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Abstract. SystemC is widely used in hardware/software codesign. Al-
though it is also used for the design of safety-critical applications, existing
formal verification techniques for SystemC are still hardly used in indus-
trial practice. The main reasons for this are scalability issues, the lacking
support for many practically relevant SystemC language constructs, and
that counter-examples are not always easy to use for debugging. In this
paper, we present an approach for the formal verification of SystemC
designs using the BLAST model checker. The main advantages of our
approach are: First, we enable a fully automatic verification of SystemC
designs that makes use of counter-example guided abstraction refine-
ment. Second, we support a large subset of SystemC, including pointers,
arrays, and structs. Third, we ease debugging by keeping the structure of
the design transparent to the designer. We demonstrate the applicability
of our approach with experimental results from an Anti-Slip Regulation
and Anti-Lock Braking system.
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1 Introduction

Embedded systems are often used in domains where a failure results in high
financial losses or even in serious injury or death, e. g., in cars, airplanes and
transportation systems. This makes it indispensable to ensure their correctness
with systematic and comprehensive verification techniques. At the same time,
embedded systems typically consist of deeply integrated hardware and software
components, which makes comprehensive verification a difficult challenge. A lan-
guage that is widely used for modeling such systems is the system level design
language SystemC [10]. SystemC enables modeling and simulation of both hard-
ware and software on various abstraction levels. SystemC designs often serve
as reference model for the remainder of the development process. This in turn
makes the correctness of SystemC designs a crucial issue. With simulation alone,
it is not possible to cover all input scenarios and corner-cases may be overlooked.
Only formal verification techniques can provide the degree of assurance needed
for such key models in the design process.



In this paper, we present an approach for the formal verification of SystemC
designs using the software model checker BLAST [1]. With our approach, we
tackle the scalability issue by applying the BLAST model checker’s capabil-
ity for counter-example guided abstraction refinement. At the same time, the
BLAST model checker supports a large subset of C, including pointers, arrays,
and structs. With that, it is also very well-suited for supporting a large subset
of SystemC designs. Our main contribution is an interpretation of the SystemC
semantics that is executable as a sequential, non-deterministic C program, and
keeps the structure of the design transparent to the designer, which is very im-
portant for debugging. We have implemented an automatic transformation from
SystemC into the input language of BLAST, and thus we can verify SystemC
designs using the BLAST model checker fully automatically. We demonstrate the
practical applicability of our approach with a case study from the automotive
domain, namely an Anti-Slip Regulation and Anti-Lock Braking System.

The rest of this paper is structured as follows: In the next section, we briefly
introduce the preliminaries that are necessary for understanding the remainder of
the paper. In Section 3, we summarize related work. In Section 4, we present the
main contribution of this paper, namely our approach for the formal verification
of SystemC designs using the BLAST model checker. We present experimental
results in Section 5 and conclude in Section 6.

2 Preliminaries

In this section, we briefly introduce the preliminaries that are necessary to un-
derstand the remainder of the paper.

2.1 SystemC

SystemC is a system-level design language and a framework for HW/SW co-
simulation. The semantics of SystemC is informally defined in an IEEE stan-
dard [10]. SystemC is implemented as a C++ class library, which provides the
language elements for the description of hardware and software, and allows for
the modeling of both hardware and software on different levels of abstraction. It
also features an event-driven simulation kernel, which enables the simulation of
the design during the whole development process.

Like typical hardware description languages, SystemC supports the notion of
delta-cycles, which impose a partial order on parallel processes. This means that
the execution is split into an evaluate and an update phase. In the first phase,
concurrent processes are evaluated. This may include read and write accesses to
so-called primitive channels, which store changes in temporary variables and do
not update their channel state until the update phase. This ensures that although
the processes are serialized, they all work on the same channel states (i. e., input
data). A delta-cycle lasts an infinitesimal amount of time, and an arbitrary,
finite number of delta-cycles may be executed at one point in simulation time.
Note that the order in which processes are executed within a delta-cycle is not
specified in [10], i. e., it is inherently non-deterministic.



