
The direct-optimal basis via reductions

Estrella Rodŕıguez-Lorenzo1, Karell Bertet2, Pablo Cordero1, Manuel Enciso1,
and Angel Mora1

1 University of Málaga, Andalućıa Tech, Spain,
e-mail: {estrellarodlor,amora}@ctima.uma.es, {pcordero,enciso}@uma.es

2 Laboratoire 3I, Université de La Rochelle
e-mail: karell.bertet@univ-lr.fr

Abstract. Formal Concept Analysis has become a real approach in the
trend Information-Knowledge-Wisdom. It turns around the mining of a
data set to built a concept lattice which provides an strong structure of
the knowledge. Implications play the role of an alternative specification
of this concept lattice and may be managed by means of inference rules.
This syntactic treatment is guided by several properties like directness,
minimality, optimality, etc. In this work, we propose a method to calcu-
late the direct-optimal basis equivalent to a given Implicational System.
Our method deals with unitary and non-unitary implications. Moreover,
it shows a better performance that previous methods in the literature
by means of the use of Simplification Logic and reduction paradigm,
which remains narrow implications in any stage of the process. We have
also developed an empirical study to compare our method with previous
approaches in the literature.

1 Introduction

Formal Concept Analysis (FCA) is a trending upward area which establishes a
proper and fine mixture of formalism, data analysis and knowledge discovering. It
is able to analyze and extract information from a context K, rendering a concept
lattice. Attribute implications [10] represent implicit knowledge between data
and they can be deduced from the concept lattice or using mining techniques
from the context directly. An attribute implication is an expression A → B
where A and B are sets of attributes. A context satisfies A→ B if every object
that has all the attributes in A has also all the attributes in B.

The study of sets of implications that satisfies some criteria is one of the
relevant topics in FCA. An implicational system (IS) of K is defined as a set
Σ of implications of K from which any valid implication for K can be deduced
by means a syntactic treatment of the implications. This symbolic manipulation
introduces the notion of equivalent sets of implications and opens the door to the
definition of several criteria to discriminate good sets of implications according
to these criteria. Thus, the challenges are the definition of an specific notion of IS,
named basis, fulfilling some criteria related with minimality and the introduction
of efficient methods to transform an arbitrary IS into a basis.

For instance, if the criteria is to obtain an IS with minimum cardinal we can
build the so-called Duquenne-Guigues (or stem) basis [11]. Each application may
induces a different criterium. For instance, in [2, 3] some methods to calculate
the direct-optimal basis are introduced, joining minimality and directness in the
same notion of basis. In [8] a method to obtain a basis with minimal size in the
left-hand size of the implications was proposed.

In this paper, we introduce a method to compute the direct-optimal basis.
This kind of basis was introduced in [2,3] and it has two interesting properties: it
has the minimum number of attributes and it provides a framework to efficiently
compute the closure of a set of attributes. The new method introduced in this
paper is strongly based on SL

FD
(Simplification Logic) and they are more efficient

than previous methods appeared in the literature.

In the following, first we establish the background necessary for the under-
standing of the paper (Section 2). In Section 3 SL

FD
is summarized and a motiva-

tion of the simplification paradigm to remove redundant attributes is provided.
Section 4 is focussed on the methods of Bertet et al. to get a direct-optimal
basis. In Section 5 the new method is introduced and a comparison among all
the methods is showed. Some conclusions are presented in Section 6.

2 Preliminaries

We assume well-known the main concepts in FCA [10]. Only the concepts nec-
essaries will be introduced. In Formal Concept Analysis (FCA) the relationship
between a set of objects and a set of attributes are described using a formal
context as follows:

Definition 1. A formal context is a triple K = (G,M, I) where G is a finite set
whose elements are named objects, M is a finite set whose elements are named
attributes and I ⊆ G×M is a binary relation. Thus, (o, a) ∈ I means the object
o has the attribute a.

