
Computer Security Training Recommender for Developers

Muhammad Nadeem, Edward B. Allen, Byron J. Williams
Department of Computer Science and Engineering

Mississippi State University
Mississippi State, MS, USA

{mn338, edward.allen, byron.williams}@msstate.edu

ABSTRACT
Vulnerable code may cause security breaches in software systems

resulting in loss of confidential data and financial losses for the

organizations. Software developers must be given proper training to

write secure code. Conventional training methods do not take the

code written by the developers over time into account, which makes

these training sessions less effective. We propose a Computer

Security Training Recommender to help identify focused and

narrow areas in which developers need training. The proposed

recommender system leverages the power of static analysis

techniques to suggest the most appropriate training topics for

different software developers; moreover it utilizes public

vulnerability repositories to suggest community accepted solutions

to different security problems. This paper presents an architecture of

the proposed recommender system and a proof-of-concept case

study. We found that vulnerabilities, flagged in source code by static

analysis tools, can be mapped to relevant articles in a vulnerability

repository. Hence, the mitigation strategies given in such articles

may be used as a resource to train individual software developers.

Preliminary empirical evaluation shows that the proposed system is

promising.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Information flow

General Terms

Security, Experimentation

Keywords
Recommender system, security vulnerabilities, training, CWE

1. INTRODUCTION
The proposed recommender system is based on the static analysis of

code written by software developers over time. Static analysis tools

e.g., FindBugs report suspected security and other vulnerabilities

present in source code. These results may be used as the basis for

recommending the most appropriate training topics to the software

developers who contributed to writing those modules, hence

improving their skill in terms of software security.

We utilize the valuable knowledge in vulnerability repositories such

as Common Weakness Enumeration, CWE [2], which is contributed

by software security experts across the globe, and is available for

public use for free.

2. PROPOSED ARCHITECTURE
The proposed architecture of the recommender system, which is an

extension to our previous work [1], is shown in Figure 1 below.

Figure 1. Architecture of the proposed system

The Software Code Repository contains code and metadata which is

analyzed by the recommender system.

The Static Code Analysis Module contains static analysis tool(s)

which scan the given code repository to find vulnerabilities.

The Developers’ Performance Assessment Module creates a profile

for each developer containing the description of vulnerabilities

induced in the code over time.

A Public vulnerability repository contains information on

vulnerabilities, potential mitigations, and consequences etc.

Examples are NVD [3] and CWE [2].

A Custom training database refers to a database of custom designed

training modules on various topics.

The Recommendation Module calculates the similarity scores

between vulnerability descriptions and the articles from

vulnerability repositories.

The Training Delivery Module delivers the training modules to the

developers.

Copyright is held by the author/owner(s).
RecSys 2014 Poster Proceedings, October 6–10, 2014, Foster City,

Silicon Valley, USA.

Software Code

Repository

Static Code Analysis

Module

M
etad

ata

Recommendation

Module

Training Delivery

Module

Developer

Video

streaming
IDE plugin

Email and

others

Custom

training

database

Developers’

Performance

Assessment Module

Public

vulnerability

repositories

Table 1. Relevance of CWE articles for flagged security vulnerabilities

Vulnerability types in

Security Category
Recommended CWE Articles with the titles

TFIDF

Score
Relevance

Cross site scripting

vulnerability

CWE 079 Improper Neutralization of Input During Web Page Generation 1.0470 High

CWE 644 Improper Neutralization of HTTP Headers for Scripting Syntax 0.4749 Medium

