
Federated Privileged Identity Management for
Break-the-Glass: A Case Study with OpenAM

Davy Preuveneers and Wouter Joosen

iMinds-DistriNet, Department of Computer Science, KU Leuven, Leuven, Belgium
first.last@cs.kuleuven.be

Abstract. As next generation health monitoring and Ambient Assisted
Living applications are opening up towards a variety of stakeholders and
platforms, enforcing secure and reliable access to patient data by autho-
rized users − anytime and anywhere − is paramount. However, static ac-
cess control policies do not offer the flexibility to deal with unanticipated
emergency situations where access to patient information is essential. In
this paper, we discuss privileged identity management and share our ex-
perience obtained in a case study using OpenAM − a state-of-the-art
open source federated identity and access management solution − for
the implementation of a reusable policy for break-the-glass procedures
in federated healthcare services.

Keywords: identity, access, break-the-glass, policy, e-health

1 Introduction

There is a growing interest from policy makers, academics, providers and con-
sumers in e-health [1] to improve the efficiency of healthcare service delivery.
Innovations in the technological space − ranging from mobile applications and
websites dedicated to patient self-healthcare, towards electronic exchange of pa-
tient records between care givers − have emerged to achieve this objective.

With cloud computing stepping up as the next paradigm shift in distributed
systems and services, future e-health applications will be outsourced to the in-
ternet. Therefore, the number of platforms and stakeholders will continue to
increase. As a consequence of this technological trend, the distributed nature
of information and health data repositories calls for stringent access constraints
to safeguard the patient’s privacy, but without jeopardizing his health or safety
due to rigid enforcement of such security policies.

The main purpose of identity and access management (IAM) platforms is to
address authentication, authorization, access and auditing as a common concern

Copyright c©2014 by the paper’s authors. Copying permitted for private and academic
purposes.

In: E.A.A. Jaatun, E. Brooks, K.E. Berntsen, H. Gilstad, M. G. Jaatun (eds.): Pro-
ceedings of the 2nd European Workshop on Practical Aspects of Health Informatics
(PAHI 2014), Trondheim, Norway, 19-MAY-2014, published at http://ceur-ws.org

38

All subsequent actions will be logged and flagged as
exceptions to normal access.

You are about to override patient security!

Please enter your user name and password before proceeding.

john

User name:

Password:

Reason for access:

SubmitCancel

Fig. 1: An example of a Break-the-glass security warning

for online service providers. The added value that many of these IAM solutions
have to offer is their capability of federated single sign on (SSO), simplifying
access to partnering healthcare services with a single login. However, to minimize
the risk of unintentionally revealing sensitive data, fine-grained access control for
a restricted set of authorized users is a key information security requirement.

Contrary to many other vertical domains, consumers of healthcare IT appli-
cations can be faced with emergency or disaster situations where the ability to
override access control on demand is a necessity, as rigid enforcement of security
constraints should never risk patient health or safety. Such access is enabled
by a Break-the-glass [2] procedure. This is the practice of enabling a health-
care practitioner to view a patient’s medical record, or a portion thereof, under
emergency circumstances, when that practitioner does not have the necessary
system access privileges. This access is attributable to an authenticated user,
temporary and auditable. The way this break-the-glass functionality is usually
offered in software applications boils down to prompting the user with a warning
that he does not have the rights required to access the necessary information,
as shown in Fig. 1. An explanation of the required emergency access must be
provided, and the action will be audited.

Electronic patient record (EPR) systems offered as Software-as-a-Service
(SaaS) applications in the cloud have the benefit of scaling up on demand and
reducing the total cost of ownership by sharing the same service instance across
multiple tenants (i.e. the healthcare practices or clients of the multi-tenant SaaS
application). Even if different service variants exist to address the unique needs
of various types of healthcare professionals (e.g. general practitioners, dentists,
ophthalmologists, out-of-hours service centers), they can share common soft-
ware assets to authenticate and authorize healthcare professionals. However,
these service variants may be subject to different legislative rules and contextual
constraints for break-the-glass procedures to gain access to medical records. For

39

example, a GP in out-of-hours service center cannot access a patient’s record
if he is not on duty. Multi-tenant EPR SaaS applications therefore need cus-
tomization capabilities to adapt medical record access control (1) per tenant or
healthcare practice, and (2) per service variant. These concerns are the main mo-
tivation why access control and the enforcement of break-the-glass procedures
should be decoupled from the underlying service logic.