2.2 BLAST

The software model checker BLAST (Berkely Lazy AbStraction verification
Tool) [1] is an open source tool for the automatic verification of temporal logic
properties of C programs. It was developed at the University of California, Berke-
ley. BLAST can be used both for program verification and for test case gen-
eration. The decision procedure used in BLAST is based on the paradigm of
counter-example guided abstraction refinement (CEGAR) and lazy abstraction
[7]. The CEGAR loop starts with a coarse abstraction of the program, and
iteratively checks the abstract program against the specification. If there is a
spurious counter-example in the abstract program, which is due to the impreci-
sion of the abstraction, it is step-wise refined until the program is proved safe,
or a non-spurious counter-example is found. Lazy abstraction is a technique
that improves this iterative process by searching the abstract state space on the
fly, and by only refining the coarse abstraction along the path of the spurious
counter-example, leaving the abstraction in other parts unchanged. The use of
CEGAR together with lazy abstraction makes BLAST strong when applied to
data-intensive systems, in particular if strong abstractions can be found.

3 Related Work

There exist several approaches to provide a formal semantics for SystemC. Many
of them rely on the transformation of SystemC designs into some sort of state
machine, e.g. [6, 14, 15]. Habibi and Tahar [6] transform untimed SystemC mod-
els into equivalent state machines but do not maintain the structure of the
underlying SystemC. Traulsen et al. [14] map SystemC to PROMELA, but only
handle SystemC designs on an abstract level, do not model the SystemC sched-
uler and do not support primitive channels. Zhang et al. [15] introduce a for-
malism called SystemC waiting-state automata, which model SystemC designs
at the delta-cycle level. They also do not model the scheduler and they do not
consider complex interactions between processes. Other approaches use process
algebras [13, 5], petri-nets [11] or a C representation [4, 3] for the verification of
SystemC designs. The formal language SystemCFL [13] is based on process alge-
bras and defines the semantics of SystemC processes using structural operational
semantics style deduction rules. It considers only simple communications, and
no dynamic sensitivity or channels. Garavel et al. [5] translate SystemC/TLM
into the process algebra LOTOS and import C Code into the LOTOS model
using the verification toolbox CADP. They are able to support many SystemC
and C++ constructs, but the transformation has to be done manually and they
only support untimed SystemC designs. Karlsson et al. [11] use a petri-net based
representation to verify SystemC designs. As interactions between subnets in-
troduces additional subnets this approach produces a huge overhead. Cimatti
et al. [4, 3] propose a transformation from SystemC into both sequential and
threaded C programs. Their work is similar to our approach, and we adopt some
of their ideas.However, their approach uses method inlining and thus does not
keep the structure of a given design transparent to the designer, which makes



debugging hard. Furthermore, it is limited to a restricted set of data types and
can not handle structs or arrays.

Besides Kroening et al. [12, 2], none of the related approaches can cope with
pointers, arrays, and structs. In [12, 2], the authors propose a semantics for Sys-
temC that is based on a labeled Kripke structure and automatically partition
the design into a hardware and a software part to increase efficiency of verifi-
cation. However, they abstract from hardware and do not consider timing or
inter-process communication via sockets and channels, which makes it difficult
to cope with deeply integrated hardware and software components.

In our own previous work, we have presented an approach for the transforma-
tion of SystemC designs into UPPAAL timed automata and their verification
using the UPPAAL model checker [8, 9]. However, the UPPAAL model checker
cannot handle data very well. In contrast, BLAST with its counter-example
driven abstraction refinement can cope with data comparatively efficiently.

4 Transforming SystemC into Non-deterministic C

The main contribution of this paper is a transformation from SystemC into non-
deterministic sequential C that keeps the structure of the design transparent
to the designer. The resulting C program can be verified using the BLAST
model checker. The main idea of the transformation is that we interpret the
SystemC semantics in sequential C code, using the non-deterministic choice of
the BLAST model checker to model the SystemC scheduler. To this end, we
transform each SystemC process of a given design into a set of C methods,
whose execution is controlled by C implementations of the (non-deterministic)
scheduler, events, and sensitivity. Our transformation supports a large subset
of SystemC programs, including static and dynamic sensitivity, time, pointers,
arrays, and structs. In the following subsections, we first define this subset by a
set of assumptions we have to impose on a given input design. Then, we explain
how a SystemC design is represented as a C program using our interpretation
of its semantics. Finally, we describe our implementations of methods, events,
processes, the scheduler and the request-update mechanism of primitive channels.