Hardcoded constant database

password

CWE 522 Insufficiently Protected Credentials 0.7739 High

CWE 259 Use of Hard-coded Password 0.7359 High

CWE 256 Plaintext Storage of a Password 0.6858 High

CWE 640 Weak Password Recovery Mechanism for Forgotten Password 0.6342 Medium

CWE 798 Use of Hard-coded Credentials 0.5803 High

CWE 261 Weak Cryptography for Passwords 0.5737 Medium

CWE 620 Unverified Password Change 0.5231 Low

CWE 309 Use of Password System for Primary Authentication 0.5142 Low

CWE 187 Partial Comparison 0.5003 Low

CWE 260 Password in Configuration File 0.4536 Medium

CWE 258 Empty Password in Configuration File 0.3816 Medium

CWE 263 Password Aging with Long Expiration 0.3794 Low

HTTP Response splitting

vulnerability

CWE 113 Improper Neutralization of CRLF Sequences in HTTP Headers 1.5627 High

CWE 650 Trusting HTTP Permission Methods on the Server Side 0.6569 High

CWE 644 Improper Neutralization of HTTP Headers for Scripting Syntax 0.5360 High

Non-constant SQL string

passed to execute method

CWE 089 Improper Neutralization of Special Elements used in SQL stmt. 0.4768 High

CWE 484 Omitted Break Statement in Switch 0.3839 Low

3. EVALUATION
We conducted a proof of concept case study to evaluate the

feasibility of mapping vulnerabilities to articles in CWE repository.

Table 2. Summary of static code analysis

Category
Flagged

vulnerability types

Total

Occurrences

Bad practice 25 195

Correctness 19 64

Dodgy code 20 226

Experimental 2 31

Internationalization 1 105

Malicious code vulnerability 8 323

Multithreaded correctness 1 1

Performance 15 220

Security 4 14

Total 95 1179

An open source system, Tolven 2.0, having 418K lines of code in

2957 Java modules, was the target source code. It has been used in

other studies [5] as well. For static code analysis, we used the open

source tool FindBugs 2.0.3. Every category listed in Table 2 has a

number of flagged vulnerability types, e.g., there are 4 types of

security vulnerabilities with 14 occurrences in total. A short

description of each type in security category is given in Table 3.

Table 3. Flagged Security vulnerability types

Vulnerability types in Security Category Occurrences

Cross site scripting vulnerability 11

Hardcoded constant database password 1

HTTP Response splitting vulnerability 1

Non constant SQL string passed to execute method 1

Total 14

We used Vector Space Model (VSM) with term frequency-inverse

document frequency (TFIDF) [4] weights to calculate the similarity

between the vulnerability descriptions and CWE articles. Out of 95

flagged vulnerability types listed in Table 2, 81 were successfully

mapped to the CWE articles. Due to space limitation, we only list

the CWE articles mapped for each vulnerability in “security”

category in Table 1. TFIDF score and manually calculated

relevance by subject expert are also shown for each CWE article.

4. CONCLUSION AND FUTURE WORK
The proof of concept case study demonstrated the practical

feasibility of automatically finding relevant security articles based

on source code vulnerabilities. Though, the current implementation

uses only the CWE articles, however other vulnerability databases

e.g., National Vulnerability Database, NVD, host useful data related

to security checklists, security related software flaws,

misconfigurations, and impact metrics. By utilizing the NVD

database along with CWE articles, the scope of our recommender

system may expand. Another short term goal is to use more than

one static code analysis tools so that false positive detections may

be reduced by comparing the outputs of multiple tools.

5. REFERENCES
[1] Muneer, S., Nadeem, M., and Allen, E. B., 2014.

Recommending Training Topics for Developers Based on

Static Analysis of Security Vulnerabilities, In Proceedings of

the 52nd ACM Southeast Conference, (Kennesaw, GA, Mar.

28-29, 2014). ACMSE’14. ACM New York, NY.

[2] CWE, Common Weakness Enumeration, A Community-

Developed Dictionary of Software Weakness Types,

http://cwe.mitre.org, accessed Apr. 30, 2014.

[3] NVD, National Vulnerability Database Version 2.2,

https://nvd.nist.gov, accessed Apr 25, 2014.

[4] Binkley, D., & Lawrie, D. 2010. Information retrieval

applications in software development. Encyclopedia of

Software Engineering, 231-242.

[5] Austin, A. and Williams, L. 2011. One Technique is Not

Enough: A Comparison of Vulnerability Discovery

Techniques, In Proceedings of the 5th International

Symposium on Empirical Software Engineering and

Measurement (Banff, Canada, September 22-23, 2011).

ESEM’11. CPS, Los Alamitos, CA, 97-106.