This paper focuses on privileged identity management to control the access
of authorized users and other identities to elevated privileges across multiple
systems deployed at a healthcare service provider. In general, privileged identity
management focuses on managing and securing privileged accounts and control-
ling access to sensitive data. Privileged identities are accounts that hold elevated
permission to access data, run programs, or change configuration settings. Tra-
ditionally, identity and access management (IAM) solutions do not manage such
accounts, which makes it almost impossible to:

1. identify the list of privileged identities and login credentials that exist in the
system or on the network.

2. enforce compliance with strong password management and authentication
policies for privileged identities.

3. limit the individuals who know about these privileged login credentials to
mitigate risks associated with insiders misusing these identities.

4. delegate access to privileged accounts for appropriate personnel to reduce
the number of privileged accounts required by an organization.

5. increase accountability with fine-grained activity logging to audit who gained
access to system resources or data using these privileged identities.

The objective is to enable separation of privileges, manage self-service requests
to privileged accounts, and provide auditing capabilities. In most organizations,
privileged accounts are not clearly defined and when they are not tightly man-
aged, they present a high security risk for the organization. Detecting inappro-
priate access to privileged accounts and determining which healthcare providers
were involved in unauthorized activities (through a break-the-glass procedure)
is challenging. We share our experience with using ForgeRock’s OpenAM 1 − a
state-of-the-art open source federated identity and access management solution
− for the implementation of a reusable policy for a variety of break-the-glass
procedures.

After reviewing related work in section 2, we present an electronic healthcare
record related use case with break-the glass procedures in section 3 as a motivat-
ing example. Section 4 discusses the access control primitives used in OpenAM,
and the actual implementation is presented in section 5. In section 6 we evaluate
the strengths and weaknesses of our implementation. We conclude in section 7
summarizing the main insights and identifying possible topics for future work.

1 http://forgerock.com/products/open-identity-stack/openam/

40

2 Related work

Povey [3] was one of the first to argue for a break-the-glass concept as a way
to deal with the inability to encode each and every access control policy of an
organization because not all kinds of requests and conditions can be anticipated.
He argued that regardless of how flexible or expressive access control mecha-
nisms become, there will always be a gap between what organizations need,
and what security mechanisms can actually implement. He proposed an access
control paradigm involving partially-formed transactions whose effects can be
rolled back, allowing users access to restricted resources if they are willing to
acknowledge that they do not have the right permission.

The eXtensible Access Control Markup Language (XACML) [4] specification
is the most well known XML-based language for expressing security policies.
Security policies are ways to describe who has access to what resources under
what conditions. The main purpose of XACML is to allow for security policies
to be defined in a technology neutral way such that the policies can be reused.
Version 3 of the XACML specification was approved as an OASIS standard in
January 2013. While the first draft of the XACML v3.0 specification emerged
in 2009, there is not yet widespread adoption of this standard in contemporary
identity and access management systems.

Decat et al. [5] propose a middleware for efficient and confidentiality-aware
federation of access control policies in the context of cloud computing and
Software-as-a-Service (SaaS) in which a tenant rents access to a shared web ap-
plication hosted by a provider. They propose a mechanism for policy federation,
the ability to decompose tenant policies and evaluate the resulting parts near the
data they require as much as possible while keeping sensitive tenant data local
to the tenant environment. With a case study on home patient monitoring, the
authors show that policy federation effectively succeeds in keeping the sensitive
tenant data confidential and at the same time improves policy evaluation time
in most cases.

Alqatawna et al. [6] introduced a discretionary overriding mechanism in
XACML. This is one way for handling hard to define and unanticipated sit-
uations where availability of information is critical. The override mechanism
gives the subject of the access control policy the possibility to override a denied
decision, and if the subject should confirm the override, the access will be logged
for special auditing. The authors achieved this capability by means of obligations
and a general obligation combining mechanism.