4.1 Assumptions

We impose the following assumptions on a given input design:

1. No recursion is used.
2. No function pointers are used.
3. We assume that pointer arithmetic is used safely and that type safety of

memory accesses is given.
4. We assume that no integer overflows are present in the system.
5. So far, we do not support any hardware data types.
6. So far, we do not support class inheritance.

The first four assumptions are directly derived from the subset of C programs
that is supported by the BLAST model checker. Assumptions 5 and 6 could
potentially be lifted in future work.



4.2 Representation of SystemC Designs in C

The main challenge for the transformation from SystemC into non-deterministic
sequential C programs is to interpret the SystemC execution semantics and find
an adequate representation of each SystemC language construct in the result-
ing C program. The SystemC execution semantics is defined by the interplay
between the scheduler, processes, events, and primitive channels. In particular,
the execution of processes is controlled by events and the scheduler. A process
may be interrupted by a wait call, which results in the suspension of the process
until it is triggered by an event or the expiration of a given timeout. To model
this behavior in a C program, it is necessary to implement interrupt routines,
which are able to save the current state of a process, suspend its execution and
resume it at a later point of execution.
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Fig. 1. SystemC Designs as C Programs

Figure 1 shows how we represent the elements of a SystemC design and their
interactions in a BLAST-compatible C program. Methods from all modules and
channels are translated into C methods that make use of member variables. They
are extended with interrupt routines that handle process suspension and resump-
tion. Processes are represented by a process state. Additionally, sensitivity lists
are added for each process to handle static and dynamic sensitivity of processes,
and we add a type tag to distinguish between method and thread processes. For
each event, variables to store the event state and the point of time for delayed
notifications are generated. To model the request-update semantics of primitive
channels, we introduce a flag that indicates whether an update is requested for
the current delta cycle and a function to set this flag.

The scheduler controls the event-triggered execution of a SystemC design. In
our C program, it consists of multiple methods that read and write sensitivity
lists, event and process states to determine processes that are executable and
activates them by calling the corresponding methods. It also controls simulation
time and calls update methods during the update phase.



1int prod produce ( int c , int pid ) {
2. . .
3int wait t ime = 100 ;
4// timed n o t i f i c a t i o n o f an event ev
5i f ( e v e n t s t a t e [ ev ] != DELTA && ( e v e n t s t a t e [ ev ] != TIME | |
6event t ime [ ev ] > time + wait t ime ) ) {
7e v e n t s t a t e [ ev ] = TIME;
8event t ime [ ev ] = time + wait t ime ;
9}
10// s e t dynamic s e n s i t i v i t y
11d y n s e n s i t i v i t y [ pid ] = ev ;
12. . .

Listing 1.1. Transformation of Event Notification

4.3 Design Transformation

The structure of a SystemC design is defined by modules that are connected
via ports and channels. Each of the modules and channels contains local vari-
ables, events, methods and processes, and possibly other modules or channels. In
contrast to SystemC, C does not support object-orientation. To cope with this,
we flatten the hierarchy of a given SystemC design and translate all methods
and variables into global methods and variables. We keep the structure of the
original design transparent to the designer using prefixing. Port connections are
implicitly modeled by replacing the call of a method through a port with a call
to the channel method that is bound to this port.

As stated above, the SystemC execution semantics is defined by the interplay
of the scheduler, events, and processes. The main challenge when modeling the
SystemC scheduler in a sequential C program is to resolve concurrent processes
into a sequential execution order. Following the approach of [4], we use a non-
deterministic variable to execute processes in an arbitrary order. This ensures
that the later verification of a given design considers all possible execution orders.
As this approach is already described in [4], we focus on the transformation of
events and processes in this section.