This paper focuses on the notion of implication, which can be introduced as
follows:

Definition 2. Let K = (G,M, I) be a formal context and A,B ∈ 2M . The
implication A → B holds in K if every object o ∈ G satisfies the following:
(o, a) ∈ I for all a ∈ A implies (o, b) ∈ I for all b ∈ B.

An implication A→ B is said to be unitary if the set B is a singleton.

Implications may be syntactically managed by means of inference systems.
The former axiomatic system was Armstrong’s Axioms [1]. They allows us to
introduce the notion of derivation of an implication from an implicational system,
the semantic entailment and the equivalence between two implicational systems
in the usual way.

3 Simplification Logic

In [6], Cordero et al. introduced the Simplification Logic, SL
FD

, that is, an equiv-
alent logic to the Armstrong’s Axioms that avoids the use of transitivity and is
guided by the idea of simplifying the set of implications by removing redundant
attributes efficiently. This logic has proved to be useful for automated reasoning
with implications [7, 8, 12,13].

Definition 3 (Language). Given a non-empty finite alphabet S (whose ele-
ments are named attributes and denoted by lowercase letters a, b, c, etc.), the
language of SL

FD
is LS = {A→ B | A,B ⊆ S}.

Sets of formulas (implications) will be named implicational systems (IS). In
order to distinguish between language and metalanguage, inside implications,
AB means A∪B and A-B denotes the set difference ArB. Moreover, when no
confusion arises, we omit the brackets, e.g. abc denotes the set {a, b, c}.

Definition 4 (Semantics). Let K = (G,M, I) be a context and A→ B ∈ LS.
The context K is said to be a model for A → B, denoted K |= A → B, if
A,B ⊆M ⊆ S and A→ B holds in K.

For a context K and an ISΣ, then K |= Σ means K |= A→ B for all A→ B ∈ Σ
and Σ |= A→ B denotes that every model for Σ is also a model for A→ B. If
Σ1 and Σ2 are implicational systems, Σ1 ≡ Σ2 denotes both IS are equivalent
(i.e. K |= Σ1 iff K |= Σ2 for all context K).

Definition 5 (Syntactic derivations). SL
FD

considers reflexivity axioms

[Ref]
B ⊆ A
A→ B

;

and the following inference rules named fragmentation, composition and simpli-
fication respectively.

[Frag]
A→ BC

A→ B
; [Comp]

A→ B, C → D

AC → BD
; [Simp] If A ⊆ C,A ∩ B = ∅,

A→ B, C → D

C-B → D-B

Given an IS Σ and a formula A → B, Σ ` A → B denotes that A → B can
be derived from Σ by using the axiomatic system in a standard way. The above
axiomatic system is sound and complete (i.e. Σ |= A→ B iff Σ ` A→ B). The
main advantage of SL

FD
is that inferences rules may be considered equivalence

rules and they are enough to compute all the derivations (see [12] for further
details and proofs).

Theorem 1 (Mora et al. [12]). In SL
FD

logic, the following equivalencies hold:

1. Fragmentation Equivalency [FrEq]: {A→ B} ≡ {A→ B-A}.
2. Composition Equivalency [CoEq]: {A→ B,A→ C} ≡ {A→ BC}.
3. Simplification Equivalency [SiEq]: If A ∩B = ∅ and A ⊆ C then

{A→ B,C → D} ≡ {A→ B,C-B → D-B}
4. Right Simplification Equivalency [rSiEq]: If A∩B = ∅ and A ⊆ C ∪D then

{A→ B,C → D} ≡ {A→ B,C → D-B}

Note that these equivalencies (reading from left to right) remove redundant
information. SL

FD
was conceived as a simplification framework.

To conclude this section, we introduce the outstanding notion of closure of
a set of attributes, which is strongly related with the syntactic treatment of
implications.

Definition 6. Let Σ ⊆ LS be an IS and X ⊆ S. The closure of X wrt Σ is the
largest subset of S, noted X+

Σ , such that Σ ` X → X+
Σ .

We omit the subindex (i.e. we write X+) when no confusion arise. Given a
context K and an IS Σ satisfying K |= A→ B iff Σ ` A→ B, it is well-known
that the closed sets of attributes wrt Σ are in bijection with the concepts of K.