Similar work was proposed by Brucker et al. [7]. They extended SecureUML [8]
− an UML-based security language for access control − with support for break-
the-glass strategies. They presented a security architecture with correspond-
ing support as well transformation capabilities from break-the-glass SecureUML
policies into XACML.

Rumpole [9] is a flexible break-the-glass access control proposed Marinovic et
al. This model aims to address concerns that current access control models make
decisions without considering and investigating the reasons why access is denied,
and that these models do not explicitly represent and reason over conflicting and

41

missing information about subjects and the context. The access control model
that they propose uses Belnap’s four-valued relevance logic [10] to represent
conflicting and missing (unknown) information, allowing the policy to make a
more informed decision when faced with missing or inconsistent knowledge. In
traditional logical calculus, there are only two possible values (true and false) for
any proposition. Belnap’s four-valued logic is an example of a many-valued logic
in which there are more than two truth values. It deals with multiple possibly
conflicting information sources. The possible values are (1) true if only true is
found, (2) false if only false is found, (3) true and false if both conflicting values
are found, and (4) unknown if no information is provided by any source.

With federated privileged identity management, our objective is not to com-
plicate access control policies even further with break-the-glass procedures, but
rather to keep the specification and managerial complexity of such policies in a
federated health service ecosystem as low as possible.

3 Use cases of break-the-glass and emergency scenarios

As the objective is to offer simplified management of emergency access and
break-the-glass procedures through reusable access policies, we will document
three real-world use cases (applicable in a Belgian context) involving elevated
privileges to access electronic medical records with different types of health-
care service providers and caregivers. The aim is to determine whether or not
a healthcare provider or caregiver has permission to perform an action on a re-
source (e.g. consulting a medical file) for a given patient as a function of a given
context. Fig. 2 illustrates a simplified workflow for access control to a medical
file with contextual constraints and patient consent directives. Note that this
workflow also allows patients to be given a stark choice between participating
or opting out, with a warning that opting out means that they are also refusing
access to their medical records in emergency or break-the-glass circumstances.

3.1 General practitioner in a medical center during office days

Dr. Smith, a general practitioner, works in a medical center where he and his
colleagues administer first line primary care to patients during office hours. The
medical center hosts a central server containing a list of medical documents per
patient, where the GPs keep the medical history of their patients on file.

For a doctor to gain access to the medical records of a patient, a therapeutic
relationship between both the patient and doctor needs to be established and
patient consent directives apply. For example, a patient can prohibit access to a
medical file in general or only for particular healthcare professionals.

3.2 General practitioner on call in an out-of-hours service center

When their own GP is not available (e.g. at night or during the weekends or hol-
idays), patients with pressing medical problems can call a general practitioner’s

42

Patient provided consent? Patient grants access?
No

Context constraints fulfilled?

 Yes

Apply break-the-glass?

 No

Is the doctor a member of
the medical center?

 Yes

Yes

Is there a therapeutic
relation?

 Yes

Stop

Establish a therapeutic
relation?

No

No

No

Has patient opted out
of break-the-glass?

No

Yes

Yes

Yes

Allow access to medical file

No

Yes

No

Fig. 2: Simplified access control workflow with patient consent directives for a
healthcare professional requesting access to a medical file

out-of-hours service center. During regular office hours, these service centers are
closed and patients will have to visit their own general practitioner. Each GP is
on duty in such a service center in his area for one day every 8 weeks. Contrary
to the EPR software that they would use in their home practice, the software in
these service centers does not keep track of the medical history of the patient,
even if the patient visits the service center multiple times. Instead, the patient’s
own GP will receive a report mentioning which examination was done and which
medication was prescribed by the GP at the service center. Furthermore, legisla-
tive rules on privacy require that medical records at these service centers should
be deleted or anonymized after 30 days.

Beyond the existence of a therapeutic relationship, the GP cannot access
his own records if he is no longer on call in the service center. For example, a

43

break-the-glass procedure is necessary, if the GP on call later on needs to access
his own medical report to discuss it with the patient’s own GP.