For illustration, we use a simple producer-consumer example, where a pro-
ducer and a consumer communicate through a first-in-first-out (FIFO) buffer.
Both the producer and the consumer have a main method, which is bound to a
process. Additionally, the producer has a method produce, which is called from
the main method and produces an item.

Event Transformation As in [4], we model events by two variables representing
their state and the point of time where the event will occur next (if notified with
a timed notification). The event state is one of DELTA, FIRED, TIMED, and
NONE. To notify an event, the corresponding process updates the event state
and possibly the event time accordingly. Immediate notifications can be modeled
as shown in [4] by simply setting the event state to FIRED and setting processes
that are sensitive to the event to runnable.



1. . .
2// put proc es s to s l e e p
3s t a t e [ pid ] = SLEEP;
4// save l o c a l v a r i a b l e s
5prod produce c [ pid ] = c ;
6prod produce wai t t ime [ pid ] = wait t ime ;
7// s e t re turn l a b e l and suspend
8prod produce pc [ pid ] = 3 ;
9return −1;
10// r e s t o r e l o c a l v a r i a b l e s a t re turn l a b e l
11Label 3 :
12c = prod produce c [ pid ] ;
13wai t t ime = prod produce wai t t ime [ pid ] ;
14. . .
15}

Listing 1.2. Transformation of Method Suspension

An example of a timed notification of an event ev is shown in Lines 5 to 8 in
Listing 1.2. The semantics of SystemC event notifications dictates that a timed
notification overwrites pending timed notifications if the given timing delay ex-
pires earlier than the pending notification. A timed notification is discarded if a
delta-delay notification is pending. We check these two conditions in Lines 5-6.
The event sensitivity is set to dynamic in Line 11.

Process Suspension and Resumption To model event-triggered execution, we
have to cope with suspension and resumption of processes. For example, in the
producer-consumer design, the method produce is suspended after timed noti-
fication. In order to enable the suspension of processes in the middle of a C
method, we do the following (similar to [4]): 1. We save the values of local vari-
ables (incl. parameters) in global variables. 2. We introduce a label and save it
as return label of the current process. 3. We suspend the method by using the
return statement. 4. At the return label, we restore local variables and continue
execution. Unlike Cimatti et al. [4], who use method inlining to achieve exactly
one method per process, we parameterize all C methods with a unique process
ID to enable that multiple processes may enter the same method. The process
ID (pid) is used to update the process state to SLEEP, to save and restore local
variables, and to save the return label of the current process. The corresponding
global variables are implemented as arrays with an entry for each process of the
system. In future work, the size of the arrays may be reduced by checking how
many processes may enter a given method.

An example for method suspension is shown in Listing 1.2. In Line 3, the
process is put to sleep. To actually suspend method execution, local variables and
the return label are saved in Line 5, 6 and 8. The method is left in Line 9. The
process can resume execution at the point where it was suspended by jumping
to the return label defined in Line 11. Then, local variables are restored and
execution is continued.



1void prod main method ( int pid ) {
2. . .
3// save l o c a l v a r i a b l e s
4prod main method c [ pid ] = c ;
5// add l a b e l and r e s t o r e v a r i a b l e s
6Label4 : c = prod main method c [ pid ] ;
7// f u n c t i o n c a l l
8f i f o i n s t w r i t e ( c , p roce s s id ) ;
9// method cou ld have been i n t e r r u p t e d
10i f ( s t a t e [ pid ] == SLEEP) {
11// save l a b e l and g i v e up c o n t r o l
12prod main method pc [ pid ] = 4 ;
13return ; }
14. . .
15}

Listing 1.3. Transformation of a Method Call

Method Call Transformation A further challenge when modeling process suspen-
sion that a process may be not necessarily in the method that is directly bound
to the process, it may also be in any method of its call stack. In [4], this problem
is solved using method inlining. This, however, has the drawback that it destroys
the original structure of the SystemC design and thus makes debugging much
harder. Furthermore, method inlining seriously increases the code size of the
resulting C program. In our approach, we add return labels to method calls and
save local variables and the return label before a method is called. If the method
returns, we check whether the process was suspended during the execution of
the method call. If it was suspended, we save the return label and suspend the
outer method as well. For systems with many methods, this leads to a large
number of return labels. However, the number of return labels for each method
corresponds to the number of method calls plus one, and thus it is linear in the
code size.