One of the main topics is the computation of the closure of a set of attributes,
and for this reason, it is necessary to have an efficient method to calculate
closures. We emphasize for this problem, the works of Bertet et al. in [2, 3] and
Cordero et al. in [12].

4 Direct-Optimal basis

The study of sets of implications that satisfies some criteria is one of the most
important topics in FCA. In [3], Bertet and Monjardet present a survey about
implicational systems and basis. They show the equality between five unit basis
originating from different works (minimal functional dependencies in database
theory, knowledge spaces, etc.) and satisfying various properties including the
directness canonical and minimal properties, whence the name canonical direct
basis is given to this basis. The direct-optimal basis belong to these five basis.
In the following, we show only the concepts used in the rest of the paper of this
survey.

Definition 7. An IS Σ is said to be:

– minimal if Σ r {A→ B} 6≡ Σ for all A→ B ∈ Σ.
– minimum if Σ′ ≡ Σ implies |Σ| ≤ |Σ′|, for all IS Σ′.
– optimal if Σ′ ≡ Σ implies ‖Σ‖ ≤ ‖Σ′‖, for all IS Σ′.

where |Σ| is the cardinality of Σ and ‖Σ‖ is its size, ie ‖Σ‖ =
∑

A→B∈Σ
(|A|+|B|).

A minimal set of implications is named a basis, and a minimum basis is then a
basis of least cardinality. Let us now introduce the main property used in this
paper, namely the direct-optimal property.

Definition 8. An IS Σ is said to be direct if, for all X ⊆ S:

X+ = X ∪
⋃
{B | A ⊆ X and A → B ∈ Σ}

Moreover, Σ is said to be direct-optimal if it is direct and, for any direct IS Σ′,
Σ′ ≡ Σ implies ‖Σ‖ ≤ ‖Σ′‖.

In words, Σ is direct if the computation of the closure of any attribute set wrt Σ
requires only one iteration, that is, a unique traversal of the set of implications.
Obviously, the direct-optimal property is the combination of the directness and
optimality properties. In [2], Bertet and Nebut show that a direct-optimal IS is
unique and can be obtained from any equivalent IS. We address this procedure
in this paper.

As we have said in the preliminaries, one of the most important problems is
how to calculate quickly and easily the closureX+ of any setX because a number
of problems related to an IS Σ can be answered by computing closures. For this
reason, Bertet et al. propose a type of base called direct-optimal basis [2, 3], so
one can compute closures of subsets in only one iteration. Section 4.1. presents
the basis proposed in [2] by Bertet and Nebut where they work with non-unitary
implicational systems (IS). Section 4.2 shows how to obtain a unit direct-optimal
basis [3]. In both sections, we illustrate the algorithms needed to obtain a direct-
optimal basis equivalent to any implicational system.

4.1 Computing Direct-Optimal basis

In this section, the algorithm proposed by Bertet and Nebut in [2] is showed.
The key of the method is the so-called “overlap axiom” that can be directly
proved by using the axiomatic system from Definition 5.

[Overlap] for all A,B,C,D ⊆ S: If B ∩ C 6= ∅, A→ B,C → D

A(C-B)→ D

Then, the direct implicational system generated from an IS Σ is defined as the
smallest IS that contains Σ and is closed for [Overlap].

Definition 9. The direct implicational system Σd generated from Σ is defined
as the smallest IS such that:

1. Σ ⊆ Σd and
2. For all A,B,C,D ⊆ S, if A → B,C → D ∈ Σd and B ∩ C 6= ∅ then

A(C-B)→ D ∈ Σd.

Function Bertet-Nebut-Direct(Σ)

input : An implicational system Σ on S
output: The direct IS Σd on S equivalent to Σ
begin

Σd := Σ
foreach A→ B ∈ Σd do

foreach C → D ∈ Σd do
if B ∩ C 6= ∅ then add A(C-B)→ D to Σd;

return Σd

Theorem 2 (Bertet and Nebut [2]). Let Σ be an implicational system. Then
Σd = Bertet-Nebut-Direct(Σ) is a direct basis.

