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Céline Hudelot Ecole Centrale Paris, France
Dmitry Ignatov State University HSE, Moscow, Russia
Mehdi Kaytoue LIRIS - INSA de Lyon, France
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Preface

Formal Concept Analysis is a mathematical theory formalizing aspects of hu-
man conceptual thinking by means of lattice theory. As such, it constitutes a
theoretically well-founded, practically proven, human-centered approach to data
science and has been continuously contributing valuable insights, methodologies
and algorithms to the scientific community.
The International Conference “Concept Lattices and Their Applications (CLA)”
is being organized since 2002 with the aim of providing a forum for researchers
involved in all aspects of the study of FCA, from theory to implementations and
practical applications. Previous years’ conferences took place in Horńı Bečva, Os-
trava, Olomouc (all Czech Republic), Hammamet (Tunisia), Montpellier (France),
Olomouc (Czech Republic), Sevilla (Spain), Nancy (France), Fuengirola (Spain),
and La Rochelle (France). The eleventh edition of CLA was held in Košice, Slo-
vakia from October 7 to 10, 2014. The event was organized and hosted by the
Institute of Computer Science at Pavol Jozef Šafárik University in Košice.
This volume contains the selected papers as well as abstracts of the four invited
talks. We received 28 submissions of which 22 were accepted for publication
and presentation at the conference. We would like to thank the contributing
authors, who submitted high quality works. In addition we were very happy to
welcome five distinguished invited speakers: Jaume Baixeries, Hassan Aı̈t-Kassi,
Uta Priss, and Ondrej Cepek. All submitted papers underwent a thorough review
by members of the Program Committee with the help of additional reviewers.
We would like to thank all reviewers for their valuable assistance. A selection of
extended versions of the best papers will be published in a renowned journal,
pending another reviewing process.
The success of such an event heavily relies on the hard work and dedication of
many people. Next to the authors and reviewers, we would also like to acknowl-
edge the help of the CLA Steering Committee, who gave us the opportunity
of chairing this edition and provided advice and guidance in the process. Our
greatest thanks go to the local Organization Committee from the Institute of
Computer Science, Pavol Jozef Šafárik University in Košice, who put a lot of ef-
fort into the local arrangements and provided the pleasant atmosphere necessary
to attain the goal of providing a balanced event with a high level of scientific
exchange. Finally, it is worth noting that we benefited a lot from the EasyChair
conference management system, which greatly helped us to cope with all the
typical duties of the submission and reviewing process.

October 2014 Karell Bertet
Sebastian Rudolph

Program Chairs of CLA 2014





Relationship between the Relational Database
Model and FCA

Jaume Baixeries

Computer Science Department
Universitat Politcnica de Catalunya

Barcelona. Catalonia

The Relational Database Model (RDBM) [3, 4] is one of the most relevant
database models that are being currently used to manage data. Although some
alternative models are also being used and implemented (namely, object oriented
databases and structured datatypes databases or NoSQL databases [1, 2]), the
RDBM still maintains its popularity, as some rankings indicate 1.

The RDBM can be formulated from a set-theoretical point of view, such that
a tuple is a partial function, and other basic operations in this model such as
projections, joins, selections, etc, can be seen as set operations.

Another important feature of this model is the existence of constraints, which
are first-order predicates that must hold in a relational database. These con-
straints mostly describe conditions that must hold in order to keep the consis-
tency of the data in the database, but also help to describe some semantical
aspects of the dataset.

In this talk, we consider some aspects of the RDBM that have been char-
acterized with FCA, focusing on different kinds of constraints that appear in
the Relational Model. We review some results that formalize different kinds of
contraints with FCA [5–8]. We also explain how some concepts of the RDBM
such as key, closure, completion, cover can be easily be understood with FCA.

References

1. Kai Orend. Analysis and Classification of NoSQL Databases and Evaluation of their
Ability to Replace an Object-relational Persistence Layer. 2010. doi=10.1.1.184.483
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5. Baixeries, Jaume. A Formal Context for Symmetric Dependencies. ICFCA 2008.
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6. Baixeries, Jaume and Balcázar, José L. Characterization and Armstrong Relations
for Degenerate Multivalued Dependencies Using Formal Concept Analysis. For-
mal Concept Analysis, Third International Conference, ICFCA 2005, Lens, France,
February 14-18, 2005, Proceedings. Lecture Notes in Computer Science, 2005
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8. Baixeries, Jaume. A Formal Concept Analysis framework to model functional de-
pendencies. Mathematical Methods for Learning, 2004.
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What Formalism for the Semantic Web?

Hassan Aı̈t-Kaci

hassan.ait-kaci@univ-lyon1.fr

ANR Chair of Excellence
CEDAR Project

LIRIS
Université Claude Bernard Lyon 1

France

The world is changing. The World Wide Web is changing. It started out as a set of purely
notational conventions for interconnecting information over the Internet. The focus of
information processing has now shifted from local disconnected disc-bound silos to
Internet-wide interconnected clouds. The nature of information has also evolved. From
raw uniform data, it has now taken the shape of semi-structured data and meaning-
carrying so-called “Knowledge Bases.” While it was sufficient to process raw data
with structure-aware querying, it has now become necessary to process knowledge with
contents-aware reasoning. Computing must therefore adapt from dealing with mere ex-
plicit data to inferring implicit knowledge. How to represent such knowledge and how
inference therefrom can be made effective (whether reasoning or learning) is thus a
central challenge among the many now facing the world wide web.

So called “ontologies” are being specified and meant to encode formally encyclo-
pedic as well as domain-specific knowledge. One early (still on-going) such effort has
been the Cyc1 system. It is a knowledge-representation system (using LISP syntax) that
makes use of a set of varied reasoning methods, altogether dubbed “commonsense.” A
more recent formalism issued of Description Logic (DL)—viz. the Web Ontology Lan-
guage (OWL2)—has been adopted as a W3C recommendation. It encodes knowledge
using a specific standardized (XML, RDF) syntax. Its constructs are given a model-
theoretic semantics which is usually realized operationally using tableau3-based rea-
soning.4 The point is that OWL is clearly designed for a specific logic and reason-
ing method. Saying that OWL is the most adequate interchange formalism for Knowl-
edge Representation (KR) and automated reasoning (AR) is akin to saying that English
is the best designed human language for facilitating information interchange among
humans—notwithstanding the fact that it was simply imposed by the most recent per-
vasive ruling power, just as Latin was Europe’s Lingua Franca for centuries.

Thus, it is fair to ask one’s self a simple question: “Is there, indeed, a single most
adequate knowledge representation and reasoning method that can be such a norm?”

1 http://www.cyc.com/platform/opencyc
2 http://www.w3.org/TR/owl-features/
3 http://en.wikipedia.org/wiki/Method_of_analytic_tableaux
4 Using of tableau methods is the case of the most prominent SW reasoner [6, 5, 7]. Systems

using alternative reasoning methods must first translate the DL-based syntax of OWL into
their own logic or RDF query processing. This may be costly [9] and/or incomplete [8].



I personally do not think so. In this regard, I share the general philosophy of Doug
Lenat5, Cyc’s designer—although not the haphazard approach he has chosen to follow.6

If one ponders what characterizes an ontology making up a knowledge base, some
specific traits most commonly appear. For example, it is universally acknowledged that,
rather than being a general set of arbitrary formal logical statements describing some
generic properties of “the world,” a formal knowledge base is generally organized as
a concept-oriented information structure. This is as important a change of perspective,
just as object-oriented programming was with respect to traditional method-oriented
programming. Thus, some notion of property “inheritance” among partially-ordered
“concepts” (with an “is-a” relation) is a characteristic aspect of KR formalisms. In
such a system, a concept has a straightforward semantics: its denotes of set of elements
(its “instances”) and the “is-a” relation denotes set inclusion. Properties attached to a
concept denote information pertaining to all instances of this concept. All properties
verified by a concept are therefore inherited by all its subconcepts.

Sharing this simple characteristic, formal KR formalisms have emerged from sym-
bolic mathematics that offer means to reason with conceptual information, depending
on mathematical apparatus formalizing inheritance and the nature of properties attached
to concepts. In Description Logic7, properties are called “roles” and denote binary re-
lations among concepts. On the other hand, Formal Concept Analysis (FCA8) uses an
algebraic approach whereby an “is-a” ordering is automatical derived from proposi-
tional properties encoding the concepts that are attached to as bit vectors. A concept is
associated an attribute with a boolean marker (1 or “true”) if it possesses it, and with
a (0 or “false”) otherwise. The bit vectors are simply the rows of the “property ma-
trix” relating concepts to their attributes. This simple and powerful method, originally
proposed by Rudolf Wille, has a dual interpretation when matching attributes with con-
cepts possessing them. Thus, dually, it views attributes also as partially ordered (as the
columns of the binary matrix). An elegant Galois-connection ensues that enables sim-
ple extraction of conceptual taxonomies (and their dual attribute-ordered taxonomies)
from simple facts. Variations such as Relational Concept Analysis (RCA9) offer more
expressive, and thus more sophisticated, knowledge while preserving the essential alge-
braic properties of FCA. It has also been shown how DL-based reasoning (e.g. OWL)
can be enhanced with FCA.10

Yet another formalism for taxonomic attributed knowledge, which I will present
in more detail in this presentation, is the Order-Sorted Feature (OSF) constraint for-
malism. This approach proposes to see everything as an order-sorted labelled graph.

5 http://en.wikipedia.org/wiki/Douglas_Lenat
6 However, I may stand corrected in the future since knowledge is somehow fundamentally

haphazard. My own view is that, even for dealing with a heterogenous world, I would rather
favor mathematically formal representation and reasoning methods dealing with uncertainty
and approximate reasoning, whether probabilistic, fuzzy, or dealing with inconsistency (e.g.
rough sets, paraconsistency).

7 http://en.wikipedia.org/wiki/Description_logic
8 http://en.wikipedia.org/wiki/Formal_concept_analysis
9 http://www.hse.ru/data/2013/07/04/1286082694/ijcai_130803.pdf

10 http://ijcai-11.iiia.csic.es/files/proceedings/
T13-ijcai11Tutorial.pdf
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Sorts are set-denoting and partially ordered with an inclusion-denoting “is-a” relation,
and so form a conceptual taxonomy. Attributes, called “features,” are function-denoting
symbols labelling directed edges between sort-labelled nodes. Such OSF graphs are a
straightforward generalization of algebraic First-Order Terms (FOTs) as used in Logic
Programming (LP) and Functional Programming (FP). Like FOTs, they form a lattice
structure with OSF graph matching as the partial ordering, OSF graph unification
as infimum (denoting set intersection), and OSF graph generalization as supremum.11

Both operations are very efficient. These lattice-theoretic properties are preserved when
one endows a concept in a taxonomy with additional order-sorted relational and func-
tional constraints (using logical conjunction for unification and disjunction for general-
ization for the attached constraints). These constraints are inherited down the concep-
tual taxonomy in such a way as to be incrementally enforceable as a concept becomes
gradually refined.

The OSF system has been the basis of Constraint Logic Programming for KR
and ontological reasoning (viz. LIFE) [2, 1]. As importantly, OSF graph-constraint
technology has been at work with great success in two essential areas of AI: NLP and
Machine Learning:

– it has been a major paradigm in the field of Natural Language Processing (NLP)
for a long time; notably, in so-called “Head-driven Phrase Structure Grammar”
(HPSG12) and Unification Grammar (UG13) technology [4]. This is indeed not sur-
prising given the ease with which feature structure unification enables combining
both syntactic and semantic information in a clean, declarative, and efficient way.14

– Similarly, while most of the attention in theOSF literature has been devoted to uni-
fication, its dual—namely, generalization—is just as simple to use, and computes
the most specific OSF term that subsumes two given terms [3]. This operation is
central in Machine Learning and with it, OSF technology lends itself to be com-
bined with popular Data Mining techniques such as Support Vector Machines using
frequency or probabilistic information.

In this presentation, I will give a rapid overview of the essential OSF formalism
for knowledge representation along its reasoning method which is best formalized as
order-sorted constraint-driven inference. I will also illustrate its operational efficiency
and scalability in comparison with those of prominent DL-based reasoners used for the
Semantic Web.

The contribution of this talk to answering the question in its title is that the Semantic
Web effort should not impose a priori putting all our eggs in one single (untested)
basket. Rather, along with DL, other viable alternatives such as the FCA and OSF
formalisms, and surely others, should be combined for realizing a truly semantic web.

11 This supremum operation, however, does not (always) denote set union—as for FOT subsump-
tion, it is is not modular (and hence neither is it distributive).

12 http://en.wikipedia.org/wiki/Head-driven_phrase_structure_
grammar

13 http://www.cs.haifa.ac.il/˜shuly/malta-slides.pdf
14 http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.2021
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The use of lattice theory for linguistic data mining applications in the widest
sense has been independently suggested by different researchers. For example,
Masterman (1956) suggests using a lattice-based thesaurus model for machine
translation. Mooers (1958) describes a lattice-based information retrieval model
which was included in the first edition of Salton’s (1968) influential textbook.
Sladek (1975) models word fields with lattices. Dyvik (2004) generates lattices
which represent mirrored semantic structures in a bilingual parallel corpus. These
approaches were later translated into the language of Formal Concept Analysis
(FCA) in order to provide a more unified framework and to generalise them for
use with other applications (Priss (2005), Priss & Old (2005 and 2009)).

Linguistic data mining can be subdivided into syntagmatic and paradigmatic
approaches. Syntagmatic approaches exploit syntactic relationships. For exam-
ple, Basili et al. (1997) describe how to learn semantic structures from the ex-
ploration of syntactic verb-relationships using FCA. This was subsequently used
in similar form by Cimiano (2003) for ontology construction, by Priss (2005)
for semantic classification and by Stepanova (2009) for the acquisition of lexico-
semantic knowledge from corpora.

Paradigmatic relationships are semantic in nature and can, for example, be
extracted from bilingual corpora, dictionaries and thesauri. FCA neighbourhood
lattices are a suitable means of mining bilingual data sources (Priss & Old (2005
and 2007)) and monolingual data sources (Priss & Old (2004 and 2006)). Ex-
perimental results for neighbourhood lattices have been computed for Roget’s
Thesaurus, WordNet and Wikipedia data (Priss & Old 2006, 2010a and 2010b).

Previous overviews of linguistic applications of FCA were presented by Priss
(2005 and 2009). This presentation summarises previous results and provides
an overview of more recent research developments in the area of linguistic data
mining with FCA.
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Shortest CNF Representations of Pure Horn
Functions and their Connection to Implicational

Bases

Ondrej Cepek
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Pure Horn CNFs, directed hypergraphs, and closure systems are objects stud-
ied in different subareas of theoretical computer science. Nevertheless, these three
objects are in some sense isomorphic. Thus also properties derived for one of these
objects can be usually translated in some way for the other two. In this talk we
will concentrate on the problem of finding a shortest CNF representation of a
given pure Horn function. This is a problem with many practical applications in
artificial intelligence (knowledge compression) and other areas of computer sci-
ence (e.g. relational data bases). In this talk we survey complexity results known
for this problem and then concentrate on the relationships between CNF rep-
resentations of Horn functions and certain sets of implicates of these functions,
called essential sets of implicates. The definition of essential sets is based on the
properties of resolution. Essential sets can be shown to fulfill an interesting or-
thogonality property: every CNF representation and every (nonempty) essential
set must intersect. This property leads to non-trivial lower bounds on the CNF
size, which are sometimes tight and sometimes have a gap. We will try to derive
connections to the known properties of minimal implicational bases.

The talk is based on joint research with Endre Boros, Alex Kogan, Petr
Kucera, and Petr Savicky.
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Abstract. In Model Driven Engineering (MDE), a Model Transforma-
tion is a specialized program, often composed of a set of rules to transform
models. The Model Transformation By Example (MTBE) approach aims
to assist the developer by learning model transformations from source
and target model examples.In a previous work, we proposed an approach
which takes as input a fragmented source model and a target model, and
produces a set of fragment pairs that presents the many-to-many match-
ing links between the two models. In this paper, we propose to mine
model transformation patterns (that can be later transformed in trans-
formation rules) from the obtained matching links. We encode our models
into labeled graphs that are then classified using the GRAAL approach
to get meaningful common subgraphs. New transformation patterns are
then found from the classification of the matching links based on their
graph ends. We evaluate the feasibility of our approach on two represen-
tative small transformation examples.

1 Introduction

MDE is a subfield of software engineering that relies on models as a central arti-
fact for the software development cycle. Models can be manually or automatically
manipulated using model transformations. A model transformation is a program,
often composed of a set of transformation rules, that takes as input a model and
produces as output another model. The models conform to meta-models, as
programs conform to the programming language grammar. If we would like to
transform any Java program into any C++ program, we would express this trans-
formation at the level of their grammars. In MDE, model transformations are
similarly expressed in terms of the meta-models. Designing a model transforma-
tion is thus a delicate issue, because the developer has to master the specialized
language in which the transformation is written, the meta-modeling activity,
and the subtleties of the source and the target meta-models. In order to as-
sist the developers, the MTBE approach follows the track of the "Programming
By Example" approach [6] and proposes to use an initial set of transformation
examples from which the model transformation is partly learnt. The first step
of the MTBE approach consists in extracting matching links, from which the
second step learns transformation rules. Several approaches [1,15,12] are pro-
posed for the second step, but they derive element-to-element (one-to-one) rules

c© Karell Bertet, Sebastian Rudolph (Eds.): CLA 2014, pp. 11–23,
ISBN 978–80–8152–159–1, Institute of Computer Science, Pavol Jozef Šafárik
University in Košice, 2014.



that mainly express how a source model element is transformed into a target
model element. In this paper, we propose to learn transformation patterns of
type fragment-to-fragment (many-to-many) using the output of a previous work
[13] that consists in generating matching links between source and target model
fragments. We encode our models and model fragments as labeled graphs. These
graphs are classified through a lattice using a graph mining approach (GRAAL)
to get meaningful common subgraphs. The matching links are then classified
using Formal Concept Analysis, the lattice of source graphs and the lattice of
target graphs. New transformation patterns are discovered from these classifica-
tions that can help the designer of the model transformation. We evaluate the
feasibility of our approach on two representative transformation examples.

The next Section 2 gives an overview of our approach. Section 3 presents the
transformation pattern mining approach and Section 4 evaluates its feasibility.
Section 5 presents the related work, and we conclude in Section 6.

2 Approach Overview

In Model-Driven Engineering, model transformation are programs that trans-
form an input source model into an output target model. A classical model trans-
formation (UML2REL) transforms a UML model into a RELational model. Such
transformation programs are often written with declarative or semi-declarative
languages and composed of a set of transformation rules, defined at the meta-
model level. The meta-model defines the concepts and the relations that are used
(and instantiated) to compose the models. For example, the UML meta-model

Source 
Model

Fragments

Target 
Model

Fragments

Matching 
Links

Source 
Graphs

Target 
Graphs

Source 
Graph
Lattice

Target 
Graph
Lattice

Matching 
Link

Formal
Context

Matching 
Link

Lattice
Transformation

Patterns

GRAAL

GRAAL
FCA

Fig. 1. Process overview

contains the concept of Class which owns Attributes. This can used to derive
a UML model composed of a class Person owning the attribute Name. In the
UML2REL example, a very simple transformation pattern would be: a UML class
owning an attribute is transformed into a relational table owning a column. In
this paper, our objective is to learn such transformation patterns that express
that a pattern associating entities of the source meta-model (e.g. a UML class
owning an attribute) is transformed into a pattern associating entities of the
target meta-model (e.g. a relational table owning a column). Fig. 1 provides
an overview of our process. Let us consider that we want to learn rules for
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transforming UML models to relational models. Our input data (see Fig. 2) are
composed of: fragmented source models (a UML source fragment is given in Fig.
3(a)); fragmented target models (a relational target fragment is given in Fig.
3(b)); and matching links between fragments established by experts or by an
automatic matching technique. For example a matching link (L1) is established
in Fig. 2 between the UML source fragment of Fig. 3(a) and the relational target
fragment of Fig. 3(b).

name
Person

clientNumber

address

Client clientNumber
name

address

Client
reservationNumber
clientNumber
date

ReservationRequest

ReservationRequest

client

reservation
1..1

0..n

 ∞

 1

SG0

TG0

L0

SG1

TG1

L1

SG2

TG2

L2

Fig. 2. Three matching links between fragmented UML and relational models (this
figure is more readable in a coloured version)

Matching links established by experts or by automatic methods can be used
to form a set of model transformation patterns. For example, the L2 matching
link gives rise to a transformation pattern which indicates that a UML class
(with an attribute) with its super-class (with an attribute) is transformed into a
unique table with two columns, one being inherited. Nevertheless, matching links
often correspond to patterns that combine several simpler transformations or
are triggered from domain knowledge. Besides, they may contain minor errors
(such as a few additional or missing elements, for example, column date of Table
ReservationRequest has in fact no equivalent in Class ReservationRequest).
Moreover, what interests us is beyond the model domain. We do not want to
learn that Class Client is transformed into Table Client, but rather that a
UML class is usually transformed into a table.

Our output is composed of a set of model transformation patterns. Some can
directly be inferred from initial matching links (as evoked previously), and some
will be found thanks to graph generalization and matching link classification.
From our simple example, we want to extract the model transformation pattern
presented in Figure 4, whose premise and conclusion patterns do not appear as
such in the initial set of matching links (↪→ means "is transformed into").
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clientNumber
Client

name
Person

ReservationRequest
reserve

reservationclient

0,n1,1

(a) UML source fragment

clientNumber 
name

Client
requestNumber
date
clientNumber

ReservationRequest

 ∞

 1

(b) Relational target fragment

Fig. 3. An example of UML and relational models

↪→

Fig. 4. Transformation pattern: a class specializing a class with an attribute (in UML
model) is transformed into a table with an inherited column (in relational model).

3 Model Transformation Pattern Generation

From model fragments to graphs For our example, the source meta-model
is inspired by a tiny part of the UML metamodel (see Figure 5(a)), while the
target meta-model has its roots in a simplified relational data-base meta-model
(see Fig. 5(c)). The models often are represented in a visual syntax (as shown in
Fig. 3(a) and Fig. 3(b)) for readability reasons. Here we use their representation
as instance diagrams of their meta-model (using the UML instance diagram
syntax). For example, the UML model of Fig. 3(a) is shown as an instantiation of
its meta-model in Fig. 5(b), where each object (in a rectangular box) is described
by its meta-class in the meta-model, valued attributes and roles conforming to
the attributes and associations from the meta-model: e.g. person and client
are explicit instances of Class; client:Class has a link towards person labeled
by the role specializes; client:Property has the attribute lowerBound (1).

To extract expressive transformation patterns, we transform our models using
their instance diagram syntax, into simpler graphs which have labeled vertices.
We limited ourselves to locally injective labelled graphs. A locally injective graph
is a labeled graph such that all vertices in the neighbor of a given vertex have
different labels. This is not so restrictive in our case, because the fragments
identified by the experts rarely include similar neighborhood for an entity. Here
are the rules that we use in the transformation from simplified UML instance
diagrams to labeled graphs. We associate a labeled node to Objects, Roles, At-
tributes, Attribute values. Instance diagram of Figure 5(b) and corresponding
labeled graph from 6(a) are used to illustrate the transformation: person:Class
object is transformed into node 1 labeled class_1 and one of the attribute value
1 is transformed into node 13 labeled one_13. Edges come from the following
situations: an object has an attribute; an attribute has a value; an object has
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a role (is source of a role); an object is the target of a role. For example, for
the property which has an attribute lowerBound (equal to zero), there is a
corresponding edge (property_17, lowerBound_18).

Class

Association

PropertyIdentifier

1 ownsAttributeIdentifier

Property

lowerBound
upperBound

hasType

ownsAttribute

specializes

ownedEnd {Ordered}

(a) UML metamodel

person : Class name : Property

client : Class

clientNumber : 
PropertyIdentifier

specializes

ownsAttributeIdentifier

ownsAttribute

hasType
reserve: 

Association

ownedEnd 1

ownedEnd 2

reservationRequest 
: Class

hasType

lowerBound = 1
upperBound = 1

client : Property lowerBound = 0
upperBound = n

reservation: 
Property

(b) UML model of Fig 3(a) in instance dia-
gram syntax

Table Column

FKey PKey

1

hasSameName

Property

inheritedProperty

(c) Relational metamodel

client : Table reservationRequest : 
Table

clientNumber: 
PKey name : Column

clientNumber : 
FKey

inheritedProperty

date : Column

requestNumber 
: PKey

Property

hasSameName

(d) Relational model of Fig 3(b) in instance diagram
syntax

Fig. 5. Source/target metamodel and model, UML (upper par), relational (lower part)

Classification of graphs (GRAAL approach) After the previous step, we
obtain a set of source graphs, and a set of target graphs. We illustrate the re-
mainder of this section by using the three source graphs of Fig. 6, the three
target graphs of Fig. 7, and the matching links (Source graph i, Target graph i),
for i ∈ {0, 1, 2}. To get meaningful common subgraphs (on which new transfor-
mation patterns will be discovered), we use the graph mining approach proposed
in [7] and its derived GRAAL tool. In this approach, examples are described by
a description language L provided with two operations: an ≤ specialization op-
eration and an ⊗ operation which builds the least general generalization of two
descriptions. A generalization of the Norris algorithm [11] builds the Galois lat-
tice. Several description languages are implemented in GRAAL, and especially a
description based on locally injective graphs. ⊗ operation is the reduction of the
tensor product of graphs, also called the Kronecker product [14]. We indepen-
dently classify source graphs and target graphs. Classification of source graphs
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produces the lattice of Fig. 8(a). For example, in this lattice, Concept sfc012
has for intent a subgraph of source graphs 0, 1 and 2 representing a class which
specializes a class which owns an attribute. Classification of target graphs pro-
duces the lattice of Fig. 8(b). In this lattice, Concept tfc012 has for intent a
subgraph where a table has an inherited property.

(a) Source graph 1

(b) Source graph 0 (c) Source graph 2

Fig. 6. Source graphs

Classification of transformation links In the previous section, we have
shown how Galois lattices can be computed on the labeled graphs that represent
our model fragments. Now a matching link is described by a pair composed of
a source fragment (whose corresponding graph is in the extent of some concepts
in the source graph lattice) and a target fragment (whose corresponding graph
is in the extent of some concepts in the source graph lattice). This is described
in a formal context, where objects are the matching links and attributes are
the concepts of the two lattices (source graph lattice and target graph lattice).
In this formal context (presented in Table 11(a)), a matching link is associated
with the concepts having respectively its source graph and its target graph in
their extent. This means that the matching link is described by the graph of its
source fragment and by the generalizations of this graph in the lattice. This is
the same for the graphs of the target fragments. For example, matching link L0,
connecting source fragment 0 to target fragment 0, is associated in the formal
context to concepts sfc01, sfc012, tfc01, tfc012.
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(a) Target graph 1

(b) Target graph 0 (c) Target graph 2

Fig. 7. Target graphs

(a) Source graph lattice (b) Target graph lattice

Fig. 8. Graph lattices. Only concept extents are represented in the figure. Intents of
concepts are shown in Fig. 9 and 10. We denote by sfcx1...xn (resp. tfcx1...xn)

the vertex [x1,...,xn] of the source (resp. target) graph lattice.

The concept lattice associated with the matching link formal context of Fig.
11(a) is shown in Fig. 11(b). In this representation (obtained with RCAexplore1)
each box describes a concept: the first compartment informs about the name of
the concept, the second shows the simplified intent (here concepts from source
fragment lattice and target fragment lattice) and the third one shows the sim-
plified extent (here matching links). Concept_MatchingLinksFca_4 extent is
composed of the links L0 and L1, while the intent is composed of source graph
concepts sfc01, sfc012 and target graph concepts tfc01, tfc012.

Model transformation pattern mining The last step of the process consists
in extracting model transformation patterns from the matching link lattice. This
has close connections to the problem of extracting implication rules in a concept
lattice, but using only pairs of source and target graph concepts. The more
1 http://dolques.free.fr/rcaexplore.php
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(a) Concept sfc2 (b) Concept sfc01 (c) Concept
sfc012

Fig. 9. Source graph lattice concepts. Concept sfc1 (not represented) has Source
Graph 1 of Fig. 6 as intent

(a) Concept
tfc012

(b) Concept tfc12 (c) Concept tfc01

Fig. 10. Target graph lattice concepts. Concepts tfc1 and tfc2 (not represented) have
resp. Target Graph 1 and Target Graph 2 from Fig. 7 as their intents.

reliable transformation patterns are given when using a source graph and a
target graph in the same simplified intent of a concept, because this corresponds
to the fact that the source graph is always present when the target graph is
present too (and reversely). For example, from Concept_MatchingLinksFca_0,
we obtain the following transformation pattern:

graph of sfc012 intent ↪→ graph of tfc012 intent

This pattern expresses a new transformation pattern (new in the sense that it
does not directly come from a matching link):

A UML model where a class Cd specializes another class Cm which owns
an attribute a is transformed into a relational model where a table T
owns a (inherited) column c.

Due to the simplicity of our illustrative example, the other reliable patterns
obtained from source and target graphs from the same simplified intent just
correspond to matching links.

Obtaining other, less reliable patterns, relies on the fact that if a source
graph and a target graph are not in the same simplified intent, but the concept
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(a) Concept 1

(b) Concept 2 (c) Concept 01 (d) Concept 012

Fig. 5. Source fragments lattice concepts

Table 1. Matching Link Formal Context

ML sf
c1

sf
c2

sf
c0

1
sf

c0
12

tf
c1

tf
c2

tf
c0

1
tf

c1
2

tf
c0

12

L0 ⇥ ⇥ ⇥ ⇥
L1 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
L2 ⇥ ⇥ ⇥ ⇥ ⇥

3.4 Model transformation rules learning

4 Experimental Evaluation

5 Related Work

Model Transformation is a key component of Model Driven Engineering (MDE).
In this paper, we learn model transformation from model transformation traces.
We can distinguish between two categories of strategies to generate transfor-
mation traces: the first category [?], [?], [?], [?], [?], [?], [?], [?] depends on the
transformation program or engine. The corresponding approaches generate trace
links through the execution of a model transformation. The second category [?],
[?], [?] consists in generating a transformation trace independently from a trans-
formation program.

4

(a) Matching Link Formal Con-
text MLFC

Concept_MatchingLinksFca_0

sfc012
tfc012

 

Concept_MatchingLinksFca_1

sfc1
tfc1

L1

Concept_MatchingLinksFca_4

sfc01
tfc01

L0

Concept_MatchingLinksFca_5

tfc12

 

Concept_MatchingLinksFca_2

 

 

Concept_MatchingLinksFca_3

sfc2
tfc2

L2

(b) Matching Link Lattice

Fig. 11. Matching link formal context and corresponding concept lattice.

Cs which introduces the source graph is below the concept Ct which introduces
the target graph, then we infer the following transformation pattern:

part of graph of Cs intent ↪→ graph of Ct intent

For example, as sfc1 appears below tfc12, we can deduce that, when the in-
put of the transformation contains the graph of intent ofsfc1, thus the output
contains the graph of intent of tfc12. These patterns are less reliable, because
the source graph may contain many things that have nothing to do with the tar-
get graph (compare sfc1 and tfc12 to see this phenomenon). However, experts
can have a look on these patterns to find several (concurrent) transformation
patterns when several source model fragments are transformed into a same tar-
get model fragment. We have a symmetric situation when a source graph and
a target graph are not in the same simplified intent, but the concept Ct which
introduces the target graph is below the concept Cs which introduces the source
graph.

4 Feasibility study

We evaluated the feasibility of the approach on two different realistic transforma-
tion examples: (1) UML class diagram to relational schema model that contains
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108 model elements, 10 fragments (5 sources, 5 targets) and 5 matching links
(U2S) and (2) UML class diagram to entity relationship model that contains 66
model elements, 6 fragments (3 sources, 3 targets) and 3 matching links (U2E).
We compute from the obtained graphs for each transformation example several
pattern categories (see left-hand side of Table 1).

(1) The transformation patterns coming from simplified intents (which we
think are the most relevant patterns): they correspond to graphs pairs (GS , GT )
such that GS and GT are in the simplified intent of a same concept. They can
be divided into two sets. The set TPl groups the patterns that are inferred from
the initial matching links (GS , GT are the ends of a matching link). The set TPn

contains the patterns that are learned from graph generalization and matching
link classification.

(2) The transformation patterns (TPnparts
) coming from the graphs GS and

GT , such that GS is in simplified intent of a concept Cs which is a subconcept
of the concept Ct which has GT in its simplified intent and all concepts greater
than Cs and lower than Ct have an empty simplified intent. In addition, we
consider only the case where simplified intent of Cs contains only source graphs
or (inclusively) simplified intent of Ct contains only target graphs.

(3) Symmetrically, the transformation patterns (TPnpartt
) coming from the

graphs GS and GT , such that GT is in simplified intent of a concept Ct which
is a subconcept of the concept Cs which has GS in its simplified intent and all
concepts greater than Ct and lower than Cs have an empty simplified intent. In
addition, we consider only the case where simplified intent of Cs contains only
source graphs or (inclusively) simplified intent of Ct contains only target graphs.

Table 1. Results. Left-hand side: sets cardinals. Right-hand side: precision metrics

#TPl #TPn #TPnparts
#TPnpartt

Ill. ex. 2 2 2 1
U2S 1 5 3 0
U2E 2 2 1 1

PTPl PTPn PTPnparts
PTPnpartt

Ill. ex. 1 1 0.72 0.72
U2S 1 0.75 0.78 -
U2E 1 1 0.73 0.95

We also evaluate each extracted transformation pattern using a precision
metric. Precision here is the number of elements in the source and target graphs
that participate correctly to the transformation (according to a human expert)
divided by the number of elements in the graphs. We then associate a precision
measure to a set of transformation patterns, which is the average of the precisions
of its elements (See right-hand side of Table 1).

The results show that we learn transformation patterns that correspond to
the initial mapping links. These patterns are relevant and efficient (precision =
1). 17 new transformation patterns are also learned from the three used examples.
These patterns seems also relevant, with a precision average than 0.83.
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5 Related Work

Several approaches have been proposed to mine model transformation. The
MTBE approach consists in learning model transformation from examples. An
example is composed of a source model, the corresponding transformed model,
and matching links between the two models. In [1,15], an alignment between
source and target models is manually created to derive transformation rules.
The approach of [5] consists in using the analogy to search for each source
model its corresponding target model without generating rules. In a previous
work [12], we use Relational Concept Analysis (RCA) to derive commonalities
between the source and target meta-models, models and transformation links to
learn executable transformation rules. The approach based on RCA builds trans-
formation patterns that indicate how a model element, in a specific context, is
transformed into a target element with its own specific context. This approach
has many advantages for the case when the matching link type is one-to-one,
but it is not able to capture the cases where a set of model elements is globally
transformed into another set of model elements (matching link type is many-to-
many). In this paper, we investigate graph mining approaches, to go beyond the
limitations of our previous work. In the current context of MDE, transformation
examples are not very large (they are manually designed), thus we do not expect
scalability problems. Compared with a solution where we would build a lattice
on graphs containing elements from both source and target models coming from
matching links, the solution we choose separately classifies source graphs and
target graphs. This is because source graphs and target graphs could come from
the same meta-model (or from meta-models with common concepts) and it has
no meaning in our context to generalize a source graph and a target graph to-
gether. We also think that the result is more readable, even in the case of disjoint
meta-models.

Our problem has close connections with the pattern structure approach [4]
when the pattern structure is given by sets of graphs that have labeled vertices.
Graph mining approaches [2,10] aim at extracting repeated subgraphs in a set of
graphs. They use a partial order on graphs which usually relies on morphism or
on injective morphism, also known as subgraph isomorphism [9]. In the general
case, these two morphism operations have an exponential complexity. In this
paper, we rely on graph mining to classify independently the origins and the
destinations of matching links and to infer from this, a classification of matching
links, that is then used to extract transformation patterns.

6 Conclusion

We have proposed an approach to assist a designer in her/his task of writing a
declarative model transformation. The approach relies on model transformation
examples composed of source and target model fragments and matching links.
Models and their fragments are represented by graphs with labelled vertices that
are classified. This classification is in turn, used for classifying the matching links.

11
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Finally, the mined model transformation patterns express how a source model
fragment is transformed into a target model fragment. Future directions of this
work include extending the evaluation to other kinds of source and target meta-
models, and define a notion of support for the patterns. We also would like
to explore the different kinds of graph mining approaches, in particular to go
beyond the limitation of using locally injective graphs. Finally, we plan to apply
our approach [12] to transform the obtained patterns into operational rules.
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Abstract. We describe a technique for user interaction with the in-
terim results of Formal Concept Analysis which we hypothesise will ex-
pedite user comprehension of the resultant concept lattice. Given any
algorithm which enumerates the concepts of a formal context, this tech-
nique incrementally updates the set of formal concepts generated so far,
the transitive reduction of the ordering relation between them, and the
corresponding labelled Hasse diagram. User interaction with this Hasse
diagram should prioritise the generation of missing concepts relevant to
the user’s selection. We briefly describe a prototype implementation of
this technique, including the modification of a concept enumeration al-
gorithm to respond to such prioritisation, and the incremental updating
of both the transitive reduction and labelled Hasse diagram.

1 Introduction

Formal Concept Analysis (FCA) takes as input a formal context consisting of a
set of attributes, a set of objects, and a binary relation indicating which objects
have which attributes. It produces a partially-ordered set, or poset, of formal
concepts, the size of which is, in the worst case, exponential in the number of
objects and attributes in the formal context [1]. The computational tasks of enu-
merating the set of formal concepts, and of calculating the transitive reduction
of the ordering relation amongst them, therefore scale poorly with the size of the
formal context. These steps are required to determine the vertices and arcs of
the directed acyclic graph whose drawing is known as the Hasse diagram of the
partial order. The layout of this layered graph prior to its presentation to the
user is also computationally intensive [2]. For contexts of even moderate size,
there is therefore considerable delay between user initiation of the process of
FCA and presentation of its results to the user.

A number of algorithms exist which efficiently enumerate the formal concepts
of a formal context [3–6]. In this paper, we describe an approach which incre-
mentally updates and presents the partial order amongst the formal concepts
generated so far. In particular, it: incrementally updates the transitive reduc-
tion of the interim partial order as each new concept is generated; incrementally
updates the layout of the Hasse diagram; and animates the resultant changes to
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the Hasse diagram to assist the user in maintaining their mental model. This
approach enables user exploration and interrogation of the interim partial order
in order to expedite their comprehension of the resultant complete lattice of
concepts. It applies equally to any other partial order, the enumeration of whose
elements is computationally intensive.

We also describe how this interaction can prioritise the generation and dis-
play of those missing concepts which are most relevant to the user’s current
exploratory focus. By addressing the scalability challenge of visual analytics [7],
this user guidance of computationally intensive FCA algorithms [8] facilitates
the required “human-information discourse”.

1.1 Previous work

Incremental algorithms exist for updating the set of formal concepts and the
transitive reduction of the ordering relation following the addition of a new object
to the formal context [9–11]. A new object can give rise to multiple additional
concepts which must be inserted in the existing complete lattice to produce an
updated lattice which is also complete. In contrast, the technique described in
this paper involves the addition of a single element at a time to a partially
ordered set which is not in general a complete lattice.

Ceglar and Pattison [8] have argued that user guidance of the FCA process
could allow the satisfaction of the user’s requirements with a smaller lattice,
and consequently in less time, than standard FCA algorithms. They described
a prototype tool which facilitates interactive user guidance and implements an
efficient FCA algorithm which they have modified to respond to that user guid-
ance. The user interaction challenges identified by that work are described and
addressed in this paper.

2 Interacting with a Hasse diagram

2.1 The Hasse diagram

A finite poset 〈P ;<〉 consists of a finite set P and an irreflexive, antisymmetric,
transitive binary relation < between its elements. Two elements a, b ∈ P are
said to be comparable if a < b or b < a, and incomparable otherwise. 〈P ;<〉 can
be represented as an acyclic directed graph, or digraph, in which each element
of the set P is a vertex and an arc connects each pair of comparable elements.
The direction of each arc is “upward” in the sense of the relation <, from the
lesser to the greater element.

The greater the number of comparable pairs, the greater the number of arcs,
and hence the harder it is for a user to interpret a drawing of this digraph.
The transitive reduction ≺ [12] of the ordering relation < results from removing
each arc whose source and destination vertices are connected by one or more
other directed paths through the digraph. The transitive reduction therefore has
fewer arcs than there are pairs of comparable elements in P . In the resultant
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(a) Hasse diagram (b) Comparability (c) Upset, downset (d) Bounds

Fig. 1: Determining comparability, upset and downset, and bounds from the
Hasse diagram

digraph, a, b ∈ P are comparable iff there exists a directed path between the
corresponding vertices, and b is said to be an upper neighbour of a, and a a
lower neighbour of b, iff there is an arc from a to b.