3.3 Emergency access for caregivers

An imminent threat to the health or safety of a patient may grant special user
permissions and authorized access to caregivers to gain access to protected health
information when particular emergency conditions are met. These context con-
straints [11] are declared upfront and form the basis for conditional permissions
(e.g. time and location dependencies, separation of duties), and specific patient
consent directives regarding preferences in an emergency situation apply.

The permissions that are granted to certain caregivers in advance can be
enabled through self-declaration of an emergency situation. Similar to the break-
the-glass procedure, emergency access is subject to alerts and auditing after the
fact.

3.4 Requirements

The federated privileged identity management solution we envision will offer
authentication, authorization and access capabilities for a variety of Software-
as-a-Service applications in the cloud. These applications are hosted by ser-
vice providers, and tenants rent access to a shared instance of this application.
From the scenarios above, and through discussions with relevant stakeholders,
we elicited the following high-level requirements:

1. The system must support smartcard-based authentication with electronic
identity cards, with username/password credentials as a fallback login.

2. The system must support single-sign on so that users can access federated
healthcare services without the need to authenticate multiple times.

3. Each tenant of a healthcare service should be able to specify his own au-
thentication and access policies, including break-the-glass procedures.

4. The system must be able to customize and enforce the contextual constraints
in the access policies per service and tenant.

5. The system must support delegation to privileged accounts with elevated
access rights and increased auditing of their use.

In the following sections, we will discuss how these requirements were fulfilled
on top of ForgeRock’s OpenAM software system.

4 Identity and access management with OpenAM

From the aforementioned scenarios, we can distinguish three important aspects
for access control to a patient’s medical files, and that is (1) the applicability of
patient consent directives, (2) the existence of a therapeutic relationship, and (3)
context constraints that impose conditional permissions for access in regular and
emergency circumstances. In the following subjects, we will discuss how these
aspects can be taken into consideration.

44

4.1 Identity management

Our solution must provide support for a variety of stakeholders in the healthcare
services that will link to the OpenAM-based platforms:

– Patients
– Family, friends and other caregivers
– Doctors, physicians, nurses or other healthcare professionals
– Administrators

Each of these users needs to be enrolled with an identity provider such that
they can login to require access to protected resources. The objective is not to
describe their roles and responsibilities in detail, but to illustrate the differences
and subtleties in access control. For example, a patient has access to his own
records, and can grant or restrict access to his records for certain healthcare pro-
fessionals. He can also delegate access permissions and administrative privileges
to a family member (e.g. a parent delegating to an adult child). The patient can
also grant other caregivers conditional access to medical records under predefined
emergency circumstances. Doctors and other healthcare professionals are capa-
ble of temporary delegation to other colleagues in the same practice (e.g. when
going on holiday), and they can apply a break-the-glass procedure to gain ac-
cess to medical records when no therapeutic relationship with the patient exists.
However, they cannot modify the access policies of the patient. Such capabilities
are only offered to administrators of the system.

In a multi-tenant Software-as-a-Service (SaaS) deployment, a single web ap-
plication instance serves multiple organizations (i.e. tenants) and users within
this organization. As such, the federated identity and access management so-
lution should not only be able to distinguish between the different healthcare
SaaS instances, but also between the different tenants (and their users) of a sin-
gle healthcare web application instance. Nonetheless, each tenant should have
an administrator which will manage the users within the organization, and ad-
minister the access policies for the different services.

4.2 Attribute-based access control and XACML policies

OpenAM is an identity and access management solution with support for XACML
policies. In such policies, the following terminology is used:

– A resource defines the data, system component or service to be accessed.
– The subject is the actor who makes a request to access a certain resource.
– The action declares the operation (e.g. read, write, update, delete) on the

resource for which permission is requested.
– The environment is a set of attributes (independent of a particular subject,

resource or action) that are relevant to an authorization decision.
– A target defines the conditions that determine whether a policy applies to a

particular request.
– An obligation is a directive on what must be carried out when an access is

approved (e.g. notify the administrator).