Moreover, if an IS Σ is direct but not direct-optimal, then there exists an equiv-
alent IS Σ′ of smaller size which is direct-optimal. The properties that it must
hold are the following:

Theorem 3 (Bertet and Nebut [2]). A direct IS Σ is direct-optimal if and
only if the following properties hold.

Extensiveness: for all A→ B ∈ Σ, A ∩B = ∅.
Isotony: for all A→ B,C → D ∈ Σ, C A implies B ∩D = ∅.
Premise: if A→ B,A→ B′ ∈ Σ then B = B′.
Not empty conclusion: if A→ B ∈ Σ then B 6= ∅.

Function Bertet-Nebut-Minimize(Σ)

input : An implicational system Σ on S
output: An smaller IS Σm on S equivalent to Σ
begin

Σm := ∅
foreach A→ B ∈ Σ do

B′ := B
foreach C → D ∈ Σ do

if C = A then B′ := B′ ∪D;
if C A then B′ := B′ rD;

B′ := B′ rA
add A→ B′ to Σm

return Σm

Function Bertet-Nebut-DO computes the direct-optimal basis Σdo generated from
an IS Σ. It first computes Σd using Function Bertet-Nebut-Direct and then
minimizes Σd using Function Bertet-Nebut-Minimize.

Function Bertet-Nebut-DO(Σ)

input : An implicational system Σ on S
output: The direct-optimal IS Σdo on S equivalent to Σ
begin

Σd = Bertet-Nebut-direct(Σ)
Σdo = Bertet-Nebut-Minimize(Σd)
return Σdo

Theorem 4 (Bertet and Nebut [2]). Let Σ be an implicational system. Then
Σdo = Bertet-Nebut-DO(Σ) is the unique direct-optimal implicational system
equivalent to Σ.

4.2 Direct-Optimal basis by means of unit implicational systems

In some areas, the management of formulas is limited to unitary ones. Thus,
the use of Horn Clauses in Logic Programming is widely accepted. Such a lan-
guage restriction allows an improvement in the performance of the methods,
which are more direct and lighter. Nevertheless, the advantages provided by the

limited languages have a counterpart: a significant growth of the input set. In
this section we are going to present new versions of the definitions and methods
introduced above restricted to Unit Implicational System (UIS), i.e. set of im-
plications with unitary right-hand sides. An UIS is named proper if it does not
contain implications A→ a such that a ∈ A.

In this line, Bertet [4] provided versions for unit implicational systems of
Functions Bertet-Nebut-Direct and Bertet-Nebut-Minimize.

Function Bertet-Unit-Direct(Σ)

input : A proper UIS Σ on S
output: The direct UIS Σd on S equivalent to Σ
begin

Σd := Σ
foreach A→ a ∈ Σd do

foreach Ca→ b ∈ Σd do
if a 6= b and b 6∈ A then add AC → b to Σd;

return Σd

Function Bertet-Unit-Minimize(Σ)

input : A proper UIS Σ on S
output: An smaller UIS Σm on S equivalent to Σ
begin

Σm := Σ
foreach A→ b ∈ Σm do

foreach C → b ∈ Σm do
if A C then delete C → b from Σm;

return Σm

The above functions was used in [4] to build a method which transforms an
arbitrary UIS into an UIS with the same properties that the direct-optimal basis
for general IS. Since any non-unit IS can be trivially turned into an UIS, we may
encapsulate both functions to provide another method to get a direct-optimal
basis from and arbitrary IS. Thus, the following function incorporates a first
step to convert any IS into its equivalent UIS and concludes with the converse
switch.

Function Bertet-Unit-DO(Σ)

input : An implicational system Σ on S
output: The direct-optimal IS Σdo on S equivalent to Σ
begin

Σu := {A→ b | A→ B ∈ Σ and b ∈ B rA}
Σud := Bertet-Unit-Direct(Σu)
Σudo := Bertet-Unit-Minimize(Σud)
Σdo := {A→ B | B = {b | A→ b ∈ Σ} 6= ∅}
return Σdo

Theorem 5 (Bertet [4]). Let Σ be an IS. Then Σdo = Bertet-Unit-DO(Σ) is
the unique direct-optimal implicational system equivalent to Σ.