A layered drawing of the resultant digraph, in which the vertical component
of each arc is upwards on the page, is known as a Hasse diagram of the partial
order. This direction convention reduces clutter by avoiding the need to explicitly
represent the direction of the arcs. An example Hasse diagram is shown in Fig. 1a.
The black vertices in Fig. 1b are comparable because a monotonically upward
path, via the light-grey vertices, exists between them. The more elements there
are in P , and the more arcs there are in the transitive reduction of <, the harder
the visual task of tracing paths in the Hasse diagram to determine comparability.

2.2 Analytical objectives

An upper [respectively lower]1 bound on a given set S ⊆ P is an element u ∈ P
[l ∈ P ] satisfying ∀s ∈ S, s < u [l < s]. If S consists of a single element a ∈ P ,
the set of upper [lower] bounds on S is called an upset [downset], and can be
identified by tracing all upward [downward] paths from a in the Hasse diagram.
In Fig. 1c, the vertices in the upset [downset] of the black vertex are light [dark]
grey. The union of a with its upset and downset gives the set of elements of
P which are comparable with a. If S consists of two or more elements of P ,
then the set US ⊂ P [DS ⊂ P ] of its upper [lower] bounds is the intersection
of the upsets [downsets] of its elements. In Fig. 1d, the sets of upper and lower
bounds on the pair of black vertices are encompassed by the shaded areas. The
visual task of identifying and intersecting these upsets [downsets] is demanding
for small partial orders, and rapidly becomes intractable as the size |P | of P
increases.

If there exists an a∗ ∈ US such that a∗ 6 a for all upper bounds a ∈ US

on S, then a∗ is called the least upper bound (LUB); if there exists a b∗ ∈ DS

1 Square brackets are used throughout this paper to indicate that a sentence is true
both when read without the bracketed terms and when read with each bracketed
term substituted for the term which precedes it.
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such that b 6 b∗ for all lower bounds b ∈ DS on S, then b∗ is called the greatest
lower bound (GLB). In Fig. 1d, the least upper and greatest lower bounds on
the pair of black vertices are the upper and lower shaded vertices respectively.
By definition, the LUB and GLB are unique whenever they exist, since equality
corresponds to identity. In addition to the challenge of identifying the set of
upper [lower] bounds on S, the visual task of establishing the existence and
identity of the LUB [GLB] from this set also becomes intractable for large |P |.

If the LUB and GLB exist for all pairs of elements in P , then 〈P ;<〉 is called
a lattice. If the LUB and GLB exist for all S ⊆ P , then 〈P ;<〉 is called a complete
lattice, and the LUB [GLB] on P is known as the supremum [infimum].

2.3 Computer-assisted interaction

In the previous section, we identified a number of operations on posets which
a user can perform visually by tracing paths in the Hasse diagram, but which
become intractable as |P | increases. To support the user in these tasks, the
computer should calculate the results of these operations and display them by
highlighting elements of the Hasse diagram. In particular:

1. Comparability between selected elements of P can be determined compu-
tationally and all identified paths between them highlighted in the Hasse
diagram.

2. The set of elements comparable with a selected element can be determined
by calculating and highlighting the members of its upset and downset.

3. The set of upper [lower] bounds on a set S of elements can be determined
by calculating the upsets [downsets] of each, and highlighting the members
of their intersection.

4. The existence and identity of the LUB [GLB] on a selected subset S can be
determined computationally from the result of 3. The identified element of
P , if any, should be highlighted.

3 Dynamic presentation of the partial order

So far we have assumed that the elements of 〈P ;<〉 are known a priori, so that
the transitive reduction can be computed and the Hasse diagram laid out before
being presented to the user. Consider now the case where the user’s request
for the Hasse diagram triggers the on-demand enumeration of the elements of
P . If this enumeration is computationally intensive, the user may experience
excessive delay before the results are presented. Rather than waiting for the
generation of all elements, the user may wish to commence interaction with
the Hasse diagram for the elements generated so far, and have this diagram
evolve to incorporate each new element as it is added. We hypothesise that user
exploration of, and familiarisation with, the evolving 〈Q ⊆ P ;<〉 will facilitate
and expedite comprehension of 〈P ;<〉.

In order to examine the feasibility of user interaction with the Hasse diagram
of 〈Q;<〉 as a proxy for that of 〈P ;<〉, the subsequent sections address the
following four key questions:
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1. What information about 〈P ;<〉 can and cannot be ascertained through in-
spection of 〈Q;<〉?

2. Should the response to user interrogation of 〈Q;<〉 be expressed in terms of
〈P ;<〉 ?

3. Can 〈Q;<〉 be incrementally updated to incorporate each new element of P
as it is generated?

4. How should these updates be presented so as to minimise disruption to the
user’s mental model of 〈Q;<〉?

3.1 Comparing the interim and final partial orders

Two elements which are comparable in 〈P ;<〉 are comparable in any 〈Q ⊂ P ;<〉
in which they both exist. The upset [downset] of an element in 〈P ;<〉 is a
(possibly improper) superset of its counterpart in 〈Q;<〉. Accordingly, the set
of upper [lower] bounds on S ⊆ Q in 〈P ;<〉 is also a superset of its counterpart
in 〈Q;<〉. Importantly, the LUB [GLB] on S ⊆ Q may not be present in 〈Q;<〉,
even if it is in 〈P ;<〉.

3.2 Interacting with the interim partial order

User interaction could be defined to implement the same computer-assisted op-
erations on 〈Q;<〉 as were defined above on 〈P ;<〉. However, since the user’s
objective is to find out about 〈P ;<〉, interaction with 〈Q;<〉 should also priori-
tise the generation of the requisite elements of P .

The selection of two elements a and b in order to determine their compara-
bility might confirm comparability by not only highlighting the elements x ∈ Q
which lie between a and b, but also prioritise the generation of all such x ∈ P .
Selection of an element might not only display its upset and downset in 〈Q;<〉,
but also prioritise the completion of these sets by the process which generates
the elements of P . Similarly, the selection of a set S ⊂ Q of elements in the
interim partial order may not only result in the display of the corresponding up-
per and lower bound sets, but also prioritise the completion of these sets. And
finally, if the user requests the LUB [GLB] on a set S ⊂ Q of elements, then the
computer could prioritise the generation of the corresponding result in 〈P ;<〉.
If the requested bound exists, the corresponding element of P could be added,
if not already present, and highlighted in the Hasse diagram; otherwise a null
result should be signalled to the user.

3.3 Updating the interim partial order

As each new element e of P is generated and added to 〈Q;<〉 to form 〈Q ∪ {e};<〉,
both the element set and the transitive reduction ≺ of < must be updated. Up-
dating the transitive reduction involves identifying the upper and lower neigh-
bours of e, adding the requisite arcs, and deleting any arcs from the lower to the
upper neighbours.
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The set N u := min{u ∈ Q : e < u}
[
N l := max{l ∈ Q : l < e}

]
of upper

[lower] neighbours can be identified through a top-down [bottom-up] search of
〈Q;<〉 starting from each of the maximal [minimal] elements of Q. Each down-
ward [upward] path from each maximal [minimal] element can be pruned from
the point at which an element is encountered which is not greater [less] than e.
An element in {u ∈ Q : e < u} [{l ∈ Q : l < e}] is also in N u [N l] iff it has no
lower [upper] neighbour greater [less] than e.

Once the sets N u and N l have been identified, the neighbour relation ≺
should be updated as follows. In 〈Q ∪ {e};<〉, e ≺ α for each α ∈ N u and ζ ≺ e
for each ζ ∈ N l. To maintain ≺ as the transitive reduction of <, any arcs in
N l×N u must also be removed. Note that either or both of the sets N u and N l

can be empty; the element e is maximal in 〈Q ∪ {e};<〉 iff N u = ∅, and minimal
iff N l = ∅.

3.4 Presenting Hasse diagram updates

The layout of the Hasse diagram for 〈Q ∪ {e};<〉 will necessarily differ from that
of 〈Q;<〉. The addition of the new vertex e will require either its accommodation
within an existing layer or the creation of a new layer. The deletion of some
existing arcs and the creation of new ones may also worsen the aesthetic criteria,
such as number of edge crossings, which the chosen layout algorithm seeks to
optimise [2].

The addition of the new vertex and its incident arcs, the deletion of super-
seded arcs, and any changes in layout, must be presented to the user in a way
which minimises disruption of the user’s mental model of 〈Q;<〉. The sequen-
tial animation of each step in this process is a logical solution to this problem.
By also minimising and localising any changes to the layout necessitated by the
addition of a new vertex, the number of vertices and edges whose movement the
user must visually track can be minimised.

Figure 2 illustrates the process of adding a new element to 〈Q;<〉 in Fig. 2a.
The upper (light grey) and lower (dark grey) neighbours of the new element are
identified, and the edges between them (bold) slated for deletion. The vertical
separation between the top and bottom layers is increased to make room for a
new layer, which is required to accommodate the new vertex. Finally, the new
vertex is inserted and attached to its upper and lower neighbours. Placement of
the new vertex near its upper and lower neighbours helps localise the resultant
changes to the Hasse diagram.

4 Application to Formal Concept Analysis

4.1 Introduction to FCA

FCA takes as input a bigraph consisting of a set G of objects, a set M of
attributes, and a binary relation R ⊆ G ×M between them. FCA produces a
complete lattice of formal concepts. Each formal concept consists of a set E ⊆ G,
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(a) Identify neighbours and
superceded edges

(b) Make room for, insert and
connect new vertex

Fig. 2: Inserting a new element into the poset 〈Q;<〉.

known as the extent, and a set I ⊆M , known as the intent, such that E×I ⊆ R.
Each object in E has all attributes in I and each attribute in I is possessed by
all objects in E. The extent and intent are maximal in the sense that adding
elements to either set necessarily entails removing elements from the other. The
relation < between concepts is the subset relation ⊂ between their extents. The
upset [downset] of a concept consists of concepts whose intents [extents] are
subsets of those of the nominated concept.

4.2 Labelling

The concept whose extent is the set of objects possessing attribute i is referred
to as the attribute concept for i; the concept whose intent is the set of attributes
possessed by object j is known as the object concept for j. In the Hasse diagram
for the complete lattice of formal concepts, an attribute [object] concept is la-
belled with the corresponding attribute [object]. The intent of a concept can be
inferred from the set of attribute labels on vertices in its upset, while its extent
can be inferred from the set of object labels on vertices in its downset.

This reduced labelling scheme works for the interim partial order 〈Q;<〉 pro-
vided that all object and attribute concepts are present ab initio. The algorithm
which generates the formal concepts should be chosen or modified so as to pro-
duce these first, and rendering of the Hasse diagram deferred until they are
included in Q. It will be seen in Sect. 4.6 that this deferral also has benefits for
the layout of the Hasse diagram.

4.3 Least upper and greatest lower bounds

In FCA, the intent of the LUB on a set of concepts is the intersection of their
intents, while the extent of the GLB is the intersection of their extents. Thus, the
LUB [GLB] indicates the set of attributes [objects] which they have in common.
Since the partial order amongst the full set of formal concepts for a formal
context is a complete lattice, the LUB and GLB are guaranteed to exist; they
may however be absent from 〈Q;<〉, and will in general require computation on
demand.
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Notably, the LUB and GLB on the full set P of formal concepts may not be
present in 〈Q;<〉. A concept enumeration algorithm should be chosen or modified
to produce these first. In addition to improving the resemblance between 〈Q;<〉
and the resultant complete lattice 〈P ;<〉, the existence of the LUB [GLB] ab
initio provides a single, consistent starting point for the top-down [bottom-up]
search of the transitive reduction of 〈Q;<〉 for the upper [lower] neighbours of
each new concept. This process is described in Sect. 4.4.

Selection of a set A of concepts could trigger the generation, display and
highlighting of all concepts x ∈ P satisfying A∗ < x < A∗. Here A∗ and A∗
denote the GLB and LUB on the set A in the complete lattice 〈P ;<〉 of formal
concepts. A∗ and A∗ constitute the GLB and LUB on the complete lattice of
elements whose generation is to be prioritised. Their generation is given the
highest priority in order to bound this poset. The elements of A are all mutually
comparable iff at least one directed path from A∗ to A∗ passes through all of
these elements. In this case, A∗ ∈ A and A∗ ∈ A; in the special case of |A| = 2,
this is a necessary and sufficient condition for comparability.

4.4 Insertion point

As described in Sect. 3.3, the upper [lower] neighbours of the new concept can
be identified in 〈Q;<〉 using a top-down [bottom-up] directed search. The search
commences from the LUB [GLB] on P , which by design is present in Q ab initio.
The current vertex is marked as having been visited, and any lower [upper]
neighbour whose intent [extent] is a subset of that of the new concept is queued
for subsequent traversal. If the current concept has no such neighbours, then it
is an upper [lower] neighbour of the new concept.

4.5 Layer assignment

The poset 〈Q;<〉 is presented to the user as a layered drawing of the corre-
sponding directed acyclic graph. In order to maintain the direction convention
of upward arcs in this Hasse diagram, each new concept must be assigned to a
layer which is separated from the infimum [supremum] by at least the maximum
length of all directed paths between them in the transitive reduction of 〈Q;<〉. If
no existing layer satisfies both constraints, one must be added. If only one such
layer exists, the new concept is assigned to that layer. If more than one existing
layer satisfies both constraints, the choice amongst them is arbitrary.

Even if at least one layer satisfies both constraints on path length, it is still
possible for the new concept to have upper and lower neighbours in adjacent
layers. Adding an intervening layer in this case would create room for the new
concept, and would not require the revision of any previous layer assignments.
However, given that there are already sufficient layers to accommodate the new
concept, a more space-efficient strategy would be to instead promote the lowest
upper neighbours to the next highest layer or demote the highest lower neigh-
bours to the next lowest layer. To make room for either change, it may also
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be necessary to promote additional members of the upset or demote additional
members of the downset of the new concept.

In our preliminary implementation of layer assignment, we: assign a vertex to
the uppermost layer, if any, satisfying the dual path length constraints; attempt
to demote elements of the downset in order to make room to insert a new concept
between upper and lower neighbours which are in adjacent layers; and insert
a new layer, if required, which has path length two from the infimum to make
room for this demotion. The reason for the choice of path length two will become
apparent in Sect. 4.6. This layering strategy is illustrated later in Sect. 4.8.

The chosen strategy requires that concepts be allowed to migrate between
layers following initial presentation to the user, which has the potential to dis-
rupt the user’s mental model. On the other hand, creating more layers than are
required results in inefficient use of the vertical space available for drawing the
Hasse diagram, making it harder for the user to maintain simultaneous focus
and context as |Q| increases.

4.6 Layout

For the reason given in Sect. 4.3, the concept enumeration algorithm should
first generate the LUB and GLB of the poset 〈P ;<〉 of concepts. These should
be placed at the centre top and centre bottom of the canvas. For the reason
given in Sect. 4.2, all (remaining) attribute and object concepts should be gen-
erated next. In this section, we prioritise from amongst these the generation of
the lower neighbours of the supremum, which are called atoms, and the upper
neighbours of the infimum, which are called co-atoms. We describe a scheme
whereby their relative ordering within their respective layers is chosen so as to
improve the aesthetics of the resultant Hasse diagram. The horizontal place-
ment of all subsequent concepts, including the remaining attribute and object
concepts, is dependent on this ordering.

The supremum and infimum, along with all atoms and co-atoms, are gener-
ated and laid out before the Hasse diagram is first presented to the user. The
atoms and co-atoms are ordered within their respective layers so as to min-
imise edge crossings in the relation R. As subsequent concepts are discovered
and added, each edge morphs into one or more directed paths in the transitive
reduction of 〈Q;<〉. Provided care is taken in the placement of the remaining
concepts on these paths, the effort invested in minimising edge crossings in R
might therefore be repaid with fewer arc crossings, and potentially also shorter
paths, in the Hasse diagram.

For each newly-discovered concept, the horizontal barycentre [13] of the
atoms and co-atoms with which it is comparable is calculated, and a total order
on these barycentres is used to order the concepts within a layer. The barycentre
calculation assumes that the co-atom and atom layers are assigned equal width
and that atoms and co-atoms are equally spaced within their respective layers.
The assigned order, which is designed to place each concept in reasonable hori-
zontal proximity to the corresponding atoms and co-atoms, is only dependent on
the fixed horizontal placement of the atoms and co-atoms, rather than the entire
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upset and downset. This choice also preserves the order amongst the concepts
already placed within the layer, since each new concept is simply inserted into
that existing order.

The creation of a new layer may be required to separate vertically, by at least
one layer, the upper and lower neighbours of a new concept. That new layer is
created immediately above the layer of co-atoms, and elements of the downset
of the new concept are demoted as required. Note that demotion beyond this
layer would violate the constraint on path length from the infimum. Since each
new concept is placed in the uppermost layer satisfying the constraint on path
length to the supremum, and new layers are only ever added with path length
two from the infimum, concepts will either remain in the layer to which they are
originally assigned, or migrate downward.

4.7 Guided concept enumeration

We have so far assumed that algorithms for the enumeration of formal concepts
could be modified to prioritise the generation of concepts relevant to the user’s
current selection. To demonstrate that this is possible, we briefly describe a
modification of the algorithm of Choi and Huang [14] to prioritise the generation
of the downset of a selected concept.

Choi and Huang enumerate the concepts of a formal context in top-down,
breadth-first order, extending the intent of each concept generated so far using
attributes not currently in its intent. Ceglar and Pattison [8] have modified this
algorithm to: hand over each novel concept, as it is generated, for subsequent
processing; respond to user input, if any, after the generation of each novel
concept; and switch to depth-first processing at the user’s request to enumerate
the downset of a nominated concept, resuming breadth-first processing upon
completion. The upset of a nominated concept could be generated similarly by
switching to bottom-up, depth-first processing, adding objects not in the extent
of the nominated concept.

Efficient FCA algorithms employ various strategies for preventing the re-
peated generation of the same concept, typically by traversing a trie structure
[15] superimposed on the concept lattice. Since user guidance of the FCA al-
gorithm can interfere with this strategy, an efficient test for concept novelty,
based for example on hash tables [15], is essential. In the proposed interactive
approach, the overall efficiency of concept enumeration is less important than
responsiveness to user interrogation of the interim partial order.

4.8 Prototype implementation

Figure 3 shows mockups of a prototype interface for the incremental construction
of a poset of formal concepts. The example formal context consists of people and
their physical attributes. Figure 3a depicts the state of the Hasse diagram first
presented to the user. By this stage, all of the attribute and object concepts have
been generated by the concept enumeration algorithm, labelled, and laid out to
establish the framework for insertion of subsequent concepts.
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Male Yellow Hair Brown Eyes Female

White Hair Beard Moustache Brown Hair Black Hair Brown Skin Red Hair

Kyle

Andy Justin Jon Jake Joshua Megan Sarah William Tyler Daniel

(a) Initial diagram (b) Multiple selection (c) Insertion

Fig. 3: The result of multiple selection in the initial Hasse diagram, and of the
subsequent insertion of multiple concepts.

Figure 3b shows the result of the user selecting in this diagram the attribute
concepts for “Beard” and “Moustache”, which are highlighted in response with
light green halos. This multiple selection triggers the calculation of the extent
and intent intersections for the selected concepts. The former corresponds to the
infimum, which is accordingly highlighted with a bright green halo; the latter
corresponds to a new concept, which is consequently inserted into the Hasse
diagram and highlighted with a purple halo. Since this least upper bound has
path length 2 from the supremum, a new row has been inserted to accommodate
concepts with path length 3, and the selected concepts demoted to it. The least
upper bound is inserted into row 2 at ordinal position 2 of 5; this position is
based on the horizontal barycentre of its associated atoms and co-atoms, which
are predominantly to the left of the centreline. Figure 3c shows the state of the
Hasse diagram following the subsequent addition of a number of concepts; the
most recently added concept is highlighted and its adjacent arcs shown green.

The prototype interface does not yet implement all of the recommendations
in this paper. For example, while multiple selection triggers the calculation and
display of the LUB and GLB, it does not prioritise the highlighting and com-
pletion of the set of concepts between them. Change animation is also currently
lacking. If the context bigraph consists of more than one connected component,
these should be dealt with separately (albeit connected to the same supremum
and infimum) and the results horizontally juxtaposed. This reduces the compu-
tational complexity, and ensures a better result, of the layout of the atoms and
co-atoms. It also allows correct handling of the exceptional case where the same
concept is both an atom and co-atom.

5 Summary and Future Work

This paper has described a technique for the incremental construction of the
Hasse diagram of a poset. We hypothesise that user interaction with this evolv-
ing diagram will expedite user comprehension of the partial order. When applied
to FCA, this technique incrementally updates the transitive reduction, and the
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labelled Hasse diagram, of the partial order amongst the set of concepts gener-
ated so far. User interaction with the Hasse diagram prioritises the generation of
missing concepts relevant to the user’s selection. A prototype implementation,
including the modification of a concept enumeration algorithm to respond to
downset prioritisation, has also been described through which the hypothesis
will be tested in future work. Scalable mechanisms for interactive concept dele-
tion should also be explored to allow the exclusion from the interim partial order
of concepts which are no longer of interest to the user.
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Abstract. The educational objectives represent the precise statements
of what we expect or intend students to learn as a result of education.
We have conducted an analysis of the educational tasks and objectives
system within a formal context with respect to the collected real data on
an array data structure of five teachers in the field of computer science.
We submitted a report and the corresponding concept lattice to each in-
dividual teacher and explored their additional feedback. In addition, we
formulate the general observations and present the feasible set of tasks
and objectives of an array data structure. The results are expected to
annotate in the future formation of the curricular documents as supple-
ment to the National Education Program in Slovak republic which is
formulated concisely.

Keywords: formal context, educational task, system of objectives, con-
cept lattice

1 Introduction

The scope of the computer science education in Slovakia is officially declared in
The National Education Program of Slovak republic as the supreme curricular
document. The Slovak National Education Program defines the main principles
and general objectives on which education and training in computer science
is based. The education of computer science at secondary schools in Slovakia
includes five areas:

a) Theory of the information (numeral systems, coding, compression, etc.),
b) Information and communication technologies – ICTs (internet, computer

networks, safety, etc.),
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helpful remarks.
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c) Procedures, problem solving and algorithmic thinking (algorithms, program,
programming languages, etc.),

d) Principles of ICTs operations (software, hardware, architectures, etc.),
e) Information society (e-learning, licenses, risks, etc.).

Formal concept analysis [14] as a lattice theory allows us to explore the
meaningful groupings of educational tasks (referred to objects) with respect
to common objectives (referred to attributes) and it provides the visualization
capabilities. The conceptual difficulties in mathematics education [32], or the
integrated care pathways [30] are analyzed by formal concept analysis, as well.
An extensive overview of the various application domains that include software
mining, web analytics, medicine, biology and chemistry data is given by [29], [11].
Recently, the feasible attempts and generalizations are investigated in [1,5,7,22].

In this paper, our aim is to provide the system of objectives and tasks that is
expected to fill in the gap of the National Education Program in Slovak republic.
In general, the National Education Program is formulated concisely and we
put emphasis in a long term to particularize other supplementary curricular
documents and express the educational objectives more explicit in various areas.
Therefore, we have focused on an algorithmic thinking area and chosen an array
data structure as an educational content in which we have fruitfully applied
formal concept analysis. Simultaneously in this area, we focus on algorithms
including searching, sorting or text processing. In other countries, the national
curricular documents and other standards define the educational objectives in
the various levels of specification, see [36,37].

2 Educational objectives of an array data structure

An array data structure, as a collection of indexed elements, plays an important
role in the education of programming. An array or its equivalent as a kind of
data type is implemented in the most of programming languages. The term is
also used in a theoretical computer science as abstract data type.

We aim at specifying the particular and relatively precise objectives of an
array data structure education in the algorithmic thinking area. Regarding our
long-term cooperation with the teachers in the field, we declare some input set
of objectives of an array data structure:

1) to specify an array as the structured homogeneous data type with elements
denoted by single identifier,

2) to appoint the real examples of one-dimensional array data structure (e.g.
rooms in a hotel, seats in a plane, etc.),

3) to interpret the notions of an array index (an array key) and an array element
and to explain the difference between them,

4) to differ an array index type and an array element type,
5) to reason that an array index type is an ordinal type (numbers, characters,

other enumerations),
6) to declare a variable of array,
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7) to read and to write out the array elements,
8) to manipulate with the array elements, to assign the array element to the

other variables, to increment the array elements,
9) to appoint the common errors related to an array data structure (incorrect

index type, overflow, incompatibility of the types),
10) to apply an array data structure in the simple issues (e.g. to store an array,

to find the maximal value, to modify the elements of array, etc.),
11a) to apply an array data structure in a searching,
11b) to apply an array data structure in a sorting,
11c) to multiple access to the array elements,
11d) to apply an array data structure in a text processing,
11e) to apply an array data structure in a simple game programming,
12) to recognize the issues in which can be applied an array data structure

effectively, to appoint the advantages and disadvantages of an array in com-
parison with other simple data structures (an access to elements, a space
complexity).

The specified aims are enumerated by the revised taxonomy of Bloom [18]
in order to classify statements of what we expect or intend students to learn
as a result of education. The revised taxonomy focuses on four knowledge di-
mensions including factual knowledge (basic elements), conceptual knowledge
(interrelationships among the basic elements), procedural knowledge (how to do
something) and metacognitive knowledge (awareness and knowledge of one’s own
cognition). In general, an educational process consists of a motivation phase, a
phase of the first acquisition, a fixation phase and a diagnostic phase. The phase
of a systematization, a propedeutics or an application phase can be also involved.

We submitted the previous list of aims to the teachers in the secondary
schools in Slovakia. The teachers were instructed to appoint the tasks which
they usually apply in an educational process of an array data structure in pro-
gramming. Teachers were not limited by the number of tasks and moreover, it
was possible to add some additional aims (13, 14, . . .) if they required. Having
such instructions, every teacher was asked to fill in the following table:

Fig. 1. Table of tasks and aims
N. task / aim 1 2 3 4 5 6 7 8 9 10 11a 11b 11c 11d 11e 12 13

ad
di
ti
on
al

ai
m
s

. . .

0 2nd max. element x x x x x x

1

2
...

The zero row in the table is an example of task which we have added for an
illustration. Particularly, we have appointed the task of finding the second largest
element in an array data structure, which fulfills the aims 4, 6, 7, 10, 11a, 11c.

3 Concept lattice of each individual teacher

We have obtained the data of five teachers who proposed overall 92 tasks, some
of them equal with respect to the aims. Four teachers launched the additional
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educational aims including the applying of an array data structure as the pa-
rameter of the procedure, a dynamic array, two-dimensional arrays, the issue
of indexing the first element, reasoning initializing errors (seven aims in over-
all). For each individual teacher we have constructed the concept lattice from
the collected data using ConExp1 software. We use a concept lattice with re-
duced labeling (labeled line diagram) regarding own objects and own attributes
which is accessible to human reasoning. An example of a concept lattice shown
to one of the teachers follows in Fig. 2. In effort to explore the task difficulty, we
have assigned the degree to each individual aim from the set {0.25, 0.5, 0.75, 1}
depending on its dimension in Bloom revised taxonomy. A value of the task
difficulty (computed as the sum of the degrees of involved aims) is shown in a
concept lattice as a supplement of the particular task label (i.e. own object).

Fig. 2. Concept lattice of the participated teacher

In our feedback given to teachers, we have added the comments and some
additional questions. The comments include the aims which were obtained in all
tasks (Aim6 and Aim7 in Fig. 2), the tasks which contain the unique aims (for
instance Aim11b is included only in Task6) and the following instructions how
to read a concept lattice to help teachers analyze the results:

– tasks in the first row are the representatives of the teacher’s system of tasks
(there is no task with the superset of aims),

– the shaded labels linked to a node in the first row represent the attributes
introduced uniquely in the task,

– the aims introduced by a particular task one can obtain by collecting the
shaded labels on all paths leading up from the selected task node,

1 Concept Explorer, version 1.3, website: http://conexp.sourceforge.net. Nevertheless,
we have successfully tested some other formal concept analysis software tools, for
instance FcaStone, Lattice Miner, ToscanaJ, FCART, as well.
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– the tasks that involve a particular aim one can acquire by tracing task labels
leading down from the selected aim node,

– the top element of a concept lattice introduces the aims obtained in all tasks,
– a task in a higher row of a concept lattice is appropriate for the first acqui-

sition phase of an educational process (not compulsory),
– a task in a lower row of a concept lattice is appropriate for the fixation or

systematization phase of an educational process (not compulsory).

We state that not all of the submitted aims were used by the engaged teachers
(for instance Aim9 is not introduced in Fig. 2). In contrary, some of the teachers
have added their additional aims. Namely, we have first analyzed the systems of
tasks from the viewpoint of each individual teacher. Otherwise, not introduced
aims would be figured at the bottom element of a concept lattice.

For each concept lattice, we have calculated the degree of tasks and aims
system gradation level as the proportion of the number of task nodes (as own
objects) in the longest path and the total number of the tasks in a concept lattice.
This indicator shows how gradated are tasks of teacher’s system. The smaller
number indicates the more diversified system, the higher number expresses the
more gradational system. The obtained results and concluding remarks follows:

– the minimal number of tasks was 9, the maximal 27 in teacher’s set of tasks,
– the most frequently introduced aims are Aim6, Aim7 in order to declare a

variable of array and to read/write out elements of an array,
– two systems contain the aim(s) introduced in every task,
– two systems include the set of equal tasks with respect to the aims (i.e., at

least two tasks equal),
– the gradational level in the systems takes the values from 0.13 to 0.22,
– the average task difficulty in teacher’s set of tasks takes the values from 1.97

to 4.09; lower value indicates that the set of tasks is appropriate more for
beginners, the higher value expresses focusing on advanced students.

We were interested in a feedback of the teachers in relation with the ob-
tained results. One of the teachers confirmed that his/her set of tasks was used
for advanced students (the average task difficulty is 3.22). The teachers have
explained the reasons to add some new aims, reported the tasks which they used
to apply in a diagnostic phase, declared the most problematic aims for students,
etc. These issues and some other recommendations will be still discussed with
the teachers and other respondents in a formal and an informal way.

4 Attribute exploration of each individual teacher

Beside the concept lattice diagram one can examine the implications between
attributes valid in a teacher’s tasks and aims tables. For instance, the implica-
tion {Aim7, Aim8} → {Aim6} shows that the following rule holds in a table
of tasks and aims: Aim6 is introduced in every task that includes Aim7 and
Aim8 together. This means that the task focused on reading, writing out and
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manipulation with the elements of an array will also satisfy the aim of the dec-
laration of an array data type. We have verified that this natural implication
holds for the all five collected set of tasks (confidence of this association rule is
100%). On the other hand, the implication {Aim8} → {Aim7} does not hold
in general, because there are some tasks (the counterexamples) focused on ma-
nipulation with the array elements, but do not read and write out the array
elements (confidence of this association rule is 66%). Another natural implica-
tion {Aim4, Aim5} → {Aim3} means that every task focused on recognizing a
difference between an array index type and an array element type will satisfy
the aim of interpretation of an array index and array element. This association
rule holds in the tasks of teachers with confidence 86%.

The implications one can read off from the concept lattice with reduced
labeling, it is sufficient to check whether the each attribute’s node from an im-
plication’s conclusion is above (or equal to) the infimum of all attributes nodes
from a premise. In addition, one can compute the Duquenne-Guigues basis of
implications, which is optimal in terms of its size and includes a minimum cover
of all valid attribute implications, for more information see [14], [6].

The knowledge acquisition method called attribute exploration is described
in general by [14]. In our experiment, we generate Duquenne-Guigues basis of
implications for each individual teacher. Then, for every implication (one by one)
one can make a decision to accept or provide a counterexample. By providing a
counterexample, we suggest to add a task with the combination of aims which
was still lacking and is fruitful to include in an education. For instance, the
attribute exploration process for one of the teachers is shown in Fig. 3. We
introduce these implications from basis in which the premise is satisfied by at
least one task in the table.

Fig. 3. The educational aim exploration

N. question answer advised counterexample

1. ∅ → {6, 7}? yes

2. {6, 7, 8} → {10}? yes

3. {5, 6, 7} → {1, 3, 4}? yes

4. {4, 6, 7} → {1, 3}? yes

5. {3, 6, 7} → {1, 4}? no a task with {3, 6, 7, 10}
6. {2, 6, 7} → {10}? yes

7. {1, 6, 7} → {3, 4}? yes

First question in Fig. 3 indicates that all tasks cover the aims Aim6, Aim7.
We have answered this question yes that means that we agree to preserve this
implication in a teacher’s set of tasks. In contrary, fifth question expresses that
if a task has aims Aim3, Aim6, Aim7, then it also has aims Aim1, Aim4. We do
not agree to preserve this implication and advise to add a new task having aims
Aim3, Aim6, Aim7, Aim10. It is advised to distinguish Aim3 and Aim4. Actually,
Aim3 is introduced in a task having, for instance, integers as an array index type
and also as an array element type. Nevertheless, Aim4 requires differentiation of
an array index type and an array element type to achieve this goal absolutely.
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The separation of these two aims in at least one educational task is helpful
to encourage students to understand an array data type. Hence, we advise in
addition a counterexample of a task with aims Aim3, Aim6, Aim7, Aim10 by the
educational aim exploration shown in Fig. 3. This task removes the undesirable
implication from the basis of all implications. Remind that a counterexample
must not contradict the implications we have confirmed so far (the rows 1,2,3,4
in Fig. 3). However, if the counterexamples are added into the table, the concept
lattice is modified.

5 The summary results

Regarding five teachers data and one additional set of 10 tasks proposed by two
of the authors, we have analyzed 102 tasks and 23 educational aims obtained
in this research. We have generated the summary concept lattice and found the
following observations:

– 45 tasks (the first row in the summary concept lattice) are the representa-
tives; i.e. every task includes the unique set of aims and there is no task that
introduces the superset of these aims,

– 5 tasks (from 45 representatives) are such that every task includes the unique
set of aims and there is no task that introduces neither superset nor subset
of these aims,

– 3 aims (the first row in the summary concept lattice) are unique, i.e. the aim
is introduced only by one task,

– the most frequent aims in general are Aim6 (80% of tasks), Aim7 (63%),
Aim10 (51%), Aim8 (46%), Aim4 (35%) which represent the basic declara-
tion, read, write out, manipulation and applications of an array data type
in the simple tasks,

– the most frequent aims including applications of an array data type in the
more difficult situations are Aim11c (22%), Aim11d (22%), Aim12 (20%) and
Aim11a (19%); the applications in a sorting and a simple game programming
are the least represented from these group of aims.

In effort to prepare the graduated sets of tasks, we have explored the longest
paths extracted from the summary concept lattice with reduced labeling of all
102 tasks. Some of the longest paths are shown in Fig. 4. Every path contains
the graduated system of tasks depending on the final task we want to achieve
in conclusion. The object label, for instance 3.5, corresponds to the fifth task of
third teacher. The set of tasks labeled 6.1 – 6.10 comes from the authors.

The paths have different lengths, because there are nodes in the summary
concept lattice with reduced labeling, which do not contain neither task or aim
label (own object or own attribute). Therefore, these nodes are omitted in the
extracted longest paths shown in Fig. 4. Nevertheless, some of the paths can
have the same length and can differ only in a small number of tasks. To capture
two or more paths (which are similar in this sense) by one figure, we display also
not linear cases (b), (c) in Fig. 4.

The Educational Tasks and Objectives System within a Formal Context 41



Fig. 4. The longest paths extracted from the summary concept lattice

(a) (b) (c) (d)

The longest paths are recommended to apply in a diagnostic phase of an
educational process. For instance, the longest path (a) illustrates that if a student
has a problem with Task6.5, we ask him/her to solve Task3.12. Moreover, if we
have found that a student has a problem with Aim6 in Task6.5, we give him/her
to fixation one task (or more) from the node which contains the set of equal tasks
Task1.3, Task1.4, Task1.5, Task1.8. In contrary, if a student has no problem with
Task6.5, we suppose that he/she will pass also the Task3.12. There is only one
path including seven task nodes, however paths with six nodes appear in the
summary concept lattice several times. The cases (b) and (c) were chosen to
cover the most frequent aims by the combination of (a),(b),(c) cases. Moreover,
the case (b) shows that if a student has a problem with Task6.4, we can choose
either Task1.3 or Task 4.1 in order to cover the aim that was not fulfilled by
a student. We can also extract some other (not compulsory the longest) paths
starting with other initial aims and different initial tasks extracted from the
summary concept lattice. The path (d) presents an example of the five nodes
path starting with Task 4.3 in contrary with an initial task of the previously
described paths.

As a conclusion, we propose to supplement four of the input objectives and
to add two additional objectives (mainly for advanced students) into the input
system of objectives as follows:

5) original form supplemented by: the first array index is not necessary 0 or 1,
8) original form supplemented by: find a presence of some value in a an array,
9) original form supplemented by: errors related to a clear of an array,

10) original form supplemented by: an array as a parameter of procedure,
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13) to apply a dynamic array in the simple issues,
14) to apply a two-dimensional array in the simple issues.

Moreover, we present some interesting educational tasks which appear in the
summary concept lattice mostly in the first row and one can advise them to apply
in the educational process related to an array data structure. The formulations
are shortened in comparison with the original author’s texts.

• Propose the way how to denote the parking places in front of a hotel. How
are the train carriages enumerated? How would you denote the overall and
final results of six teams in the television knowledge contest?

• We have observed GPS data containing ten altitudes on our tourist route.
Write a program to print out the altitudes on a reverse route.

• Imagine that you have received SMS from your friend. Write a program to
count the number of words in your text message.

• A musical instrument, like a piano, can be simulated by a computer program.
Some of the keys will have assigned a particular tone frequency. Write a
program to play a tone when the particular key is pressed.

• Consider the starting sequence of children names and the final shift of Ferris
wheel as the input. Write a program to make a list of the children names in
the sequence in which they will get out Ferris wheel.

• Write a program to generate twelve random values expressing the number of
your website visits in a particular month. Draw a histogram, highlight the
maximum and minimum and show an average value as a horizontal line.

6 App Inventor concept lattice

We have fruitfully applied formal concept analysis as a powerful tool in a simul-
taneous analysis that involves the teaching of programming skills in an open-
source web application App Inventor 2. The tutorial website2 provides materials
in the form of learning cards for building the basic applications, but one of the
authors of this paper has prepared the set of ten complex educational tasks
which in summary cover 129 elements (components and their elements, event
handlers, call, set instructions, get instructions, data structures, etc.) available
at the present time. The added value includes the proposal of the introductory
set of complex tasks and its further modification in effort to teach and learn the
different target groups. The talented lower secondary school’s pupils participate
in our optional university courses and the teachers of secondary schools attend
the didactic workshops at our university. Our results are concerned with the
inclusion of the programming language elements (available at the App Inventor
website at present) in the complex educational tasks and the effort to extract the
appropriate tasks for the different types of an educational process. The formal
context contains 10 tasks as the set objects and 129 App Inventor programming
elements as the set of attributes.

2 http://www.appinventor.org/
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Exploring own attributes, the resulting concept lattice and its attribute labels
shown in Fig. 5 give an information about the elements introduced uniquely by
a particular task. As conclusion, we recommend the following methodology:

– a task with a high ratio of the own elements and the low total number of
elements is advised to use in a first acquisition phase of an education,

– a task with a low ratio of the own elements and the low total number of
elements is recommended to use in a fixation phase of an educational process,

– a task with a low ratio of the own elements and the high total number of
elements is suggested in a systematization or diagnostic educational phase,

– a task with a high ratio of the own elements and the high total number
of elements is the least appropriate for an educational process, because it
brings many new elements without their introduction in a more simple task.

Fig. 5. A concept lattice of App Inventor 2 programming in education
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7 Conclusion

We have investigated the educational tasks and objectives of five real teachers
giving lessons in computer science. Extracted paths from the summary con-
cept lattice seem to be based on the similar idea as in the learning paths from
knowledge space theory introduced by Doignon and Falmagne [13]. The peer
instruction is a learning method in which the results can be applied, as well.

The learning process of students in computer science is also concerned in
the work of Uta Priss [31, 32]. The tools developed for learning and teaching in
combination with curricula and teaching practices are aiming at actual project
weSPOT at TU Graz with applying the formal concept analysis [33]. The triadic
version of formal concept analysis [3, 15] seems to be fruitful for analyzing the
concordance of the teachers in our future work.
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28. J. Pócs, On possible generalization of fuzzy concept lattices using dually isomor-

phic retracts, Inf. Sci. 210 (2012) 89–98.
29. J. Poelmans, D. I. Ignatov, S. O. Kuznetsov, G. Dedene, Formal concept analysis

in knowledge processing: A survey on applications, Expert Syst. Appl. 40(16)
(2013) 6538–6560.