45

SaaS Application 4

SaaS Application 3

SaaS Application 2

SaaS Application 1

Policy
Enforcement
Point (PEP)

Policy
Information
Point (PIP)

Policy
Decision

Point (PDP)

Policy
Access

Point (PAP)

Attributes
Resources

XACML Policy
Repository

Obligation
Service

4

6

 7

8 9

10

 11

 12

3

5

Identity Provider and Access ManagementService Provider

2

OpenAM

Single Sign On
Authentication

1

subjects
resources
environment

Context
Handler

Fig. 3: XACML components in the identity and access management system

Attribute-based access control is a paradigm whereby access rights are granted
to users through the use of policies which combine various types of attributes.
XACML is such a policy-based and attribute-based access control standard.

4.3 Basic building blocks for XACML-based access control

Key components for decision making in XACML-based architectures, such as
OpenAM (as depicted in Fig. 3), are the Policy Enforcement Point (PEP) and
the Policy Decision Point (PDP). The PEP protects the resource. It receives
incoming access requests, enforces access control decisions and executes obliga-
tions. It sends the XACML access request to the PDP which evaluates applicable
policies and returns an authorization decision. If the policy request from the PEP
does not contain all the required attributes about the subject, the resource being
requested, or the environment, the Policy Information Point (PIP) will collect
them for the PDP to be able to evaluate the relevant policies. The Policy Admin-
istration Point (PAP) creates, stores, manages and federates XACML security
policies across the organization. The Context Handler works as an intermediate
between the PDP, PEP and PIP to convert the requests and decisions from a
native format to the XACML canonical form back and forth.

5 Implementation

In this section, we outline how the requirements identified in section 3.4 have
been addressed on top of OpenAM. This implementation features two healthcare
services (corresponding to the two scenarios in sections 3.1 and 3.2), and the
federated privileged identity management framework.

46

5.1 Federated authentication with single-sign on

OpenAM separates identity providers from service providers, but they interact
with one another in a circle of trust using the Security Assertion Markup Lan-
guage (SAML) 2.0 [12] standard. SAML provides a secure, XML-based solution
for exchanging user security information between an identity provider and a
service provider. The identity provider stores and serves identity profiles, and
handles authentication. The service provider offers services that access protected
resources. A circle of trust groups at least one identity provider and at least one
service provider who agree to share authentication information.

Username/password and smartcard authentication are supported out-of-the-
box in OpenAM, though we used the eID Identity Provider software2 to allow a
web application to be made accessible with an eID.

5.2 Healthcare services offered as SaaS applications

For our experimental setup, we implemented a single service with different access
policies for each of the use cases in section 3. The SaaS service host medical
records as JSON documents on top of CouchDB3 NoSQL database backend.
What sets the first two use case scenarios apart is that the software for general
practitioners in a medical center (cfr. scenario 1) keeps the medical history of
their patients on file, whereas the software for the general practitioner on call
in an out-of-hours service center (cfr. scenario 2) does not. The third scenario is
used by patients directly for healthcare self-management purposes.

Although the Belgian government introduced the Kmehr standard4 for med-
ical information, we describe − for the sake of simplicity − a medical record
with the following meta-properties:

– ResourceID: an unambiguous identifier referring to the resource
– Description: a short free-text account of the resource
– Owner: the creator responsible for granting access to the resource
– Subject: the person or patient to which this resource refers
– Type: the nature or format of the resource using a controlled vocabulary
– Date: the date and time of creation of the resource

Each entry is exposed as a RESTful URI based on the universally unique iden-
tifier of the resource, and additional content is stored on a file system in a
hierarchical structure using the same identifiers. As explained earlier, access to
these services is governed by different rules.

5.3 Privileges delegation per service, tenant and user

With OpenAM, we can easily map tenants on the notion of realms. A realm is
a mechanism to group configuration and identities together. For example, Ope-
nAM can have different realms configured, one for physicians, a second for nurses

2 http://eid.belgium.be/en/
3 http://couchdb.apache.org/
4 https://www.ehealth.fgov.be/standards/kmehr/

47

Fig. 4: Privilege delegation per realm in ForgeRock’s OpenAM

and a third for administrators. Subdivisions in these groups with additional priv-
ileges can be defined as a child of this realm (e.g. a sub-realm for supervisory
duties). We also added other groups dedicated for break-the-glass procedures
and emergency situations, as illustrated in Fig. 4.