As we have mentioned at the beginning of this subsection, some authors
introduce unitary formulas as a way to provide simpler and more direct methods
having a better performance. Thus, in this case, Bertet-Unit-DO is more efficient
than Bertet-Nebut-DO, as we shall see at the end of the paper in Section 5.1.

5 Computing direct-optimal basis by means of reductions

In this paper, our goal is the integration of the techniques proposed by Bertet
et al. [2–4] and the Simplification Logic proposed by Cordero et al. [6], that
is, the adding of reductions based on the simplification paradigm to build a
direct-optimal basis.

In the same way that Bertet-Unit-DO, we are going to develop a function
to get direct-optimal basis whose first step will be to narrow the implications.
However, the use of unit implications has some disadvantages that we are going to
avoid by considering another kind of formulas. Thus, we are going to use reduced
IS and introduce simplification rules which transform it preserving reduceness.
A signal which indicates it is a good approach is the fact that at the end of
the process, the function renders the direct-optimal basis directly, avoiding the
converse switch.

Definition 10. An IS Σ is reduced if A→ B ∈ Σ implies B 6= ∅ and A∩B = ∅
for all A,B ⊆ S.

Obviously, any IS Σ can be turned into a reduced equivalent one Σr as follows

Σr := {A→ B-A | A→ B ∈ Σ,B 6⊆ A}
The method proposed begins with this transformation and, once the IS is re-
duced, this property is preserved. For this reason, [Overlap] must be substituted.
Thus, we introduce a new inference rule covering directness without losing re-
duceness and, at the same time, it makes progress on the minimization task
following the simplification paradigm. The kernel of the new method is the fol-
lowing inference rule, named strong simplification:

[sSimp] If B ∩ C 6= ∅ and D 6⊆ A ∪B,
A→ B,C → D

A(C-B)→ D-(AB)

Regardless the conditions, the inference rule always holds. Nevertheless, the con-
ditions ensure a precise application of the rule in those cases where it is necessary.

Definition 11. Given a reduced IS Σ, the direct-reduced implicational system
Σdr generated from Σ is defined as the smallest IS such that

1. Σ ⊆ Σdr and
2. For all A,B,C,D ⊆ S, if A→ B,C → D ∈ Σdr, B ∩C 6= ∅ and D 6⊆ A∪B

then AC-B → D-(AB) ∈ Σdr

Theorem 6. Given a reduced IS Σ, then Σdr =Direct-Reduced(Σ) is a direct
and reduced IS.

Function Direct-Reduced(Σ)

input : A reduced implicational system Σ on S
output: The direct-reduced IS Σdr on S
begin

foreach A → B ∈ Σdr and C → D ∈ Σdr do
if B ∩ C 6= ∅ 6= D r (A ∪B) then add AC-B → D-(AB) to Σdr;

return Σdr

Theorem 1 provides four equivalencies which allow to remove redundant infor-
mation when they are read from left to right. An implicational system in which
these equivalences are used to remove redundant information is going to be
named simplified implicational system.

Definition 12. A reduced IS Σ is simplified if the following conditions hold:
for all A,B,C,D ⊆ S,

1. A→ B, A→ C ∈ Σ implies B = C.
2. A→ B, C → D ∈ Σ and A C imply C ∩B = ∅ = D ∩B.

Then, Function RD-Simplify turns any direct-reduced IS into a direct-reduced-
simplified equivalent one by systematically applying the equivalences provided
in Theorem 1.