30. J. Poelmans, G. Dedene, G. Verheyden, H. Van der Mussele, S. Viaene, E. Pe-
ters, Combining business process and data discovery techniques for analyzing and
improving integrated care pathways, in: P. Perner (Ed.): ICDM 2010, Springer-
Verlag Berlin Heidelberg, 2010, pp. 505–517.

31. U. Priss, Using FCA to Analyse How Students Learn to Program, in: P. Cellier,
F. Distel, B. Ganter (Eds.), Proceedings of the 11th International Conference
ICFCA 2013, Dresden, Germany, Springer Berlin Heidelberg, 2013, pp. 216–227.

32. U. Priss, P. Riegler, N. Jensen, Using FCA for Modelling Conceptual Difficulties in
Learning Processes, in: F. Domenach, D. I. Ignatov, J. Poelmans (Eds.), Contrib.
to the 10th Intern. Conf. ICFCA 2012, Leuven, Belgium, 2012, pp. 161–173.

33. A. Protopsaltis, P. Seitlinger, F. Chaimala, O. Firssova, S. Hetzner, K. Kikis-
Papadakis, P. Boytchev, Working Environment with Social and Personal Open
Tools for inquiry based learning: Pedagogic and Diagnostic Frameworks, Int. J.
Sci. Math. Technol. Learn., in press.
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Abstract. We investigate an application of pattern structures for un-
derstanding episodes, which are labeled directed acyclic graphs represent-
ing event transitions. Since typical episode mining algorithms generate a
huge number of similar episodes, we need to summarize them or to obtain
compact representations of them for applying the outcome of mining to
various problems. Though such problems have been well-studied for item-
sets, summarization of episodes is still understudied. For a class called
diamond episodes, we first provide a pattern structure based on hierar-
chy of events to obtain small groups of episodes in the form of pattern
concepts and lattice structures. To find a summary via pattern concepts,
we design an utility function for scoring concepts. After ranking con-
cepts using some function and lattice structures, we try to sample a set
of pattern concepts of high scores as a summary of episodes. We report
our experimental results of our patten structure, and a ranking result of
our simple utility function. Last we discuss pattern concept lattices and
their applications for summarization problems.

Keywords: formal concept analysis, pattern structure, episode pattern, pattern
summarization

1 Introduction

Knowledge Discovery from binary databases is a fundamental problem setting,
where binary databases represent that some objects have some features by their
1 entries. Because such a situation can be seen in many practical problems, both
theoretical and practical aspects of the problems have been studied.

On a mathematical viewpoint, Formal Concept Analysis (FCA) [5] has been
studied as a model of analyzing such binary databases. We deal with a context
K = (O, A, I) consisting of 1) a set O of objects, 2) a set A of attributes, and 3)
a binary relation I ⊆ O×A representing that an i-th object has a j-th attribute.
FCA adopts two functions f and g for analyzing O and A; f receives a set of
objects and returns a set of attributes which are commonly possessed by given
objects, and g receives a set of attributes and returns a set of objects which
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have commonly the input attributes. For X ⊆ O and Y ⊆ A, a tuple (X, Y ) is
called a concept if f(X) = Y and X = g(Y ). Computing the set of all concepts
is a fundamental but important task in FCA, which help us to analyze binary
databases. On a practical viewpoint, it is well-known that formal concepts are
related to closed itemsets studied in frequent itemset mining [13], which are also
known as compact representations of itemsets.

To deal with non-binary data in an FCA manner, pattern structures [4] have
been studied. A key idea is generalizing both the set intersection ∩ and the subset
relation ⊆, which are used in two functions f and g in FCA. The set intersection
∩ is replaced with a meet operator ⊓ that extracts common substructures of two
objects. The subset relation ⊆ is also replaced with a partial order ⊑ induced
by ⊓, where ⊑ represents some embedding from an object into another. We now
assume that they would help us to understand complex data.

In this paper, we investigate pattern structures and their applications for un-
derstanding patterns, motivated by a requirement of summarization techniques
because a large numbers of patterns is always generated by some mining algo-
rithms. As an example in this paper, we deal with some classes of episode pat-
terns, which represent event transitions in the form of labeled graphs. From such
patterns, we can compute lattice structures based on pattern structures (Sec-
tion 3). Since such lattices represent mutual relations among patterns and several
small clusters as pattern concepts, analyzing them would be helpful to obtain a
small set of pattern concepts. We regard a subset of all concepts as a summary
of features often used in describing patterns, and develop a way of obtaining a
small set of concepts as a summary. When we construct descriptions of objects,
we also introduce the wildcard ⋆ as a special symbol representing all events to
take into account some hierarchy of labels based on our knowledge. It would be
a strong merit of pattern structures for summarization in which similar patterns
could be merged into some descriptions with the wildcard ⋆. After providing
pattern structures, we provide preliminary experimental results (Section 4) and
discuss it on the viewpoint of summarization by giving a utility function for
ranking pattern concepts (Section 5).

2 Formal Concept Analysis and Episode Mining

FCA and Pattern Structures We adopt the standard notations of FCA
from [5] and pattern structures from [4], respectively. Here we refer the notations
of FCA which we have already used in Section 1. For a context K = (O, A, I),
X ⊆ O and Y ⊆ A, two functions f and g in FCA are formally defined by f(X) =
{a ∈ A | (o, a) ∈ I for all o ∈ X} and g(Y ) = {o ∈ O | (o, a) ∈ I for all a ∈ Y },
respectively. Recall that a pair (X, Y ) is a (formal) concept if f(X) = Y and
g(Y ) = X. Two operators f ◦g(·) and g◦f(·) are closure operators on 2O and 2A,
respectively. Note that a concept (X, Y ) is in the form either (g(f(X)), f(X))
or (g(Y ), f(g(Y )). For two concepts (X1, Y1) and (X2, Y2), the partial order ≤
is introduced by X1 ⊆ X2 (⇔ Y2 ⊆ Y1).
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An important aspect of pattern structures is generalization of two operations
∩ and ⊆ used in f and g. They are characterized by meet semi-lattices: A meet
semi-lattice (D, ⊓) of a set D and a meet operator ⊓ is an algebraic structure
satisfying: 1) Associativity; x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z for x, y, z ∈ D, 2) Commu-
tativity; x ⊓ y = y ⊓ x for x, y ∈ D, and 3) Idempotency; x ⊓ x = x for x ∈ D.
Elements in D are called descriptions. A partial order ⊑ is induced by ⊓ as

x ⊑ y whenever x ⊓ y = x for two elements x, y ∈ D.

Example 1 (A meet semi-lattice with sets). Let D = 2N. For two sets of integers
X = {1, 2} and Y = {1, 2, 3, 4}, it holds that X ∩Y = X, which induces X ⊆ Y .

Example 2 (A meet semi-lattice for closed intervals [8]). Let D be a set of all
closed intervals [a, b] with integers a, b ∈ N. They define ⊓ of two closed intervals
by keeping its convexity, that is, [a1, b1] ⊓ [a2, b2] = [min(a1, a2), max(b1, b2)].

By generalizing a meet semi-lattice (2A, ∩) used in FCA, a pattern structure
P is defined by a triple (O, (D, ⊓), δ), where O is the set of objects, (D, ⊓) is
a meet semi-lattice of descriptions, and δ : O → D is a mapping of giving
a description for each object. For analyzing pattern structures, we obtain the
following Galois connection {(·)�, (·)⋄} corresponding to f and g in FCA:

A� = ⊓o∈Aδ(o) for A ⊆ O, (1)

d⋄ = {o ∈ O | d ⊑ δ(o)} for d ∈ D. (2)

Pattern concepts based on P are defined by Equations (1) and (2):

Definition 1 (Pattern concepts) A pattern concept of P is a pair (A, d) of a
set A ⊆ O and a pattern d ∈ D satisfying A� = d and d⋄ = A. Two pattern
concepts are partially ordered by (A1, d1) � (A2, d2) by A1 ⊆ A2 ⇔ d2 ⊑ d1.

Note that by its partial order, the set of all pattern concepts forms a lattice
structure. We denote the set of all pattern concepts by P(P). To obtain P(P),
we need to compute two functions (·)� and (·)⋄. For example, we can adopt the
AddIntent proposed in [12] and used in [8].

Episode Mining We briefly review episode mining based on [7]. Let E =
{1 . . . , m} ⊆ N be the set of events. We call a set S ⊆ E of events an event
set. An input of episode mining is a long sequence of event sets; an input event
sequence S on E is a finite sequence 〈S1, . . . , Sn〉 ∈ (2E)∗, where each set Si ⊆ E
is the i-th event set. For S of length n, we assume that Si = ∅ if i < 0 or i > n.

Episodes are labeled directed graphs (DAGs). An episode G is a triple (V, E, λ),
where V is the set of vertices, E is the set of directed edges, and λ is the la-
beling function from V and E to the set of labels, that is, E . Several classes of
episodes have been studied since episode mining is firstly introduced by Man-
nila et. al. [11]. We follow subclasses of episodes studied by Katoh et al. [7]. An
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Fig. 1. An example of episode studied in episode mining in [11] and [7].

example of episodes is illustrated in Figure 1. In designing pattern mining algo-
rithms, we need 1) a search space of patterns and a partial order for enumerating
patterns, and 2) interestingness measure to evaluate them. For episode mining,
we often adopt occurrences of episodes defined with windows.

Definition 1 (Windows). For a sequence S = 〈S1, . . . , Sn〉, an window W of
S is a contiguous subsequence 〈Si, · · · , Si+w−1〉 of length n, called width, for
some index i (−w + 1 ≤ i ≤ n) of S and a positive integer w ≥ 0.

Definition 2 (Embedding of Episodes). Let G = (V, E, λ) be an episode,
and W = 〈S1, . . . , Sw〉 be a window of width w. We say that G occurs in W if
there exists a mapping h : V → {1, . . . , w} satisfying 1) for all v ∈ V , h(v) ∈
Sh(x), and 2) for all (u, v) ∈ E with u 6= v, it holds that h(u) < h(v). The map
h is called an embedding of G into W , and it is denoted by G � W .

For an input event sequence S and a episode G, we say that G occurs at
position i of S if G � Wi, where Wi = 〈Si, . . . , Si+w−1〉 is the i-th window of
width w in S. We then call the index i an occurrence of G in S. The domain of
the occurrences is given by WS,w = {i | −w+1 ≤ i ≤ n}. In addition, WS,w(G)
is the occurrence window list of an episode G, defined by {−w +1 ≤ i ≤ n | G �
Wi}. Then we can define an interestingness measure frequency of episodes.

Definition 3 (Frequency of Episodes). The frequency of an episode G in S
and w, denoted by freqS,w(G), is defined by the number of windows of width w
containing G. That is, freqS,w(G) = |WS,w(G)|. For a threshold θ ≥ 1, a width
w and an input event sequence S, if freqS,w(G) ≥ θ, G is called θ-frequent on S.

The frequent episode mining problem is defined as follows: Let P be a class of
episodes. Given an input event sequence S, a width w ≥ 1, and a frequency
threshold θ ≥ 1, the problem is to find all θ-frequent episodes G belonging to
the class P. The simplest strategy of finding all θ-frequent episodes is traversing
P by using the anti-monotonicity of the frequency count freq(·). For details, we
would like to refer to both [7] and [11].

For our examples of classes, we introduce m-serial episodes and diamond
episodes. An m-serial episode over E is a sequence of events in the form of a1 7→
a2 7→ · · · 7→ am. A diamond episode over E is either 1) a 1-serial episode e ∈ E or
2) a proper diamond episode represented by a triple Q = 〈a, X, b〉 ∈ E × 2E × E ,
where a, b are events and X ⊆ E is an event set occurring after a and before
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b. For short, we write a diamond episode as a 7→ X 7→ b. On the one hand
definitions of episodes by graphs are much general, on the another hand classes
of episode patterns are often restricted.

Example 3 (Episodes). In Figure 1, we show some serial episodes; A 7→ B 7→ E,
A 7→ D 7→ E, B 7→ E, and C on the set of events E = {A, B, C, D, E}. All of
them are included in a diamond episode A 7→ {B, C, D} 7→ E.

We explain a merit of introducing pattern structures for summarization of
structured patterns. As we mentioned above, a common strategy adopted in pat-
tern mining is traversing the space P in a breadth-first manner with checking
some interestingness measure. When generating next candidates of frequent pat-
terns, algorithms always check a parent-child relation between two patterns. This
order is essential for pattern mining and we thus conjecture that this parent-
child relation used in pattern mining can be naturally adopted in constructing
a pattern structure for analyzing patterns only by introducing a similarity oper-
ation ⊓. After constructing a lattice, it would be helpful to analyze a set of all
patterns using it because they represent all patterns compactly.

A crucial problem of pattern structures is the computational complexity con-
cerning both ⊓ and ⊑. Our idea is to adopt trees of height 1 (also called stars
in Graph Theory). That is, we here assume that trees are expressive enough to
represent features of episodes. Our idea is similar that used in designing graph
kernels [14]1 and that is inspired by previous studies on pattern structures [2, 4].

3 Diamond Episode Pattern Structures

In the following, we focus on diamond episodes as our objects, and trees of height
1 as our descriptions. They have two special vertices; the source and the sink.
They can be regarded as important features for representing event transitions.
We generate rooted labeled trees from them by putting the node in the root of
a tree, and regarding neighbors as children of it. Since heights of all trees here
are 1, we can represent them by tuples without using explicit graph notations.

Definition 4 (Rooted Trees of Height 1). Let (E , ⊓E) be a meet semi-lattice
of event labels. A rooted labeled tree of height 1 is represented by a tuple 2

(e, C) ∈ E × 2E . We represent the set of all rooted labeled trees of height 1 by T.

Note that in (E , ⊓E), we assume that ⊓E compares labels based on our back-
ground knowledge. We need to take care that this meet semi-lattice (E , ⊓E) is
independent and different from a meet semi-lattice D of descriptions of a pattern
structure P. This operation ⊓E is also adopted when defining an embedding of
trees of height 1, that is, a partial order between trees defined as follows.

1 It intuitively generates a sequence of graphs by relabeling all vertices of a graph. One
focus on a label of a vertex v ∈ V (G) and sees labels LN G(v) of its neighbors NG(v).
For a tuple (lv,LN G(v)) for all vertices v ∈ V (G), we sort all labels lexicographically,
and we assign a new label according to its representation. Details are seen in [14].

2 On the viewpoint of graphs, this tuple (e, C) should represent a graph G = (V, E, λ)
of V = {0, 1, . . . , |C|}, E = {(0, i) | 1 ≤ i ≤ |C|}, λ(0) = e, {λ(i) | 1 ≤ i ≤ |C|} = C.
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Fig. 2. An example of computations ⊓ of two trees of height 1.

Definition 5 (Partial Order on Trees). A tree t1 = (e1, C1) is a generalized
subtree of t2 = (e2, C2), denoted by t1 ⊑T t2, iff e1 ⊑E e2 and there exists an
injection mapping φ : C1 → C2 satisfying for all v ∈ C1, there exists φ(v) ∈ C2

satisfying v ⊑E φ(v), where ⊑E is the induced partial order by ⊓E .

For defining a similarity operator ⊓T between trees, this partial order ⊑T

is helpful because ⊓T is closely related to ⊑T in our scenario. Since all trees
here are height 1, this computation is easy to describe; For labels of root nodes,
a similarity operator is immediately given by using ⊓E . For their children, it
is implemented by using an idea of least general generalization (LGG), which
is used in Inductive Logic Programming [10], of two sets of labels. A practical
implementation of LGG depends on whether or not sets are multisets, but it is
computationally tractable. An example is seen in Figure 2.

We give formal definitions of δ and D. For a graph G = (V, E, λ), we denote
the neighbors of v ∈ V by NG(v). For some proper diamond episode pattern G,
the source vertex s ∈ V and the sink vertex t ∈ V , computed trees of height 1
corresponding s and t are defined as Ts = ({s} ∪ NG(s), {(s, u) | u ∈ NG(s)}, λ),
and Tt = ({t} ∪ NG(t), {(u, t) | u ∈ NG(t)}, λ), respectively. By using those
trees, δ(·) can be defined according to vertices s and t: If we see both Ts and
Tt, δ(G) = (Ts, Tt) and then ⊓T is adopted element-wise, and D is defined by
T×T. If we focus on either s or t, δ(G) = Ts or Tv, and we can use ⊓T directly
by assuming D = I.

Last we explain relations between our pattern structures and previous stud-
ies shortly. This partial order ⊑T is inspired from a generalized subgraph iso-
morphism [4] and a pattern structure for analyzing sequences [2]. We here give
another description of similarity operators based on definition used in [4, 9].

Definition 6 (Similarity Operation ⊓ based on [9]). The similarity op-
eration ⊓ is defined by the set of all maximal common subtrees based on the
generalized subtree isomorphism ⊑T ; For two trees s1 and s2 in T,

s1 ⊓ s2 ≡ {u | u ⊑T s1, s2, and ∀u′ ⊑T s1, s2 satisfying u 6⊑T u′}.
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Fig. 3. An input S and two diamond episodes mined from S as examples.

Table 1. Numbers of proper diamond episodes and pattern concepts for w ∈ {3, 4, 5}
and M ∈ {100, 200, 300, 400, 500, 600, 700}. In the table below, DE and PDE means
Diamond Episodes and Proper Diamond Episodes, respectively.

M and # of pattern concepts

Window width w # of DE # of PDE 100 200 300 400 500 600 700

3 729 569 87 137 178 204 247 – –
4 927 767 74 136 179 225 281 316 336
5 935 775 71 137 187 272 290 313 342

Note that we can regard that our operator ⊓T is a special case of the similarity
operation ⊓ above. On the viewpoint of pattern structures, our trees of height
1 can be regarded as an example of projections from graphs into trees, studied
in [4, 9], such as both k-chains (paths on graphs of length k) and k-cycles.

4 Experiments and Discussion for Diamond Episodes

Data and Experiments We gathered data from MLB baseball logs, where a
system records all pitching and plays for all games in a season. We used what
types of balls are used in pitching, which can be represented by histograms per
batter. For a randomly selected game, we generated an input event sequence of
episode mining by transforming each histogram to a set of types of balls used
types of balls3. In forming (E , ⊓E), we let E be the set of types of balls, and define
⊓E naturally (See Example in Fig. 2). For this S, we applied a diamond episode
mining algorithm proposed by [7] and obtain a set of diamond episodes. The
algorithm have two parameters; the window size w and the frequency threshold
θ. We always set θ = 1 and varied w ∈ {3, 4, 5}. After generating a set G of
frequent proper diamond episodes, we sampled M ∈ {100, 200, . . . , 700} episodes
from G as a subset O of G (that is, satisfying |O| = M and O ⊆ G). We used O
as a set of objects in our pattern structure P. From it we computed all pattern
concepts P(P) based on our discussions in Section 3. In this experiments we set
δ(G) = Ts for a proper diamond episode G and its source vertex s.

3 In baseball games, pitchers throw many kinds of balls such as fast balls, cut balls,
curves, sinkers, etc. They are recorded together with its movements by MLB systems.
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representations of itemsets, and they are closely related to the closure operator
g ◦ f in FCA with (O, A, I), where O is the set of transaction identifiers and
A is the set of all items. The difficulty of closed patterns for complex data is
there are no common definitions of closure operators, where we usually use the
closeness with respect to the frequency. Here we assume that pattern concepts
are helpful in the same correspondence between closed itemsets and concepts.

To obtain some compact representations, we need to decide how to evaluate
each pattern. The problem here is how to deal with the wildcard ⋆ in descriptions.
When we obtain a concept (X, Y ) for X ⊆ O, Y ⊆ A, this concept (X, Y )
corresponds to a rectangle on I, and there are no 0 entries in the sub-database
I ′ = {(x, y) ∈ I | x ∈ X, y ∈ Y } of I induced by (X, Y ) because of its definitions.
If (X, Y ) is not a concept, a rectangle r by (X ′, Y ′) contains a few 0 entries in
it. We denote the relative ratio of 1 entries in a rectangle r by (X ′, Y ′) as

r1(X
′, Y ′, I) = (1 − |{(x, y) 6∈ I | x ∈ X ′, y ∈ Y ′}|) (|X ′||Y ′|)−1

,

where 0 ≤ r1(X
′, Y ′, I) ≤ 1 and r1(X

′, Y ′, I) = 1 if (X ′, Y ′) is a concept. These
r1(X, Y, I), |X|, and |Y | are applicable for evaluating itemsets. If we only use the
cardinality |A| of a set A of objects, this equals to the support counts computed
in Iceberg concept lattices [15]. For a concept (X, Y ) of a context K = (O, A, I),
we compute the support count supp(X, Y ) = |g(Y )|/|O| and prune redundant
concepts by using some threshold. For formalizing evaluations of patterns, such
values are generalized by introducing a utility function u : P → R+. A typical
and well-studied utility function is, of course, the frequency count, or the area
function area(·) which evaluates the size of a rectangle (X, Y ) [6].

Based on discussions above, if we can define a utility function u(·) for eval-
uating pattern concepts, a similar discussion for pattern concepts are possible;
choosing a few number of pattern concepts and constructing summary of pat-
terns with them. Of course, there are no simple way of giving such functions. We
try to introduce a simple and straightforward utility function uP (·) for pattern
concepts as a first step of developing pattern summarization via pattern concept
lattices. In this paper, we follow the idea used in tiling databases [6], where a
key criterion is given by area(·). We consider how to compute the value which
corresponds to the area in binary databases. To take into account the wildcard
⋆ used in descriptions, we define the following simple function. For d ∈ D, we let
s(d) and n(d) be the numbers of non wildcard and all vertices in a description
d, respectively. Note that if s(d) = n(d), d contains no wildcard labels. By using
these functions, we compute utility values as follows:

uP (A, d) = |A| · log (1 + s(d)) .

5.1 Experiments and Discussions

We compare results of ranking pattern concepts by 1) using only |A| (similar
to the Iceberg concept lattices), and 2) using uP (·) as a utility function. From
the list of pattern concepts generated in experiments of Section 4, we rank all
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Table 2. Results of ranking pattern concepts from 750 episodes in w = 5.

Utility Top-5 mutually distinct descriptions of pattern concepts

|A| (⋆, {⋆}), (2, {⋆}), (0, {⋆}), (3, {⋆}), (1, {⋆})
uP (·) (⋆, {0, ⋆}), (⋆, {0, 2, 3}), (⋆, {0, 1, 2}), (⋆, {0, 1, 3}), (⋆, {1, 2, 3})

pattern concepts by using a utility function, and sort the list in an ascending
order, and compare two lists. We remove patterns appearing commonly in both
lists to highlight differences. We give our results in Table 2.

In the result with uP (·), larger descriptions appear with higher utility values
compared with those by |A|. We can see that by modifying terms concerning
⋆, results contain more informative nodes, which are labeled by non-wildcard
labels. Here we implicitly assume that descriptions contains less ⋆ would be
more useful for understanding data themselves. On this viewpoint, considering
two terms s(d) and n(d) for description d would be interesting and useful way
to design utility functions for pattern concepts. We conclude that the Iceberg
lattice based support counts are less effective if descriptions admit the wildcard
⋆ for pattern summarization problems.

Not only the simple computation in uP (A, d) used above, also many alter-
natives could be applicable for ranking. Some probabilistic methods such as the
minimum description length (MDL), information-theoretic criteria would be also
helpful to analyze our study more clearly. Since pattern structures have no ex-
plicit representations of binary cross tables, the difficulty lies on how to deal
with a meet semi-lattice (D, ⊓). For some pattern concept (A, d) and an object
o ∈ O, we say that (A, d) subsumes o if and only if d ⊑ δ(o). This subsump-
tion relation would be simple and helpful to evaluate concepts, but they does
not adopt any complex information concerning hierarchy of events, or distances
between two descriptions. In fact in the experiments, we always assume that all
events except ⋆ have the same weight and ⋆ is the minimum of all events. They
could be important to take into account similarity measures of events for more
developments of ranking methods of pattern concepts.

5.2 Related Work

There are several studies concerning our study. It is well-known that closed item-
sets correspond to maximal bipartite cliques on bipartite graphs constructed
from K = (O, A, I). Similarly, we sometimes deal with so called pseudo bipartite
cliques [16], where it holds that r1(X

′, Y ′, I) ≥ 1 − ε with a user-specified con-
stance ε. Obviously, pseudo bipartite cliques correspond to rectangles containing
a few 0. We can regard them as some summarization or approximation of closed
itemsets or concepts. Intuitively, if we use some pseudo bipartite cliques as sum-
marization, the value r1(X, Y, I) can be considered in evaluating (X, Y ). Pseudo
bipartite cliques can be regarded as noisy tiles, which is an extension of tiles [6].

Another typical approach for summarization is clustering patterns [18, 1]. A
main problem there is how to interpret clusters or centroids, where we need to de-
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sign a similarity measure and a space in which we compute the similarity. On the
viewpoint of probabilistic models, there is an analysis via the maximum entropy
principle [3]. However they assume that entries in a database are independently
sampled, and thus we cannot apply those techniques to our setting.

6 Toward Generalizations for Bipartite Episodes

In this paper we assume that our descriptions by trees of height 1 are rich enough
to apply many classes of episode patterns. We here show how to apply our pattern
structure for other types of episodes, called bipartite episodes, as an example. An
episode G = (V, E, λ) is a a partial bipartite episode if 1) V = V1∪V2 for mutually
disjoint sets V1 and V2, 2) for every directed edge (x, y) ∈ E, (x, y) ∈ V1 × V2. If
E = V1×V2, an episode G is called a proper bipartite episode. Obviously, vertices
in a bipartite episode G are separated into V1 and V2, and we could regard them
as generalizations of the source vertex and the sink vertex of diamond episodes.
This indicates that the same way is applicable for bipartite episodes by defining
⊓ between sets of tress. Fortunately, [9] gives the definition ⊓ for sets of graphs.

{t1, . . . , tk} ⊓ {s1, . . . , sm} ≡ MAX⊑T


⋃

i,j

({ti} ⊓ {sj})


 ,

where MAX⊑T
(S) returns only maximal elements in S with respect to ⊑T . Since

our generalized subtree isomorphism is basically a special case of that for graphs,
we can also apply this meet operation. This example suggest that if we have some
background knowledge concerning a partition of V , it can be taken into account
for δ and (D, ⊓) in a similar manner of diamond and bipartite episodes.

7 Conclusions and Future Work

In this paper we propose a pattern structure for diamond episodes based on an
idea used in graph kernels and projections of pattern structures. Since we do not
directly compute graph matching operations we conjecture that our computation
could be efficient. With a slight modification of ⊓, our method is also applicable
for many classes of episodes, not only for diamond patterns as we mentioned
above. Based on our pattern structure, we discussed summarization by using
mined pattern concepts and show small examples and experimental results.

Since problems of this type are unsupervised and there is no common way of
obtaining good results and of evaluating whether or not the results are good. It
would be interesting to study more about this summarization problem based on
concept lattices by taking into account theoretical backgrounds such as proba-
bilistic distributions. In our future work, we try to analyze theoretical aspects
on summarization via pattern structures including the wildcard ⋆ and its op-
timization problem to obtain compact and interesting summarization of many
patterns based on our important merit of a partial order ⊑ between descriptions.
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Abstract. In this paper, we propose to use formal concept analysis
for process enhancement, which is applied to enterprise processes, e.g.,
operations for patients in a hospital, repair of imperfect products in a
company. Process enhancement, which is one of main goals of process
mining, is to analyze a process recorded in an event log, and to improve
its efficiency based on the analysis. Data formats of the logs, which con-
tain events observed from actual processes, depend on perspectives on
the observation. For example, events in logs based on a so-called process
perspective are represented by their types and time-stamps, and obser-
vation based on a so-called organization perspective records events with
organizations relating the occurrence of them. The logs recently became
large and complex, and events are represented by many features. How-
ever, previous techniques of process mining take a single perspective into
account. For process enhancement, by formal concept analysis based on
a pair of features from different perspectives, we define subsequences of
events whose stops are fatal to execution of a process as weak points to
be removed. In our method, the extent of every concept is a set of event
types, and the intent is a set of resources for events in the extent, and
then, for each extent, its weakness is calculated by taking into account
event frequency. We also propose some basic ideas to remove the weakest
points.

Keywords: formal concept analysis, process mining, business process
improvement, event log

1 Introduction

In this paper, we show a new application of formal concept analysis, process
enhancement (or business process improvement), which is one of main goals of
process mining. We show that formal concepts are useful to discover weak points
of processes, and that a formal concept lattice works as a good guide to remove
the weak points in the process enhancement.

Formal concept analysis (FCA for short) is a data analysis method which
focuses on relationship between a set of objects and a set of attributes in data. A
concept lattice, which is an important product of FCA, gives us valuable insights
from a dual viewpoint based on the objects and the attributes. Moreover, because
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of its simple and strong definition, various types of data can be translated for
FCA, and so FCA attracts attention across various research domains.

Process mining [9,13] is a relatively young research domain, and is researched
for treating enterprise processes recorded in event logs, e.g., operations for pa-
tients in a hospital, repair of imperfect products in a company. It provides a
bridge between business process management (BPM for short) [12] and data
mining. BPM has been investigated pragmatically, and data formats, softwares,
and management systems are proposed for manipulating processes. Like recent
data represented as “big data”, the event logs also became huge and complicated.
Thus, BPM researchers need theoretically efficient approaches for handling such
big data. This is also the recent trend of data mining. Though many results pro-
duced in the last decade of process mining, there are still many challenges [11],
and we work with FCA on two of them: “combining process mining with other
types of analysis” and “dealing with complex event logs having diverse charac-
teristics”. We treat business process improvement which is an essential goal of
process mining as a application of FCA. In order to achieve it, so many matters
should be considered. At first, we have to decide features of a process which are
modified for improvement, and there are various types of features to represent
the process. In order to categorize the features, six central perspectives have been
proposed [4,8]. For improvement in the target features, many modifications can
be constructed. According to [8], there are 43 patterns of the modifications. We
also have to evaluate the improvement, so an improvement measure is needed for
the evaluation. Based on principal aspects of processes, time, quality, cost, and
flexibility, four types of measures are considered [4,8]. In this paper, for making
a process robust and reliable, we focus on two of the perspectives to detecting
weak points of the process which are subsequences of events. For the detection,
our method calculated a weakness degree regarded as one of cost measures for
each subsequence which is represented by the extent of a formal concept.

This paper is organized as follows. In the next section, we introduce process
mining and give a running example, and then, we show the problem tackled in
this paper. In Section 3, we explain our process enhancement method. Conclu-
sions are placed in Section 4.

2 Process Mining

In this section, we outline process mining with an example and show the problem
which we try to solve.

2.1 Event Logs Observed from Actual Processes

Process mining has three types: process discovery, process conformance check-
ing, and process model enhancement. Every type strongly focuses on and starts
from facts observed from actual processes. It is the main difference from BPM
(Business Process Management) [12] and also from WFM (Workflow Manage-
ment) [6]. They are past fields of process mining and rely on prior knowledge.
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The observed facts are recorded in event logs, and so the logs are the most
important materials in process mining.

Actual event logs are usually represented in a semi-structured format like
MXML [15] and XES [17]. Theoretically, every event log can be simply formal-
ized as a pair (F,E) of a finite set F of features and a finite set E of events.
Every feature f ∈ F is a function from E to its domain Df , and every event

e ∈ E is recorded in the form of (f1(e), f2(e), ..., f|F |(e)) in
∏|F |

i=1 Dfi . Each
event corresponds with an occurrence or a task which are found by observation
of an actual process. The observation is performed based on perspectives, and
the set of features is decided by depending on them. Mathematically, a set P
of the perspectives satisfies that every perspective p ∈ P is a non-empty subset
of F . Though six central perspectives which are called process, object, organiza-
tion, informatics, IT application, or environment are proposed [4, 8], there are
no standards for deciding P should be adopted in the observation. The set of
perspectives P varies from an observation to another based on aims of process
mining, kinds of processes executed by organizations, sensor systems installed
to organizations, and many other factors. There are however some fundamen-
tal perspectives which are currently adopted in construction of event logs. Our
approach focuses on two of these. One of them is the process perspective (it is
sometimes called a control-flow perspective), which is focusing on how process
occurs. If a process is observed based on the perspective, the set of features in
its event log must include an event type feature, a time stamp feature, and a case
feature. The case feature makes clear which case each event occurs in (note that
some researches regard the case feature as a feature based on another perspec-
tive, a case perspective). Based on such a perspective, event logs clarify ordering
of events for each case, and the set E of events can be treated as a partially
ordered set (E,≤), so we sometimes use E as the poset (E,≤) in this paper. A
sequence of events occurring in a case which are ordered based on time is called
a trace. At the same time, the process can be observed based on the organization
perspective, which is another fundamental perspective. The perspective focuses
on where the occurrence happens or who performs the task, and event logs based
on it must have a place feature, a resource feature, or an employee feature. In
this paper, we assume that a given event log records statistically enough events.

Example 1 As a running example, we show a process which is handling a re-
quest for compensation within an airline. Customers may request the airline to
compensate for various reasons, e.g., delay of flight or its cancelation. In such
situations, the airline has to examine the validity of the request and needs to pay
compensation if it is unquestionable. Table 1 shows an event log recording the
compensation process which is partially quoted from [13]. In this example, an
event means a task executed by an employee: the first event in the table shows
that a task called “register request” is executed as the beginning of Case 1 by
Pete at 11:02 on 30 Dec., 2010. In this log, the features Case ID, Event type,
and Time are based on the process perspective. Resource feature is based on
the organization perspective and represents human resources needed for each of
the event. Cost feature comes from another perspective. The log also shows that
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Table 1. An event log L = (F,E) recording a compensation process of an airline: each
row shows an event which is represented by five features.

Case ID Event type Resource Cost Time(dd-mm-yyy.hh:mm)

1 register request Pete 50 30-12-2010.11:02
1 examine thoroughly Sue 400 31-12-2010.10:06
1 check ticket Mike 100 05-01-2011.15:12
1 decide Sara 200 06-01-2011.11:18
1 reject request Pete 200 07-01-2011.14:24
2 register request Mike 50 30-12-2010.11:32
2 check ticket Mike 100 30-12-2010.12:12
2 examine casually Sean 400 30-12-2010.14:16
2 decide Sara 200 05-01-2011.11:22
2 pay compensation Ellen 200 08-01-2011.12:05
3 register request Pete 50 30-12-2010.14:32
3 examine casually Mike 400 30-12-2010.15:06
3 check ticket Ellen 100 30-12-2010.16:34
3 decide Sara 200 06-01-2011.09:18
3 reinitiate request Sara 200 06-01-2011.12:18
3 examine thoroughly Sean 400 06-01-2011.13:06
3 check ticket Pete 100 08-01-2011.11:43
3 decide Sara 200 09-01-2011.09:55
3 pay compensation Ellen 200 15-01-2011.10:45

three cases are observed and recorded as three traces, and that their length are
5, 5, and 9, respectively.

2.2 Models of Processes

Models of processes are also important in process mining because they are deeply
related with the three types of process mining: models are extracted from event
logs by the process discovery, they are used with event logs for the process con-
formance checking and for the process model enhancement. Note that different
types of models can be considered, and have been researched because of vari-
ous aims of mining. Some models have been proposed for extract procedure of
processes, e.g., Petri net [16], Business process modeling notation (BPMN) [3],
Event-driven process chain (EPC) [7], and UML activity diagram [2]. These pro-
cedure models express workflow of a process clearly as directed graphs. For an-
other aim, expressing how resources are involved in a process or how resources are
related with each other, social network models are proposed [10,14]. A working-
together social network expresses relations among resources which are used in
the same case. A similar-task social network ignores cases but focuses on re-
lations among resources used together for the same event. A handover-of-work
social network expresses handovers from resources to resources in cases.

All of these models are developed for expression, and do not provide any
analytical function. In other words, they only push event logs into their format,
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start end
register request

reinitiate request

pay compensation

examine casually
reject request

decide

check ticket

examine thoroughly

Fig. 1. A Petri net of the compensation process: every square called a transition indi-
cates an event, and every circle called a place represents a state of the process.

and analysis is not their duty. However, for process enhancement, we need some
analytical function for evaluating the enhancement. In addition, models focusing
on one perspective are apt to neglect other perspectives. For example, the pro-
cedure models focusing on the process perspective do not contain information
about resources which are observed based on the organization perspective. On
the contrary, the social networks focusing on the organization perspective make
correlations among resources explicit but make workflows which are observed
based on the process perspective unclear. For our goal, detecting weak points of
a process, we claim that its weakness should be measured based on at least two
perspectives. This work thus relates to process model enhancement which is to
extend a process model.

Example 2 Figure 1 shows a procedure model which is expressed in terms of
a Petri net [16] extracted from the event log shown in Table 1. This model
explicitly expresses the workflow of the compensation process and makes it clear
which event happens before/after another event. On the other hand, the model
ignores other perspectives: information derived from Resource and Cost features
are not expressed at all in the model. Figure 2 shows a similar-task social network
[10,14] generated from the same event log. This model clarifies relations among
employees sharing the same tasks, but it does not care about the ordering of
events.

2.3 Weak Points Detection for Process Enhancement

Our final goal is process enhancement. For the goal, we propose to detect subse-
quences of events from a given event log as weak points which should be removed.
Actually, our method does not decide whether or not subsequences of events are
weak points. Instead, the method estimates the weakness for each of some sub-
sequences of events and expresses it in a number called a weakness degree. Then,
some weaker subsequence of events should be removed for the enhancement.

For the definition of the weakness degree, there are various candidates. If the
process perspective is focused, sequences of events taking a lot of time in a process
must be its weak points. Another type of weak points are looping sequences which
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Ellen

Sara

Sean
Mike

Sue

Pete

Fig. 2. A similar-task social network of the compensation process: every circle indicates
an employee, and an edge is drawn between employees if their tasks are statistically
similar.

many cases have to take. In the running example, it is reasonable to take costs
of events into account for weakness. In this work, we focus on importance of
a subsequence of events and loads of it. The importance is decided based on
the process perspective and on the organization perspective. More precisely, a
subsequence of events in an event log is considerable if the events are executed
by a small number of resources in the log. Loads of the important sequence
increase if the sequence appears many times in the log. In our method, important
sequences of events having heavy loads are weak points of a process.

Example 3 In the running example, the subsequence “decide” executed by Sara
should be regarded as weaker than the others. Because the subsequence is impor-
tant due to the fact that it can be executed only by Sara, and because the event,
“decide” by Sara, is very frequent. Only from the Petri net shown in Figure 1,
it can be induced that the event “decide” is important in the process. It is also
induced only from the social network shown in Figure 2 that Sara takes some
important role. However, these models do not show explicitly that “decide” by
Sara is important and has an impact on the process.

3 Process Enhancement via FCA

We adopt FCA for mining weak points of processes, so we firstly introduce the
definitions of formal concepts and formal concept lattices with referring to [1,5].
Then, we explain our method.

3.1 From an Event Log to a Concept Lattice

A formal context is a triplet K = (G,M, I) where G and M are mutually
disjoint finite sets, and I ⊆ G × M . Each element of G is called an object,
and each element of M is called an attribute. For a subset of objects A ⊆ G
and a subset of attributes B ⊆ M of a formal context K, we define AI =
{m ∈M | ∀g ∈ A. (g,m) ∈ I }, BI = { g ∈ G | ∀m ∈ B. (g,m) ∈ I }, and a pair
(A,B) is a formal concept if AI = B and A = BI . For a formal concept
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c = (A,B), A and B are called the extent and the intent, respectively, and
let Ex(c) = A and In(c) = B. For arbitrary formal concepts c and c′, we define
an order c ≤ c′ iff Ex(c) ⊆ Ex(c′) (or equally In(c) ⊇ In(c′)). The set of all
formal concepts of a context K = (G,M, I) with the order ≤ is denoted by
B(G,M, I) (for short, B(K)) and is called the formal concept lattice (concept
lattice for short) of K. For every object g ∈ G of (G,M, I), the formal concept

({ g }II , { g }I) is called the object concept and denoted by γg. Similarly, for ev-

ery attribute m ∈M , the formal concept ({m }I , {m }II) is called the attribute
concept and denoted by µm.

In our method, a formal context is obtained by translation from an event
log, and then weak point mining is performed with a concept lattice constructed
from the context. Suppose that the event log consists of two types of features,
one of them is based on the process perspective, and that the other is based on
the organization perspective. In this paper, the first one is called an event-type
feature and is denoted by fe, and the second is called a resource feature and is
denoted by fr. Note that the event-type feature represents types of events, not
cases, and not time. This assumption is not strong because such features are very
fundamental and are adopted in XES [17] in fact. From such an event log L =
(F,E) that F ⊇ { fe, fr }, a formal context KL = (G,M, I) is translated where
G = Dfe , M = Dfr , I = { (g,m) ∈ G×M | ∃e ∈ E.fe(e) = g ∧ fr(e) = m }.
In the context KL = (G,M, I), (g,m) ∈ I means that events sorted into g
need a resource m. For every element (g,m) ∈ I of the formal context KL, we
additionally define

freq((g,m)) = | { e ∈ E | fe(e) = g ∧ fr(e) = m } |.
This function outputs frequency of events which are sorted into an event-type g
and need resource m in the event log L.