An example for a method call with process suspension is shown in Listing 1.3.
Note that local variables have to be saved before the method call (Line 4),
and also adding a return label and restoring of local variables have to be done
before the method is called (Line 6) to cope with the case where the called
method already was suspended and has to be called again. After the method
call (Line 8), the check whether it was suspended is performed and, if necessary,
the return label to execute the method call again is saved and the outer method
is suspended as well (Line 10 to 13).

5 Experimental Results

We have implemented the transformation from SystemC to the input language
of BLAST as described above in Java. To show the practical applicability of our
approach and to compare it with our previous approach where SystemC designs
are translated into UPPAAL timed automata [9], we have used an Anti-Slip



i f ( w h e e l s l i p && ! ASR triggered ) { ERROR : goto ERROR; }

Listing 1.4. Example property

Regulation and Anti-Lock Braking System (ASR/ABS) The ABS/ASR system
monitors the speed at each wheel and regulates the brake pressure in order to
prevent wheel slip or lockup and improve the driver’s control over the car. It
consists of approximately 500 LOC (18 processes, 12 channels). The C program
generated by our transformation engine comprises approximately 2400 LOC. All
experiments were run on a machine with an Intel Pentium 3.4 GHz CPU and 4
GB main memory and averaged over 10 runs.

In our experiments, we checked that a wheel slip always triggers the anti-slip
regulation (ASR) and that a wheel lock always triggers the anti-lock braking
system (ABS). Both properties can be specified as reachability properties as
shown in Listing 1.4.

The BLAST model checker automatically checks for reachability of the ER-
ROR label, which in this case is unreachable. This proves that the ASR is always
triggered if a wheel slip is detected. The verification times are shown in Table 1.
The verification of the ASR took approximately 7 minutes, the verification of
the ABS approximately 8 minutes. As shown in [9], model checking of the AS-
R/ABS system with our previous approach was only possible with bit-state
hashing enabled, which uses a potentially unsafe abstraction of the state space.
With our novel approach for the automatic verification of SystemC designs using
the BLAST model checker we make counter-example guided abstraction refine-
ment (CEGAR) available for SystemC designs and thus can handle such designs
with reasonable effort.

Table 1. Verification times for ASR/ABS

BLAST UPPAAL UPPAAL with bit-state hashing

ASR 420.72 out of memory 844.15 (maybe)
ABS 491.61 out of memory 555.56 (maybe)

6 Conclusion

In this paper, we have presented an approach for the automatic verification of
SystemC designs using the BLAST model checker. Our main contribution is an
interpretation of the SystemC semantics in a non-deterministic, sequential C
program, which keeps the structure of the design transparent to the designer.
Our approach supports many important SystemC constructs, including static
and dynamic sensitivity, time, pointers, arrays, and structs. By providing an
explicit definition of the SystemC scheduler, events, and processes, we soundly
capture the SystemC semantics. At the same time, our approach enables us to



use the BLAST model checker for SystemC designs. The main advantage is that
the BLAST model checker enables us to use counter-example guided abstraction
refinement, which scales well for an important class of SystemC designs, namely
asynchronous and mainly sequential SystemC designs with intensive data han-
dling. We have demonstrated this advantage with an Anti-Slip Regulation and
Anti-Lock Braking system, which could not be handled with previous approaches
for the verification of SystemC designs. With our novel approach, we can verify
properties of the ASR/ABS system in less than 10 minutes.

In future work, we plan to combine our previous work, where the UPPAAL
model checker is used for verification, with our novel approach for the verifica-
tion of SystemC designs using the BLAST model checker. We think that the
former is better suited for systems or subsystems where time, concurrency and
communication play the most important role while the latter is better suited for
systems or subsystems where data handling predominates.
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