OpenAM has a capability of delegating administrator privileges to certain
group of users that need to have permissions to modify OpenAM configurations.
For example, the Read and write access only for policy properties privilege gives
user permissions to create/modify/delete policies in a realm.

Our proof-of-concept implementation on top of OpenAM allows for privileged
accounts to be created per tenant to be used for break-the-glass procedures or
in emergency scenarios. These are not tied to particular people, but can be
enabled through self-service requests. The password of the privileged account
is never revealed, and automatically changed after each request. This way, the
user cannot share access to the privileged account with unauthorized people.
If allowed, individual users can also delegate their entitlements to another user
for a period of time (e.g. during absence of work) using the same principle of
delegating access to a privileged account they can administer themselves.

Before a user can request usage of a privileged account, the server checks
whether access is granted either for the user himself, or for a group to which
the user belongs. Inappropriate use of privileged accounts is detected through
increased auditing. While not implemented, the session created with this privi-
leged account can be time constrained to reduce the risk of abuse.

48

Listing 1.1: RESTful creation of an account in a sub-realm ’administrators’

1 $ curl −−request ”POST” −−header ”iplanetDirectoryPro: AQ...∗”
2 −−header ”Content−Type: application/json”
3 −−data ’{ ”username”: ”john”, ”userpassword”: ”secret”, ”mail”: ”john@host.com” }’
4 https://idp.host.com/openam/json/service001/administrators/users/? action=create

The above functionality is provided as a custom implementation on top of
OpenAM’s RESTful APIs5 for managing the life cycle of user accounts per realm
and sub-realms. The creation of an account with these APIs is illustrated with
the curl Linux command line utility in Listing 1.1. The iplanetDirectoryPro
header represents the token that the user received after authentication with
which he can be identified in subsequent interactions.

5.4 Declaration of default access policies per services

Each the realms and sub-realms can define its own access policies. The hier-
archical nature of sub-realms means that privileges defined in a certain realm
are inherited into all sub-realms. Listing 1.2 provides a basic XACML policy
for reading medical records, with a simplified representation for break-the-glass
procedures.

Listing 1.2: Example break-the-glass-policy

1 <PolicySet xmlns=”urn:oasis:names:tc:xacml:2.0:policy:schema:os” PolicySetId=”readpolicyset”
2 PolicyCombiningAlgId=”urn:oasis:names:tc:xacml:1.0:policy−combining−algorithm
3 :first−applicable”>
4 <Target>
5 <Actions>
6 <Action>
7 <ActionMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”>
8 <AttributeValue DataType=”http://www.w3.org/2001/XMLSchema#string”>
9 read

10 </AttributeValue>
11 <ActionAttributeDesignator AttributeId=”action:id”
12 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
13 </ActionMatch>
14 </Action>
15 </Actions>
16
17 <Resources>
18 <Resource>
19 <ResourceMatch MatchId=”urn:oasis:names:tc:xacml:1.0:function:string−equal”>
20 <AttributeValue DataType=”http://www.w3.org/2001/XMLSchema#string”>
21 medicalrecord
22 </AttributeValue>
23 <ResourceAttributeDesignator AttributeId=”resource:type”
24 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
25 </ResourceMatch>
26 </Resource>
27 </Resources>
28 </Target>
29

5 http://openam.forgerock.org/openam-documentation/openam-doc-
source/doc/dev-guide/index/chap-rest.html