Example 4 In the running example, “Event type” corresponds to the event-
type feature, and “Resource” corresponds to the resource feature. Therefore, a
formal context KL = (G,M, I) shown in Table 2 is obtained from the event log
shown in Table 1. For example, freq((register request,Pete)) = 2 shows that an
event “register request” by Pete is observed twice in construction of the event
log in Table 1.

From a formal context KL translated from an event log L, a concept lattice
B(KL) is constructed for process enhancement. Each formal concept c = (A,B)
of the concept lattice B(KL) represents a pair of a set A of event-types and a
set B of resources needed for events in A. For every formal concept c ∈ B(KL),
we define

Exγ(c) = { g ∈ Ex(c) | γg = c } , and
Inµ(c) = {m ∈ In(c) | µm = c } .

By extending freq for I, we also define

freq(c) =
∑

g∈Ex(c)

∑

m∈In(c)
freq((g,m)).

FCA for Process Enhancement Based on a Pair of Perspectives 65



8 Madori IKEDA, Keisuke OTAKI, and Akihiro YAMAMOTO

Table 2. A formal context KL = (G,M, I) constructed from the event log L of the
compensation process: elements of G are listed in the left most column, elements of M
are listed in the first row, and every cell indicates freq(i) for i ∈ I unless freq(i) = 0.

Pete Sue Mike Sara Sean Ellen

register request 2 1
examine throughly 1 1

check ticket 1 2 1
decide 4

reject request 1
examine casually 1 1
pay compensation 2
reinitiate request 1

The value freq(c) is the sum of frequencies of events which are sorted into an
event-type g ∈ Ex(c) and need a resource m ∈ In(c).

Example 5 Figure 3 shows a concept lattice B(KL) of the context KL =
(G,M, I) shown in Table 2. For example, the left most circle in the figure indi-
cates a formal concept c2 = ({ check ticket,pay compensation } , {Ellen }). The
sum of frequencies freq(c2) = 3 means that a task “check ticket” or “pay com-
pensation” executed by Ellen appears three times in the event log L shown in
Table 1.

3.2 Calculating Weakness Degrees

As we mentioned in Section 2.3, for every subsequence of events which is the
extent of a formal concept, we define the weakness degree, and the weakness is
estimated from its importance and its loads.

The importance is estimated based on both of the process perspective and
the organization perspective. Every formal concept (A,B) ∈ B(KL) is based
on both of the perspectives because A is a set of event-types observed from the
process perspective and B is a set of resources observed from the organization
perspective. Such a formal concept is considered to represent that accomplishing
all the events in A needs at least one of the resources in B and that every
resource in B can execute all the events in A. From this consideration, we define
the importance imp(c) of the subsequence Ex(c) of a formal concept c ∈ B(KL)
as

imp(c) =
1 + |Exγ(c)|
1 + |In(c)| ×

1 + |Ex(c)|
1 + |Inµ(c)|

.

We call this an importance factor. Roughly speaking, this factor becomes large
when a small number of resources are needed for a large number of events. The
first term means the ratio of the number of events to the number of resources
which can accomplish the events. In other words, if some or many events rely on
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2c

check ticket

Pete
Mike
Ellen

8c

Ellen

pay compensation
check ticket

9c

register request
check ticket
reject request

Pete

10c

register request

examine casually

Mike

6c register request

Pete
Mike

7c examine thoroughly
examine casually

Sean

11c

register request
examine thoroughly
check ticket
decide
reject request
examine casually
pay compensation
reinitiate request

1c

Pete
Sue
Mike
Sara
Sean
Ellen

5c
decide
reinitiate request

Sara

4c

examine thoroughly

Sue
Sean

3c

examine casually

Mike
Sean

check ticket

check ticket

freq = 0
imp = 9

weak = 0

freq = 0
imp ≒ 0.14

weak = 0

freq = 3
imp = 1.5

weak ≒ 0.24

freq = 4
imp = 2

weak ≒ 0.42

freq = 4
imp = 1

weak ≒ 0.21

freq = 2
imp = 0.75

weak ≒ 0.08

freq = 5
imp = 2.25

weak ≒ 0.59

freq = 6
imp = 2

weak ≒ 0.63

freq = 4
imp = 1

weak ≒ 0.21

freq = 2
imp ≒ 1.33

weak ≒ 0.14

freq = 2
imp ≒ 0.67

weak ≒ 0.07

Fig. 3. A formal concept lattice B(KL) constructed from the formal context KL: Each
circle represents a formal concept c ∈ B(KL). Each edge represents an order ≤ between
two concepts, and the greater concept is drawn above, and transitional orders are
omitted. Every formal concept c accompanies with Ex(c) and In(c) on its right side
and with freq(c), imp(c), and weak(c) on its left side.

little resources then the term is large. The second means the ratio of the number
of resources to the number of events which are executed by the resources. It
becomes large, if some or little resources are exhausted by many events. Also,
we define load(c) of the subsequence Ex(c) as

load(c) =
freq(c)

|E|
and call it a load factor. This is a ratio of frequency of events in the sequence
Ex(c) to frequency of the whole events E. Then, for the subsequence Ex(c), the
weakness degree weak(c) is defined as

weak(c) = imp(c)× load(c).

When an important sequence Ex(c) takes a heavy load, weak(c) becomes large.
In other words, the weakness degree numerically shows liableness of trouble
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with Ex(c) to cause the whole process down. By extending this definition, the
weakness of the whole process can be expressed as

∑
c∈B(KL) weak(c).

Example 6 In Figure 3, importance factors and weakness degrees of every sub-
sequence of events Ex(c), c ∈ B(KL) are also drawn. The importance factors
show that the sequence of tasks Ex(c5) = { decide, reinitiate request } executed
by Sara is the most important. Indeed, there is no employee who can execute the
tasks “decide” and “reinitiate request”, but Sara. On the other hand, the weak-
ness degrees show that the sequence Ex(c6) = { register request, check ticket } of
tasks is the weakest, and that the most important sequence Ex(c5) is the sec-
ondary weakest. This reversal of roles is caused by their load factors. The total
weakness of the whole process

∑
c∈B(KL) weak(c) is around 2.59.

3.3 Removing Weak Points

A process recorded in an event log L can be enhanced by removing the weak-
est point or by reducing the total weakness

∑
c∈B(KL) weak(c). Though there

are many ways for achieving the enhancement, in this paper, we achieve it by
operations to an original formal context KL = (G,M, I) which remove some
weakest formal concepts from its concept lattice B(KL), or which totally reduce∑

c∈B(KL) weak(c). We here show some basic ideas for such operations.
Observing the definitions about the weakness shows that there are three

plans for the reduction: reducing importance factors, reducing load factors, and
decreasing the number of formal concepts. Though there are many operations
achieving the plans, realizable operations are restricted by considering that we
try to manage an actual enterprise process. Reduction of importance factors
can be achieved by increasing the number of resources to the number of events
requiring the resources. Also, reducing events can decrease importance factors,
but we do not adopt this way because it has a risk that the process never
works. In other words, we try to enhance processes by investment in equipment
not by polishing processes. Besides, reducing load factors is not reasonable for
our method, because we do not have control of frequency of events. Thus, our
enhancement operations are to increase resources for events requiring them or
to decrease formal concepts.

For enhancement of a process recorded in an event log L, we show two kinds of
such operations. The first kind is adding (g,m) /∈ I such that g ∈ Ex(c) and m ∈
M to I for removing a formal concept c from B(KL) 3 c. This means to expand
flexibility of resources, e.g., updating machines, and expanding applicability of
materials by an innovation. We have to note that the total weakness is not always
reduced in this case. The second is adding m such that m /∈ M and (g,m) /∈ I
such that g ∈ Ex(c) to M and I, respectively. This can reduce the total weakness∑

c∈B(KL) weak(c). This means introducing new resources for sequences of events

Ex(c). For example, purchase of the same machines as existing ones, and using a
substitute to make up a shortage of materials. In order to decide properly which
kind of operations is executed, we need other factors, e.g., execution time of the
process, or costs and easiness of applying the operations.
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Example 7 In the running example, there are some choices for removing the
weakest sequence Ex(c6) = { register ticket, check ticket }. For example, addition
of (register request,Ellen) to I which means that Ellen gets an ability to “reg-
ister request” can remove the weak point. It removes the concept c6, changes
c2 into ({ register request, check ticket,pay compensation } , {Ellen }), and c8 into
({ register request, check ticket } , {Pete,Mike,Ellen }), respectively. If we assume
that “register request” is shared equally by Pete, Mike, and Ellen, the num-
bers are changed: freq(c2) = 4, imp(c2) = 2, weak(c2) ; 0.42, freq(c3) = 3,
imp(c3) = 2, weak(c3) ; 0.32, freq(c8) = 7, imp(c8) = 2.25, weak(c8) ; 0.83. In
this case, the total weakness increases to around 2.66. Employing a new person,
Bob, having ability to execute “register request” is an operations of the second
type. This is to add Bob /∈M to M and to add (register request,Bob) /∈ I to I.
In this case, a new concept c12 = ({ register request } , {Bob }) is generated, and
then, the total weakness decrease to 2.17 by assuming that “register request” is
shared equally by Pete, Mike, and Bob. Because weak(c3) and weak(c6) decrease
to around 0.32 and around 0.26, respectively, and weak(c12) ; 0.05.

4 Conclusions

In this paper, we propose to apply FCA (formal concept analysis) to process
enhancement. FCA is to analyze data from a dual viewpoint which is based on
objects and attributes. Processes are recorded in event logs which are constructed
by observation based on some perspectives. We assign a pair of the process
perspective and the organization perspective to the objects and the attributes
of FCA in order to investigate weak points of a process. Weakness of a sequence
of events executed by resources is calculated by importance and loads of it.

There are many problems to be solved. Our weakness of process is not defined
from enough analysis because only two features from two perspectives are con-
sidered. For improving a process more efficiently, we need to take into account
other features across other perspectives in weak point detection. For example,
using a time-stamp feature enables us to detect bottleneck of a process, using
a cost feature enables us to find costly sequences. It may be achieved by com-
bining other process models with our concept lattice. We also have to refine the
operations for removing weak points. In our method, the number of the choices
for enhancement sometimes becomes so large. A plan of the refinement is to
estimate in advance the total weakness of a reinforced process for each of the
choices. Combining other models is also useful. For example, combining proce-
dure models with our method can suggest some effective operations from the
many choices. Because such models sufficiently treat order of events in traces
which is ignored by our lattice based approach. On the other hand, there are
many constraints on resources in practical processes, e.g., some materials can be
substituted few materials but the others can not, and employees are divided into
groups in a company. In order to reduce the choices based on such constrains,
social network models might be useful.
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Abstract. We consider the problem of mining closed patterns from
multi-relational databases in a distributed environment. Given two lo-
cal databases (horizontal partitions) and their sets of closed patterns
(concepts), we generate the set of closed patterns in the global database
by utilizing the merge (or subposition) operator, studied in the field of
Formal Concept Analysis. Since the execution times of the merge opera-
tions increase with the increase in the number of local databases, we pro-
pose some methods for improving the merge operations. We also present
some experimental results using a distributed computation environment
based on the MapReduce framework, which shows the effectiveness of
the proposed methods.

Key Words: multi-relational data mining, closed patterns, merge (sub-
position) operator, FCA, distributed databases, MapReduce

1 Introduction

Multi-relational data mining (MRDM) has been extensively studied for more
than a decade (e.g., [7, 8] and references therein), and is still attracting increas-
ing interest in the fields of data mining (e.g., [14, 29]) and inductive logic pro-
gramming (ILP). In the framework of MRDM, data and patterns (or queries)
are represented in the form of logical formulae such as datalog (a class of first
order logic). This expressive formalism of MRDM allows us to use complex and
structured data in a uniform way, including trees and graphs in particular, and
multi-relational patterns in general.

On the other hand, Formal Concept Analysis (FCA) has been developed as
a field of applied mathematics based on a clear mathematization of the notions
of concept and conceptual hierarchy [11]. While it has attracted much interest
from various application areas including, among others, data mining, knowledge
acquisition and software engineering (e.g., [12]), research on extending the capa-
bilities of FCA for AI (Artificial Intelligence) has recently been attracted much
attention [20].
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The notion of iceberg query lattices, proposed by Stumme [30], combines the
notions of MRDM and FCA; frequent datalog queries in MRDM correspond
to iceberg concept lattices (or frequent closed itemsets) in FCA. Ganter and
Kuznetsov [10] have extensively studied the framework of more expressive pat-
tern structures. In MRDM, condensed representations such as closed patterns
and free patterns have been also studied in c-armr by De Raedt and Ramon [6],
and in RelLCM2 by Garriga et al. [13].

We consider in this paper the problem of mining closed patterns (or queries)
in multi-relational data, particularly applying the notion of iceberg query lat-
tices to a distributed mining setting. The assumption that a given dataset is
distributed and stored in different sites will be reasonable for some situations
where we might not be able to move local datasets into a centralized site due to
too much data size and/or privacy concerns.

Given two local databases (horizontal partitions) and their sets of closed
patterns (concepts), the set of closed patterns in the global database can be con-
structed by using subposition) operator [11, 33] or the merge operator [23]. From
our preliminary experiments [28] using a distributed computation environment
MapReduce [3], we have found that the execution times of computing the merge
operations have increased with the increase in the number of local databases. In
this paper, we therefore propose some methods for computing the merge opera-
tions so that we can efficiently construct the set of global closed patterns from
the sets of local closed patterns. Our methods are based on the properties of the
merge operator.

The organization of the rest of this paper is as follows. After summarizing
some basic notations and definitions of closed patterns mining in MRDM in
Sect. 2, we consider distributed closed pattern mining in MRDB and the merge
operator in Sect. 3. We then explain our approach to improving the merge oper-
ations in Sect. 4. In Section 5, we show the effectiveness of our methods by some
experimental results. Finally, we give a summary of this work in Section 6.

2 Iceberg Query Lattices in Multi-Relational Data
Mining

2.1 Multi-Relational Data Mining

In the task of frequent pattern mining in multi-relational databases, we assume
that we have a given database r, a language of patterns, and a notion of fre-
quency which measures how often a pattern occurs in the database. We use
datalog, or Prolog without function symbols other than constants, to represent
data and patterns. We assume some familiarity with the notions of logic pro-
gramming (e.g., [22, 24]), although we introduce some notions and terminology
in the following.

Example 1. Consider a multi-relational database r in Fig. 1 (above), which con-
sists of five relations, Customer, Parent, Buys,Male and Female. For each rela-
tion, we introduce a corresponding predicate, i.e., customer , parent , buys,male
and female, respectively.
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Customer

key

allen
carol
diana
fred

Parent

SR. JR.

allen bill
allen jim
carol bill
diana eve
fred eve
fred hera

Buys

key item

allen pizza
carol pizza
diana cake
fred cake

Male

person

bill
jim

Female

person

eve
hera

key(X)

{a, c, d, f}

key(X), buys(X, pizza)

{a, c}

key(X), parent(X, Y )

{(a, b), (a, j), (c, b),
(d, e), (f, e), (f, h)}

key(X), buys(X, cake)

{d, f}

key(X), buys(X, pizza),
parent(X, Y ),male(Y )

{(a, b), (a, j), (c, b)}

key(X), buys(X, cake),
parent(X, Y ), female(Y )

{(d, e), (f, e), (f, h)}

Fig. 1. An Example of Datalog Database r with customer relation as a key (above)
and the Iceberg Query Lattice Associated to r (below), where a substitution θ =
{X/t1, Y/t2} (resp., θ = {X/t1}) is simply denoted by (t1, t2) (resp., t1), and the name
(e.g., allen) of each person in the tables is abbreviated to its first character (e.g., a).

Consider the following pattern P = customer(X), parent(X, Y ), buys(X, pizza).
For a substitution θ, Pθ is logically entailed by r, denoted by r |= Pθ, if there
exists a tuple (a1, a2) such that a1 ∈ Customer, (a1, a2) ∈ Parent, and tuple
(a1, pizza) ∈ Buys. Then, answerset(P, r) = {{X/allen, Y/bill}, {X/allen, Y/jim},
{X/carol , Y/bill}}. 2

An atom (or literal) is an expression of the form p(t1, . . . .tn), where p is a
predicate (or relation) of arity n, denoted by p/n, and each ti is a term, i.e., a
constant or a variable.

A substitution θ = {X1/t1, . . . , Xn/tn} is an assignment of terms to variables.
The result of applying a substitution θ to an expression E is the expression Eθ,
where all occurrences of variables Vi have been simultaneously replaced by the
corresponding terms ti in θ. The set of variables occurring in E is denoted by
Var(E).

A pattern is expressed as a conjunction of atoms (literals) l1∧· · ·∧ln, denoted
simply by l1, . . . , ln. A pattern is sometimes called a query . We will represent
conjunctions in list notation, i.e., [l1, . . . , ln]. For a conjunction C and an atom
p, we denote by [C, p] the conjunction that results from adding p after the last
element of C.
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Let C be a pattern (i.e., a conjunction) and θ a substitution of Var(C).
When Cθ is logically entailed by a database r, we write it by r |= Cθ. Let
answerset(C, r) be the set of substitutions satisfying r |= Cθ.

In multi-relational data mining, one of the predicates is often specified as a
key (or target) (e.g., [4, 6]), which determines the entities of interest and what is
to be counted. The key (target) is thus to be present in all patterns considered.
In Example 1, the key is predicate customer .

Let r be a database and Q be a query containing a key atom key(X). Then,
the support (or frequency) of Q, denoted by supp(Q, r, key), is defined to be
the number of different keys that answer Q (called the support count or abso-
lute support), divided by the total number of keys. Q is said to be frequent , if
supp(Q, r, key) is no less than some user defined threshold min sup.

A pattern containing a key will not be always meaningful; for example, let
C = [customer(X), parent(X, Y ), buys(Z, pizza)] be a conjunction in Example 1.
Variable Z in C is not linked to variable X in key atom customer(X); an object
represented by Z will have nothing to do with key object X. It will be inap-
propriate to consider such a conjunction as an intended pattern to be mined. In
ILP, the following notion of linked literals [16] is used to specify the so-called
language bias.

Definition 1 (Linked Literal). [16] Let key(X) be a key atom and l a literal.
l is said to be linked to key(X), if either X ∈ Var(l) or there exists a literal l1
such that l is linked to key(X) and Var(l1) ∩ Var(l) ̸= ∅. 2

Given a database r and a key atom key(X), we assume that there are pre-
defined finite sets of predicate (resp. variables; resp. constant symbols), and
that, for each literal l in a conjunction C, it is constructed using the predefined
sets. Moreover, each pattern C of conjunctions satisfies the following conditions:
key(X) ∈ C and, for each l ∈ C, l is linked to key(X). In the following, we de-
note by Q the set of queries (or patterns) satisfying the above bias condition.

2.2 Iceberg Query Lattices with Key

We now consider the notion of a formal context in MRDM, following [30].

Definition 2. [30] Let r be a datalog database and Q a set of datalog queries.
The formal context associated to r and Q is defined by Kr, Q = (Or, Q, Ar, Q, Ir, Q),
where Or, Q = {θ | θ is a grounding substitution for all Q ∈ Q}, and Ar, Q = Q,
and (θ, Q) ∈ Ir, Q if and only if θ ∈ answerset(Q, r). 2

From this formal context, we can define the concept lattice the same way as
in [30]. We first introduce an equivalence relation ∼r on the set of queries: Two
queries Q1 and Q2 are said to be equivalent with respect to database r if and
only if answerset(Q1, r) = answerset(Q2, r). We note that Var(Q1) = Var(Q2)
when Q1 ∼r Q2.
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Definition 3 (Closed Query). Let r be a datalog database and ∼r the equiv-
alence relation on a set of datalog queries Q. A query (or pattern) Q is said to be
closed (w.r.t. r and Q), iff Q is the most specific query among the equivalence
class to which it belongs: {Q1 ∈ Q | Q ∼r Q1}. 2

For any query Q1, its closure is a closed query Q such that Q is the most
specific query among {Q ∈ Q | Q ∼r Q1}. Since it uniquely exists, we denote
it by Clo(Q1; r). We note again that Var(Q1) = Var(Clo(Q1; r)) by definition.
We refer to this as the range-restricted condition here.

Stumme [30] showed that the set of frequent closed queries forms a lattice,
called an iceberg query lattice. In our framework, it is necessary to take our bias
condition into consideration. To do that, we employ the well-known notion of
the most specific generalization (or least generalization) [26, 24].

For queries Q1 and Q2, we denote by lg(Q1, Q2) the least generalization of
Q1 and Q2. Moreover, the join of Q1 and Q2, denoted by Q1 ∨ Q2, is defined
as: Q1 ∨ Q2 = lg(Q1, Q2)|Q, where, for a query Q, Q|Q is the restriction of Q to
Q, defined by a conjunction consisting of every literal l in Q which is linked to
key(X), i.e., deleting every literal in Q not linked to key(X).

Definition 4. [30] Let r be a datalog database and Q a set of datalog queries.
The iceberg query lattice associated to r and Q for minsupp ∈ [0, 1] is defined as:
Cr, Q = ({Q ∈ Q | Q is closed w.r.t. r and Q, and Q is frequent}, |=), where |=
is the usual logical implication. 2

Example 2. Fig. 1 (below) shows the iceberg query lattice associated to r in Ex. 1
and Q with the support count 1, where each query Q ∈ Q has customer(X) as
a key atom, denoted by key(X) for short, Q is supposed to contain at most two
variables (i.e., X, Y ), and the 2nd argument of predicate buys is a constant. 2

Theorem 1. [28] Let r be a datalog database and Q a set of datalog queries
where all queries contain an atom key and they are linked. Then, Cr, Q is a
∨-semi-lattice. 2

3 Distributed Closed Pattern Mining in MRDB

Horizontal Decomposition of MRDB and Mining Local Concepts

Our purpose in this work is to mine global concepts in a distributed setting,
where a global database is supposed to be horizontally partitioned appropriately,
and stored possibly in different sites. We first consider the notion of a horizontal
decomposition of a multi-relational DB. Since a multi-relational DB consists of
multiple relations, its horizontal decomposition is not immediately clear.

Definition 5. Let r be a multi-relational datalog database with a key pred-
icate key . We call a pair r1, r2 a horizontal decomposition of r, if (i) keyr =
keyr1

·∪ keyr2
, i.e., the key relation keyr in r is disjointly decomposed into keyr1

and keyr2
in r1 and r2, respectively, and (ii) for any query Q, answerset(Q, r) =

answerset(Q, r1) ∪ answerset(Q, r2). 2
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The second condition in the above states that the relations other than the key
relation in r are decomposed so that any answer substitution in answerset(Q, r)
is computed either in partition r1 or r2, thereby being preserved in this horizon-
tal decomposition. An example of a horizontal decomposition of r is shown in
Example 3 below.

Given a horizontal decomposition of a multi-relational DB, we can utilize
any preferable concept (or closed pattern) mining algorithm for computing local
concepts on each partition, as long as the mining algorithm is applicable to
MRDM and its resulting patterns satisfy our bias condition. We use here an
algorithm called ffCLM [27], which is based on the notion of closure extension
due to Pasquier et al. [25] and Uno et al. [32] in frequent itemset mining.

Computing Global Closed Patterns by Merge Operator in MRDM

To compute the set of global closed patterns from the sets of local closed patterns
in MRDM, we need the following merge operator ⊕. For patterns C1 and C2, we
denote by C1 ∩C2 a possibly empty conjunction of the form: l1 ∧ · · · ∧ lk (k ≥ 0)
such that, for each li (i ≤ k), li ∈ C1 and li ∈ C2.

Theorem 2. [28] Let r be a datalog database, and r1, r2 a horizontal decomposi-
tion of r. Let C (Ci) (i = 1, 2) be the set of closed patterns of r (ri), respectively.
Then, we have the following:

C = C1 ⊕ C2

= (C1 ∪ C2) ∪ {C1 ∩ C2 | C1 ∈ C1, C2 ∈ C2,

C1 ∩ C2 is linked with key.} (1)

The set of global closed patterns C is obtained by the union of the local
closed patterns C1 and C2, and, in addition to that, by intersecting each pat-
tern C1 ∈ C1 and C2 ∈ C2. Furthermore, the pattern obtained by the in-
tersection, C1 ∩ C2, should satisfy the bias condition (Def. 1). We note that
C1 ∩ C2 does not necessarily satisfy the linkedness condition; for example, sup-
pose that C1 (C2) is a closed pattern of the form: C1 = key(X), p(X, Y ),m(Y )
(C2 = key(X), q(X,Y ),m(Y )), respectively. Then, C1 ∩ C2 = key(X),m(Y ),
which is not linked to key(X), and thus does not satisfy the bias condition.

We note that, in the case of transaction databases, the above theorem coin-
cides with the one by Lucchese et al. [23].

Example 3. We consider a horizontal decomposition r1, r2 of r in Example 1
such that the key relation keyr (i.e., Customer) in r is decomposed into keyr1

=
{allen, carol} and keyr2

= {dian, fred}, and the other relations than Customer
are decomposed so that they satisfy the second condition of Def. 5.

Consider a globally closed pattern C = [key(X), parent(X, Y )] in Fig. 1.
In r1, there exists a closed pattern C1 of the form: [C, buys(X, pizza),male(Y )],
while, in r2, there exists a closed pattern C2 of the form: [C, buys(X, cake), female(Y )].
Then, we have that C coincides with C1 ∩ C2. 2
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We can now formulate our problem as follows:

Mining Globally Closed Patterns from Local DBs:
Input: A set of local databases {DB1, . . . ,DBn}
Output: the set of global closed patterns C1..n.

In order to compute C1..n, our approach consists of two phases: we first com-
pute each set Ci (i = 1, . . . , n) of local closed patterns from DB i, and then
we compute C1..n by applying the merge operators. We call the first phase the
mining phase, while we call the second phase the merge phase.

4 Making Merge Computations Efficient in MRDM

In the merge operation in conventional data mining such as itemsets, comput-
ing the intersection of two sets in the merge operation ⊕ is straightforward. In
MRDM, on the other hand, the computation of ⊕ operator becomes somewhat
involved due to handling variables occurring in patterns. Namely, two additional
tests are required: checking the bias condition (linkedness), and checking equiv-
alence modulo variable renaming for eliminating duplicate patterns.

For closed patterns C1 and C2, we must check whether the intersection C1∩C2

satisfies the linkedness condition. Moreover, we must check whether C1 ∩ C2 is
equivalent (modulo variable renaming) to the other patterns obtained so far.
For example, let C1 (C2) be a pattern of the form: C1 = key(X), p(X, Y ),m(Y )
(C2 = key(X), p(X,Z),m(Z)), respectively. Then, C1 is equivalent to C2 modulo
variable renaming.

When implementing a data mining system, such handling variables in pat-
terns will necessarily require string manipulations, and such string operations
would lead to undesirable overhead in actual implementation. In the following,
we therefore propose two methods for reducing the computational costs in the
merge operation.

4.1 Partitioning Pattern Sets

When computing the merge operation, we can use the following property:

Proposition 1. Let DB = DB1 ∪DB2, and C (Ci) the set of closed patterns of
DB (DBi) (i = 1, 2), respectively. Then,

C = C1 ⊕ C2

= (C1 ∪ C2) ∪ {C1 ∩ C2| (C1, C2) ∈ (C1, C2) ,

C1 ∩ C2 : linked with key,Var(C1) = Var(C2)} (2)

Proof. Let C be a closed pattern in C such that C is linked with key. From
Theorem 2, it suffices to show that there exist patterns Ci ∈ Ci (i = 1, 2) such
that C = C1 ∩ C2 and Var(C1) = Var(C2).

Let Ci = Clo(C;DB i) (i = 1, 2). Then, we have from the definition of Clo(·; ·)
that Var(C) = Var(C1) = Var(C2). Moreover, we can show that C = C1 ∩ C2,
which is to be proved. 2
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From the above proposition, when computing the intersection of each pair of
patterns C1 ∈ C1 and C2 ∈ C2 in (1), we can perform the intersection of only those
pairs (C1, C2) containing the same set of variables, i.e., Var(C1) = Var(C2).
When compared with the original definition of the merge operator ⊕ (Theorem
2), the above property will be utilized to reduce the cost of the merge operations.

4.2 Merging Diff-Sets

Next, we consider another method for making the merge operation efficient,
which is based on the following simple observation:

Observation 1. Given sets of closed patterns C1 and C2, let D1 = C1 \ C2 and
D2 = C2\C1, namely, Di is a difference set (diff-set for short) (i = 1, 2). Suppose
that C is a new (or generator [33]) pattern in C1 ⊕C2, meaning that C ∈ C1 ⊕C2,
while C ̸∈ C1∪C2. Then, C is obtained by intersection operation, i.e., C = C1∩C2

for some patterns C1 ∈ D1 and C2 ∈ D2.

That is, a new closed pattern C will be generated only when intersecting
those patterns in the difference sets in D1 and D2. This fact easily follows from
the property that the set of closed patterns is a semi-lattice: suppose otherwise
that C1 ∈ D1, while C2 ̸∈ D2. Then, C2 ∈ C1. Since both C1 and C2 are in C1, we
have that C = C1 ∩C2 is a closed pattern also in C1, which implies that C is not
a new pattern. Algorithm 1 shows the above-mentioned method based on the
difference sets. In the algorithm, the computation of supports (or occurrences)
is omitted, which is done similarly in [33].

Algorithm 1: Diff-Set Merge(C1, C2)

input : sets of closed patterns C1, C2
output: C1..2 = C1 ⊕ C2

1 C = C1 ∩ C2; D1 = C1 \ C2; D2 = C2 \ C1;
2 foreach pair (C1, C2) ∈ D1 ×D2 do
3 C ← C1 ∩ C2;
4 if C satisfies the bias condition and C ̸∈ C then
5 C ← C ∪ {C};
6 end

7 end
8 return C

5 Experimental Results

Implementation and Test Data

To see the effectiveness of our approach to distributed mining, we have made
some experiments. As for the mining phase, we implemented our approach by
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using Java 1.6.0 22. Experiments of the phase were performed on 8 PCs with
Intel Core i5 processors running at 2.8GHz, 8GB of main memory, and 8MB of
L2 cache, working under Ubuntu 11.04. We used Hadoop 0.20.2 using 8 PCs, and
2 mappers working on each PC. On the other hand, experiments of the merging
phase were performed on one of the PCs.

We use two datasets, often used in the field of ILP; one is the mutagenesis
dataset1, and the other is an English corpus of the Penn Treebank Project2.

The mutagenesis dataset, for example, contains 30 chemical compounds. Each
compound is represented by a set of facts using predicates such as atom, bond ,
for example. The size of the set of predicate symbols is 12. The size of key atom
(active(X )) is 230, and minimum support min sup = 1/230. We assume that
patterns contain at most 4 variables and they contain no constant symbols. The
number of the closed patterns mined is 5, 784.

Effect of Partitioning Pattern Sets

Fig. 2 (left) summarizes the results of the execution times for a test data on the
mutagenesis dataset. We can see from the figure that the execution times t1 of
the mining phase are reduced almost linearly with the number of partitions. On
the other hand, the execution times t2 of the merging phase for obtaining global
closed patterns increase almost linearly with the number p of partitions from 1
(i.e., no partitioning) to 16. This is reasonable; the number of applying the merge
operators is (p − 1) when we have p partitions. Note that the execution time for
the merge phase in the case of a single partition means some start-up overheads
such as opening/reading a file of the results of the mining phase, followed by
preparing the inputs of the merge operation.

In this particular example, the time spent in the merge phase is relatively
small when compared with that for the mining phase. This is because the number
of partitions and the number of local closed patterns are rather small. When the
number of partitions of a global database becomes larger, however, the execution
times for the merging phase will become inevitably larger. Considering efficient
merge algorithms is thus an important issue for scalability in MRDM.

To see the effect of using Proposition 1, Fig. 2 (right) shows the numbers of
closed patterns in a merge computation C1 ⊕ C2 with input sets C1, C2 of closed
patterns for the mutagenesis dataset with 16 partitions. Each table shows the
number of patterns in Ci (i = 1, 2) containing k variables for 1 ≤ k ≤ 4. The
number of computing intersection operations based on Proposition 1 has been
reduced to about 80% of that of the original computation. The execution times
in Fig. 2 (left) are the results obtained by using this method.

1 http://www.cs.ox.ac.uk/activities/machlearn/mutagenesis.html
2 http://www.cis.upenn.edu/ treebank/
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Fig. 2. Execution Times of the Mining Phase and the Merge Phase (left) and No. of
Patterns in a Merge Computation (right): An Example in the Mutagenesis Dataset.
Each number in a quadrangle is the size of a closed pattern set. D1 = C1 \ C2 and
D2 = C2 \ C1.

Effect of Merging Diff-Sets

Fig. 3 shows its performance results (the execution times), compared with the
naive method, using the same datasets, the mutagenesis (left) and the English
corpus (right).

In both datasets, the execution times decrease as the number n of the local
DBs increases; in particular, when n = 16 in the mutagenesis data set, the
execution time is reduced to about 43% of that of the naive method. To see the
reason of this results, Fig. 2 (right) shows the sizes of the difference sets D1 and
D2 used in the merge computation C1 ⊕ C2 with input sets C1, C2 of the closed
patterns.

Fig. 3. Results of the Diff-Sets Merge Method: The Mutagenesis Dataset (left) and
The English Corpus (right)
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6 Concluding Remarks

We have considered the problem of mining closed patterns from multi-relational
databases in a distributed environment. For that purpose, we have proposed two
methods for making the merge (or subposition) operations efficient, and we have
then exemplified the effectiveness of our method by some preliminary experi-
mental results using MapReduce/Hadoop distributed computation framework
in the mining process.

In MRDM, efficiency and scalability have been major concerns [2]. Krajca et
al. [17, 18] have proposed algorithms to compute search trees for closed patterns
simultaneously either in parallel or in a distributed manner. Their approaches
are orthogonal to ours; it would be beneficial to employ their algorithms for
computing local closed patterns in the mining phase in our framework.

In this work, we have confined ourselves to horizontal partitions of a global
MRDB. It will be interesting to study vertical partitioning and their mixture in
MRDM, where the apposition operator studied by Valtchev et al. [34] will play
an important role. As future work, our plan is to develop an efficient algorithm
dealing with such a general case in MRDM.

Acknowledgement The authors would like to thank anonymous reviewers for
their useful comments on the previous version of the paper.
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Looking for bonds between nonhomogeneous
formal contexts

Ondrej Kŕıdlo, Lubomir Antoni, Stanislav Krajči

University of Pavol Jozef Šafárik, Košice, Slovakia?

Abstract. Recently, the concept lattices working with the heteroge-
neous structures have been fruitfully applied in a fuzzy formal concept
analysis. We present a situation under nonhomogeneous formal contexts
and explore the bonds in a such nonhomogeneous case. This issue requires
to formulate the alternative definition of a bond and to investigate the
relationships between bonds and the particular formal contexts.

Keywords: bond, heterogeneous formal context, second order formal
context

1 Introduction

Formal concept analysis (FCA) [16] as an applied lattice theory allows us to
explore the meaningful groupings of objects with respect to common attributes.
In general, FCA is an interesting research area that provides theoretical foun-
dations, fruitful methods, algorithms and underlying applications in many areas
and has been investigated in relation to various disciplines and integrated ap-
proaches [13,15]. The feasible attempts and generalizations are investigated, one
can see dual multi-adjoint concept lattices working with adjoint triples [27–29],
interval-valued L-fuzzy concept lattices [1], heterogeneous concept lattices [2,3],
connectional concept lattices [12, 32, 33]. Classical bonds and their generaliza-
tions acting on residuated lattices were analyzed from a broader perspective
in [17,21,24].

In this paper, we deal with an alternative notion of the bonds and with a
problem of looking for bonds in a nonhomogeneous formal contexts. In particular,
Section 2 recalls the basic notions of a concept lattice, notion of a bond, its
equivalent definition and preliminaries of a second order formal context and a
heterogeneous formal context. Section 3 describes the idea of a looking for bonds
in a nonhomogeneous case. Sections 4 and 5 provide the solution of this issue in
terms of a second order formal context and heterogeneous formal context.
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2 Preliminaries

Definition 1. Let B and A be the nonempty sets, R ⊆ B × A be an arbitrary
binary relation. Triple 〈B,A,R〉 is said to be a formal context with a set of
objects B and a set of their attributes A. Relationships between objects and their
attributes are saved in the relation R. Let us define a pair of derivation operators
(↑, ↓) as the mappings between powersets of B and A such that

– ↑: P(B)→ P(A) and ↓: P(A)→ P(B) where for any X ⊆ B and Y ⊆ A is

– ↑ (X) = {a ∈ A|(∀b ∈ X)(b, a) ∈ R}
– ↓ (Y ) = {b ∈ B|(∀a ∈ Y )(b, a) ∈ R}.

Such derivation operators can be defined as the mappings between 2-sets (bor-
rowed from fuzzy generalization of FCA that is sometimes easier to use)

– ↑: 2B → 2A and ↓: 2A → 2B where for any X ∈ 2B and Y ∈ 2A

– ↑ (X)(a) =
∧
b∈B((b ∈ X)⇒ ((b, a) ∈ R)) =

∧
b∈B(X(b)⇒ R(b, a))

– ↓ (Y )(b) =
∧
a∈A((a ∈ Y )⇒ ((b, a) ∈ R)) =

∧
a∈A(Y (a)⇒ R(b, a)).

Pair of such derivation operators forms an antitone Galois connection be-
tween complete lattices of all subsets of B and A. Hence, the compositions of
the mappings form closure operators on such complete lattices.

Definition 2. Let C = 〈B,A,R〉 be a formal context. Any pair of sets (X,Y ) ∈
2B × 2A is said to be a formal concept iff X =↓ (Y ) and Y =↑ (X). Object
part of any concept is called extent and attribute part is called intent. Set of
all extents of formal context C will be denoted by Ext(C). The notation Int(C)
stands for the set of all intents of C.

All concepts ordered by set inclusion of extents (or equivalently by dual of
intent inclusion) form a complete lattice structure.

2.1 Notion of bond and its equivalent definition

Definition 3. Let Ci = 〈Bi, Ai, Ri〉 for i ∈ {1, 2} be two formal contexts. Rela-
tion β ⊆ B1 ×A2 is said to be a bond iff any row of the table is an intent of C2
and any of its column is an extent of C1. Set of all bonds between C1 and C2 will
be denoted by 2-Bonds(C1, C2).

Lemma 1. Let Ci = 〈Bi, Ai, Ri〉 for i ∈ {1, 2} be two formal contexts. Then
β ⊆ B1×A2 is a bond between C1 and C2 if and only if Ext(〈B1, A2, β〉) ⊆ Ext(C1)
and Int(〈B1, A2, β〉) ⊆ Int(C2).

Proof. ⇒: Let X ∈ Ext(〈B1, A2, β〉) be an arbitrary extent of any bond between
formal contexts C1 and C2. Derivation operators of Ci will be denoted by (↑i, ↓i)
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for i ∈ {1, 2}. Derivation operators of the bond will be denoted by (↑β , ↓β). Then
there exists a set of attributes Y ⊆ A2 such that

↓β (Y )(b1) =
∧

a2∈A2

(Y (a2)⇒ β(b1, a2))

β(−, a2) is an extent of Ext(C1) hence there exists Z ⊆ A1

=
∧

a2∈A2

(Y (a2)⇒↓1 (Z)(b1))

=
∧

a2∈A2

(
Y (a2)⇒

∧

a1∈A1

(
Z(a1)⇒ R1(b1, a1)

))

=
∧

a2∈A2

∧

a1∈A1

(Y (a2)⇒ (Z(a1)⇒ R1(b1, a1)))

=
∧

a2∈A2

∧

a1∈A1

((Y (a2) ∧ Z(a1))⇒ R1(b1, a1))

=
∧

a1∈A1

( ∨

a2∈A2

(
Y (a2) ∧ Z(a1)

)
⇒ R1(b1, a1)

)

=
∧

a1∈A1

(ZY (a1)⇒ R1(b1, a1))

=↓1 (ZY )(b1) where ZY (a1) =
∨
a2∈A2

(Y (a2) ∧ Z(a1))

Hence, Ext(〈B1, A2, β〉) ⊆ Ext(C1). Similarly for intents.
⇐: Assume a formal context 〈B1, A2, β〉 such that it holds Ext(〈B1, A2, β〉) ⊆

Ext(C1) and Int(〈B1, A2, β〉) ⊆ Int(C2). From the simple fact that any row of any
context is its intent and any column is its extent and from the previous inclusions,
we obtain that β is a bond between C1 and C2. ut

Hence, the notion of bond can be defined equivalently as follows.

