by stochastic gradient descent. For completeness, in the 
following we list the update rules of TagGSVD++ taking the 
derivatives of the error function in (12) with respect to the 
parameters: 




= −  +
1
||

 
∈

 +  




= −  +
1
||

 
∈

 +  



= −

||

 +
1
||

 
∈

 + 								∀ ∈  




= −

||

 +
1
||

 
∈

 + 							∀ ∈  

where the error term	 is  − ̂. In the training phase, we 
loop over the observed ratings simultaneously updating the 
parameters according to the following rules: 

 ←  −   −   + 
||
∑ ∈   

 	←  	−   −   + 
||

∑ ∈   

 ←  −   −  ||
 + 

||
∑ ∈ , ∀ ∈  

 ←  −   −  ||
 + 

||
∑ ∈ , ∀ ∈  

The learning rate  determines to what extent the parameters are 
updated in each iteration. A small learning rate can make the 
learning slow, whereas with a large learning rate the algorithm 
may fail to converge. The choice of both the learning rate and the 
regularization parameter  is discussed later in section 5.3. 

5. EXPERIMENTS 
We have evaluated the proposed TagGSVD++ algorithm (section 
4.2) in a cross-domain collaborative filtering setting, by 
empirically comparing it with the single-domain matrix 
factorization methods (section 3) and the state-of-the-art cross-
domain recommendation approaches described in section 4.1.   

5.1 Dataset 
We have attempted to reproduce the cross-domain dataset used in 
[6], aiming to compare our approach with those presented in that 
paper. For the sake of completeness, we also describe the data 
collection process here. 

In order to simulate the cross-domain collaborative filtering 
setting, we have downloaded two publicly available datasets for 
the movies and books domains. The MovieLens 10M dataset6 
(ML) contains over 10 million ratings and 100,000 tag 
assignments by 71,567 users to 10,681 movies. The LibraryThing 
dataset7 (LT) contains over 700,000 ratings and 2 million tag 
                                                                 
6 MovieLens datasets, http://grouplens.org/datasets/movielens 
7 LibraryThing dataset, http://www.macle.nl/tud/LT 

assignments by 7,279 users on 37,232 books. Ratings in both of 
the datasets are expressed on a 1-5 scale, with interval steps of 
0.5.  

Since we were interested in analyzing the effect of tags on rating 
prediction, we only kept ratings in MovieLens on movies for 
which at least one tag was applied, leaving a total of 24,564 
ratings. Also following the setup done by Enrich et al., we 
considered the same amount of ratings in LibraryThing, and took 
the first 24,564 ratings. We note, however, that the original 
dataset contained duplicate rows and inconsistencies, i.e., some 
user-item pairs had more than one rating. Hence, we preprocessed 
the dataset removing such repetitions and keeping only the 
repeated ratings that appeared first in the dataset’s file. We also 
converted the tags to lower case in both datasets. Table 1 shows 
the characteristics of the final datasets. 

Table 1. Details of the datasets used in the experiments after 
preprocessing. 

 MovieLens LibraryThing 
Users 2,026 244 
Items 5,088 12,801 
Ratings 24,564 24,564 
Avg. ratings per user 12.12 100.67 
Rating sparsity 99.76% 99.21% 
Tags 9,529 4,598 
Tag assignments 44,805 72,943 
Avg. tag assignments per user 22.16 298.95 
Ratio of overlapping (shared) tags 13.81% 28.62% 

5.2 Evaluation methodology 
As mentioned above, we have compared the performance of the 
proposed model against the single-domain matrix factorization 
baselines from section 3, and the state-of-the-art tag-based 
algorithms described in section 4.1. All these methods are 
summarized next:  

MF The standard matrix factorization method trained by 
stochastic gradient descent over the observed ratings of both 
movies and books domains. 

SVD++ An adaptation of MF to take implicit data into account. In 
our experiments, the set  contains all the items rated by user . 

gSVD++ An extension of SVD++ to include item metadata into 
the factorization process. In our experiments, we have considered 
as set of item attributes	 the tags  assigned to item  by any 
user. Note that, as tags are content features for both movies and 
books, this method is suitable for cross-domain recommendation, 
since knowledge can be transferred through the metadata (tag) 
factors. This differs from the proposed TagGSVD++ in that users 
are modeled as in SVD++ by considering rated items as implicit 
feedback instead of their tags. Also, normalization of the implicit 
data factors on the user component involves a square root; see 
equations (6) and (11). 

UserItemTags A method that expands an item ’s profile with 
latent factors of tags that the target user assigned to . Its 
parameters are learned by simultaneously factorizing the rating 
matrices of both source and target domains. 

UserItemRelTags A variation of the previous method that only 
takes relevant tags into account, as determined by a Wilcoxon 
rank-sum test. 
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