49

30 <Policy PolicyId=”readpolicy:1” RuleCombiningAlgId=”urn:oasis:names:tc:xacml:1.0
31 :rule−combining−algorithm:first−applicable”>
32 <Rule RuleId=”readrule:1” Effect=”Permit”>
33 <Condition>
34 <Apply FunctionId=”urn:oasis:names:tc:xacml:1.0:function:string−is−in”>
35 <Apply FunctionId=”urn:oasis:names:tc:xacml:1.0:function:string−one−and−only”>
36 <ResourceAttributeDesignator AttributeId=”resource:owner:id”
37 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
38 </Apply>
39 <SubjectAttributeDesignator AttributeId=”subject:treated”
40 DataType=”http://www.w3.org/2001/XMLSchema#string”/>
41 </Apply>
42 </Condition>
43 </Rule>
44 </Policy>
45
46 <Policy PolicyId=”readpolicy:2” RuleCombiningAlgId=”urn:oasis:names:tc:xacml:1.0
47 :rule−combining−algorithm:first−applicable”>
48 <Rule RuleId=”readrule:2” Effect=”Permit”>
49 <Condition>
50 <Apply FunctionId=”urn:oasis:names:tc:xacml:1.0:function:boolean−one−and−only”>
51 <SubjectAttributeDesignator AttributeId=”subject:break glass”
52 DataType=”http://www.w3.org/2001/XMLSchema#boolean”/>
53 </Apply>
54 </Condition>
55 </Rule>
56 </Policy>
57
58 <Policy PolicyId=”readpolicy:3” RuleCombiningAlgId=”urn:oasis:names:tc:xacml:1.0
59 :rule−combining−algorithm:first−applicable”>
60 <Rule RuleId=”readrule:3” Effect=”Deny”/>
61 </Policy>
62 </PolicySet>

Lines 5-15 state that this policy set is only applicable for access requests involving
read operations. Furthermore, these read operations should be executed on a
resource of type medicalrecord as stated in lines 17-27. The individual policies
and corresponding rules in the lines below define constraints for granting read
access, breaking the glass, and denying read access. For a complete account of all
relevant policies, the XML representation would become very long and verbose.
Nonetheless, each of these realms can customize and specify additional policies
that differ in various contextual constraints:

– Time and/or location dependencies on the role holding the permission for
persons requesting access beyond their regular shift or primary workplace.

– Dynamic separation of duty constraints, where two mutual exclusive roles
are never activated simultaneously for the same user.

– Assignment of additional temporary duties, such as administrative or super-
visory roles.

– Cardinality constraints that limit the number of people who may hold a
permission at any one time.

Obviously these constraints can be combined. An example that combines time,
location and cardinality constraints is a policy that states that only one nurse
per 12-hour shift on a hospital floor can obtain head nurse privileges. Similar to
the APIs present earlier for identity management, OpenAM also offers RESTful
interfaces to administer the life cycle of access policies.

50

6 Qualitative evaluation

Our federated privileged identity management proof-of-concept was developed
on top of the OpenAM identity and access management platform, based on
use cases and scenarios from stakeholders in the business of offering healthcare
services to medical professionals. The usability of the prototype has not yet been
quantitatively evaluated, which is why we focus on some qualitative aspects of
our solution which go beyond the requirements of section 3.4.

6.1 Strengths

– Our prototype allows for the complex access control and privileged identity
management to be isolated from the healthcare service as a separate com-
ponent, reducing the management overhead of the healthcare service itself.

– From a managerial point of view, our proof-of-concept offers a unified and
consistent interface towards the management of security policies for federated
healthcare services. A single interface suffices to manage the data access
control for all federated healthcare services.

– To avoid becoming a single point of failure for authentication and autho-
rization, our federated privileged identity management solution leverages
OpenAM’s built-in replication capabilities to offer failover support.

6.2 Weaknesses

– The XACML standard we used to define access policies is not for the faint
of heart. The level of abstraction should be raised to reduce the complexity
and to simplify their use for non-experts.

– Obligations are common for break-the-glass procedures. XACML offers com-
bination algorithms to resolve conflicts between contradicting policies or
rules. However, these are not yet available for obligations.

– The performance overhead of XACML-based policy evaluation is often a
reason to fall back on simpler RBAC policies. However, with OpenAM’s
built-in clustering support for enhanced scalability, the higher expressiveness
of ABAC-based XACML policies is a clear benefit.