Definition 4. Let Ci = 〈Bi, Ai, Ri〉 for i ∈ {1, 2} be two formal contexts. Formal
context B = 〈B1, A2, β〉 is said to be a bond between C1 and C2 if Ext(B) ⊆
Ext(C1) and Int(B) ⊆ Int(C2).

More about the equivalent definition of bond could be found in [17–19].

2.2 Direct product of two formal contexts and bonds

Let us recall the definition and important property of direct product of two
formal contexts. More details about such topic can be found in [21,26].

Definition 5. Let Ci = 〈Bi, Ai, Ri〉 be two formal contexts. Formal context
C1∆C2 = 〈B1 ×A2, B2 ×A1, R1∆R2〉 where

(R1∆R2)((b1, a2), (b2, a1)) = R1(b1, a1) ∨R2(b2, a2)

= ¬R1(b1, a1)⇒ R2(b2, a2)

= ¬R2(b2, a2)⇒ R1(b1, a1)
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for any (bi, ai) ∈ Bi × Ai for all i ∈ {1, 2} is said to be a direct product of
formal contexts C1 and C2.

Lemma 2. Let Ci = 〈Bi, Ai, Ri〉 be two formal contexts. Every extent of C1∆C2
is a bond between C1 and C2.

2.3 Second order formal contexts

In this subsection, we remind a notion of a second order formal concept [24].

Definition 6. Consider two non-empty index sets I and J and a formal context
〈⋃i∈I Bi,

⋃
j∈J Aj , r〉, whereby

– Bi1 ∩Bi2 = ∅ for any i1, i2 ∈ I, i1 6= i2,
– Aj1 ∩Aj2 = ∅ for any j1, j2 ∈ J , j1 6= j2,
– r :

⋃
i∈I Bi ×

⋃
j∈J Aj → 2.

Moreover, consider two non-empty sets of 2-contexts notated

– {Ci = 〈Bi, Ti, pi〉 : i ∈ I}
– {Dj = 〈Oj , Aj , qj〉 : j ∈ J}.

Formal context of second order is a tuple
〈⋃

i∈I
Bi, {Ci; i ∈ I},

⋃

j∈J
Aj , {Dj ; j ∈ J},

⋃

(i,j)∈I×J
ri,j

〉
,

where ri,j : Bi×Aj → 2 defined as ri,j(b, a) = r(b, a) for any b ∈ Bi and a ∈ Aj.

In what follows, consider the below described notation. Let us have an L-set
f : X → 2 for a non-empty universe set X =

⋃
i∈I Xi, where Xi1 ∩ Xi2 = ∅

for any i1, i2 ∈ I. Then f i : Xi → 2 is defined as f i(x) = f(x) for an arbitrary
x ∈ Xi and i ∈ I.

We define the mappings between direct products of two sets of concept lat-
tices (that correspond to the two sets of 2-contexts given above) in the following
form:

Definition 7. Let us define the mappings 〈⇑,⇓〉 as follows

⇑:
∏

i∈I
Ext(Ci)→

∏

j∈J
Int(Dj) and ⇓:

∏

j∈J
Int(Dj)→

∏

i∈I
Ext(Ci)

⇑ (Φ)j =
∧

i∈I
↑ij (Φi), for any Φ ∈

∏

i∈I
Ext(Ci)

⇓ (Ψ)i =
∧

j∈J
↓ij (Ψ j), for any Ψ ∈

∏

j∈J
Int(Dj)

such that (↑ij , ↓ij) is a pair of derivation operators defined on 〈Bi, Aj , ρij〉 where

ρij =
∧
{β ∈ 2-Bonds(Ci,Dj) : (∀(bi, aj) ∈ Bi ×Aj)β(bi, aj) ≥ rij(bi, aj)}.
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2.4 Heterogeneous formal contexts

A heterogeneous extension in FCA based on the totally diversification of objects,
attributes and table fields has been introduced in [3]. In the following, we remind
the definition of a heterogeneous formal context and its derivation operators.

Definition 8. Heterogeneous formal context is a tuple C = 〈B,A,P, R,U ,V,�〉,
where

– B and A are non-empty sets,
– P = {〈Pb,a,≤Pb,a

〉 : (b, a) ∈ B ×A} is a system of posets,
– R is a mapping from B × A such that R(b, a) ∈ Pb,a for any b ∈ B and
a ∈ A,

– U = {〈Ub,≤Ub
〉 : b ∈ B} and V = {〈Va,≤Va〉 : a ∈ A} are systems of

complete latices,
– � = {◦b,a : (b, a) ∈ B × A} is a system of isotone and left-continuous

mappings ◦b,a : Ub × Va −→ Pb,a.

Let us define the derivation operators of a heterogeneous formal context as a
pair of mappings (↗,↙), whereby ↗:

∏
b∈B Ub →

∏
a∈A Va and ↙:

∏
a∈A Va →∏

b∈B Ub such that

– ↙ (f)(a) =
∨{v ∈ Va|f(b) ◦b,a v ≤ R(b, a)} for any f ∈∏b∈B Ub

– ↗ (g)(b) =
∨{u ∈ Ub|u ◦b,a g(a) ≤ R(b, a)} for any g ∈∏a∈A Va.

3 Problem description and sketch of solution

In this section we discussed why we have proposed an equivalent definition of
bond. First, consider the classical definition of bond. It is a binary relation (table)
between objects and attributes from different contexts such that its rows are
intents and columns are extents of different input contexts. The issue of looking
for bonds in a classical or homogeneous fuzzy case can be solved successfully
[17,21].

The solution of this issue requires the alternative definition of a bond. Hence,
new definition of a bond focuses not only on a relation with some special prop-
erties, but also on a bond as a formal context, whereby its concept lattice is
connected to concept lattices of input contexts in some sense. As a consequence,
a generalization for heterogeneous bonds is possible. One can find the methods
in effort to equivalently modify the input heterogeneous formal contexts and to
extract bonds as the extents of a direct product.

The proposed modification runs as follows. Each individual pair that includes
a ”conjunction” ◦b,a and a value of the poset Pb,a is replaced by a bond from
2-Bonds(〈Ub, Ub,≤〉, 〈Va, Va,≥〉). This completely covers the Galois connection
between the complete lattices of any object–attribute pair from B ×A.

At the beginning, we will show how this modification looks in terms of sec-
ond order formal contexts. Then we define new modified heterogeneous formal
context such that its concept lattice is identical to the original.
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4 Second order form of scaled heterogeneous formal
context

In effort to formalize the second order form of scaled heterogeneous formal con-
text and its derivation operators, the definition of the following mappings is
required:

Definition 9. Let (L,≤) be a complete lattice. Let us define mappings (−)
L

and
(−)

L
where

– (−)
L

: L→ 2L such that k
L

(m) = (m ≤ k) for any k,m ∈ L
– (−)

L
: 2L → L such that XL =

∨
X for any X ⊆ L.

Let us have an arbitrary f ∈ ∏b∈B Ub. Let us denote f as a subset of
⋃
b∈B Ub

defined as f =
⋃
b∈B{u ∈ Ub|u ≤ f(b)}. Similarly for any g ∈∏a∈A Va.

More information about Cartesian representation of fuzzy sets could be found
in [10].

Now, consider a heterogeneous formal context C = 〈B,A,P, R,U ,V,�〉. A
second order form of scaled heterogeneous formal context is defined as

C =

〈⋃

b∈B
Ub, {〈Ub, Ub,≤〉|b ∈ B},

⋃

a∈A
Va, {〈Va, Va,≥〉|a ∈ A}, R

〉
,

whereby all external contexts are classical crisp contexts and R is a classical crisp
binary relation defined as R(u, v) = ((u◦b,a v) ≤ R(b, a)) for any (u, v) ∈ Ub×Va
and any (b, a) ∈ B ×A.

In the following, we define the derivation operators of such special second
order formal context. First, we state some appropriate remarks and facts. Note
that a relation R constrained to Ub×Va for any pair (b, a) ∈ B×A is monotone
in both arguments due to its definition. Similarly, consider the fact that any
extent of 〈Ub, Ub,≤〉 and any intent of 〈Va, Va,≥〉 is a principal down-set of
a corresponding complete lattice (i.e. there exists an element in this complete
lattice such that all lower or equal elements are in the extent or in the intent).
Hence, a relation R constrained to Ub × Va for some (b, a) ∈ B × A is a 2-bond
between 〈Ub, Ub,≤〉 and 〈Va, Va,≥〉 which will be denoted by ρb,a. Note that any
Φ ∈ ∏b∈B Ext(〈Ub, Ub,≤〉) has the form f for some f ∈ ∏b∈B Ub. Consider an
arbitrary f ∈ ∏b∈B Ub and g ∈ ∏a∈A Va. Hence, the derivation operators are
defined as follows:

– ↗(f)(v) =
∧
b∈B ↑b,a (f(b)

b
)(v) for any v ∈ Va and a ∈ A

– ↙(g)(u) =
∧
a∈A ↓b,a (g(a)

a
)(u) for any u ∈ Ub and b ∈ B.

In a previous definition, the pair of mappings (↑b,a, ↓b,a) are derivation op-
erators of a formal context 〈Ub, Va, ρb,a〉 for any (b, a) ∈ B × A. For the sake of

brevity, we use the shortened notation (−)
b

instead of (−)
Ub

and similarly (−)
a

instead of (−)
Va

.
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Lemma 3. The concept lattices of C and C are isomorphic.

Proof. Consider an arbitrary f ∈∏b∈B Ub. We will show that ↗(f) =↗ (f).
Firstly consider the fact of left-continuity of both arguments of ◦b,a for any

(b, a) ∈ B×A. Due to this property, one can define two residuums in the following
way. Let (b, a) ∈ B × A be an arbitrary object-attribute pair and consider the
arbitrary values u ∈ Ub, v ∈ Va and p ∈ Pb,a. Then define

– →b,a: Ub × Pb,a → Va, such that u→b,a p =
∨{v ∈ Va|u ◦b,a v ≤ p}

– →a,b: Va × Pb,a → Ub, such that v →a,b p =
∨{u ∈ Ub|u ◦b,a v ≤ p}.

↗
(
f
)

(v) =
∧

b∈B
↑b,a

(
f(b)

b
)

(v)

=
∧

b∈B

∧

u∈Ub

(
f(b)

b
(u)⇒ ρb,a(u, v)

)

=
∧

b∈B

∧

u∈Ub

((u ≤ f(b))⇒ (u ◦b,a v ≤ R(b, a)))

=
∧

b∈B


 ∧

u∈Ub;u 6≤f(b)
1 ∧

∧

u∈Ub;u≤f(b)
((u ≤ f(b))⇒ (u ◦b,a v ≤ R(b, a)))




=
∧

b∈B

∧

u∈Ub;u≤f(b)
(u ◦b,a v ≤ R(b, a))

=
∧

b∈B
(f(b) ◦b,a v ≤ R(b, a))

=
∧

b∈B
(v ≤ f(b)→b,a R(b, a))

=

(
v ≤

∧

b∈B
(f(b)→b,a R(b, a))

)

=

(
v ≤

∧

b∈B

∨
{w ∈ Va|(f(b) ◦b,a w ≤ R(b, a))}

)

=
(
v ≤

∨
{w ∈ Va|(∀b ∈ B)(f(b) ◦b,a w ≤ R(b, a))}

)

= (v ≤↗ (f)(a)) =↗ (f)(a)
a
(v).

Analogously one can obtain ↙ (g) (u) =↙ (g)(b)
b
(u). ut

4.1 Back to heterogeneous formal contexts

Now, we look at heterogeneous formal context introduced in Subsection 2.3. A
second order formal context C can be seen as a special heterogeneous formal
context Ĉ, whereby the family of posets {〈Pb,a,≤〉|(b, a) ∈ B×A} is replaced by
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a set of 2-bonds {ρb,a ∈ 2-Bonds(〈Ub, Ub,≤〉, 〈Va, Va,≤〉)|(b, a) ∈ B×A}. Hence,
the final form of such heterogeneous formal context is

Ĉ =
〈
B,A, ρ, R̂,U ,V, {×b,a|(b, a) ∈ B ×A}

〉

where

– ρ = {ρb,a ∈ 2-Bonds(〈Ub, Ub,≤〉, 〈Va, Va,≤〉)|(b, a) ∈ B ×A}
– ρb,a(u, v) = (u ◦b,a v ≤ R(b, a))

– R̂(b, a) = ρb,a ∈ 2-Bonds(〈Ub, Ub,≤〉, 〈Va, Va,≤〉) for any (b, a) ∈ B ×A
– ×b,a : Ub × Va → 2Ub×Va defined as a Cartesian product u×v = u× v.

The derivation operators of Ĉ are defined as

– ↑ (f)(a) =
∨{v ∈ Va|(∀b ∈ B)f(b)×b,av ⊆ ρb,a} for any f ∈∏b∈B Ub

– ↓ (g)(b) =
∨{u ∈ Ub|(∀a ∈ A)u×b,ag(a) ⊆ ρb,a} for any g ∈∏a∈A Va.

Lemma 4. The concept lattices of C and Ĉ are identical.

Proof. Firstly consider that for any (u, v) ∈ Ub × Va for any (b, a) ∈ B × A the
following holds:

u×v ⊆ ρb,a = u× v ⊆ ρb,a
= ρb,a(u, v)

= (u ◦b,a v ≤ R(b, a)).

Let f ∈∏b∈B Ub be arbitrary. Then

↑ (f)(a) =
∨
{v ∈ Va|(∀b ∈ B)f(b)×b,av ⊆ ρb,a}

=
∨
{v ∈ Va|(∀b ∈ B)f(b) ◦b,a v ≤ R(b, a)}

=↗ (f)(a).

Analogously for ↓ (g)(b) =↙ (g)(b) for any g ∈∏a∈A Va. ut

5 Bonds between heterogeneous formal contexts

We present a definition of a bond between two heterogeneous formal contexts
which can be formulated as follows.

Definition 10. Let Ci = 〈Bi, Ai,Pi, Ri,Ui,Vi,�i〉 for i ∈ {1, 2} be two heteroge-
neous formal contexts. The heterogeneous formal context B = 〈B1, A2,P, R,U1,V2,�〉
such that Ext(B) ⊆ Ext(C1) and Int(B) ⊆ Int(C2) is said to be a bond between
two heterogeneous formal contexts C1 and C2.
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5.1 Direct product of two heterogeneous formal contexts

In this subsection, we define a direct product of two heterogeneous formal con-
texts. Further, we give an answer on how to find a bond between two heteroge-
neous formal contexts.

Definition 11. Let Ci = 〈Bi, Ai,Pi, Ri,Ui,Vi,�i〉 for i ∈ {1, 2} be two hetero-
geneous formal contexts. The heterogeneous formal context

C1∆C2 = 〈B1 ×A2, B2 ×A1,P∆, R∆,U∆,V∆,×〉
such that

– P∆ = {ρb1,a1∆ρb2,a2 |((b1, a2), (b2, a1)) ∈ (B1 ×A2)× (B2 ×A1)}
– where ρbi,ai(u, v) = (u ◦bi,ai v ≤ Ri(bi, ai)) for any (u, v) ∈ Ubi ×Vai for any

(bi, ai) ∈ Bi ×Ai for any i ∈ {1, 2}
– R∆((b1, a2), (b2, a1)) = ρb1,a1∆ρb2,a2 for any bi ∈ Bi and ai ∈ Ai for all
i ∈ {1, 2}

– U∆ = {γ1,2 ∈ 2-Bonds(〈Ub1 , Ub1 ,≤〉, 〈Va2 , Va2 ,≥〉)|(b1, a2) ∈ B1 ×A2}
– V∆ = {γ2,1 ∈ 2-Bonds(〈Ub2 , Ub2 ,≤〉, 〈Va1 , Va1 ,≥〉)|(b2, a1) ∈ B2 ×A1}

is said to be a direct product of two heterogeneous formal contexts.

Lemma 5. Let Ci = 〈Bi, Ai,Pi, Ri,Ui,Vi,�i〉 for i ∈ {1, 2} be two heteroge-
neous formal contexts. Let

R ∈
∏

(b1,a2)∈B1×A2

2-Bonds(〈Ub1 , Ub1 ,≤〉, 〈Va2 , Va2 ,≥〉)

be an extent of the direct product C1∆C2. Then a heterogeneous formal context
B = 〈B1, A2, ρ, R,U1,V2,×〉 where

ρ = {2-Bonds(〈Ub1 , Ub1 ,≤〉, 〈Va2 , Va2 ,≥〉)|(b1, a2) ∈ B1 ×A2}
is a bond between C1 and C2.

Proof. Let us have any intent of B. Then there exists f ∈∏b1∈B1
Ub1 such that

↗B (f)(a2)
a2

(v2) =↗B(f)(v2)

=
∧

b1∈B1

↑R(b1,a2) (f(b1)
b1

)(v2)

=
∧

b1∈B1

∧

u1∈Ub1

(f(b1)
b1

(u1)⇒ R(b1, a2)(u1, v2))

R =↙∆ (Q) for some Q ∈∏(b2,a1)∈B2×A1
2-Bonds(〈Ub2 , Ub2 ,≤〉, 〈Va1 , Va1 ,≥〉)

=
∧

b1∈B1

∧

u1∈Ub1

(f(b1)
b1

(u1)⇒↙∆ (Q)(b1, a2)(u1, v2))

=
∧

b1∈B1

∧

u1∈Ub1

(
f(b1)

b1
(u1)⇒

∧

(b2,a1)∈B2×A1

↓ρb1,a1
∆ρb2,a2

(Q(b2, a1))(u1, v2)
)
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=
∧

b1∈B1

∧

u1∈Ub1

(
f(b1)

b1
(u1)⇒

∧

b2∈B2

∧

a1∈A1

∧

(u2,v1)∈Ub2
×Va1

(
Q(b2, a1)(u2, v1)⇒ (ρb1,a1∆ρb2,a2)((u1, v2), (u2, v1))

))

=
∧

b1∈B1

∧

u1∈Ub1

(
f(b1)

b1
(u1)⇒

∧

b2∈B2

∧

a1∈A1

∧

u2∈Ub2

∧

v1∈Va1

(
Q(b2, a1)(u2, v1)⇒ (¬ρb1,a1(u1, v1)⇒ ρb2,a2(u2, v2))

))

=
∧

b1∈B1

∧

b2∈B2

∧

a1∈A1

∧

u2∈Ub2

∧

v1∈Va1

∧

u1∈Ub1

(
f(b1)

b1
(u1)⇒

(
Q(b2, a1)(u2, v1)⇒ (¬ρb1,a1(u1, v1)⇒ ρb2,a2(u2, v2))

))

=
∧

b2∈B2

∧

u2∈Ub2( ∨

b1∈B1

∨

u1∈Ub1

∨

a1∈A1

∨

v1∈Va1

(
f(b1)

b1
(u1) ∧Q(b2, a1)(u2, v1) ∧ ¬ρb1,a1(u1, v1)

)

⇒ ρb2,a2(u2, v2)
)

=
∧

b2∈B2

∧

u2∈Ub2

(q(b2)
b2

(u2)⇒ ρb2,a2(u2, v2))

=↗C2(q)(v2) =↗C2 (q)(a2)(v2)

where

q(b2)(u2) =
∨

b1∈B1

∨

u1∈Ub1

∨

a1∈A1

∨

v1∈Va1

f(b1)(u1)∧Q(b2, a1)(u2, v1)∧¬ρb1,a1(u1, v1)

Hence, ↗B (f) =↗C2 (q). So any intent of B is an intent of C2.
By using the following equality

(¬ρb1,a1(u1, v1)⇒ ρb2,a2(u2, v2)) = (¬ρb2,a2(u2, v2)⇒ ρb1,a1(u1, v1))

analogously we obtain that any extent of B is an extent of C1. Hence, B is a bond
between C1 and C2. ut

6 Conclusion

Bonds and their L-fuzzy generalizations represent a feasible way to explore the
relationships between formal contexts. In this paper we have investigated the
notion of a bond with respect to the heterogeneous formal contexts. In conclu-
sion, an alternative definition of a bond provides an efficient tool to work with
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the nonhomogeneous data and one can further explore this uncharted territory
in formal concept analysis.

Categorical properties of heterogeneous formal contexts and bonds as mor-
phisms between such objects and categorical relationship to homogeneous FCA
categorical description will be studied in the near future.
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Abstract. Companies often develop in a non-disciplined manner a set
of software variants that share some features and differ in others to meet
variant-specific requirements. To exploit existing software variants and
manage them coherently as a software product line, a feature model must
be built as a first step. To do so, it is necessary to extract mandatory
and optional features from the code of the variants in addition to as-
sociate each feature implementation with its name. In previous work,
we automatically extracted a set of feature implementations as a set of
source code elements of software variants and documented the mined
feature implementations based on the use-case diagrams of these vari-
ants. In this paper, we propose an automatic approach to organize the
mined documented features into a feature model. The feature model is a
tree which highlights mandatory features, optional features and feature
groups (and, or, xor groups). The feature model is completed with re-
quirement and mutual exclusion constraints. We rely on Formal Concept
Analysis and software configurations to mine a unique and consistent fea-
ture model. To validate our approach, we apply it on several case studies.
The results of this evaluation validate the relevance and performance of
our proposal as most of the features and their associated constraints are
correctly identified.

Keywords: Software Product Line, Feature Models, Software Product
Variants, Formal Concept Analysis, Product-by-feature matrix.

1 Introduction

To exploit existing software variants and build a software product line (SPL),
a feature model (FM) must be built as a first step. To do so, it is necessary to
extract mandatory and optional features in addition to associate each feature
with its name. In our previous work [1,2], we have presented an approach called
REVPLINE 1 to identify and document features from the object-oriented source
code of a collection of software product variants.

1 REVPLINE stands for RE-engineering Software Variants into Software Product
Line.

c© Karell Bertet, Sebastian Rudolph (Eds.): CLA 2014, pp. 95–107,
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University in Košice, 2014.



Dependencies between features need to be expressed via a FM which is a
de facto standard formalism [3,4]. A FM is a tree-like hierarchy of features and
constraints between them (cf. left side of Figure 1). FMs aim at describing the
variability of a SPL in terms of features. A FM defines which feature combi-
nations lead to valid products within the SPL (cf. right side of Figure 1). We
illustrate our approach with the cell phone SPL FM and its 16 valid product
configurations (cf. Figure 1) [5].
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P-1 × × × × × × × ×
P-2 × × × × × × × ×
P-3 × × × × × × × × ×
P-4 × × × × × × × ×
P-5 × × × × × × ×
P-6 × × × × × × ×
P-7 × × × × × × × × ×
P-8 × × × × × × × × ×
P-9 × × × × × × × × × ×
P-10 × × × × × × ×
P-11 × × × × × × × × ×
P-12 × × × × × × × × ×
P-13 × × × × × × × × × ×
P-14 × × × × × × × × × ×
P-15 × × × × × × × × × ×
P-16 × × × × × × × × × × ×

Fig. 1. Valid product configurations of cell phone SPL feature model [5].

Figure 1 shows the FM of the cell phone SPL [5]. The Cell Phone feature is
the root feature of this FM; hence it is selected in every program configuration.
It has three mandatory child features (i.e., the Accu Cell, Display and Games
features), which are also selected in every product configuration as their parent
is always included. The children of the Accu Cell feature form an exclusive-or
relation, meaning that the programs of this SPL include exactly one out of the
three Strong, Medium or Weak features. The Multi Player and Single Player
features constitute an inclusive-or, which necessitates that at least one of these
two features is selected in any valid program configuration. Single Player has
Artificial Opponent as a mandatory child feature. The Wireless feature is an
optional child feature of root; hence it may or may not be selected. Its Infrared
and Bluetooth child features form an inclusive-or relation, meaning that if a
program includes the Wireless feature then at least one of its two child features
has to be selected as well. The cell phone SPL also introduces three cross-tree
constraints. While the Multi Player feature cannot be selected together with
the Weak feature, it cannot be selected without the Wireless feature. Lastly, the
Bluetooth feature requires the Strong feature.

Galois lattices and concept lattices [6] are core structures of a data analy-
sis framework (Formal Concept Analysis) for extracting an ordered set of con-
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cepts from a dataset, called a formal context, composed of objects described by
attributes. In our approach, we consider the AOC-poset (for Attribute-Object-
Concept poset) [7], which is the sub-order of the concept lattice restricted to
attribute-concepts and object-concepts. Attribute-concepts (resp. object-con-
cepts) are the highest (resp. lowest) concepts that introduce each attribute (resp.
object). AOC-posets scale much better than lattices. For applying Formal Con-
cept Analysis (FCA) we used the Eclipse eRCA platform2.

Manual construction of a FM is both time-consuming and error-prone [8],
even for a small set of configurations [9]. The existing approaches to extract
FM from product configurations [8,10] suffer from a lot of challenges. The main
challenge is that numerous candidate FMs can be extracted from the same input
product configurations, yet only a few of them are meaningful and correct, while
in our work we synthesize an accurate and meaningful FM using FCA. Moreover
the majority of these approaches extract a basic FM without constraints between
its features [11] while, in our work, we extract all kinds of FM constraints.

The remainder of this paper is structured as follows: Section 2 presents the
reverse engineering FM process step-by-step. Next, Section 3 presents the way
that we propose to evaluate the obtained FMs. Section ?? describes the ex-
perimentation and threats to the validity. Section 4 discusses the related work.
Finally, in Section 5, we conclude this paper.

2 Step-by-Step FM Reverse Engineering

This section presents step-by-step the FM reverse engineering process. According
to our approach, we identify the FM in seven steps as detailed in the following,
using strong properties of FCA to group features among product configurations.
The AOC-poset is built from a set of known products, and thus does not repre-
sent all possible products. Thus, the FM structure has to be considered only as a
candidate feature organization that can be proposed to an expert. The algorithm
is designed such that all existing products (used for construction of candidate
FM) are covered by the FM. Besides, it allows to define possible unused close
variants.

The first step of our FM extraction process is the identification of the AOC-
poset. First, a formal context, where objects are software product variants and
attributes are features (cf. Figure 1), is defined. The corresponding AOC-poset
is then calculated. The intent of each concept represents features common to
two or more products or unique to one product. As AOC-posets are ordered, the
intent of the most general (i.e., top) concept gathers mandatory features that
are common to all products. The intents of all the remaining concepts represent
the optional features. The extent of each of these concepts is the set of products
sharing these features (cf. Figure 2). In the following algorithms, for a Concept C,
we call intent(C), extent(C), simplified intent(C), and simplified extent(C)
its associated sets. Efficient algorithms can be found in [7].

The other steps are presented in the next sections.

2 The eRCA : http://code.google.com/p/erca/

Reverse Engineering Software Configuration Feature Models using FCA 97



Fig. 2. The AOC-poset for the formal context of Figure 1.

2.1 Extracting root feature and mandatory features

Algorithm 1 is a simple algorithm for building the Base node (cf. Figure 3).
Features in the top concept of the AOC-poset (Concept 16) are used in every
product configuration. The Cell Phone feature is the root feature of the cell
phone FM (line 5). Then a mandatory Base node is created (lines 8,9). It is
linked to nodes created to represent all the other features in the top concept,
i.e., Accu Cell, Display and Games (lines 12-16).

2.2 Extracting atomic set of features (AND-group)

Algorithm 2 is a simple algorithm for building AND-groups of features (exclud-
ing all the mandatory features, line 3). An AND-group of features is created (line
8) to group optional features that appear in the same simplified intent (test line
6), meaning that these features are always used together in all the product con-
figurations where they appear. Lines 12-16, nodes are created for every feature
of the AND-group and they are attached to an And node. For instance, Con-
cept 23 in Figure 2 has a simplified intent with two features, Single Player and
Artificial Opponent, leading to the And node of Figure 3.

2.3 Extracting exclusive-or relation

Features that form exclusive-or relation can be identified in the concept lattice
using the meet (denoted by u) lattice operation [12], which amounts to compute
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Algorithm 1: ComputeRootAndMandatoryFeature

1 // Top concept >
2 ∃ F ∈ A, which represents the name of the soft. family with F in feature set of >

Data: AOCK , ≤s: the AOC-poset associated with K
Result: part of the FM containing root and mandatory features

3 // Compute the root Feature
4 CFS ← intent(>)
5 Create node root, label (root) ← F, type (root) ← abstract
6 CFS′ ← CFS \ {F}
7 if CFS′ 6= ∅ then
8 Create node base with label (base) ← ”Base”
9 type (base) ← abstract

10 Create edge e = (root, base)
11 type (e) ← mandatory
12 for each Fe in CFS′ do
13 Create node feature, with label (feature) ← Fe

14 type (feature) ← concrete
15 create edge e = (base, feature)
16 type (e) ← mandatory

Algorithm 2: ComputeAtomicSetOfFeatures (and groups)

Data: AOCK , ≤s: the AOC-poset associated with K
Result: part of the FM with and groups of features

1 // Compute atomic set of features
2 // Feature List (FL) is the list of all features (FL = A in K=(O, A, R)).
3 FL′ ← FL \ CFS // FL \ intent(>)
4 AsF ← ∅
5 int count ← 1
6 for each concept C 6= > such that | simplified intent(C) | ≥ 2 do
7 AsF ← AsF ∪ simplified intent(C)
8 Create node and with label (and) ← ”AND”+ count
9 type (and) ← abstract

10 create edge e = (root, and)
11 type (e) ← optional
12 for each F in simplified intent(C) do
13 create node feature, with label (feature) ← F
14 type (feature) ← concrete
15 create edge e =(and, feature)
16 type (e) ← mandatory

the greatest lower bounds in the AOC-poset. If a feature A is introduced in
concept C1, a feature B is introduced in concept C2 and C1 u C2 = ⊥ (and
extent(⊥) = ∅), that is, if the bottom of the lattice is the greatest lower bound
of C1 and C2, the two features never occur together in a product. In our current
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approach, we only build a single Xor group of features, when any group of
mutually exclusive features exists. Computing exclude constraints (see Section
2.6) will deal with the many cases where several Xor group of features exist
(a set of exclude constraints defining mutual exclusion is equivalent to a Xor
group).

Algorithm 3 is a simple algorithm for building the single Xor group of fea-
tures. The principle is to traverse the set of super-concepts of each minimum
elements of the AOC-poset and to keep the concepts that are the super-concepts
of only one minimum concept. Only features that are not used in the previous
steps are considered in FL” (line 2). Lines 6-10, in our example, we consider the
three minimum concepts Concept 11, Concept 12 and Concept 15. The many
SSC sets are the sets of super-concepts for Concept 11, Concept 12 and Con-
cept 15. Cxor is the set of all concepts, except Concept 11, Concept 12 and
Concept 15. Lines 11-15 only keep in Cxor concepts that do not appear in two
SSC sets. Cxor contains concepts number 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14,
19, 20 and 21. Line 16 eliminates Concept 19 which is not a maximum. As there
are three features (Medium, Strong, Weak, from Concept 21, Concept 20, and
Concept 2 respectively) that are in FL” and in the simplified intent of concepts
of Cxor (line 18), an Xor node is created and linked to the root (lines 19-26).
Then, on lines 27-33, nodes are created for the features and linked to the Xor
node. Figure 3 shows this Xor node.

2.4 Extracting inclusive-or relation

Optional features are features that are used in some (but not all) product con-
figurations. There are many ways of finding and organizing them. Algorithm 4
is a simple algorithm for building the Or group of features. In our approach, we
pruned the AOC-poset by removing the top concept, concepts that correspond to
AND groups of features, and concepts that correspond to features that form an
exclusive-or relation. The remaining concepts define features that are grouped
(lines 8-12) into an Or node (created and linked to the root on lines 4-7). In
the AOC-poset of Figure 2, the Wireless, Infrared, Bluetooth, and Multi Player
features form an inclusive-or relation (cf. Figure 3).

2.5 Extracting require constraints

Algorithm 5 is a simple algorithm for identifying require constraints. A require
constraint, e.g., saying ”variable feature A always requires variable feature B”,
can be extracted from the lattice via implications. We say that A implies B
(written A → B). The require constraints can be identified in the AOC-poset:
when a feature F1 is introduced in a subconcept of the concept that introduces
another feature F2, there is an implication F1 → F2. We only consider the
transitive reduction of the AOC-poset limited to Attribute-concepts (line 2) and
features that are in simplified intents (line 3-4). In the AOC-poset of Figure 2,
we find 6 require constraints from the transitive reduction of the AOC-poset to
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Algorithm 3: ComputeExclusive-orRelation (Xor)

Data: AOCK , ≤s: the AOC-poset associated with K
Result: part of the FM with XOR group of features

1 // Compute exclusive-or relation
2 FL′′ ← FL′ \ AsFs
3 Cxor ← ∅
4 SSCS ← ∅ // set of super-concept sets
5 Minimum-set ← ∅
6 for each minimum of AOCK denoted by m do
7 Let SSC the set of super-concepts of m (except >)
8 SSCS ← SSCS ∪ {SSC}
9 Minimum-set ← Minimum-set ∪ {m}

10 Cxor ← Cxor ∪ SSC

11 while SSCS 6= ∅ do
12 SSC-1 ← any element in (SSCS)
13 SSCS ← SSCS \ SSC-1
14 for each SSC-2 in SSCS do
15 Cxor ← Cxor \ (SSC-1 ∩ SSC-2)

16 Cxor ← Max(Cxor)
17 XFS ← ∅
18 if |Cxor| > 1 and |FL′′ ∩ ∪C∈Cxorsimplified intent(C)| > 1 then
19 Create node xor with label (xor) ← ”XOR”
20 type (xor) ← abstract
21 create edge e = (root, xor)
22 // if all products are covered by Cxor
23 if ∪C∈Cxorextent(C) = O then
24 type (e) ← mandatory

25 else
26 type (e) ← optional

27 for each concept C ∈ Cxor do
28 for each F in simplified intent(C) ∩ FL′′ do
29 create node feature, with label (feature) ← F
30 type (feature) ← concrete
31 create edge e = (xor, feature)
32 type (e) ← alternative
33 XFS ← XFS ∪ F

attribute-concepts (cf. Figure 3). Remark that implications ending to mandatory
features are useless because they are represented in the FM by the Base node.

2.6 Extracting exclude constraints

In our current proposal, we compute binary exclude constraints ¬(A∧B) under
the condition that A and B are not both linked to the Or group. To mine
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Algorithm 4: ComputeInclusive-orRelation (Or)

Data: AOCK , ≤s: the AOC-poset associated with K
Result: part of the FM with OR group of features

1 // Compute inclusive-or relation
2 FL′′′ ← FL′′ \ XFS
3 if FL′′′ 6= ∅ then
4 Create node or with label (or) ← ”OR”
5 type (or) ← abstract
6 create edge e = (root, or)
7 type (e) ← optional
8 for each F in FL′′′ do
9 create node feature, with label (feature) ← F

10 type (feature) ← concrete
11 create edge e = (or, feature)
12 type (e) ← Or

Algorithm 5: ComputeRequireConstraint (Requires)

Data: ACK , ≤s: the AC-poset associated with K
Result: Require - the set of require constraints

1 Require ← ∅
2 for each edge (C1, C2) = e in transitive reduction of AC-poset do

3 for all f1, f2 with f1 ∈ simplified intent(C1) and f2 ∈ simplified intent(C2) do
4 Require ← Require ∪ {f1 −→ f2}

exclude constraints from an AOC-poset, we use the meet3 of the introducers of
the two involved features. For example, the meet of Concept 2 which introduces
Weak and Concept 22 which introduces Multi Player is the bottom (in the whole
lattice). In the AOC-poset they don’t have a common lower bound. We can
thus deduce ¬(Weak ∧ Multi P layer). In the AOC-poset of Figure 2, there
are three exclude constraints (cf. Figure 3). Algorithm 6 is a simple algorithm
for identifying exclude constraints. It compares features that are below the OR
group with each set of features in the intent of a minimum (line 4), in order to
determine which are incompatible: this is the case for a pair (f1, f2) where f1
is in the OR group and not in the minimum intent, and f2 is in the minimum
intent but not in the OR group (lines 6-10). Figure 3 shows the resulting FM
based on the product configurations of Figure 1.

3 in the lattice
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Algorithm 6: ComputeExcludeConstraint (Excludes)

Data: AOCK , ≤s: the AOC-poset associated with K
Result: Exclude - the set of exclude constraints.

1 // Minimum-set from Algorithm 3
2 // FL′′′ from Algorithm 4
3 Exclude ← ∅
4 for each P ∈ Minimum-set do
5 Pintent ← intent(P ) \ intent(>)
6 Opt-feat-set ← FL′′′ \ (FL′′′ ∩ Pintent)
7 Super-feat-set ← Pintent \ (FL′′′ ∩ Pintent)
8 if Opt-feat-set 6= ∅ and Super-feat-set 6= ∅ then
9 for each f1 ∈ Opt-feat-set, f2 ∈ Super-feat-set do

10 Exclude ← Exclude ∪ {¬(f1 ∧ f2)}

3 Experimentation

In order to evaluate the mined FM we rely on the SPLOT homepage4 and the
FAMA Tool5. Our implementation6 converts the FM that has been drawn us-
ing SPLOT homepage into the format of FAMA. Then, we can easily generate
a file containing all valid product configurations [13]. Figure 3 shows all valid
product configurations for the mined FM by our approach (the first 16 product
configurations are the same as in Figure 1). We compare the sets of configura-
tions defined by the two FMs (i.e., the initial FM compared to the mined FM).
The mined FM introduces 15 extra product configurations which correspond to
feature selection constraints that have not been detected by our algorithm.

Evaluation Metrics: In our work, we rely on precision, recall and F-measure
metrics to evaluate the mined FM. All measures have values in [0, 1]. If re-
call equals 1, all relevant product configurations are retrieved. However, some
retrieved product configurations might not be relevant. If precision equals 1,
all retrieved product configurations are relevant. Nevertheless, relevant product
configurations might not be retrieved. If F-Measure equals 1, all relevant prod-
uct configurations are retrieved. However, some retrieved product configurations
might not be relevant. F-Measure defines a trade-off between precision and re-
call, so that it gives a high value only in cases where both recall and precision are
high. The result of the product configurations that are identified by the mined
cell phone FM is as follow: (precision: 0.51), (recall : 1.00) and (F-Measure: 0.68).
The recall measure is 1 by construction, due to the fact that the algorithm was
designed to cover existing products.

4 SPLOT homepage : http://gsd.uwaterloo.ca:8088/SPLOT/
5 FAMA Tool Suite : http://www.isa.us.es/fama/
6 Source Code : https://code.google.com/p/sxfmtofama/
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P-17 × × × × ×
P-18 × × × × × ×
P-19 × × × × × × ×
P-20 × × × × × × ×
P-21 × × × × × × × ×
P-22 × × × × ×
P-23 × × × × × ×
P-24 × × × × × × ×
P-25 × × × × × × ×
P-26 × × × × × × ×
P-27 × × × × × × × ×
P-28 × × × × × × × ×
P-29 × × × × × × × ×
P-30 × × × × × × × × ×
P-31 × × × × × × × × ×

Fig. 3. The mined FM and its extra product configurations.

To validate our approach7, we ran experiments on 7 case studies: ArgoUML-
SPL [1], mobile media software variants [2], public health complaint-SPL8, video
on demand-SPL [8,3,14], wiki engines [10], DC motor [11] and cell phone-SPL
[5]. Table 1 summarizes the obtained results.

Results show that precision appears to be not very high for all case studies.
This means that many of the identified product configurations of the mined FM
are extra configurations (not in the initial set that is defined by the original FM).
Considering the recall metric, its value is 1 for all case studies. This means that
product configurations defined by the initial FM are included in the product
configurations derived from the mined FM. Experiments show that if the gener-
ated AOC-poset has only one bottom concept there is no exclusive-or relation
or exclude constraints from the given product configurations. In our work, the
mined FM defines more configurations than the initial FM. The reason behind
this limitation is that some feature selection constraints are not detected. Nev-
ertheless, the AOC-poset contains information for going beyond this limitation.
We plan to enhance our algorithm to deal with that issue, at the price of an
increase of complexity.