Function RD-Simplify(Σ)

input : A direct-reduced implicational system Σ on S
output: The direct-reduced-simplified IS Σdrs on S equivalent to Σ
begin

Σdrs := ∅
foreach A → B ∈ Σ do

foreach C → D ∈ Σ do
if C = A then B := B ∪D;
if C A then B := B rD;

if B 6= ∅ then add A → B to Σdrs;

return Σdrs

Function doSimp(Σ)

input : An implicational system Σ on S
output: The direct-optimal IS Σdo on S
begin

Σr := {A→ B-A | A→ B ∈ Σ,B 6⊆ A}
Σdr := Direct-Reduced(Σr)
Σdo := RD-Simplify(Σdr)
return Σdo

Theorem 7. Let Σ be an implicational system on S. Then, Σdo = doSimp(Σ)
is the direct-optimal basis equivalent to Σ.

Note that, unlike Bertet-Unit-DO where a final step was needed to revert the
effects of the first transformation, doSimp do not need to revert the first step. We
conclude this section with an experiment which illustrates the advantages of the
new method.

5.1 Empirical results

Logic programming has been used as a natural framework in the areas in which
it is neccessary to develop automatic deduction methods. The Prolog prototypes
provides a declarative and pedagogical point of departure and illustrates the
behavior of new techniques in a very fast and easy way.

Some authors have explored the use of Logic Programming in the framework
of Formal Concept Analysis. Even, in [5] the authors consider the framework
of FCA and its implementation in logic programming as a previous step to
achieve the first order logic FCA theory. In Eden et al. [9], the authors present
a PROLOG-based prototype tool and show how the tool can utilize formulas to
locate pattern instances.

In a first step, the methods proposed in this paper have been developed in
a Logic Programming language (Prolog) that is a well-known tool to develop
fast prototypes. In our case, the implementation in Prolog is close because the
method proposed in this paper is based on logic.

The methods of Bertet et al. [2,3] and our doSimp method have been imple-
mented in Swi-Prolog.1 Since there does not exist a benchmark for implications
in this experiment, we have collected some sets of implications from the litera-
ture, searching papers and books with works about algorithms for implications,
functional dependencies and minimal keys. Now, we are going to show the results
of the execution of a first Prolog prototype of Bertet et al. for UIS [3], Bertet et
al. for IS [2] and the new doSimp (proposed in this paper) methods.

The following table and figures summarize the results obtained. We show in
the columns the results of Prolog: Lips (logical inferences per second lips - used
to describe the performance of a logical reasoning system), Time (execution time
in seconds), and Comp (the number of couple of implications in which a rule is
applied). Areas in Figure 2 show the percentages of each algorithm with respect
the number of comparisons.

1 Available at http://www.lcc.uma.es/~enciso/doSimp.zip

Lips/Time/Comp. Bertet-Nebut-DO Bertet-Unit-DO Direct-Reduced

Ex.1 5297080 1247 1978 116905 0.019 36 4281 0.001 12
Ex.2 2395 0.003 23 923 0 3 606 0 2
Ex.3 2183 0 15 1440 0 4 1122 0 4
Ex.a 83403 0.019 297 44109 0.007 33 3048 0.001 4

Ex.a3red 27613 0.005 100 16938 0.003 20 3698 0.001 15
Ex.derivation5 10302 0.002 120 3522 0.001 8 1782 0.001 12
Ex.Olomouc 15399581 4528 4337 1526818 0.331 180 15568 0.003 72
Ex.Ganter 116514 0.025 230 72153 0.16 36 3756 0.001 12
Ex.CLA14 102971 0.022 204 7449 0.001 12 704 0 3
Ex.Saedian1 18754 0.004 97 10349 0.002 14 4064 0.001 16
Ex.Saedian2 19452 0.004 160 10549 0.002 13 2619 0.001 13
EX.Saedian3 5753962 1262 1986 166566 0.028 67 24643 0.005 55
Ex.Wastl10 1242 0 18 381 0 1 327 0 1
Ex.Wastl13 10543 0.002 86 4674 0 10 1029 0 5
Example1 5594556921 7008.890 134175 2662181973 1351.950 5389 1199498 0.197 1103