7 Conclusion

In this paper, we discussed our privileged identity management that we built
on top of OpenAM, a state-of-the-art open source federated identity and access
management solution. The main objective as the implementation of a reusable
policy for break-the-glass procedures and emergency scenarios in federated health-
care services. We elicited a set of requirements from 3 distinct use cases. Some
of the key features that our proof-of-concept provides include:

– Support for single sign on authentication using different means to log in

51

– Customization of access policies per service and per tenant
– Delegation to privileged accounts with elevated access rights

We explained how our solution offers identity and access management capa-
bilities for different healthcare services, but also how we support different ten-
ants (and users within these tenants) per service using realms and sub-realms to
group configuration, identities and access policies together. While our proof-of-
concept has many benefits, the usability can be improved further by raising the
level of abstraction of XACML policies. For example, a policy language could
make the definition of security policies less complex, and hence less error prone.
Additional tool support could then translate these new policies in a XACML
compliant format. Also, while it is technically feasible to reuse existing security
policies, we have not yet set up an experiment with real stakeholders in which
the reuse and reduction in policy management overhead is measured.

Beyond the above aspects, as future work we will investigate the often heard
performance concerns with XACML-based policy evaluation with systematic
benchmarks, and explore to what extent our prototype on top of OpenAM can
benefit from the latter’s replication mechanisms to ensure scalability under in-
creasing load.

Acknowledgments

This research is partially funded by the Research Fund KU Leuven.

References

1. Pagliari, C., Sloan, D., Gregor, P., Sullivan, F., Detmer, D., Kahan, J., Oortwijn,
W., MacGillivray, S.: What is eHealth (4): a scoping exercise to map the field. J
Med Internet Res 7(1) (2005) e9

2. SPC: Break-Glass - An Approach to Granting Emergency Access to Healthcare
Systems. Technical report, Joint NEMA/COCIR/JIRA Security and Privacy Com-
mittee (SPC) (December 2004)

3. Povey, D.: Optimistic Security: A New Access Control Paradigm. In: Proceedings
of the 1999 Workshop on New Security Paradigms. NSPW ’99, New York, NY,
USA, ACM (2000) 40–45

4. XACML-V3.0: eXtensible Access Control Markup Language (XACML) Version
3.0. Candidate OASIS Standard 01. http://docs.oasis-open.org/xacml/3.0/xacml-
3.0-core-spec-cos01-en.html (September 2012)

5. Decat, M., Lagaisse, B., Joosen, W.: Middleware for efficient and confidentiality-
aware federation of access control policies. Journal of Internet Services and Appli-
cations 5(1) (2014) 1–15

6. Alqatawna, J., Rissanen, E., Sadighi, B.: Overriding of Access Control in XACML.
In: Proceedings of the Eighth IEEE International Workshop on Policies for Dis-
tributed Systems and Networks. POLICY ’07, Washington, DC, USA, IEEE Com-
puter Society (2007) 87–95

7. Brucker, A.D., Petritsch, H.: Extending Access Control Models with Break-glass.
In: Proceedings of the 14th ACM Symposium on Access Control Models and Tech-
nologies. SACMAT ’09, New York, NY, USA, ACM (2009) 197–206

52

8. Lodderstedt, T., Basin, D.A., Doser, J.: SecureUML: A UML-Based Modeling
Language for Model-Driven Security. In: Proceedings of the 5th International Con-
ference on The Unified Modeling Language. UML ’02, London, UK, UK, Springer-
Verlag (2002) 426–441

9. Marinovic, S., Craven, R., Ma, J., Dulay, N.: Rumpole: A Flexible Break-glass
Access Control Model. In: Proceedings of the 16th ACM Symposium on Access
Control Models and Technologies. SACMAT ’11, New York, NY, USA, ACM (2011)
73–82

10. Belnap, NuelD., J.: A Useful Four-Valued Logic. In Dunn, J., Epstein, G., eds.:
Modern Uses of Multiple-Valued Logic. Volume 2 of Episteme. Springer Nether-
lands (1977) 5–37

11. Strembeck, M., Neumann, G.: An integrated approach to engineer and enforce
context constraints in RBAC environments. ACM Trans. Inf. Syst. Secur. 7(3)
(2004) 392–427

12. Lewis, K.D., Lewis, J.E.: Web Single Sign-On Authentication using SAML. CoRR
abs/0909.2368 (2009)

	Federated Privileged Identity Management for Break-the-Glass: A Case Study with OpenAM