4 Related Work

For the sake of brevity, we describe only the work that most closely relates to
ours. The majority of existing approaches are designed to reverse engineer FM

7 Source code: https://code.google.com/p/refmfpc/
8 http://www.ic.unicamp.br/~tizzei/phc/
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Table 1. The results of configurations that are identified by the mined FMs.
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1 ArgoUML-SPL 20 11 × × × 509 0.60 1.00 0.75

2 Mobile media 8 18 × × × 441 0.68 1.00 0.80

3 Health complaint-SPL 10 16 × × × × 439 0.57 1.00 0.72

4 Video on demand 16 12 × × × × 572 0.66 1.00 0.80

5 Wiki engines 8 21 × × × × × × 555 0.54 1.00 0.70

6 DC motor 10 15 × × 444 0.83 1.00 0.90

7 Cell phone-SPL 16 13 × × × × × × 486 0.51 1.00 0.68

from high level models (e.g., product descriptions) [10,14]. Some approaches of-
fer an acceptable solution but are not able to identify important parts of FM
such as cross-tree constraints, and-group, or-group, xor-group [11]. The main
challenge of works that reverse engineer FMs from product configurations ([8,3])
is that numerous candidate FMs can be extracted from the same input config-
urations, yet only a few of them are meaningful and correct. The majority of
existing approaches are designed to identify the dependencies between features
regardless of FM hierarchy [8]. Work that relies on FCA to extract a FM does
not fully exploit resulting lattices. In [11], authors rely on FCA to extract a ba-
sic FM without cross-tree constraints, while in [12], authors use FCA as a tool
to understand the variability of existing SPL based on product configurations.
Their work does not produce FMs. In our work, we rely on FCA to extract FMs
from the software configurations. The resulting FMs exactly describe the given
product configuration set. The proposed approach is able to identify all parts of
FMs.

5 Conclusion

In this paper, we proposed an automatic approach to extract FMs from software
variants configurations. We rely on FCA to extract FMs including configuration
constraints. We have implemented our approach and evaluated its produced re-
sults on several case studies. The results of this evaluation showed that the
resulting FMs exactly describe the given product configuration set. The FMs
are generated in very short time, because our FCA tool (based on traversals of
the AOC-poset) scales significantly better than the standard FCA approaches
to calculate and traverse the lattices. The current work extracts a FM with two
levels of hierarchy. As a perspective of this work, we plan to enhance the ex-
tracted FM by increasing the levels of hierarchy based on AOC-poset structure
and to avoid allowing the FM to represent extra configurations.
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Abstract. The Multi-Relational Boolean factor analysis is a method
from the family of matrix decomposition methods which enables us an-
alyze binary multi-relational data, i.e. binary data which are composed
from many binary data tables interconnected via relation. In this paper
we present a new Boolean matrix factorization algorithm for this kind of
data, which use the new knowledge from the theory of the Boolean factor
analysis, so-called essential elements. We show on real dataset that uti-
lizing essential elements in the algorithm leads to better results in terms
of quality and the number of obtained multi-relational factors.

1 Introduction

The Boolean matrix factorization (or decomposition), also known as the Boolean
factor analysis, has gained interest in the data mining community. Methods for
decomposition of multi-relational data, i.e. complex data composed from many
data tables interconnected via relations between objects or attributes of this data
tables, were intensively studied, especially in the past few years. Multi-relational
data is a more truthful and therefore often also more powerful representation of
reality. An example of this kind of data can be an arbitrary relational database.
In this paper we are focused on the subset of multi-relational data, more pre-
cisely on the multi-relational Boolean data. In this case data tables and relations
between them contain only 0s and 1s.

It is important to say that many real-word data sets are more complex than
one simple data table. Relations between this tables are crucial, because they
carry additional information about the relationship between data and this infor-
mation is important for understanding data as a whole. For this reason methods
which can analyze multi-relational data usually takes into account relations be-
tween data tables unlike classical Boolean matrix factorization methods which
can handle only one data table.

The Multi-Relational Boolean matrix factorization (MBMF) is used for many
data mining purposes. The basic task is to find new variables hidden in data,
called multi-relational factors, which explain or describe the original input data.
There exist several ways how to represent multi-relational factors. In this work
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we adopt settings from [7], where is the multi-relational factor represented as an
ordered set of classic factors from data tables, always one factor from each data
table. The fact, that classic factors are connected into multi-relational factor is
matter of semantic of relation between data tables.

The main problem is how to connect classic factors into one multi-relational.
The main aim of this work is to propose a new algorithm which utilize so-called
essential elements from the theory of Boolean matrices. The essential elements
provide information about factors which cover a particular part of data tables.
This information can be used for a better connection of classic factors into one
multi-relational factor.

Another thing is the number of obtained factors. In classical settings we want
the number of obtained factors as small as a possible. In the literature can be
found two main views on this requirement. In the first case we want to obtain
the particular number of factors. In the second case we want to obtain factors
that explain prescribed portion of data. In both cases we want to obtain the
most important factors. For more details see [1]. We emphasize this fact and we
reflect it in designing of our algorithm. Both views can be transferred to multi-
relational case. The first one is straightforward, the second one is a little bit
problematic because multi-relational factors may not be able explain the whole
data. This is correct, because multi-relational factors carry different information
than classical factors. We discuss this issue later in the paper.

2 Preliminaries and basic notions

We assume familiarity with the basic notions of the Formal concept analysis [4],
which provides a basic framework for dealing with factors and the Boolean matrix
factorization (BMF) [2]. The main goal of classical BMF is to find a decompo-
sition C = A ◦ B, where C is input data table, A represent object-factor data
table (or matrix) and B represent factor-attribute data table (or matrix). The
product ◦ is the Boolean matrix product, defined by

(A ◦B)ij =
∨k

l=1 Ail ·Blj , (1)

where
∨

denotes maximum (truth function of logical disjunction) and · is the
usual product (truth function of logical conjunction). Decomposition C into A◦B
corresponds to discovery factors which explain the data. Factors in classical BMF
can be seen as formal concepts [2], i.e. entity with the extent part and the intent
part. This leads to clear interpretation of factors. Another benefit of using FCA
as a basic framework is that matrices A and B can be constructed from the
subset of all formal concepts. Let

F = {〈A1, B1〉 , . . . , 〈Ak, Bk〉} ⊆ B(X,Y,C),

where B(X,Y,C) represents a set of all formal concepts of data table, which can
be seen as a formal context 〈X,Y,C〉, where X is a set of objects, Y is a set of
attributes and C is a binary relation between X and Y . Matrices A and B are
constructed in the following way:
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(A)il =

{
1 if i ∈ Al

0 if i /∈ Al
(B)lj =

{
1 if j ∈ Bl

0 if j /∈ Bl

for l = 1, . . . , k. In other words, A is composed from characteristic vectors Al.
Similarly for B.

In a multi-relation environment we have a set of input data tables C1,
C2, . . . Cn and a set of relations Rij , where i, j ∈ {1, . . . , n}, between Ci and
Cj . The multi-relation factor on data tables C1, C2, . . . Cn is an ordered n-tuple〈
F i1
1 , F i2

2 , . . . F in
n

〉
, where F

ij
j ∈ Fj , j ∈ {1, . . . , n} (Fj denotes a set of clas-

sic factors of data table Cj) and satisfying relations RClCl+1
or RCl+1Cl

for
l ∈ {1, . . . , n− 1}.

Example 1. Let us have two data tables C1 (Table 1) and C2 (Table 2). Moreover,
we consider relation RC1C2

(Table 3) between objects of the first data table and
attributes of the second one.

Table 1: C1

a b c d

1 × × ×
2 × ×
3 × ×
4 × × × ×

Table 2: C2

e f g h

5 × ×
6 × ×
7 × × ×
8 × ×

Table 3: RC1C2

e f g h

1 × ×
2 × ×
3 × × ×
4 × × × ×

Classic factors of data table C1 are for example: FC1
1 = 〈{1, 4}, {b, c, d}〉,

FC1
2 = 〈{2, 4}, {a, c}〉, FC1

3 = 〈{1, 3, 4}, {b, d}〉 and factors of the second ta-
ble C2 are: FC2

1 = 〈{6, 7}, {f, g}〉, FC2
2 = 〈{5}, {e, h}〉, FC2

3 = 〈{5, 7}, {e}〉,
FC2
4 = 〈{8}, {g, h}〉. These factors can be connected with using a relation RC1C2

into multi-relational factors in several ways. In [7] were introduced three ap-
proaches how to manage this connections. We use the narrow approach from [7],
which seems to be the most natural, and we obtain two multi-relational factors
〈FC1

1 , FC2
1 〉 and 〈FC1

3 , FC2
1 〉. The idea of the narrow approach is very simple.

We connect two factors FC1
i and FC2

j if the non-empty set of attributes (if such
exist), which are common (in the relation RC1C2

) to all objects from the first
factor FC1

i , is the subset of attributes of the second factor FC2
j .

The previous example also demonstrate the most problematic part of MBMF.
Usually is problematic to connect all factors from each data table. The result of
this is a small number of connections between them. This leads to problematic
selection of quality multi-relational factors. The reason for a small number of
connections between factors is that classic factors are selected without taking
relation into account.

Another very important notion for our work are so-called essential elements
presented in [1]. Essential elements in the Boolean data table are entries in
this data table which are sufficient for covering the whole data table by factors
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(concepts), i.e. if we take factors which cover all these entries, we automatically
cover all entries of the input data table. Formally, essential elements in the data
table 〈X,Y,C〉 are defined via minimal intervals in the concept lattice. The entry
Cij is essential iff interval bounded by formal concepts 〈i↑↓, i↑〉 and 〈j↓, j↓↑〉 is
non-empty and minimal w.r.t. ⊆ (if it is not contained in any other interval). We
denote this interval by Iij . If the table entry Cij is essential, then interval Iij
represents the set of all formal concepts (factors) which cover this entry. Very
interesting property of essential elements, which is used in our algorithm, is that
is sufficient take only one arbitrary concept from each interval to create exact
Boolean decomposition of 〈X,Y,C〉. For more details about essential elements
we refer to [1].

3 Related work

There are several papers about classical BMF [1, 2, 5, 8, 10, 12], but this methods
can handle only one data table. In the literature, we can found a wide range
of theoretical and application papers about the multi-relation data analysis (see
overview [3]), but many times were shown that these approaches are suitable only
for ordinal data. The multi-relational Boolean factor analysis is more specific.
The most relevant paper for our work is [7], where was introduced the basic
idea that multi-relational factors are composed from classical factors which are
interconnected via relation between data tables. There were also introduced three
approaches how to create multi-relational factors, but an effective algorithm is
missing.

The Boolean multi-relational patterns and its extraction are subject of a
paper [11]. Differently from our approach data are represented via k-partite
graphs. There are considered only relations between attributes and data tables
contain only one single attribute. Patterns in [11] are different from our multi-
relational factors (are represented as k-clique in data) and also carry different
information. In [11] there is also considered other kind of measure of quality of
obtained patterns which is based on entropy.

Another relevant work is [6] where were introduced the Relational Formal
Concept Analysis as a tool for analyzing multi-relational data. Unlike from [6]
our approach extracts a different kind of patterns. For more details see [7].
MBMF is mentioned indirectly in a very specific and limited form in [9] as the
Joint Subspace Matrix Factorization.

Generally the idea of connection patterns from various data tables is not new.
It can be found in the social network analysis or in the field of recommendation
systems. The main advantage of our approach is that patterns are Boolean fac-
tors that carry significant information and the second important advantage is
that we deliver the most important factors (factors which describe the biggest
portion of input data) before others, i.e. the first obtained factor is the most
important.
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4 Algorithm for MBMF

Before we present the algorithm for the MBMF we show on a simple example
basic ideas that are behind the algorithm. For this purpose we take the example
from the previous part. As we mentioned above if we take tables C1, C2 and
relation RC1C2 , we obtain with the narrow approach two connections between
factors, i.e. two multi-relational factors. These factors explain only 60 percent of
data. There usually exist more factorizations of Boolean data table. Factors in
our example were obtained with using GreConD algorithm from [2]. GreConD
algorithm select in each iteration a factor which covers the biggest part of still
uncovered data. Now we are in the situation, where we want to obtain a different
set of factors, with more connections between them. For this purpose we can use
essential elements. Firstly we compute essential parts of C1 (denoted Ess(C1))
and C2 (denoted Ess(C1)). With the essential part of data table we mean all
essential elements (tables 1 and 2).

Table 4: Ess(C1)
a b c d

1 ×
2 ×
3 × ×
4

Table 5: Ess(C2)
e f g h

5 × ×
6 ×
7 ×
8 × ×

Each essential element in Ess(C1) is defined via interval in concept lattice of
C1 (Fig. 1a) and similarly for essential elements in Ess(C2) (Fig 1b). In Fig. 1a
is highlighted interval I1c corresponding to essential element (C1)1c. In Fig. 1b is
highlighted interval corresponding to essential element (C2)8g. Let us note that
concept lattices here are only for illustration purpose. For computing Ess(C1)
and Ess(C2) is not necessary to construct concept lattices at all. Now, if we
use the fact that we can take an arbitrary concept (factor) from each interval
to obtain a complete factorization of data table, we have several options which
concepts can be connect into one. More precisely we can take two intervals
and try to connect each concept from the first interval with concepts from the
second one. Again, we obtain full factorization of input data tables, but now we
can select factors with regard to a relation between them.

For example, if we take highlighted intervals, we obtain possibly four con-
nections. First highlighted interval contains two concepts c1 = 〈{1, 2, 4}, {c}〉
and c2 = 〈{1, 4}, {b, c, d}〉. Second consist of concepts d1 = 〈{6, 7, 8}, {g}〉 and
d2 = 〈{8}, {g, h}〉. Only two connections (c1 with d1 and c1 with d2) satisfy
relation RC1C2 , i.e. can be connected.

For two intervals it is not necessary to try all combination of factors. If
we are not able to connect concept 〈A,B〉 from the first interval with concept
〈C,D〉 from the second interval, we are not able connect 〈A,B〉 with any concept
〈E,F 〉 from the second interval, where 〈C,D〉 ⊆ 〈E,F 〉. Also if we are not

Multi-Relational Boolean Factor Analysis based on Essential Elements 111



c
3

b, d

2

a 1

4

(a)

h e g

5 8

f
6

7

(b)

Fig. 1: Concept lattices of C1 (a) and C2 (b)

able to connect concept 〈A,B〉 from the first interval with concept 〈E,F 〉 from
the second interval, we are not able connect any concept 〈C,D〉 from the first
interval, where 〈C,D〉 ⊆ 〈A,B〉, with concept 〈E,F 〉. Let us note that ⊆ is
classical subconcept-superconcept ordering.

Even if we take this search space reduction into account, search in this in-
tervals is still time consuming. We propose an heuristic approach which takes
attribute concepts in intervals of the second data table, i.e. the bottom elements
in each interval. In intervals of the first data table we take greatest concepts
which can be connected via relation, i.e. set of common attributes in relation
is non-empty. The idea behind this heuristic is that a bigger set of objects pos-
sibly have a smaller set of common attributes in a relation and this leads to
bigger probability to connect this factor with some factor from the second data
table, moreover, if we take factor which contains the biggest set of attributes in
intervals of the second data table.

Because we do not want to construct the whole concept lattice and search in
it, we compute candidates for greatest element directly from relation RC1C2 . We
take all objects belonging to the top element of interval Iij from the first data
table and compute how many of them belong to each attribute in the relation. We
take into account only attributes belonging to object i. We take as candidate the
greatest set of objects belonging to some attribute in a relation, which satisfies
that if we compute a closure of this set in the first data table, resulting set of
objects do not have empty set of common attributes in a relation.

Applying this heuristic on data from the example, we obtain three factors
in the first data table, FC1

1 = 〈{2, 4}, {a, c}〉, FC1
2 = 〈{1, 3, 4}, {c, d}〉, FC1

3 =
〈{1, 2, 4}, {c}〉 and four factors FC2

1 = 〈{5}, {e, h}〉, FC2
2 = 〈{6, 7}, {f, g}〉, FC2

3 =
〈{7}, {e, f, g}〉, FC2

4 = 〈{8}, {g, h}〉 from the second one. Between this factors,
there are six connections satisfying the relation. These connections are shown in
table 6.

We form multi-relational factors in a greedy manner. In each step we connect
factors, which cover the biggest part of still uncovered part of data tables C1 and

112 Martin Trnecka and Marketa Trneckova



Table 6: Connections between factors
FC2
1 FC2

2 FC2
3 FC2

4

FC1
1 ×

FC1
2 × ×

FC1
3 × × ×

C2. Firstly, we obtain multi-relational factor 〈FC1
2 , FC2

2 〉 which covers 50 percent
of the data. Then we obtain factor 〈FC1

3 , FC2
4 〉 which covers together with first

factor 75 percent of the data and last we obtain factor 〈FC1
1 , FC2

3 〉. All these
factors cover 90 percent of the data. By adding other factors we do not obtain
better coverage of input data. These three factors cover the same part of input
data as six connections from table 6.

Remark 1. As we mentioned above and what we can see in the example, multi-
relational factors are not always able to explain the whole data. This is due
to nature of data. Simply there is no information how to connect some classic
factors, e.g. in the example no set of objects from C1 has in RC1C2

a set of
common attributes equal to {e, h} (or only {e} or only {h}). From this reason
we are not able to connect any factor from C1 with factor FC2

1 .

Remark 2. In previous part we explain the idea of the algorithm on a object-
attribute relation between data tables. It is also possible consider different kind
of relation, e.g. object-object, attribute-object or attribute-attribute relation.
Without loss of generality we present the algorithm only for the object-attribute
relation. Modification to a different kind of relation is very simple.

Now we are going to describe the pseudo-code (Algorithm 1) of our algorithm
for MBMF. Input to this algorithm are two Boolean data tables C1 and C2,
binary relation RC1C2 between them and a number p ∈ [0, 1] which represent
how large part of C1 and C2 we want to cover by multi-relational factors, e.g.
value 0.9 mean that we want to cover 90 percent of entries in input data tables.
Output of this algorithm is a set M of multi-relational factors that covers the
prescribed portion of input data (if it is possible to obtain prescribed coverage).
The first computed factor covers the biggest part of data.

First, in lines 1-2 we compute essential part of C1 and C2. In lines 2-4 we
initialize variables UC1

and UC2
. These variables are used for storing information

about still uncovered part of input data. We repeat the main loop (lines 5-18)
until we obtain a required coverage or until it is possible to add new multi-
relational factors which cover still uncovered part (lines 12-14).

In the main loop for each essential element we select the best candidate from
interval Iij from the first data table in the greedy manner described in the
algorithm idea, i.e. we take the greatest concept which can be connected via
relation. Than we try to connect this candidate with factors from the second
data table. We compute cover function and we add to M the multi-relational
factor maximizing this coverage.
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In lines 16-17 we remove from UC1
and UC2

entries which are covered by
actually added multi-relational factor.

Algorithm 1: Algorithm for the multi-relational Boolean factors analysis

Input: Boolean matrices C1, C2 and relation RC1C2 between them and p ∈ [0, 1]
Output: set M of multi-relational factors

1 EC1 ← Ess(C1)
2 EC2 ← Ess(C2)
3 UC1 ← C1

4 UC2 ← C2

5 while (|UC1 |+ |UC2 |)/(|C1|+ |C2|) ≥ p do
6 foreach essential element (EC1)ij do
7 compute the best candidate 〈a, b〉 from interval Iij
8 end
9 〈A,B〉 ← select one from set of candidates which maximize cover of C1

10 select non-empty row i in EC2 for which is A
↑RC1C2 ⊆ (C2)

↓↑C2
i and which

maximize cover of C1 and C2

11 〈C,D〉 ← 〈(C2)
↑↓C2
i , (C2)↑C2

i 〉
12 if value of cover function for C1 and C2 is equal to zero then
13 break
14 end

15 add 〈〈A,B〉, 〈C,D〉〉 toM
16 set (UC1)ij = 0 where i ∈ A and j ∈ B
17 set (UC1)ij = 0 where i ∈ C and j ∈ D

18 end
19 return F

Our implementation of the algorithm follows the pseudo-code conceptually,
but not in details. For example we speed up the algorithm by precomputing can-
didates or instead computing candidates for each essential elements, we compute
candidates for essential areas, i.e. essential elements which are covered by one
formal concept.

Remark 3. The input of our algorithm are two Boolean data tables and one
relation between them. In general we can have more data tables and rela-
tions. Generalization of our algorithm for such input is possible. Due to lack
of space we mentioned only an idea of this generalization. For the input data
tables C1, C2, . . . , Cn and relations RCiCi+1

, i ∈ {1, 2, . . . , n− 1} we firstly com-
pute multi-relational factors for Cn−1 and Cn. Then iteratively compute multi-
relational factors for Cn−2 and Cn−1. From this pairs we construct n-tuple multi-
relational factor.
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We do not make a detail analysis of the time complexity of the algorithm.
Even our slow implementation in MATLAB is fast enough for factorization usu-
ally large datasets in a few minutes.

5 Experimental evaluation

For experimental evaluation of our algorithm we use in a data minig community
well known real dataset MovieLens1. This dataset is composed of two data tables
that represent a set of users and their attributes, e.g. gender, age, sex, occupation
and a set of movies again with their attributes, e.g. the year of production or
genre. Last part of this dataset is a relation between this data sets. This relation
contains 1000209 anonymous ratings of approximately 3900 movies (3952) made
by 6040 MovieLens users who joined to MovieLens in 2000. Each user has at
least 20 ratings. Ratings are made on a 5-star scale (values 1-5, 1 means, that
user does not like a movie and 5 means that he likes a movie).

Originally data tables Users and Movies are categorical. Age is grouped into
7 categories such as “Under 18”, “18-24”, “25-34”, “35-44”, “45-49”, “50-55”
and “56+”. Sex is from set {Male, Female}. Occupation is chosen from the
following choices: “other” or not specified, “academic/educator”, “artist”, “cler-
ical/admin”, “college/grad student”, “customer service”, “doctor/health care”,
“executive/managerial”, “farmer”, “homemaker”, “K-12 student”, “lawyer”, “pro-
grammer”, “retired”, “sales/marketing”, “scientist”, “self-employed”, “techni-
cian/engineer”, “tradesman/craftsman”, “unemployed” and “writer”. Film gen-
res are following: “Action”, “Adventure”, “Animation”, “Children’s”, “Com-
edy”, “Crime”, “Documentary”, “Drama”, “Fantasy”, “Film-Noir”, “Horror”,
“Musical”, “Mystery”, “Romance”, “Sci-Fi”, “Thriller”, “War” and “Western”.
Year of production is from 1919 to 2000. We grouped years into 8 categories
“1919-1930”, “1931-1940”, “1941-1950”, “1951-1960”, “1961-1970”, “1971-1980”,
“1981-1990” and “1991-2000”.

We convert the ordinal relation in to binary one. We use three different
scaling. The first is that user rates a movie. The second is that a user does not
like a movie (he rates movie with 1-2 stars). The last one is that user likes a
movie (rates 4-5). This does not mean, that users do like (respective do not like)
some genre, it means, that movies from this genre are or are not worth to see. We
took the middle size version of the MovieLens dataset and we made a restriction
to 3000 users and movies that were rated by that users. We take users, who
rate movies the most, and we obtain dimension of the first data table 3000×30
and dimension of the second data table is 3671×26. Let us just note that for
obtaining object-attribute relation we need to transpose Movies data table.

Relation “user rates a movie” make sense, because user rates a movie if he
has seen it. We can understand this relation as user has seen movie. We get
29 multi-relational factors, that cover almost 100% of data (99.97%). Values of
coverage, i.e. how large part of input data is covered can be seen in figure 2.

1 http://grouplens.org/datasets/movielens/
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Graphs in figure 3 show coverage of Users data table and Movies data table
separately.

We can also see that for explaining more than 90 percent of data are sufficient
17 factors. This is significant reduction of input data.
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Fig. 2: Cumulative coverage of input data
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(a) Coverage of Users data table
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(b) Coverage of Movies data table

Fig. 3: Coverage of input data tables

The most important factors are:

– Males rate new movies (movies from 1991 to 2000).
– Young adult users (ages 25-34) rate drama movies.

116 Martin Trnecka and Marketa Trneckova



– Females rate comedy movies.
– Youth users (18-24) rate action movies.

Another interesting factors are:

– Old users (from category 56+) rate movies from their childhood (movies
from 1941 to 1950).

– Users in age range 50-55 rate children’s movies. Users in this age usually
have grand children.

– K-12 students rate animation movies.

Due to lack of space, we skip details about factors in relation “user does not
like a movie” and relation “user does like a movie”. In the first relation we get
30 factors, that covers 99.99% of data. In the second one, we get 29 factors,
covering 99.96% of data. Compute all multi-relational factors on this datasets
take approximately 5 minutes.

Remark 4. In case of MovieLens we are able to reconstruct input data tables
almost wholly for each three relations. Interesting question is what about rela-
tion, i.e. can we reconstruct relation between data tables? Answer is yes, we can.
Multi-relational factor carry also information about the relation between data
tables. So we can reconstruct it, but with some error. This error is a result of
choosing the narrow approach.

Reconstruction error of relation is interesting information and can be mini-
mize if we take this error into account in phase of computing coverage. In other
words we want maximal coverage with minimal relation reconstruction error.
This leads to more complicated algorithm because we need weights to compute
a value of utility function. We implement also this variant of algorithm. Re-
quirement of minimal reconstruction error and maximal coverage seems to be
contradictory, but this claim need more detailed study. Also it is necessary to
determine correct weight settings. We left this issue for the extended version of
this paper.

6 Conclusion and Future Research

In this paper, we present new algorithm for multi-relational Boolean matrix fac-
torization, that uses essential elements from binary matrices for constructing
better multi-relational factors, with regard to relations between each data ta-
ble. We test the algorithm on, in data mining well known, dataset MovieLens.
We obtain from these experiments interesting and easy interpretable results,
moreover, the number of obtained multi-relational factors needed for explaining
almost whole data is reasonable small.

A future research shall include the following topics: generalization of the al-
gorithm for MBMF for ordinal data, especially data over residuated lattices.
Construction of algorithm which takes into account reconstruction error of the
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relation between data tables. Test the potential of this method in recommen-
dation systems. And last but not least create not crisp operator for connecting
classic factors into multi-relational factors.
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10. Miettinen P., Mielikäinen T., Gionis A., Das G., Mannila H.: The discrete basis
problem, IEEE Trans. Knowledge and Data Eng. 20(10), 1348–1362, 2008.

11. Spyropoulou E., De Bie T.: Interesting Multi-relational Patterns. In Proceedings
of the 2011 IEEE 11th International Conference on Data Mining, ICDM ’11, pp.
675–684, 2011.

12. Xiang Y., Jin R., Fuhry D., Dragan F. F.: Summarizing transactional databases
with overlapped hyperrectangles, Data Mining and Knowledge Discovery 23(2),
215–251, 2011.

118 Martin Trnecka and Marketa Trneckova



On Concept Lattices as Information Channels

Francisco J. Valverde-Albacete1?, Carmen Peláez-Moreno2, and Anselmo
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Abstract. This paper explores the idea that a concept lattice is an in-
formation channel between objects and attributes. For this purpose we
study the behaviour of incidences in L-formal contexts where L is the
range of an information-theoretic entropy function. Examples of such
data abound in machine learning and data mining, e.g. confusion matri-
ces of multi-class classifiers or document-term matrices. We use a well-
motivated information-theoretic heuristic, the maximization of mutual
information, that in our conclusions provides a flavour of feature selection
providing and information-theory explanation of an established practice
in Data Mining, Natural Language Processing and Information Retrieval
applications, viz. stop-wording and frequency thresholding. We also in-
troduce a post-clustering class identification in the presence of confusions
and a flavour of term selection for a multi-label document classification
task.

1 Introduction

Information Theory (IT) was born as a theory to improve the efficiency of (man-
made) communication channels [1, 2], but it soon found wider application [3].
This paper is about using the model of a communication channel in IT to explore
the formal contexts and concept lattices of Formal Concept Analysis as realisa-
tions of information channels between objects and attributes. Given the highly
unspecified nature of both the latter abstractions such a model will bring new
insights into a number of problems, but we are specifically aiming at machine
learning and data mining applications [4, 5].

The metaphor of a concept lattice as a communication channel between ob-
jects and attributes is already implicit in [6, 7]. In there, adjoint sublattices were
already considered as subchannels in charge of transmitting individual acousti-
cal features, and some efforts were done to model such features explicitly [7],
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but no conclusive results were achieved. The difficulty rose from a thresholding
parameter ϕ that controls the lattice-inducing technique and was originally fixed
by interactive exploration, a procedure hard to relate to the optimization of a
utility or cost function, as required in modern machine learning.

In this paper we set this problem against the backdrop of direct mutual infor-
mation maximization—using techniques and insights developed since [6, 7]—for
matrices whose entries are frequency counts. These counts appear frequently
in statistics, data mining and machine learning, for instance, in the form of
document-term matrices in Information Retrieval [8], confusion matrices for clas-
sifiers in perceptual studies, data mining and machine learning [9], or simply
two-mode contingency tables with count entries. Such matrices are called aggre-
gable in [4], in the sense that any group of rows or columns can be aggregated
together to form another matrix whose frequencies are obtained from the data
of the elements in the groups. We will use this feature to easily build count and
probability distributions whose mutual information can be maximized, following
the heuristic motivated above, to improve classification tasks. Note that max-
imizing mutual information (over all possible joint distributions) is intimately
related to the concept of channel capacity as defined by Shannon [2].

For this purpose, in Sec. 2 we cast the problem of analysing the transfer of
information through the two modes of contingency tables as that of analysing a
particular type of formal context. First we present in Sec. 2.1 the model of the
task to be solved, then we present aggregable data, as usually found in machine
learning applications in Sec. 2.2, and then introduce the entropic encoding to
make it amenable to FCA. As an application, in Sec. 3.1 we explore the particular
problem of supervised clustering as that of transferring the labels from a set of
input patterns to the labels of the output classes. Specifically we address the
problem of assigning labels to mixed clusters given the distribution of the input
labels in them. We end with a discussion and a summary of contributions and
conclusions.

2 Theory

2.1 Classification optimization by mutual information maximization

Consider the following, standard supervised classification setting: we have two
domains X and Y , m instances of i.i.d. samples S = {(xi, yi)}mi=1 ⊆ X×Y , and
we want to learn a function h : X → Y , the hypothesis, with certain “good”
qualities, to estimate the class Y from X , the measurements of Y , or features.

A very productive model to solve this problem is to consider two probability
spaces Y = 〈Y, PY 〉 and X = 〈X,PX〉 with Y ∼ PY and X ∼ PX , and suppose
that there exists the product space 〈X × Y, PXY 〉 wherefrom the i.i.d. samples
of S have been obtained. So our problem is solved by estimating the random
variable Ŷ = h(X), and a “good” estimation is that which obtains a low error
probability on every possible pair P (Ŷ 6= Y )→ 0 .

Since working with probabilities might be difficult, we might prefer to use
a (surrogate) loss function that quantifies the cost of this difference L(ŷ =
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h(x), y) and try to minimize the expectation of this loss, called the risk R(h) =
E[L(h(x), y)] over a class of functions h ∈ H, h∗ = minh∈HR(h) . Consequently,
this process is called empirical risk minimization.

An alternate criterion is to maximize the mutual information between Y and
Ŷ [10]. This is clearly seen from Fano’s inequality [11], serving as a lower bound,
and the Hellman-Raviv upper bound [12],

HPŶ
− IPY Ŷ

− 1

HUŶ

≤ P (Ŷ 6= Y ) ≤ 1

2
HPŶ |Y

where UŶ is the uniform distribution on the support of Ŷ , HPXX
denotes the

different entropies involved and IPY Ŷ
is the mutual information of the joint

probability distribution.

2.2 Processing aggregable data

If the original rows and columns of contingency tables represent atomic events,
their groupings represent complex events and this structure is compatible with
the underlying sigma algebras that would transform the matrix into a joint
distribution of probabilities, hence these data can be also interpreted as joint
probabilities, when row- and column-normalized.

When insufficient data is available for counting, the estimation of empirical
probabilities from this kind of data is problematic, and complex probability
estimation schemes have to be used. Even if data galore were available, we still
have to deal with the problem of rarely seen events and their difficult probability
estimation. However, probabilities are, perhaps, the best data that we can plug
onto data mining or machine learning techniques, be they for supervised or
unsupervised tasks.

The weighted Pointwise Mutual Information. Recall the formula for
the mutual information between two random variables IPXY

= EPXY
[IXY (x, y)]

where IXY (x, y) = log PXY (x,y)
PX(x)·PY (y) is the pointwise mutual information, (PMI).

Remember that −∞ ≤ IXY (x, y) < ∞ with IXY (x, y) = 0 being the case
where X and Y are independent. The negative values are caused by phenomena
less represented in the joint data than in independent pairs as captured by the
marginals. The extreme value IXY (x, y) = −∞ is generated when the joint
probability is negative even if the marginals are not. These are instances that
capture “negative” association whence to maximize the expectation we might
consider disposing of them.

On the other hand, on count data the PMI has an unexpected and unwanted
effect: it is very high for hapax legomena phenomena that are encountered only
once in a tallying, and in general it has a high value for phenomena with low
counts of whose statistical behaviour we are less certain.
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However, we know that

IPXY
=
∑

x,y

PXY (x, y) · IXY (x, y) =
∑

x,y

PXY (x, y) log
PXY (x, y)

PX(x) · PY (y)

and this is always a positive quantity, regardless of the individual values of
IXY (x, y). This suggests calling weighted pointwise mutual information, (wPMI)
the quantity

wPMI(x, y) = PXY (x, y) log
PXY (x, y)

PX(x) · PY (y)
(1)

and using it as the subject of optimization or exploration to do so. Note that
pairs of phenomena whose joint probability are close to independent, as judged
by the pointwise information, will be given a very low value in the wPMI , and
that the deleterious character of hapaxes on IPXY

is lessened by the influence of
the joint probability.

2.3 Visualizing mutual information maximization

For a joint distribution PY Ŷ (y, ŷ), [13] introduced a balance equation binding the
mutual information between two variables IPY Ŷ

, the sum of their conditional en-
tropies V IPY Ŷ

= HPY |Ŷ +HPŶ |Y and the sum of their entropic distance between

their distributions and uniformity ∆HPY Ŷ
= (HUY

−HPY
) + (HUŶ

−HPŶ
),

log(HUY
) + log(HUŶ

) = ∆HPY Ŷ
+ 2 ∗ IPY Ŷ

+ V IPY Ŷ
.

By normalizing in the total entropy log(HUY
) + log(HUŶ

) we may obtain the
equation of the 2-simplex that can be represented as a De Finetti diagram like
that of Fig. 2.(a), as the point in the 2-simplex corresponding to coordinates

F (PY Ŷ ) = [∆H ′PY Ŷ
, 2 ∗ I ′PY Ŷ

, V I ′PY Ŷ
]

where the primes represent the normalization described above.
The axis of this representation were chosen so that the height of the 2-

simples—an equilateral triangle—is proportional to the mutual information be-
tween the variables so a maximization process is extremely easy to represent (as
in Fig. 2): given a parameter ϕ whereby to maximize IPY Ŷ

(as a variable), draw
the trace of the evaluation of the coordinates in the ET of the distributions that
it generates, and choose the ϕ∗ that produces the highest point in the triangle.
This technique is used in Sec. 3.1, but other intuitions can be gained from this
representation as described in [14].

2.4 Exploring the space of joint distributions

Since the space of count distributions is so vast, we need a technique to explore
it in a principled way. For that purpose we use K-Formal Concept Analysis
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(KFCA). This is a technique to explore L-valued contexts where L is a complete
idempotent semifield using a free parameter called the threshold of existence [15,
13].

We proceed in a similar manner to Fuzzy FCA: For L-context 〈Y, Ŷ, R〉, con-

sider two spaces LY and LŶ , representing, respectively, L-valued sets of objects
and attributes. Pairs of such sets of objects and attributes that fulfil certain po-
lars equation have been proven to define dually-ordered lattices of closed L-sets
in the manner of FCA 3.

Since the actual lattices of object sets and attributes are so vast, KFCA
uses a simplified representation for them: for the singleton sets in each of the
spaces δy, for y ∈ Y and δŷ, for ŷ ∈ Ŷ , we use the L-polars to generate their
object- γϕY (y) and attribute-concept µϕ

Ŷ
(ŷ), respectively, and obtain a structural

ϕ-context Kϕ = 〈Y, Ŷ, Rϕ〉, where yRϕŷ ⇐⇒ γϕY (y) ≤ µϕ

Ŷ
(ŷ) 4.

In this particular case we consider the min-plus idempotent semifield and
the L-context 〈Y, Ŷ, wPMI〉 where wPMI is the weighted Pointwise Mutual In-
formation relation between atomic events in the sigma lattices of Y and Ŷ of
Sec. 2.2, whence the degree or threshold of existence is a certain amount of
entropy required for concepts to surpass for them to be considered.

The following step amounts to an entropy conformation of the joint distribu-
tion, that is, a redistribution of the probability masses in the joint distribution
to obtain certain entropic properties. Specifically, we use the (binary) ϕ-formal
context to filter out certain counts in the contingency table to obtain a confor-
mal contingency table Nϕ

Y Ŷ
(y, ŷ) = NY Ŷ (y, ŷ)�Kϕ, where � represents here the

Hadamard (pointwise) product. For each conformal Nϕ

Y Ŷ
(y, ŷ) we will obtain a

certain point F (ϕ) in the ET to be represented as described in Sec. 2.3.

3 Application

We next present two envisaged applications of the technique of MI Maximization.

3.1 Cluster identification

Confusion matrices are special contingency tables whose two modes refer to the
same underlying set of labels[4]. We now put forward a procedure to maximize
the information transmitted from a set of “ground truth” patterns acting as
objects with respect to “perceived patterns” which act as attributes. As noted
in the introduction, this is just one of the possible points of view about this
problem.

Consider the following scenario, there is a clustering task for which extrinsic
evaluation is possible, that is, there is a gold standard partitioning of the in-
put data. One way to evaluate the clustering solution is to obtain a confusion

3 Refer to [13] for an in-depth discussion of the mathematics of idempotent semifields
and the different kinds of Galois connections that they generate.

4 And a structural ϕ-lattice Bϕ(Kϕ) as its concept lattice, but this is not important
in the present application

On Concept Lattices as Information Channels 123



matrix out of this gold standard, in the following way: If the number of classes
is known—a realistic assumption in the presence of a gold standard—then the
MI optimization procedure can be used to obtain the assignments between the
classes in the gold standard and the clusters of the procedure, resulting in cluster
identification.

For the purpose of testing the procedure, we used the segmented numeral
data from [16]. This is a task of human visual confusions between numbers as
displayed by seven-segment LED displays, as shown in Fig. 1.(a). The entry in
the count matrix NCK(c, k) = nck counts the number times that an instance of
class c was confused with class k . Figure 1.(b) shows a heatmap presentation
of the original confusion matrix and column-reshuffled variants. Note that the
confusion matrix is diagonally-dominant, that is nii >

∑
j,j 6=i nij and likewise

for column i .

(a) (b)

Fig. 1: Segmented numeral display (a) from [16] and the column-reshuffled con-
fusion matrix (b) of the human-perception experiment. Cluster identification is
already evident in this human-visualization aid, but the method here presented
is unsupervised.

To test the MI optimization procedure, we randomly permuted the confu-
sion matrix columns: the objective was to recover the inverse of this random
permutation from the MI optimization process so that the original order could
be restored. This amounts to an assignment between classes and induced clus-
ters, and we claim that it can be done by means of the mutual information
maximization procedure sketched above.

For that purpose, we estimated PCK(c, k) using the empirical estimate

P̂CK(c, k) ≈ NCK(c, k)

n
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where n is the number of instances to be clustered n =
∑

ckNCK(c, k) , and
then we obtained its empirical PMI

ÎCK(c, k) = log P̂CK(c, k)

and its weighted PMI

wPMICK(c, k) = P̂CK(c, k) · ÎCK(c, k) .

Next, we used the procedure of Sec. 2.4 to explore the empirical wPMI and
select the threshold value which maximizes the MI. Figure 2.(a) shows the tra-
jectory of the different conformed confusion matrices as ϕ ranges in [0,∞) on
the ET: we clearly see how for this balanced task dataset the exploration results
in a monotonous increase in MI in the thresholding range until a value that pro-
duces the maximum MI, at wPMI∗ = 0.1366 . The discrete set of points stems
from the limited range of counts in the data.

We chose this value as threshold and obtained the binary matrix which is
the assignment from classes to clusters and vice-versa shown in Fig. 2.(b). Note
that in this particular instance, the ϕ∗-concept lattice is just a diamond lat-
tice reflecting the perfect identification of classes and clusters. In general, with
contingency tables where modes have different cardinalities, this will not be the
case.

3.2 Entropy conformation for count matrices

The case where the contingency matrix is squared and diagonally dominant, as
in the previous example, is too specific: we need to show that for a generic, rect-
angular count contingency matrix, entropy maximization is feasible and mean-
ingful.

The first investigation should be on how to carry the maximization pro-
cess. For that purpose, we use a modified version of the Reuters-21578 5 that
has already been stop-listed and stemmed. This is a multi-label classification
dataset [17] describing each document as a bag-of-terms and some categoriza-
tions labels, the latter unused in our present discussion.