IS Bertet−Nebut UIS Bertet doSimp
Lips - logical inferences 374, 760, 194.4 177, 610, 983.3 84, 449.66667
Time of execution (seconds) 467, 728.5 90, 130.03693 0.014
Number of comparisons 9588.4 388.4 88.6

Fig. 1. Summary of the experiment (average)

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

Ex.W
astl1

0	 Ex.3
	

Ex.2
	

Ex.d
eriv

a:o
n5	

Ex.W
astl1

3	

Ex.S
aed

ian1
	

Ex.S
aed

ian2
	

Ex.a
3red

	
Ex.a

	

Ex.C
LA1

4	

Ex.G
ante

r	 Ex.1
	

EX.S
aed

ian3
	

Ex.O
lom

ouc
	

Exam
ple1

	

Comparisons	 doSimp	

Comparisons	 UIS	 -‐B	

Comparisons	 IS	 -‐BN	

Fig. 2. Results: Comparisons

6 Conclusion

In this work, we have presented another algorithm to calculate the direct-optimal
basis in a further way, in the most of the cases, than the algorithms which exist in

the literature. It is shown with a test that we have realised by running different
examples with the methods of Bertet et al. for UIS [3], Bertet et al. for IS [2]
and the new doSimp.

Our aim is to reduce the cost of the algorithm by using the Simplification
Logic as a useful tool to work with implications. By the time, we have improved
the algorithms that existed but we are going to go on working in that way to
try to cut down the cost of our method.

The perspectives we have are improvements by pretreatments: reduction,
canonical basis, etc in order to reach our main objective which would be to
directly compute the direct-optimal basis without extra implication generation.

Acknowledgment

Supported by grant TIN11-28084 of the Science and Innovation Ministry of Spain.

References

1. W W. Armstrong, Dependency structures of data base relationships, Proc. IFIP
Congress. North Holland, Amsterdam: 580–583, 1974.

2. K. Bertet, M. Nebut, Efficient algorithms on the Moore family associated to an
implicational system, DMTCS, 6(2): 315–338, 2004.

3. K. Bertet, B. Monjardet, The multiple facets of the canonical direct unit implica-
tional basis, Theor. Comput. Sci., 411(22-24): 2155–2166, 2010.

4. K. Bertet, Some Algorithmical Aspects Using the Canonical Direct Implicationnal
Basis, CLA:101–114, 2006.

5. L. Chaudron, N. Maille, 1st Order Logic Formal Concept Analysis: from logic pro-
gramming to theory, Computer and Informations Science: (13:3),1998.

6. P Cordero, A. Mora, M. Enciso, I.Pérez de Guzmán, SLFD Logic: Elimination of
Data Redundancy in Knowledge Representation, LNCS, 2527: 141–150, 2002.

7. P. Cordero, M. Enciso, A. Mora, M. Ojeda-Aciego, Computing Minimal Generators
from Implications: a Logic-guided Approach, CLA: 187–198, 2012.

8. P. Cordero, M. Enciso, A. Mora, M. Ojeda-Aciego, Computing Left-Minimal Direct
Basis of implications. CLA: 293–298, 2013.

9. A. Eden, Y. Hirshfeld, K. Lundqvist, EHL99 , LePUS Symbolic Logic Modeling of
Object Oriented Architectures: A Case Study, In: Proc. Second Nordic Workshop
on Software Architecture (NOSA’99), 1999.

10. B. Ganter, Two basic algorithms in concept analysis, Technische Hochschule,
Darmstadt, 1984.

11. J.L. Guigues and V. Duquenne, Familles minimales d’implications informatives
résultant d’un tableau de données binaires, Math. Sci. Humaines: 95, 5–18, 1986.

12. A. Mora, M. Enciso, P. Cordero, and I. Fortes, Closure via functional dependence
simplification, I. J.of Computer Mathematics, 89(4): 510–526, 2012.

13. A. Mora, M. Enciso, P. Cordero, and I. Pérez de Guzmán, An Efficient Prepro-
cessing Transformation for Functional Dependencies Sets Based on the Substitution
Paradigm, LNCS, 3040: 136–146, 2004.