We considered the document-term matrix for training, a count distribution
with D = 7 770 documents and T = 5 180, terms. Its non-conformed entropy co-
ordinates are F (NDT ) = [0.1070, 0.3584, 0.5346] as shown in the deep blue circle
to the left of Fig. 3. We carried out a joint-mutual information maximization
process by exploring at the same time a max-plus threshold—the count has to
be bigger thant the threshold to be considered—and a min-plus threshold—the
count has to be less than the threshold. The rationale for this is a well-tested hy-
pothesis in the bag-of-term model: very common terms (high frequency) do not
select well for documents, while very scarce terms (low frequency) are too spe-
cific and biased to denote the general “aboutness” of a document. Both should
be filtered out of the document-term matrix.
5 http://www.daviddlewis.com/resources/testcollections/reuters21578/

readme.txt. Visited 24/06/2014.

On Concept Lattices as Information Channels 125



(a)

Kϕ∗ =




0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0




(b)

Fig. 2: Trajectory of the evolution of MI transmission for the segmented numeral
data as the exploration threshold is raised in the wPMI matrix (a), and maximal
MI cluster assignment matrix at wPMI = 1.366 bits (b) for column-shuffled
Segmented Numerals. The resulting concept lattice is just a diamond lattice
identifying classes and clusters and not shown.
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Instead of count-based individual term filtering we carry a joint term-document
pair selection process: for a document-matrix, we calculate its overall weighted
PMI matrix, and only those pairs (d, t) whose wPMI lies in between a lower φ and
an upper ϕ thresholds are considered important for later processing. For each
such pairs, we created an indicator matrix I(d, t) that is 1 iff φ ≤ wMI(d, t) ≤ ϕ,
and we used the Kronecker multiplication to filter out non-conforming pairs from
the final entropy calculation,

M̂I ′PDT
=
∑

d,t

wPMIDT (d, t) · I(d, t)

Figure 3 represents the trace of that process as we explore a grid of 10× 10
different values of φ and ϕ (the same set of values for both). The grid was
obtained by equal width binning of the whole range of wPMIDT (d, t) in the
original wMI matrix as defined in [18].

Fig. 3: Trace of the entropy conformation process for a count matrix. The blue
dot to the left is the original level of entropy. For a wide range of pairs (φ, ϕ)
the entropy of the conformed count matrix is greater than the original one, and
we can actually find a value where it is maximized.

We can see how M̂I ′PDT
reaches a maximum over two values and then de-

creases again, going even below the original mutual information value. We read
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two different facts in this illustration: that the grid used is effective in obtaining
approximations to φ and ϕ for MI maximization, and that not every possible
pair of values is a good solution for the process.

All in all, this procedure shows that MI maximization is feasible by tracking
its in the ET. We do not present any results in this paper as to the effectiveness
of the process for further processing tasks, which should be evaluated on the
extrinsic measures on the Reuters multi-labelling task.

4 Discussion

We now discuss the applications selected in a wider context. Although less per-
vasive than its unsupervised version, the basic task of supervised clustering has
application, for instance, in tree-induction for supervised classification [5, 18] or
unsupervised clustering evaluation using a gold-set [19]. Cluster identification
in Sec. 3.1 is a sometimes-fussy sub-procedure in clustering which our proposal
solves elegantly.

The feasibility study on mutual information conformation of Sec. 3.2 is a
necessary step for further processing—binary or multi-labelling classification—
but as of this paper unevaluated. Further work should concentrate on leveraging
the boost in mutual information to lower the classification error, as suggested in
the theoretical sections.

Besides, the use of two simultaneous, thresholds on different algebras makes
it difficult to justify the procedure on FCA terms: this does not conform to the
definition of any lattice-inducing polars that we know of, so this feature should
be looked into critically. Despite this fact, the procedure of conformation “makes
sense”, at least for this textual classification task.

Note that the concept of “information channel” that we have developed in
this paper is not what Communication Theory usually considers. In there, “input
symbols” enter the channel and come out as “output symbols”, hence input has
a sort of ontological primacy over output symbols in that the former cause the
latter. If there is anything particular about FCA as an epistemological theory is
that it does not prejudge the ontological primacy of objects over attributes or vice
versa. Perhaps the better notion is that a formal concept is an information co-
channel between objects and attributes, in the sense that the information “flows”
both from objects to attributes and vice versa, as per the true symmetric nature
of mutual information: receiving information about one of the modes decreases
the uncertainty of the other.

The previous paragraph notwithstanding, we will often find ourselves in ap-
plication scenarios in which one of the modes will be primary with respect to
the other, in which case the analogies with communication models will be more
evident. This is one of the cases that we explore in this paper, and that first
pointed at in [6, 7].

Contingency tables are an instance of aggregable data tables [4, §0.3.4]. It
seems clear that not just counts, but any non-negative entry aggregable table can
be treated with the tools here presented, e.g. concentrations of solutes. In that

128 Francisco J. Valverde Albacete, Carmen Peláez-Moreno and Anselmo Peñas



case, the neat interpretation related to MI maximization will not be available,
but analogue ones can be found.

A tangential approach to the definition of entropies in (non-Boolean) lattices
has been taken by [20, 21, 22, 23, 24]. These works approach the definition of
measures, and in particular entropy measures, in general lattices instead of finite
sigma algebras (that is, Boolean lattices). [22] and [24] specifically address the
issue of defining them in concept lattices, but the rest provide other heuristic
foundations for the definition of such measures which surely must do without
some of the more familiar properties of the Shannon (probability-based) entropy.

5 Conclusions and further work

We have presented an incipient model of L-formal contexts of aggregable data
and their related concept lattices as information channels. Using KFCA as the
exploration technique and the Entropy Triangle as the representation and vi-
sualization technique we can follow the maximization procedure on confusion
matrices in general, and in confusion matrices for cluster identification in par-
ticular.

We present both the basic theory and two proof-of-concept applications in
this respect: a first one cluster identification, fully interpretable in the framework
of concept lattices, and another, entropy conformation for rectangular matrices
more difficultly embeddable in this framework.

Future applications will extend the analysis of count contingency tables, like
document-term matrices, where our entropy-conformation can be likened to fea-
ture selection techniques.
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Abstract. Faced with both identity theft and the theft of means of
authentication, users of digital services are starting to look rather suspi-
ciously at online systems. The behavior is made up of a series of observ-
able actions of an Internet user and, taken as a whole, the most frequent
of these actions amount to habit. Habit and reputation o�er ways of
recognizing the user. The introduction of an implicit means of authenti-
cation based upon the user's behavior allows web sites and businesses to
rationalize the risks they take when authorizing access to critical func-
tionalities. In this paper, we propose a new model for implicit authen-
tication of web users based on extraction of closed patterns. On a data
set of web navigation connection logs of 3,000 users over a six-month
period we follow the experimental protocol described in [1] to compute
performance of our model.

1 Introduction

In order to achieve productivity gains, companies are encouraging their cus-
tomers to access their services via the Internet. It is accepted that on-line ser-
vices are more immediate and more user-friendly than accessing these services
via a brick and mortar agency, which involves going there and, more often than
not, waiting around [2]. Nevertheless, access to these services does pose secu-
rity problems. Certain services provide access to sensitive data such as banking
data, for which it is absolutely essential to authenticate the users concerned.
However identity thefts are becoming more and more numerous [3]. We can dis-
tinguish two paradigms for increasing access security. The �rst one consists of
making access protocols stronger by relying, for example, on external devices for
transmitting access codes that are supplementary to the login/password pair.
Nevertheless, these processes are detrimental to the user-friendliness and usabil-
ity of the services. The number of transactions abandoned before reaching the
end of the process is increasing and exchange volumes are decreasing. The sec-
ond paradigm consists to the contrary of simplifying the identi�cation processes
in order to increase the exchange volumes. By way of examples, we can mention
single-click payment [2] [4] or using RFID chips for contactless payments. Where
these two paradigms meet is where we �nd implicit means of authentication.

c© Karell Bertet, Sebastian Rudolph (Eds.): CLA 2014, pp. 131–143,
ISBN 978–80–8152–159–1, Institute of Computer Science, Pavol Jozef Šafárik
University in Košice, 2014.
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A means of authentication is a process that makes it possible to ensure that the
identity declared in the event of access is indeed the user's identity. Traditionally,
a user authenticates himself or herself by providing proof of identity [5]. This
process is called �explicit authentication�. In contrast, implicit authentication
does not require anything from the user but instead studies his or her behavior,
the trail left by the user's actions, and then either does or does not validate the
declared identity. An implicit means of authentication cannot replace traditional
means of authentication as it is necessary for the user to have access to his or
her service so that the person's behavior may be studied and their identity
can either be validated or rejected. To the contrary, if it is e�ective, it would
enable stronger authentication modes to be avoided (such as chip cards and PIN
numbers), which are detrimental to the usability of services. The challenge is to
detect identity theft as quickly as possible and, to the contrary, to validate a
legitimate identity for as long a time as possible.

This contribution is organized as follows: in section 2 we shall o�er a state-of-
the-art about implicit authentication and user's pro�le in web browsing. Then
we propose a learning model for implicit authentication of web users we are
dealing with in section 3. In section 4, we compare several methods for building
pro�les of each user. We faithfully reproduce the experimental study conducted
in [1] and we analyze all of our results. Finally, in section 5, we shall resume our
results and discuss our future work.

2 Related works

In his survey of implicit authentication for mobile devices ([6]), the author says of
an authentication system that it is implicit if the system does not make demands
of the user (see Table 1).

Implicit authentication systems were studied very quickly for mobile phones.
In [7] and [8], the authors studied behaviour based on variables speci�c to smart-
phones such as calls, SMS's, browsing between applications, location, and the
time of day. Experiments were conducted based on the data for 50 users over
a period of 12 days. The data were gathered using an application installed by
users who were volunteers. The users' pro�les were built up from how frequently
positive or negative events occurred and the location. Within this context, a
positive event is an event consistent with the information gathered upstream.
By way of an example, calling a number which is in the phone's directory is a
positive event. The results of this study show that based on ten or so actions,
you can detect fraudulent use of a smartphone with an accuracy of 95%. In a
quite di�erent context, the authors of [9] relied on a Bayesian classi�cation in
order to associate a behaviour class with each video streaming user. The data
set is simulated and consists of 1,000 users over 100 days. The variables taken
into account are the quality of the �ow, the type of program, the duration of the
session, the type of user, and the popularity of the video. The results are mixed,
because the model proposed admits to an accuracy rate of 50%.
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Feature Capturing
Method

Implicit/Explicit Spoo�ng Threats Problems

Passcode Keyboard input Explicit Keyloggers,
Shoulder Sur�ng

Guessable pass-
words

Token Hardware device Mainly explicit,
implicit possible

None Easily stolen or
lost

Face & Iris Camera Both Picture of the le-
gitimate user

Lighting situa-
tion and make-up

Keystroke Keyboard Implicit, explicit
possible

Typing imitation
(di�cult)

Long training
phase, reliability

Location GPS, infrastruc-
ture

Implicit Informed
strangers

Traveling, preci-
sion

Network Software protocol
(e.g. WireShark)

Implicit Informed
strangers

Precision

Table 1. Comparison of di�erent authentication methods

The particular context of implicit authentication for web browsing was studied
in [1], [10], [11] and [12]. In [1], the author adopted the domain name, the num-
ber of pages viewed, the session start time, and its duration, as characteristic
variables. The data set, which was gathered by a service provider, consisted of
300 �rst connections by 2,798 users over a period of 12 months. The user pro�les
consisted of patterns with a size of 1. The author compares several pattern selec-
tion approaches like the support and the lift approaches. The study shows that
for small, anonymous behavioural patterns (involving up to twenty or so sites
visited), the most e�ective models are still traditional classi�cation models like
decision trees. On the other hand, whenever anonymous behaviour exceeds 70 or
so sites, the support and lift-based classi�cation models are more accurate. The
study conducted in [12] states that the size of the data set remains a determining
parameter. Their study, conducted on 10 users over a one-month period, did not
enable them to build a signi�cant model for distinguishing users. The authors
also concluded that no variable taken individually enables a user to be authen-
ticated. Drawing inspiration from a study conducted in [1], the authors of [13]
studied several techniques for spying on a user who holds a dynamic IP address,
based on behavioural models. The methods compared are seeking motives, the
nearest neighbours technique, and the multinomial Bayesian classi�er. The data
set consisted of DNS requests from 3,600 users over a two-month period. In this
study, only the most signi�cant variables and the most popular host names were
considered. The accuracy rates for the models proposed were satisfactory.

The study that we conduct in this paper also forms part of a continuation of the
work by [1]. We faithfully reproduce his experimental protocol on our data and
we compare performance of our classi�cation algorithm to his speci�c models.
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3 Models

We propose an intuitive learning model architecture for user authentication.
From a data set of web browsing logs we compute a set of own patterns for
each user. A pattern is a set of frequently visited sites. The size of pattern
may vary. Thanks to these pro�les we are able to provide an authentication
for anonymous sessions. We then compute confusion matrices and we provide
precisions of the models. In our present study, we compare performance of a naive
Bayes classi�er to variations on k-nearest neighbors algorithms. More precisely,
the studied parameters are selection process of user own patterns, computation
process of user pro�les and distance functions computed for classi�cation stage.
Figure 1 outlines the framework of the machine learning process.

? ?
- -

Past
Behaviour

Anonymous
Behaviour

User
Pro�le

Learning Algorithms Score Computation
User

Authentication

Fig. 1. Architecture

3.1 Formal framework

We call a session a set of visited web sites at a speci�c time by a given user ui

such as i ∈ [1,n] and n is the number of users. The size of a session is limited
and equal to 10. The learning database of each user ui takes the form of a set of
sessions denoted Sui and is built from log data3. We call S =

⋃
i Sui the whole

set of sessions of the database.
We call Wui

the whole set of web sites visited at least once by user ui and we
call W =

⋃
iWui

the whole set of visited sites. The order of visited web sites is
not taken into account by this model.

De�nition 1 (k-pattern). Let W be a set of visited web sites and S be a set
of sessions on W . A subset P of W is called a k − pattern where k is the size
of P . A session S in S is said to contain a k − pattern P if P ⊆ S.

De�nition 2 (Support and relative support (lift)). We de�ne the support
of a pattern P as the percentage of sessions in S containing P (by extension we
give the support of a pattern in the set of sessions of a given user ui):

supportS(P ) =
||{S ∈ S | P ⊆ S}||

||S|| supportSui
(P ) =

||{S ∈ Sui
| P ⊆ S}||

||Sui
||

3 Cf. section 4.1

134 Olivier Coupelon et al.



Using Closed Itemsets for Implicit User Authentication in Web Browsing 5

For a given user the relative strength of a pattern is equivalent to the lift in
a context of association rules (i.e. the support of the pattern within this user
divided by the support of the pattern across all users). More formally:

liftSui
S(P ) =

supportSui
(P )

supportS(P )

The support measures the strength of a pattern in behavioral description of a
given user. The relative support mitigates support measure by considering the
pattern's support on the whole sessions set. The stronger the global support of
a pattern, the lesser characteristic of a speci�c user.
The tf-idf is a numerical statistic that is intended to re�ect how relevant a word
is to a document in a corpus. The tf-idf value increases proportionally to the
number of times a word appears in the document, but is o�set by the frequency
of the word in the whole corpus ([14]). In our context, a word becomes a pattern,
a document becomes a set of sessions Sui of a given user and the corpus becomes
the whole set S of all sessions.

De�nition 3 (tf×idf). Let P be a pattern, let U be a set of users and Up ⊆ U
such that ∀ui ∈ Up, supportSui

(P ) 6= 0. Let Sui
be a set of sessions of a given

user ui and S a whole set of sessions. The normalized term frequency denoted
tf(P ) is equal to supportSui

(P ) and the inverse document frequency denoted
idf(P ) is equal to log (||U ||/||UP ||). We have:

tf × idf(P ) = supportSui
(P )× log

( ||U ||
||UP ||

)

De�nition 4 (Closure system). Let S be a collection of sessions on the set
W of web sites. We denote Sc the closure under intersection of S. By adding W
in Sc, Sc is called a closure system.

De�nition 5 (Closure operator). Let W be a set, a map C: 2W → 2W is
a closure operator on W if for all sets A and B in W we have: A ⊆ C(A),
A ⊆ B =⇒ C(A) ⊆ C(B) and C(C(A)) = C(A).

Theorem 1. Let Sc be a closure system on W . Then the map CSc de�ned on
2W by ∀A ∈ 2W , CSc(A) =

⋂{S ∈ Sc | A ⊆ S} is a closure operator on W 4.

De�nition 6 (Closed pattern5). Let Sc be a closure system on W and CSc

its corresponding closure operator. Let P be a pattern (i.e. a set of visited sites),
we said that P is a closed pattern if CSc(P ) = P .

4 Refer to the book of [15].
5 This de�nition is equivalent to a concept of the formal context K = (S,W,I) where
S is a set of objects, W a set of attributes and I a binary relation between S and
W [16].
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3.2 Own patterns selection

The �rst and most important step of our model, called own patterns selection
is to calculate the set of own patterns for each user ui. This set of patterns is
denoted Pui

= {Pi,1, Pi,2,..., Pi,p}. In [1], the author states that p = 10 should be
a reference value and that beyond this value model performance are stable. We
shall follow that recommendation. In [1], 10 frequent 1 − patterns are selected
for each user. The aim of our study is to show that it could be more e�cient
to select closed k − patterns. But, the number of closed patterns should be
strong, so we compare three heuristics (H1, H2 and H3) to select the 10 closed
patterns of each user. For each heuristic, closed patterns are computed thanks
to Charm algorithm ([17]) provided on the Coron platform ([18]). Only closed
patterns with a size lower than or equal to 7 are considered. These heuristics are
presented here:

1. 10 1− patterns with the largest support values (as in [1])
2. H1: 40 closed k − patterns with the largest tf-idf values.
3. H2: 10 �ltered closed k − patterns with the largest support and maximal

values by inclusion set operator.
4. H3: 10 �ltered closed k−patterns with the largest tf-idf and minimal values

by inclusion set operator.

Algorithm 1 describes the process of H1 to select the 40 own patterns for a given
user. With H1, the model performance is improved when p increases up to 40.
p = 10 is the better choice for H2 and H3. The best results are from H1.

Algorithm 1: H1: 40 closed k − patterns with the largest tf-idf values.

Data: Cui
: the set of closed itemsets of user ui from Charm;

p : the number of selected own patterns;
Result: Pui : the set of own patterns of user ui;

1 begin
2 Compute the tf × idf for each pattern from Charm;
3 Sort the list of patterns in descending order according to the tf × idf

value;
4 Return the top p patterns;

3.3 User pro�les computation

We de�ne and we denote Pall =
⋃

i Pui
the whole set of own patterns. The set

Pall allows us to de�ne a common space in which all users could be embedded.
More formally, Pall de�nes a vector space V of size all = ||Pall|| where a given
user ui is represented as a vector Vui = (mi,1,mi,2,...,mi,all).
The second step of our model, called user pro�le computation, is to compute, for
each user ui, a numerical value for each component mi,j of the vector Vui

. i is
the user id, j ∈ [1,all] is a pattern id and m stands for a given measure. In this
paper, we compare two measures proposed in [1]: the support and the lift.
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mi,j = supportSui
(Pj) and mi,j = liftSui

S(Pj)

3.4 Authentication stage

In our model, the authentication step is based on the identi�cation. For that
purpose, our model guesses the user corresponding to an anonymous set of ses-
sions, then it checks if the guessed identity corresponds to the real identity. From
this set of sessions we have to build a test pro�le and to �nd the nearest user
pro�le de�ned during the learning step.

Test sessions Performance of our models are calculated on anonymous data
sets of growing size.The more information available, the better the classi�cation
will be. The �rst data set consists of only one session, the second consists of 10
sessions, the third one consists of 20 sessions, and the last one consists of 30
sessions. For the test phase, all sessions have the same size of 10 sites.

Building test pro�le Let S be the whole set of sessions from the learning
data set. Let Sut be an anonymous set of sessions and Vut = (mt,1,mt,2,...,mt,all)
its corresponding pro�le vector. We will compare two approaches to build the
anonymous test pro�le, the support and the lift:

∀i, mt,i = supportSut
(Pi) and ∀i, mt,i = liftSutS =

supportSut
(Pi)

supportS(Pi)

Distance functions Let Vui = (mi,1,mi,2,...,mi,all) and Vut = (mt,1,mt,2,...,mt,all)
be two pro�les. We denoted DisEuclidean(Vui ,Vut) the Euclidean distance and
we denote SimCosine(Vui

,Vut
) the cosine similarity function. We have:

DisEuclidean(Vui
,Vut

) =

√∑

j

(mt,j −mi,j)2

SimCosine(Vui ,Vut) =

∑
j(mt,j ×mi,j)√∑

j(mt,j)2 ×
∑

j(mi,j)2

4 Experimental results

4.1 Data set

Our data set is comprised of the web navigation connection logs of 3,000 users
over a six-month period. We have at our disposal the domain name visited and
each user ID. From the variables of day and time of connection we have con-
structed connection sessions for each user. A session is therefore a set of web
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sites visited. The number of visited web sites per session is limited and equal
to 10. For the relevance of our study we used Adblock6 �lters to remove all do-
mains regarded as advertising. The majority of users from this data set are not
su�ciently active to be of relevance. Therefore, as in [1], we have limited our
study to the 2% of most active users and obtained the signi�cant session sets for
52 users. The 30 users most active (who have a large number of sessions) among
those 52 users are used in this paper. Table 2 gives the detailed statistics for this
data set.

7698 sessions Minimum Maximum Mean Standard deviation

Size 10 10 10 0

#sessions/users 101 733 257 289

Table 2. Descriptive statistics of the used data set: size of sessions (number of visited
web sites) and number of sessions per user, for 30 users.

4.2 Experimental protocol: a description

Algorithm 2 (see appendix) describes our experimental protocol. The �rst loop
sets the size of the set of users among which a group of anonymous sessions will
be classi�ed. The second one sets the size of this sessions group. Finally, the third
loop sets the number of iterations used to compute the average accuracy rate.
The loop on line 10 computes the speci�c patterns of each user and establishes
the pro�les vector. The loop on line 13 computes the vector's components for
each user. The nested loops on lines 16 and 18 classify test data and compute
the accuracy rate.

4.3 Comparative performance of H1, H2 and H3

From own patterns of each user we compute the set Pall as the whole set of
own patterns which de�nes the pro�le vector of each user. We use the support
of a pattern as numerical value for each components (cf. section 3.3). Following
Table 3 provides the size of the pro�le vector and the distribution of own patterns
according to size for each heuristic. With 30 users and 10 own patterns per user,
the maximal size of the pro�le is 300.

Number of own patterns |1| |2| |3| |4| |5| |6| |7|
H1 199 18% 31% 26% 16% 7% 2% 0%

H2 167 57% 29% 9% 3% 1% 1% 0%

H3 199 24% 20% 18% 14% 10% 9% 5%

Table 3. Pro�le vector size and the distribution of own patterns according to size.
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Fig. 2. Comparative performance of H1, H2 and H3. These observations are plotted
on an X-Y graph with number of sessions of the anonymous set on the X-axis and
accuracy rate on the Y-axis. Measured values are smoothed on 50 executions.

Figure 2 shows that naive Bayes classi�er is the most e�ective if the group
of test sessions is from 1 to 13 sessions (10 to 130 visited web sites). This result
is in line with the study in [1]. Finally, this graph clearly shows that heuristic
H1 certainly stands out from H2 and H3. So, the best heuristic is to choose
owns patterns amongst closed patterns with the largest tf × idf values. As a
consequence, the majority of patterns are small-sized patterns (two or three
sites) (cf. Table 3). But accuracy rates are much higher.

4.4 Comparative performance with [1]

In [1], the author compares, in particular, two methods of pro�le vector calculus.
In both cases, the own patterns are size 1 and are chosen amongst the most fre-
quent. The �rst method, named support-based pro�ling, uses the corresponding
support pattern as the numerical value for each component of the pro�le vector.
The second method, called lift-based pro�ling, uses the lift measure. In order to
compare the performances of the H1 model with the two models support-based
pro�ling and lift-based pro�ling, we have accurately replicated the experimental
protocol described in [1] on our own data set. The results are given in Table 4.

The data of Table 4 highlight that the H1 heuristic allows rates that are
perceptibly better than those of the two models proposed in [1] in all possible
scenarios. Nevertheless, the Bayes classi�er remains the most e�cient when the
session group is size 1 in compliance with [1]. Figure 3 allows a clearer under-
standing of the moment the Bayes curve crosses the H1 heuristic curve.

6 http://adblock-listefr.com/
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# of users 1 10 20 30

Support 65 89 95 97
2 Lift 67 90 97 98

Charm H1 72 98 99 100

Bayes 85 99 73 61

Support 40 74 83 88
5 Lift 41 78 86 88

Charm H1 49 90 95 98

Bayes 67 96 56 34

Support 27 66 79 80
10 Lift 29 64 77 80

Charm H1 37 83 92 94

Bayes 54 91 51 24

Support 19 55 68 75
20 Lift 21 58 68 74

Charm H1 30 76 86 90

Bayes 43 87 48 19

Support 16 53 64 70
30 Lift 17 54 64 69

Charm H1 26 72 83 89

Bayes 39 83 46 19

Table 4. On left, we �nd the number of users and the selected model. Each column is
de�ned by the number of sessions of the anonymous data set. Sessions are of size 10.
Measured accuracy rate are smoothed on 100 executions. In bold the best values are
presented.
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Fig. 3. Comparative performance of Bayes, support-based pro�ling, lift-based pro�ling
and H1. These observations are plotted on an X-Y graph with number of sessions of
the anonymous set on the X-axis and accuracy rate on the Y-axis. Number of users is
equal to 30. Measured values are smoothed on 50 executions.
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4.5 Comparative performance of distance functions

The last �gure 4 shows the impact of distance function choice on performances
of models.
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Fig. 4. Comparative performance of both H1 with cosine similarity and Euclidean
distance, Bayes and lift-based pro�ling. These observations are plotted on an X-Y graph
with number of sessions of the anonymous set on the X-axis and accuracy rate on the Y-
axis. Number of users is equal to 30. Measured values are smoothed on 100 executions.

Figure 4 illustrates the signi�cance of the distance function concerning the
performance. Indeed, when used with Euclidean distance, the H1 method is a bit
more precise than the lift one (about 3%). However, performances are improved
by using the cosine similarity and their relative ranking is even reversed. H1

method's performance are then better than lift by 10%.

5 Conclusions and future work

In this study, we proposed a learning model for implicit authentication of web
users. We proposed an simple and original algorithm (cf. Algorithm 1) to get a set
of own patterns allowing to characterize each web user. The taken patterns have
di�erent size and qualify as closed patterns from closure system generated by
the set of sessions (cf. Table 3). By reproducing experimental protocol described
in [1], we showed that the performances of our model are signi�cantly better
than some models proposed in the literature (cf. Table 4). We also showed the
key role of the distance function (cf. Figure 4).

This study should be extended in order to improve the obtained results. For
a very small sites �ow, the results of the solution should be better than results
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from Bayes' method. Another way to improve results will be to select other types
of variable and to add them to our current dataset. The selection of data has an
undeniable impact on the results.
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Appendix

Algorithm 2: Experiment procedure

Data:
⋃

i Sui
: all sessions from n users;

X : number of successive executions;
Result: The mean accuracy of select models;

1 begin
2 for (N = {2, 5, 10, 20, 30}) do
3 for (S = {1, 10, 20, 30}) do
4 for (z = 1, . . . ,X) do
5 Select N random users;
6 For each user, select SN = min(|Sui |, i = 1, . . . ,N);

7 Take the 2
3 of the SN sessions from each users to form the

training set;
8 Take the rest of SN sessions to form the validation set;

9 Pk
all ← ∅ (the global pro�le vector for each model k);

10 for each (ui, i = 1, . . . ,N) do
11 Compute the own patterns Pk

ui
(1 ≤ |Pk

ui
| ≤ 10);

12 Pk
all ← Pk

all ∪ Pk
ui
;

13 for each (ui, i = 1, . . . ,N) do
14 Compute the vector V k

ui
with support or lift;

15 Initialize to 0 the confusion matrix Mk of the method k;
16 for each (ui, i = 1, . . . ,N do
17 Compute the test stream Tui (|T | is �xed, T ∈ Tui);
18 while (Tui

6= ∅) do
19 Take SW sessions from Tui to compute V k

T ;

20 ua ← max(simil(V k
ui
,V k

T )) or min(dist(V k
ui
,V k

T ));

21 Mk[ui][ua]←Mk[ui][ua] + 1;

22 Compute the mean accuracy of k from Mk;
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Abstract. Formal Concept Analysis has become a real approach in the
trend Information-Knowledge-Wisdom. It turns around the mining of a
data set to built a concept lattice which provides an strong structure of
the knowledge. Implications play the role of an alternative specification
of this concept lattice and may be managed by means of inference rules.
This syntactic treatment is guided by several properties like directness,
minimality, optimality, etc. In this work, we propose a method to calcu-
late the direct-optimal basis equivalent to a given Implicational System.
Our method deals with unitary and non-unitary implications. Moreover,
it shows a better performance that previous methods in the literature
by means of the use of Simplification Logic and reduction paradigm,
which remains narrow implications in any stage of the process. We have
also developed an empirical study to compare our method with previous
approaches in the literature.

1 Introduction

Formal Concept Analysis (FCA) is a trending upward area which establishes a
proper and fine mixture of formalism, data analysis and knowledge discovering. It
is able to analyze and extract information from a context K, rendering a concept
lattice. Attribute implications [10] represent implicit knowledge between data
and they can be deduced from the concept lattice or using mining techniques
from the context directly. An attribute implication is an expression A → B
where A and B are sets of attributes. A context satisfies A→ B if every object
that has all the attributes in A has also all the attributes in B.

The study of sets of implications that satisfies some criteria is one of the
relevant topics in FCA. An implicational system (IS) of K is defined as a set
Σ of implications of K from which any valid implication for K can be deduced
by means a syntactic treatment of the implications. This symbolic manipulation
introduces the notion of equivalent sets of implications and opens the door to the
definition of several criteria to discriminate good sets of implications according
to these criteria. Thus, the challenges are the definition of an specific notion of IS,
named basis, fulfilling some criteria related with minimality and the introduction
of efficient methods to transform an arbitrary IS into a basis.

c© Karell Bertet, Sebastian Rudolph (Eds.): CLA 2014, pp. 145–157,
ISBN 978–80–8152–159–1, Institute of Computer Science, Pavol Jozef Šafárik
University in Košice, 2014.



For instance, if the criteria is to obtain an IS with minimum cardinal we can
build the so-called Duquenne-Guigues (or stem) basis [11]. Each application may
induces a different criterium. For instance, in [2, 3] some methods to calculate
the direct-optimal basis are introduced, joining minimality and directness in the
same notion of basis. In [8] a method to obtain a basis with minimal size in the
left-hand size of the implications was proposed.

In this paper, we introduce a method to compute the direct-optimal basis.
This kind of basis was introduced in [2,3] and it has two interesting properties: it
has the minimum number of attributes and it provides a framework to efficiently
compute the closure of a set of attributes. The new method introduced in this
paper is strongly based on SL

FD
(Simplification Logic) and they are more efficient

than previous methods appeared in the literature.

In the following, first we establish the background necessary for the under-
standing of the paper (Section 2). In Section 3 SL

FD
is summarized and a motiva-

tion of the simplification paradigm to remove redundant attributes is provided.
Section 4 is focussed on the methods of Bertet et al. to get a direct-optimal
basis. In Section 5 the new method is introduced and a comparison among all
the methods is showed. Some conclusions are presented in Section 6.

2 Preliminaries

We assume well-known the main concepts in FCA [10]. Only the concepts nec-
essaries will be introduced. In Formal Concept Analysis (FCA) the relationship
between a set of objects and a set of attributes are described using a formal
context as follows:

Definition 1. A formal context is a triple K = (G,M, I) where G is a finite set
whose elements are named objects, M is a finite set whose elements are named
attributes and I ⊆ G×M is a binary relation. Thus, (o, a) ∈ I means the object
o has the attribute a.

This paper focuses on the notion of implication, which can be introduced as
follows:

Definition 2. Let K = (G,M, I) be a formal context and A,B ∈ 2M . The
implication A → B holds in K if every object o ∈ G satisfies the following:
(o, a) ∈ I for all a ∈ A implies (o, b) ∈ I for all b ∈ B.

An implication A→ B is said to be unitary if the set B is a singleton.

Implications may be syntactically managed by means of inference systems.
The former axiomatic system was Armstrong’s Axioms [1]. They allows us to
introduce the notion of derivation of an implication from an implicational system,
the semantic entailment and the equivalence between two implicational systems
in the usual way.
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3 Simplification Logic

In [6], Cordero et al. introduced the Simplification Logic, SL
FD

, that is, an equiv-
alent logic to the Armstrong’s Axioms that avoids the use of transitivity and is
guided by the idea of simplifying the set of implications by removing redundant
attributes efficiently. This logic has proved to be useful for automated reasoning
with implications [7, 8, 12,13].

Definition 3 (Language). Given a non-empty finite alphabet S (whose ele-
ments are named attributes and denoted by lowercase letters a, b, c, etc.), the
language of SL

FD
is LS = {A→ B | A,B ⊆ S}.

Sets of formulas (implications) will be named implicational systems (IS). In
order to distinguish between language and metalanguage, inside implications,
AB means A∪B and A-B denotes the set difference ArB. Moreover, when no
confusion arises, we omit the brackets, e.g. abc denotes the set {a, b, c}.
Definition 4 (Semantics). Let K = (G,M, I) be a context and A→ B ∈ LS.
The context K is said to be a model for A → B, denoted K |= A → B, if
A,B ⊆M ⊆ S and A→ B holds in K.

For a context K and an ISΣ, then K |= Σ means K |= A→ B for all A→ B ∈ Σ
and Σ |= A→ B denotes that every model for Σ is also a model for A→ B. If
Σ1 and Σ2 are implicational systems, Σ1 ≡ Σ2 denotes both IS are equivalent
(i.e. K |= Σ1 iff K |= Σ2 for all context K).

Definition 5 (Syntactic derivations). SL
FD

considers reflexivity axioms

[Ref]
B ⊆ A
A→ B

;

and the following inference rules named fragmentation, composition and simpli-
fication respectively.

[Frag]
A→ BC

A→ B
; [Comp]

A→ B, C → D

AC → BD
; [Simp] If A ⊆ C,A ∩ B = ∅, A→ B, C → D

C-B → D-B

Given an IS Σ and a formula A → B, Σ ` A → B denotes that A → B can
be derived from Σ by using the axiomatic system in a standard way. The above
axiomatic system is sound and complete (i.e. Σ |= A→ B iff Σ ` A→ B). The
main advantage of SL

FD
is that inferences rules may be considered equivalence

rules and they are enough to compute all the derivations (see [12] for further
details and proofs).

Theorem 1 (Mora et al. [12]). In SL
FD

logic, the following equivalencies hold:

1. Fragmentation Equivalency [FrEq]: {A→ B} ≡ {A→ B-A}.
2. Composition Equivalency [CoEq]: {A→ B,A→ C} ≡ {A→ BC}.
3. Simplification Equivalency [SiEq]: If A ∩B = ∅ and A ⊆ C then

{A→ B,C → D} ≡ {A→ B,C-B → D-B}
4. Right Simplification Equivalency [rSiEq]: If A∩B = ∅ and A ⊆ C ∪D then

{A→ B,C → D} ≡ {A→ B,C → D-B}
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Note that these equivalencies (reading from left to right) remove redundant
information. SL

FD
was conceived as a simplification framework.

To conclude this section, we introduce the outstanding notion of closure of
a set of attributes, which is strongly related with the syntactic treatment of
implications.

Definition 6. Let Σ ⊆ LS be an IS and X ⊆ S. The closure of X wrt Σ is the
largest subset of S, noted X+

Σ , such that Σ ` X → X+
Σ .

We omit the subindex (i.e. we write X+) when no confusion arise. Given a
context K and an IS Σ satisfying K |= A→ B iff Σ ` A→ B, it is well-known
that the closed sets of attributes wrt Σ are in bijection with the concepts of K.

One of the main topics is the computation of the closure of a set of attributes,
and for this reason, it is necessary to have an efficient method to calculate
closures. We emphasize for this problem, the works of Bertet et al. in [2, 3] and
Cordero et al. in [12].

4 Direct-Optimal basis

The study of sets of implications that satisfies some criteria is one of the most
important topics in FCA. In [3], Bertet and Monjardet present a survey about
implicational systems and basis. They show the equality between five unit basis
originating from different works (minimal functional dependencies in database
theory, knowledge spaces, etc.) and satisfying various properties including the
directness canonical and minimal properties, whence the name canonical direct
basis is given to this basis. The direct-optimal basis belong to these five basis.
In the following, we show only the concepts used in the rest of the paper of this
survey.

Definition 7. An IS Σ is said to be:

– minimal if Σ r {A→ B} 6≡ Σ for all A→ B ∈ Σ.
– minimum if Σ′ ≡ Σ implies |Σ| ≤ |Σ′|, for all IS Σ′.
– optimal if Σ′ ≡ Σ implies ‖Σ‖ ≤ ‖Σ′‖, for all IS Σ′.

where |Σ| is the cardinality of Σ and ‖Σ‖ is its size, ie ‖Σ‖ =
∑

A→B∈Σ
(|A|+|B|).

A minimal set of implications is named a basis, and a minimum basis is then a
basis of least cardinality. Let us now introduce the main property used in this
paper, namely the direct-optimal property.

Definition 8. An IS Σ is said to be direct if, for all X ⊆ S:

X+ = X ∪
⋃
{B | A ⊆ X and A → B ∈ Σ}

Moreover, Σ is said to be direct-optimal if it is direct and, for any direct IS Σ′,
Σ′ ≡ Σ implies ‖Σ‖ ≤ ‖Σ′‖.
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In words, Σ is direct if the computation of the closure of any attribute set wrt Σ
requires only one iteration, that is, a unique traversal of the set of implications.
Obviously, the direct-optimal property is the combination of the directness and
optimality properties. In [2], Bertet and Nebut show that a direct-optimal IS is
unique and can be obtained from any equivalent IS. We address this procedure
in this paper.

As we have said in the preliminaries, one of the most important problems is
how to calculate quickly and easily the closureX+ of any setX because a number
of problems related to an IS Σ can be answered by computing closures. For this
reason, Bertet et al. propose a type of base called direct-optimal basis [2, 3], so
one can compute closures of subsets in only one iteration. Section 4.1. presents
the basis proposed in [2] by Bertet and Nebut where they work with non-unitary
implicational systems (IS). Section 4.2 shows how to obtain a unit direct-optimal
basis [3]. In both sections, we illustrate the algorithms needed to obtain a direct-
optimal basis equivalent to any implicational system.

4.1 Computing Direct-Optimal basis

In this section, the algorithm proposed by Bertet and Nebut in [2] is showed.
The key of the method is the so-called “overlap axiom” that can be directly
proved by using the axiomatic system from Definition 5.

[Overlap] for all A,B,C,D ⊆ S: If B ∩ C 6= ∅, A→ B,C → D

A(C-B)→ D

Then, the direct implicational system generated from an IS Σ is defined as the
smallest IS that contains Σ and is closed for [Overlap].

Definition 9. The direct implicational system Σd generated from Σ is defined
as the smallest IS such that:

1. Σ ⊆ Σd and
2. For all A,B,C,D ⊆ S, if A → B,C → D ∈ Σd and B ∩ C 6= ∅ then

A(C-B)→ D ∈ Σd.

Function Bertet-Nebut-Direct(Σ)

input : An implicational system Σ on S
output: The direct IS Σd on S equivalent to Σ
begin

Σd := Σ
foreach A→ B ∈ Σd do

foreach C → D ∈ Σd do
if B ∩ C 6= ∅ then add A(C-B)→ D to Σd;

return Σd

Theorem 2 (Bertet and Nebut [2]). Let Σ be an implicational system. Then
Σd = Bertet-Nebut-Direct(Σ) is a direct basis.
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Moreover, if an IS Σ is direct but not direct-optimal, then there exists an equiv-
alent IS Σ′ of smaller size which is direct-optimal. The properties that it must
hold are the following:

Theorem 3 (Bertet and Nebut [2]). A direct IS Σ is direct-optimal if and
only if the following properties hold.

Extensiveness: for all A→ B ∈ Σ, A ∩B = ∅.
Isotony: for all A→ B,C → D ∈ Σ, C  A implies B ∩D = ∅.
Premise: if A→ B,A→ B′ ∈ Σ then B = B′.
Not empty conclusion: if A→ B ∈ Σ then B 6= ∅.

Function Bertet-Nebut-Minimize(Σ)

input : An implicational system Σ on S
output: An smaller IS Σm on S equivalent to Σ
begin

Σm := ∅
foreach A→ B ∈ Σ do

B′ := B
foreach C → D ∈ Σ do

if C = A then B′ := B′ ∪D;
if C  A then B′ := B′ rD;

B′ := B′ rA
add A→ B′ to Σm

return Σm

Function Bertet-Nebut-DO computes the direct-optimal basis Σdo generated from
an IS Σ. It first computes Σd using Function Bertet-Nebut-Direct and then
minimizes Σd using Function Bertet-Nebut-Minimize.

Function Bertet-Nebut-DO(Σ)

input : An implicational system Σ on S
output: The direct-optimal IS Σdo on S equivalent to Σ
begin

Σd = Bertet-Nebut-direct(Σ)
Σdo = Bertet-Nebut-Minimize(Σd)
return Σdo

Theorem 4 (Bertet and Nebut [2]). Let Σ be an implicational system. Then
Σdo = Bertet-Nebut-DO(Σ) is the unique direct-optimal implicational system
equivalent to Σ.

4.2 Direct-Optimal basis by means of unit implicational systems

In some areas, the management of formulas is limited to unitary ones. Thus,
the use of Horn Clauses in Logic Programming is widely accepted. Such a lan-
guage restriction allows an improvement in the performance of the methods,
which are more direct and lighter. Nevertheless, the advantages provided by the
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limited languages have a counterpart: a significant growth of the input set. In
this section we are going to present new versions of the definitions and methods
introduced above restricted to Unit Implicational System (UIS), i.e. set of im-
plications with unitary right-hand sides. An UIS is named proper if it does not
contain implications A→ a such that a ∈ A.

In this line, Bertet [4] provided versions for unit implicational systems of
Functions Bertet-Nebut-Direct and Bertet-Nebut-Minimize.

Function Bertet-Unit-Direct(Σ)

input : A proper UIS Σ on S
output: The direct UIS Σd on S equivalent to Σ
begin

Σd := Σ
foreach A→ a ∈ Σd do

foreach Ca→ b ∈ Σd do
if a 6= b and b 6∈ A then add AC → b to Σd;

return Σd

Function Bertet-Unit-Minimize(Σ)

input : A proper UIS Σ on S
output: An smaller UIS Σm on S equivalent to Σ
begin

Σm := Σ
foreach A→ b ∈ Σm do

foreach C → b ∈ Σm do
if A  C then delete C → b from Σm;

return Σm

The above functions was used in [4] to build a method which transforms an
arbitrary UIS into an UIS with the same properties that the direct-optimal basis
for general IS. Since any non-unit IS can be trivially turned into an UIS, we may
encapsulate both functions to provide another method to get a direct-optimal
basis from and arbitrary IS. Thus, the following function incorporates a first
step to convert any IS into its equivalent UIS and concludes with the converse
switch.

Function Bertet-Unit-DO(Σ)

input : An implicational system Σ on S
output: The direct-optimal IS Σdo on S equivalent to Σ
begin

Σu := {A→ b | A→ B ∈ Σ and b ∈ B rA}
Σud := Bertet-Unit-Direct(Σu)
Σudo := Bertet-Unit-Minimize(Σud)
Σdo := {A→ B | B = {b | A→ b ∈ Σ} 6= ∅}
return Σdo
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Theorem 5 (Bertet [4]). Let Σ be an IS. Then Σdo = Bertet-Unit-DO(Σ) is
the unique direct-optimal implicational system equivalent to Σ.

As we have mentioned at the beginning of this subsection, some authors
introduce unitary formulas as a way to provide simpler and more direct methods
having a better performance. Thus, in this case, Bertet-Unit-DO is more efficient
than Bertet-Nebut-DO, as we shall see at the end of the paper in Section 5.1.

5 Computing direct-optimal basis by means of reductions

In this paper, our goal is the integration of the techniques proposed by Bertet
et al. [2–4] and the Simplification Logic proposed by Cordero et al. [6], that
is, the adding of reductions based on the simplification paradigm to build a
direct-optimal basis.

In the same way that Bertet-Unit-DO, we are going to develop a function
to get direct-optimal basis whose first step will be to narrow the implications.
However, the use of unit implications has some disadvantages that we are going to
avoid by considering another kind of formulas. Thus, we are going to use reduced
IS and introduce simplification rules which transform it preserving reduceness.
A signal which indicates it is a good approach is the fact that at the end of
the process, the function renders the direct-optimal basis directly, avoiding the
converse switch.

Definition 10. An IS Σ is reduced if A→ B ∈ Σ implies B 6= ∅ and A∩B = ∅
for all A,B ⊆ S.

Obviously, any IS Σ can be turned into a reduced equivalent one Σr as follows

Σr := {A→ B-A | A→ B ∈ Σ,B 6⊆ A}
The method proposed begins with this transformation and, once the IS is re-
duced, this property is preserved. For this reason, [Overlap] must be substituted.
Thus, we introduce a new inference rule covering directness without losing re-
duceness and, at the same time, it makes progress on the minimization task
following the simplification paradigm. The kernel of the new method is the fol-
lowing inference rule, named strong simplification:

[sSimp] If B ∩ C 6= ∅ and D 6⊆ A ∪B,
A→ B,C → D

A(C-B)→ D-(AB)

Regardless the conditions, the inference rule always holds. Nevertheless, the con-
ditions ensure a precise application of the rule in those cases where it is necessary.

Definition 11. Given a reduced IS Σ, the direct-reduced implicational system
Σdr generated from Σ is defined as the smallest IS such that

1. Σ ⊆ Σdr and
2. For all A,B,C,D ⊆ S, if A→ B,C → D ∈ Σdr, B ∩C 6= ∅ and D 6⊆ A∪B

then AC-B → D-(AB) ∈ Σdr
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Theorem 6. Given a reduced IS Σ, then Σdr =Direct-Reduced(Σ) is a direct
and reduced IS.

Function Direct-Reduced(Σ)

input : A reduced implicational system Σ on S
output: The direct-reduced IS Σdr on S
begin

foreach A → B ∈ Σdr and C → D ∈ Σdr do
if B ∩ C 6= ∅ 6= D r (A ∪B) then add AC-B → D-(AB) to Σdr;

return Σdr

Theorem 1 provides four equivalencies which allow to remove redundant infor-
mation when they are read from left to right. An implicational system in which
these equivalences are used to remove redundant information is going to be
named simplified implicational system.

Definition 12. A reduced IS Σ is simplified if the following conditions hold:
for all A,B,C,D ⊆ S,

1. A→ B, A→ C ∈ Σ implies B = C.
2. A→ B, C → D ∈ Σ and A  C imply C ∩B = ∅ = D ∩B.

Then, Function RD-Simplify turns any direct-reduced IS into a direct-reduced-
simplified equivalent one by systematically applying the equivalences provided
in Theorem 1.

Function RD-Simplify(Σ)

input : A direct-reduced implicational system Σ on S
output: The direct-reduced-simplified IS Σdrs on S equivalent to Σ
begin

Σdrs := ∅
foreach A → B ∈ Σ do

foreach C → D ∈ Σ do
if C = A then B := B ∪D;
if C  A then B := B rD;

if B 6= ∅ then add A → B to Σdrs;

return Σdrs

Function doSimp(Σ)

input : An implicational system Σ on S
output: The direct-optimal IS Σdo on S
begin

Σr := {A→ B-A | A→ B ∈ Σ,B 6⊆ A}
Σdr := Direct-Reduced(Σr)
Σdo := RD-Simplify(Σdr)
return Σdo
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Theorem 7. Let Σ be an implicational system on S. Then, Σdo = doSimp(Σ)
is the direct-optimal basis equivalent to Σ.

Note that, unlike Bertet-Unit-DO where a final step was needed to revert the
effects of the first transformation, doSimp do not need to revert the first step. We
conclude this section with an experiment which illustrates the advantages of the
new method.

5.1 Empirical results

Logic programming has been used as a natural framework in the areas in which
it is neccessary to develop automatic deduction methods. The Prolog prototypes
provides a declarative and pedagogical point of departure and illustrates the
behavior of new techniques in a very fast and easy way.

Some authors have explored the use of Logic Programming in the framework
of Formal Concept Analysis. Even, in [5] the authors consider the framework
of FCA and its implementation in logic programming as a previous step to
achieve the first order logic FCA theory. In Eden et al. [9], the authors present
a PROLOG-based prototype tool and show how the tool can utilize formulas to
locate pattern instances.

In a first step, the methods proposed in this paper have been developed in
a Logic Programming language (Prolog) that is a well-known tool to develop
fast prototypes. In our case, the implementation in Prolog is close because the
method proposed in this paper is based on logic.

The methods of Bertet et al. [2,3] and our doSimp method have been imple-
mented in Swi-Prolog.1 Since there does not exist a benchmark for implications
in this experiment, we have collected some sets of implications from the litera-
ture, searching papers and books with works about algorithms for implications,
functional dependencies and minimal keys. Now, we are going to show the results
of the execution of a first Prolog prototype of Bertet et al. for UIS [3], Bertet et
al. for IS [2] and the new doSimp (proposed in this paper) methods.

The following table and figures summarize the results obtained. We show in
the columns the results of Prolog: Lips (logical inferences per second lips - used
to describe the performance of a logical reasoning system), Time (execution time
in seconds), and Comp (the number of couple of implications in which a rule is
applied). Areas in Figure 2 show the percentages of each algorithm with respect
the number of comparisons.

1 Available at http://www.lcc.uma.es/~enciso/doSimp.zip
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Lips/Time/Comp. Bertet-Nebut-DO Bertet-Unit-DO Direct-Reduced

Ex.1 5297080 1247 1978 116905 0.019 36 4281 0.001 12
Ex.2 2395 0.003 23 923 0 3 606 0 2
Ex.3 2183 0 15 1440 0 4 1122 0 4
Ex.a 83403 0.019 297 44109 0.007 33 3048 0.001 4

Ex.a3red 27613 0.005 100 16938 0.003 20 3698 0.001 15
Ex.derivation5 10302 0.002 120 3522 0.001 8 1782 0.001 12
Ex.Olomouc 15399581 4528 4337 1526818 0.331 180 15568 0.003 72
Ex.Ganter 116514 0.025 230 72153 0.16 36 3756 0.001 12
Ex.CLA14 102971 0.022 204 7449 0.001 12 704 0 3
Ex.Saedian1 18754 0.004 97 10349 0.002 14 4064 0.001 16
Ex.Saedian2 19452 0.004 160 10549 0.002 13 2619 0.001 13
EX.Saedian3 5753962 1262 1986 166566 0.028 67 24643 0.005 55
Ex.Wastl10 1242 0 18 381 0 1 327 0 1
Ex.Wastl13 10543 0.002 86 4674 0 10 1029 0 5
Example1 5594556921 7008.890 134175 2662181973 1351.950 5389 1199498 0.197 1103

IS Bertet−Nebut UIS Bertet doSimp
Lips - logical inferences 374, 760, 194.4 177, 610, 983.3 84, 449.66667
Time of execution (seconds) 467, 728.5 90, 130.03693 0.014
Number of comparisons 9588.4 388.4 88.6

Fig. 1. Summary of the experiment (average)
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Fig. 2. Results: Comparisons

6 Conclusion

In this work, we have presented another algorithm to calculate the direct-optimal
basis in a further way, in the most of the cases, than the algorithms which exist in
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the literature. It is shown with a test that we have realised by running different
examples with the methods of Bertet et al. for UIS [3], Bertet et al. for IS [2]
and the new doSimp.

Our aim is to reduce the cost of the algorithm by using the Simplification
Logic as a useful tool to work with implications. By the time, we have improved
the algorithms that existed but we are going to go on working in that way to
try to cut down the cost of our method.

The perspectives we have are improvements by pretreatments: reduction,
canonical basis, etc in order to reach our main objective which would be to
directly compute the direct-optimal basis without extra implication generation.
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Abstract. We apply recent results on the construction of suitable or-
derings for the existence of right adjoint to the analysis of the following
problem: given a preference ordering on the set of attributes of a given
context, we seek an induced preference among the objects which is com-
patible with the information provided by the context.

1 Introduction

The mathematical study of preferences started almost one century ago with the
works of Frisch, who was the first to write down in 1926 a mathematical model
about preference relations. On the other hand, the study of adjoints was initiated
in the mid of past century, with works by Ore in 1944 (in the framework of lattices
and Galois connections) and Kan in 1958 (in the framework of category theory
and adjunctions). The most recent of the three theories considered in this work
is that of Formal Concept Analysis (FCA), which was initiated in the early 1980s
by Ganter and Wille, as a kind of applied lattice theory.

Nowadays FCA has become an important research topic in which a, still
growing, pure mathematical machinery has expanded to cover a big range of
applications. A number of results are published yearly on very diverse topics
such as data mining, semantic web, chemistry, biology or even linguistics.

The first basic notion of FCA is that of a formal context, which can be
seen as a triple consisting of an initial set of formal objects B, a set of formal
attributes A, and an incidence relation I ⊆ B × A indicating which object has
which attribute. Every context induces a lattice of formal concepts, which are
pairs of subsets of objects and attributes, respectively called extent and intent,
where the extent of a concept contains all the objects shared by the attributes
from its intent and vice versa.

Given a preference ordering among the attributes of a context, our contribu-
tion in this work focuses on obtaining an induced ordering on the set of objects
which, in some sense, is compatible with the context.

After browsing the literature, we have found just a few papers dealing simul-
taneously with FCA and preferences, but their focus and scope are substantially
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different to ours. For instance, Obiedkov [11] considered some types of preference
grounded on preference logics, proposed their interpretation in terms of formal
concept analysis, and provided inference systems for them, studying as well their
relation to implications. Later, in [12], he presented a context-based semantics
for parameterized ceteris paribus preferences over subsets of attributes (pref-
erences which are only required to hold when the alternatives being compared
agree on a specified subset of attributes).

Other approaches to preference handling are related to the development of
recommender systems. For instance, [8] proposes a novel recommendation model
based on the synergistic use of knowledge from a repository which includes the
users behavior and items properties. The candidate recommendation set is con-
structed by using FCA and extended inference rules.

Finally, another set of references deal with extensions of FCA, either to the
fuzzy or multi-adjoint case, or to the rough case. For instance, in [2] an approach
can be found in which, based on transaction cost analysis, the authors explore
the customers’ loyalty to either the financial companies or the company financial
agents with whom they have established relationship. In a pre-processing stage,
factor analysis is used to choose variables, and rough set theory to construct the
decision rules; FCA is applied in the post-processing stage from these suitable
rules to explore the attribute relationship and the most important factors af-
fecting the preference of customers for deciding whether to choose companies or
agents.

Glodeanu has recently proposed in [6] a new method for modelling users’
preferences on attributes that contain more than one trait. The modelling of
preferences is done within the framework of Formal Fuzzy Concept Analysis,
specifically using hedges to decrease the size of the resulting concept lattice as
presented in [1].

An alternative generalization which, among other features, allows for specify-
ing preferences in an easy way, is that of multi-adjoint FCA [9,10]. The main idea
underlying this approach is to allow to use several adjoint pairs in the definition
of the fuzzy concept-forming operators. Should one be interested in certain sub-
set(s) of attributes (or objects), the only required setting is to declare a specific
adjoint pair to be used in the computation with values within each subset of
preferred items.

The combination of the two last approaches, namely, fuzzy FCA with hedges
and the multi-adjoint approach have been recently studied in [7], providing new
means to decrease the size of the resulting concept lattices.

This work can be seen as a position paper towards the combination of recent
results on the existence of right adjoint for a mapping f : 〈X,≤X〉 → Y from a
partially ordered set X to an unstructured set Y , with Formal Concept Analysis,
and with the generation of preference orderings.

The structure of this work is the following: in Section 2, the preliminary
results related to attribute preferences and the characterization of existence of
right adjoint to a mapping from a poset to an unstructured codomain are pre-
sented; then, in Section 3 the two approaches above are merged together in order

158 Inma P. Cabrera, Manuel Ojeda-Aciego and Jozef Pócs



to produce a method to induce an ordering among the objects in terms of a given
preference ordering on attributes and a formal context.

2 Preliminaries

2.1 Preference relations and lectic order on the powerset

We recall the definition of a (total) preference ordering and describe an induced
ordering on the corresponding powerset.

In the general approach to preferences, a preference relation on a nonempty
set A is said to be a binary relation � ⊆ A×A which is reflexive (∀a ∈ A, a � a)
and total (∀a, b ∈ A, (a � b) ∨ (b � a)).

In this paper, we will consider a simpler notion, in which a preference rela-
tion is modeled by a total ordering. Formally, by a total preference relation we
understand any total ordering of the set A, i.e., a binary relation � ⊆ A × A
such that � is total, reflexive, antisymmetric (∀a, b ∈ A, a � b and b � a implies
a = b), and transitive (∀a, b, c ∈ A, a � b and b � c implies a � c).

Any total preference relation on a set A induces a total ordering on the
powerset 2A in a natural way.

Definition 1. Let 〈A,�〉 be a nonempty set with a total preference relation. A
subset X is said to be lectically smaller than a subset Y , denoted X <lec Y , if

max
(
(X r Y ) ∪ (Y rX)

)
∈ Y.

If X <lec Y or X = Y we will write X ≤lec Y .

It is not difficult to show that the set 2A with the lectic order forms a totally
ordered set.

2.2 Building right adjoints

We assume basic knowledge of the properties and constructions related to par-
tially ordered sets.

As we are including the necessary definitions for the development of the
construction of adjunctions, we state below the notion of adjunction we will be
working with.

Definition 2. Let A = 〈A,≤A〉 and B = 〈B,≤B〉 be posets, f : A → B and
g : B → A be two mappings. The pair (f, g) is said to be an adjunction between
A and B, denoted by (f, g) : A� B, whenever for all a ∈ A and b ∈ B we have

f(a) ≤B b if and only if a ≤A g(b).

The mapping f is called left adjoint and g is called right adjoint.
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Given a mapping from a poset 〈A,≤A〉 to an unstructured set B, the nec-
essary and sufficient conditions for f to have a right adjoint were given in [5];
the idea was to build it gradually, in terms of the canonical decomposition of
f : A→ B through Af , the quotient set3 of A wrt the kernel relation ≡f , defined
as a ≡f b if and only if f(a) = f(b):

A B

Af f(A)

f

π

ϕ

i

where mapping π is the canonical projection onto the quotient set Af , defined
by π(a) = [a]f , ϕ is the canonical isomorphism of the quotient and the image,
defined by ϕ([a]f ) = f(a), and i is the inclusion of the image into the codomain.

The obtained characterization is recalled in the theorem below.

Theorem 1. Given a poset A = 〈A,≤A〉 and a mapping f : A → B, let ≡f be
the kernel relation. Then, there exists a poset structure on B, say B = 〈B,≤B〉,
and a mapping g : B → A such that (f, g) : A� B if and only if

1. There exists max([a]f ) for all a ∈ A.
2. For all a1, a2 ∈ A, a1 ≤A a2 implies max([a1]f ) ≤A max([a2]f ).

If the conditions hold, a suitable ordering on the image of f (that can also
be extended to B) can be defined as follows:

b1 ≤B b2 if and only if

there exist a1 ∈ f−1(b1), a2 ∈ f−1(b2)

such that max([a1]f ) ≤A max([a2]f ).

It is worth to notice that the theorem above can be easily adapted to char-
acterize existence of Galois connections.

3 Inducing preferences

Given the results introduced in the previous section, here we will merge them so
that, given a preference relation on the set of attributes A, an induced ordering
is obtained on the set of objects B.

In order to simplify the presentation and minimize technicalities, we will
consider a crisp context C = (B,A, I) and a total preference ordering on the set
of attributes, say 〈A,�〉.
3 The equivalence class of a under the kernel relation ≡f will be denoted as [a]f .
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The general idea can be depicted as the diagram below

〈A,�〉 B

〈2A,≤lec〉 2B

g

f

o

each of the three stages is explained as follows:

1. To begin with, the preference on attributes allows for generating4 the corre-
sponding lectic order on 〈2A,≤lec〉.

2. On this lattice, the usual concept-forming operator f can be defined, see [4],
from 〈2A,≤lec〉 to the (unstructured) powerset of objects of B. Namely, given
A ∈ 2A we define

f(A) = {b ∈ B | (b, a) ∈ I for all a ∈ A}.

Now, under suitable conditions as stated in [5], there exists an ordering on 2B

such that a right adjoint for f exists.
3. Finally, this ordering is projected down to B to obtain an induced ordering

among all the objects.

Summarizing, given a preference ordering of the set of attributes 〈A,�〉 and
a context, an induced ordering on the set of objects B is obtained, which is
compatible with the context.

It is worth to note that, by considering the inclusion ordering on 2A, the in-
clusion ordering on 2B and the (other) standard concept-forming operator forms
a Galois connection, hence the inverse inclusion ordering leads to an adjunc-
tion. This means that the proposed approach, in a certain sense, generalizes the
standard concept-forming approach.

Some illustrative examples

To begin with, Theorem 1 characterizes when an ordering can be induced in the
codomain B so that a right adjoint to a given mapping f : 〈A,≤A〉 → B exists.
It is not difficult to find examples in which that situation does not hold.

Example 1. Consider the context C = ({o1, o2, o3}, {a1, a2}, I), where the inci-
dence relation I is defined as in the left of Figure 1. In addition, consider that
attribute a1 is more preferred than a2 (which we denote a1 � a2).

For this context it is clear that Property 2 of Theorem 1 does not hold in
general. Specifically, if we consider (singleton) sets A1 = {a1} and A2 = {a2},
then we have A2 ≤lec A1 but, clearly, max[A2]f 6≤lec max[A1]f , i.e. A′′2 6≤lec A′′1 ,
since A′′2 = {a1, a2}, whereas A′′1 = {a1}.5
4 Hence the g, but notice that this is just a notation, not an actual mapping from A

to 2A.
5 See Section 3.1.
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a1 a2

o1 ×
o2 ×
o3 × ×

a1 a2

o1 ×
o2 ×
o3 × ×

Fig. 1.

Example 2. Consider an alternative incidence relation defined as in the right of
Figure 1. Again, consider that attribute a1 is more preferred than a2.

For this alternative context, the previous problem does not arise, since A′′2 =
{a2} and A′′1 = {a1}. Therefore, an ordering on 2B can be given which, when
projected on the set of objects B, leads to o1 ≤ o2 ≤ o3.

The obtained result is compatible with the information given by the incidence
relation, in that o3 has more preferred attributes than o2 and so on. Anyway,
the existence of situations in which it is not possible to induce an ordering on B
leads to the more general problem of studying conditions on the context which
guarantee its existence.

To begin with, property 1 automatically holds in our approach; the details
are given below.

3.1 Checking Property 1

Property 1, i.e. max([A]f ) exists for all A, always holds in this framework due
to the particular definition of f as the standard concept-forming operator.

In effect, given A ∈ 2A, the equivalence class [A]f consists of sets of attributes
whose image coincides with that of A, this is independent from the particular
ordering chosen in 2A.

We know that, under the inclusion ordering, the closure of A, denoted A′′,
is the maximum of [A]f : i.e. Ai ⊆ A′′ for all Ai ∈ [A]f . Furthermore, as the
inclusion ordering implies lectic ordering we have that Ai ≤lec A′′ for all Ai ∈
[A]f , which states that A′′ is also the maximum of [A]f in the chain 〈2A,≤lec〉.

3.2 Checking Property 2 (a first approach to its complexity)

As shown in the previous examples, property 2 does not always hold.
A first naive step would be simply checking Property 2 in all the pairs of

subsets A1 ≤lec A2. Fortunately, not all of them have to be checked since the
lectic ordering contains the inclusion ordering and, for this ordering the property
holds (this is just a consequence of the fact that the usual concept-forming
operators form a Galois connection), but there are other possibilities to be taken
into account, which are pairs of sets of attributes satisfying A1 ≤lec A2 but
A1 6⊆ A2.

Specifically, in order to study the complexity of checking property 2 (by brute
force) we have firstly to solve the following
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Problem: Given an ordered set A = {a1, . . . , an} with n elements, we
want to count the pairs of subsets A1 and A2 such that A1 is lectically
less than A2 wrt the ordering given by the subscripts of the elements
in A, but is NOT included in it.

because those are the cases in which the property is not known to hold and,
hence, are called problematic pairs.

For the computation, we will interpret a subset as a chain [d1, . . . , dn] of n
digits, indicating membership or not to the subset.

The key idea for counting the number of problematic pairs is related to two
important places in the chain, for which we introduce a special notation:

1. Digit d` represents the first attribute a` which is in A2 but not in A1 (the `
should recall the first `ectic discrepancy).

2. Digit di represents the first attribute ai which is in A1 but not in A2, that
is, the first discrepancy wrt the inclusion ordering.

It is obvious that, in any given pair of subsets, d` is more preferred, i.e. occurs
before, than di.

Now, we can state that every attribute more preferred than ai, except a`,
either belongs to both sets or does not belong to any of them; so in every such
position only two possibilities arise (either two 1s or two 0s), this means that a
factor 2 is associated to any such digit. In addition, there is no restriction for
attributes less preferred than ai, that is, in every such position four possibilities
can occur, and this means that a factor 4 is associated to any such digit.

In order to see the general pattern of possible cases, let us consider a set
with four attributes, so n = 4. There are three possible positions for di, namely,
second, third and fourth, which are handled separately.

i-discrepancy in 4th digit In this case, d` can be in any of the three first
places, and the remaining two positions should have coincident values. Then,
there are 3 · 22 possibilities.

i-discrepancy in 3th digit Now, there are only two possible positions for d`,
and the remaining one should have coincident values (so two possibilities).
In the last digit there is no restriction (4 possibilities). All in all, there are
2 · 21 · 4 cases.

i-discrepancy in 2nd digit Then d` should be the first one. There are two
digits with no restriction, so 42 cases.

Summarizing, we have 3 · 22 · 40 + 3 · 21 · 41 + 1 · 20 · 42 possibilities.

The previous example shows a clear pattern by which the number of prob-
lematic cases for n attributes is given by the following expression

(n− 1) · 2n−2 · 40 + (n− 2) · 2n−3 · 41 + · · ·+ 2 · 21 · 4n−3 + 1 · 20 · 4n−2

or, in compressed form as

n−1∑

k=1

(n− k)2n+k−3.
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This sum can be expressed in closed form as follows

n−1∑

k=1

(n− k)2n+k−3 = 2n−3
n−1∑

k=1

(n− k)2k

= 2n−3
(
n−1∑

k=1

n2k −
n−1∑

k=1

k2k

)

= 2n−3
(
n
n−1∑

k=1

2k −
n−1∑

k=1

k2k

)

... sums of (arithmetic-)geometric progressions

= 22n−2 − n2n−2 − 2n−2

It is clear that, as there are 22n possible pairs of subsets, the ratio between
the number of problematic pairs and the number of possible pairs tends asymp-
totically to 1/4.

4 Seeking sufficient conditions on the context

We have just seen that checking Property 2 by brute force on every problematic
pair has exponential complexity on the size of the set of attributes, therefore we
introduce in this section some possible ways to establish sufficient conditions on
the context so that the proposed approach can be applied to define an induced
ordering on the set of objects.

To begin with, the following result states a partial sufficient condition.

Proposition 1. Consider a context such that the following conditions hold for
all pair of attributes satisfying b ≺ a (a is more preferred than b):

1. There exists an object in which b holds but a does not.
2. Whenever b implies6 a less preferred attribute, say c, then a implies c as

well.

Then property 2 holds for all the singleton sets of attributes.

Proof. Consider ak ≺ aj , and the singletons Ak = {ak} and Aj = {aj}. It is
clear that Ak ≤lec Aj , therefore we have to show that A′′k ≤lec A′′j .

By contradiction, assume that A′′k 6≤lec A′′j . This means that the most pre-
ferred discrepant attribute between both closures, say ad, is in A′′k and not in
A′′j , i.e. ad ∈ A′′k rA′′j .

We will reason by cases, according to the relative position of ak and ad wrt
the preference ordering.

6 As the usual implication of attributes.
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– It cannot occur that attribute ad is more preferred than ak, since in that case
ad should hold in every object satisfying ak, since ad ∈ A′′krA′′j , contradicting
the first hypothesis.

– Furthermore, it cannot be the case that ad ≺ ak either. We have once again
that ad (now less preferred than ak) holds in very object satisfying ak. Now,
the second hypothesis states that ad is also implied by aj and, that is ad ∈ A′′j
which contradicts that ad ∈ A′′k rA′′j .

– Finally, the case ad = ak means that aj is not a discrepant attribute; now,
as it is the case that aj ∈ A′′j , it should happen that aj ∈ A′′k and, hence, ak
should imply aj , violating hypothesis 1.

ut
Obviously, this proposition alone does not imply the fulfillment of property 2,

but gives a clue of a general sufficient condition, albeit too strong, which is stated
below:

Proposition 2. Consider a context with a preference ordering such that, for all
subset of attributes A, satisfying the following properties:

1. There exists an object failing to satisfy the most preferred attribute in A, but
satisfying all the other attributes.

2. Whenever A implies an attribute, say ad, then any other subset of attributes,
more preferred in the lectic order, implies ad as well.

Then property 2 holds.

It is worth to introduce some comments on the conditions used in the previous
proposition.

To begin with, the first condition makes sense: as we wish to establish an
ordering on the objects, according to a prescribed order of preference among the
attributes and information in the context, the not-so-trivial cases are precisely
those containing objects failing to satisfy most preferred attributes, but satisfy-
ing several less preferred ones. Otherwise, the user should not need any formal
tool to choose according to his/her preferences.

Specifically, consider a context containing lines as in Figure 2, again assuming
a1 more preferred than a2 more preferred than a3. In such a case, it might not
be clear whether to choose car1 because it satisfies the most preferred attribute
(being cheap, but without safety measures like ABS or airbag, and without the
comfort of an air-conditioned system) or car2, which is not cheap but includes
safety and comfort measures.

The second hypothesis is reasonable as well, since it somehow implies the
coherence of the preference ordering between attributes. It is worth to remark
that it is not just a technical requirement which can be avoided by considering
contexts without any implied attributes because in practical situations it can
make sense to admit certain implications. For instance, back to the previous
example of cars and its attributes, it might be convenient consider simultaneously
the attributes Automatic Climate Control (ACC) and Air Conditioned (A/C)
since, although ACC always implies A/C, it could be the case that a user would
be satisfied just with a basic A/C system.
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Cheap ABS Airbag A/C ACC

...

car1 ×
...

car2 × × ×
...

Fig. 2.

5 Conclusions and future work

In this paper, we have sketched a method for inducing an ordering in the set
of objects from a preference ordering in the set of attributes which is based
on the machinery of FCA and recent results concerning the existence of right
adjoints to a given mapping. Some sufficient conditions have been given in order
to guarantee that the proposed framework can be applied to a given context.

The problem has been stated in its simplest version, with a specification of
preferences as a total ordering, and considering a crisp context. We have just
started to scratch the surface of the problem and, to be honest, there is much
more work to be done than contributed results to the topic presented in this
paper.

We enumerate below a number of possible alternatives to be developed in
the short and mid term:

1. Obtain weaker sufficient conditions for property 2 to hold and, if possible,
characterize those contexts for which property 2 automatically holds. For this
characterisation it seems crucial to obtain information about the greatest
discrepant attribute of two given closed sets of attributes.

2. Consider general preference relations (reflexive and total) or even other ap-
proaches to the notion of preference, see [3].

3. Consider preference relations which allow to assign weights to each attribute,
so that the comparison between objects satisfying different sets of attributes
can be made more in consonance with the user.

4. The previous item naturally leads to the consideration of one-sided concept
lattices, in which it is possible to specify that objects satisfy attributes only
to a certain degree.
. . .
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Abstract. Concept lattices are very useful for the task of knowledge discovery in
databases. However, the overwhelming number of drawn formal concepts was al-
ways an actual hamper towards their effective use. In the aim of filtering out, such
endless lists of formal concepts, the stability metric is the most worth of mention
one. In this respect, the stability computation of large concepts has been shown
to be infeasible due to exponential number of object sets to be processed. The lit-
erature only witnesses approaches for the stability computation that heavily rely
on the existence of the Galois lattice. In this paper, we introduce a new efficient
algorithm, called DFSP, for computing the stability of a set of formal concepts
without having at hand the underlying partial relation. The main thrust of the
introduced algorithm stands in the smart detection of non generators and their
pruning owe to their fulfilment of monotony property within a given equivalence
class. To the best of our knowledge, DFSP is the first algorithm that tackled such
tough issue. Carried out experiments showed that DFSP efficiently computes the
scalability of very large formal concepts extracted from benchmark datasets of
the Data Mining field.
Keywords: Formal concept analysis, stability, generators,pruning, tidset.

1 Introduction and motivations

Concept lattices are very useful for the task of knowledge discovery in databases. How-
ever, this field is hampered by the overwhelming size of formal concept lists drawn from
even moderately sized contexts. In this respect, the stability index has been shown to be
efficient for throwing away ”bad” concepts. Nevertheless, the computation of such sta-
bility index is very consuming and has been shown to be NP-Complete task. Thus, the
FCA community paid much attention to the computation of exact and/or approximative
of the stability as could witness the recent publications on such issue [1, 2]. At a glance,
the recent proposals of approximations of stability computations unveil the actual com-
plexity of such a task. Roughly speaking, the computation of the stability of a concept
C = (A, B) comes back to the exploration to a huge space made of the power set of the
extension part. In this space, we have to record all the elements in snugness connection
with the corresponding part. Clearly, even for an extent with dozens of objects, it does
not exit a primitive type for storing the value of a stability1.

At a glance, the related work flags out approaches that compute the stability of a set
of formal concepts organized through the Galois lattice. Doing so, they start computing

1 The GMP library, https://gmplib.org/, could be of use, in such a case, to store huge values.
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the stability of smallest formal concept (in extent’s size terms) and exploit this result
for the subsumer concepts until reaching the top formal concept.

In this paper, we introduce a new algorithm, called DFSP, that aims to an efficient
straightforward computation of a set of formal concepts. The main thrust of the intro-
duced algorithm stands in the smart detection of non generators and their pruning owe
to their fulfilment of monotony property within a given equivalence class. Indeed, we
introduce the notion of saturation of non-generators through the detection of the max-
imal set of a non-generators. Given that each subset of a non generator is also a non
generator, the DFSP algorithms sweeps the search space in depth first manner and only
stresses on the generators by avoid squandering its efforts on useless non-generators
subspaces.

The carried out experiments highlight that DFSP easily handles formal concepts
having thousands of objects in their extent part. To the best of our knowledge, DFSP is
the first algorithm that handles efficiently and straightforwardly formal concepts for the
stability computation.

The remainder of the paper is organized as follows: The next section recalls key
notions used throughout this paper as well as the pioneering approaches of the related
work. Then, we present in section 3 our algorithm for computing the stability of a set
of formal concepts, called DFSP. Section 4 describes the experimental study and the
results we obtained. Section 5 concludes the paper and points out our future work.

2 Stability computation: Scrutiny of the Related work

Before scrutinizing the related work that paid attention the stability computation, we
provide a simplified definition of some concepts used throughout in this paper, by sup-
posing that the the reader is familiar with FCA basic settings.

Definition 1. (MONOTONIC / ANTI-MONOTONIC CONSTRAINT) Let Q be a con-
straint,

• Q is anti-monotonic if ∀I ⊆ I, ∀I1 ⊆ I : I fulfils Q ⇒ I1 fulfils Q.
• Q is monotonic if ∀ I ⊆ I, ∀ I1 ⊇ I: I fulfils Q ⇒ I1 fulfils Q.

Definition 2. (EQUIVALENCE CLASS) An equivalence class is a set of itemsets with
same closure (and same image). Let C=(A, B) be a formal concept, for any subset
X ⊆ O, A = X ′′ is the largest tidset w.r.t. set inclusion in its equivalence class.
Precisely, A ⊆ O is closed iff ∄X such as X ⊂ A with X ′ = A′; X ⊆ O is a
generator iff ∄U ⊂ X with U ′ = X ′. GA = {X ⊆ A|X ′ = B} is the set of all
generators in the equivalence class.

Definition 3. (EXTENT FULL SPACE) Let K = (O, I, R) be a formal context, B(K)
its concept lattice and C = (A, B) a concept from B(K) where |A| = n. P(A) =
{X |X ⊆ A} is the set of all A’s subsets and P(A) = 2|A|.

Stability has been introduced probably for the first time by Kuznetsov [3] and later
revisited in [4, 5]. This measure seems to be the most widely used around the FCA
community and is applied in numerous applications [6], e.g. biclustering, detection of
scientific subcommunities, to cite but a few. Formally, it is defined as follows:
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Definition 4. (STABILITY) The stability index of a given concept describes the pro-
portion of subsets of its objects whose closure is equal to the intent of this concept.
This metric reflects the dependency of the intent on particular objects of the extent [4].
Let K = (O, I, R) be a formal context and C = (A, B) a formal concept of K. The
stability index, σ, of C is defined as follows:

σ(A, B) =
|{C ⊆ A|C′ = B}|

2|A| =
|GA|
2|A| (1)

The authors of [7] highlighted that a concept that covers fewer objects is normally less
stable than do a concept covering more objects.

However, the main hamper towards its intensive use mainly for large datasets, is the
complexity of its computation. In fact, it’s shown to be a #P-complete problem [3, 5]. In
order to compute it for large concept lattices, several works proposed to use estimates
and approximations however others tried to find an exact solution using the concept
lattice in computing stability.

Roth et al. [8] paid attention to concept’s stability as well as other metrics to reduce
the size of large concept lattice. They proposed an exact and polynomial algorithm
COMPUTESTABILITY that computes the stability indices for every concept of the lat-
tice using the covering graph of a concept lattice. The algorithm traverses the covering
graph from the bottom concept upwards. A concept is processed only after the stability
indices of all its sub-concepts have been computed. The main drawback of this algo-
rithm that it is essentially quadratic in the number of concepts in the lattice, which may
be prohibitively expensive for large lattices. In addition, this algorithm inputs a Galois
lattice and such a requirement could not be easily available for very large datasets may
be impractical.

Kuznetsov [5] introduced a polynomial algorithm for computing stability using var-
ious methods of estimating scientific hypotheses. This algorithm is considered as op-
timal in the sense that its time complexity is linear and polynomial in the size of the
context. Nevertheless, this approach only gives an approximate assessment about the
stability index and could not be efficient in exact studies.

Later, Jay et al. [9] applied the concept of stability and iceberg lattices in social
network analysis. They used the stability metric to reduce the complexity of the lattice,
by filtering out all unstable concepts w.r.t. a given threshold. In this respect, the authors
introduced a new definition of the stability using the equivalence classes. Given a con-
cept (A, B), the stability metric measures the number of elements of G that are in the
same equivalence class of A where an equivalence class is defined as follows:

Property 1. Using Definition 4, the authors proved the following property:

σ(A, B) = 1 −
∑

X⊂A,X=X′′
σ(X, X ′)2|X|−|A|

So, once the lattice concept is given, it is possible to compute quickly the stability of
concepts using an ascending algorithm.

Roth et al. [10] proposed an algorithm, based on a polynomial heuristic for comput-
ing stability index for all concepts using the concept lattice. This algorithm was quite
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good in practical applications so far, but in the worst case its complexity is quadratic in
the size of the lattice.

Later, Babin and Kuznetsov [1] also suggested a method for approximating con-
cept stability based on a Monte Carlo approach. Their approximate algorithm can run
in reasonable time. In their approach, they specified a new parameter called stability
threshold to reduce the number of the concepts. The results show that the approxima-
tions are better when stability threshold is low.

Recently, Buzmakov et al. [2] introduced an efficient way for finding a ”good” as-
sessment of concept stability. The authors combined the bounding method [9] as well
as the Monte Carlo method [1] in a complementary way. Once the stability bounds are
computed in the lattice, the method that should be applied is chosen according to the
most tight of each them.

The main criticism that can be made about the literature’s approaches stands in
the fact that they are unable to compute stability of concepts in absence of order rela-
tion. In fact, the lattice structure is a sine qua non condition to proceed with the com-
putation. Beside that, such computation of concept’s stability requires visiting all its
sub-concepts, i.e., direct and non direct ones. Clearly, doing so is very greedy in com-
putations and memory usage. Nevertheless, building concept lattice is very far from
being an easy task [11] and sometimes impossible. Furthermore, the cost of generating
a lattice concept remains high as far as the context is composed of a large number of
objects [12] and/or a dense incidence relation.

Thus, we introduce a new efficient algorithm, called DFSP that allows computing
the stability for a given set of concepts. The latter doesn’t need any partial relation be-
tween the concepts. The main thrust of the introduced algorithm stands in the smart
detection of non generators and their pruning owe to their fulfilment of monotony prop-
erty within a given equivalence class.

3 DFSP : Depth First Stability Processor algorithm

Before, thoroughly describing the DFSP algorithm, we start by introducing some useful
notations that are used in the remainder.

Let C = (A, B) be a formal concept for which the stability index needs to be
processed. DFSP algorithm organises P(A) according to a tidset prefix tree. Each ex-
ploration node in the tree is specific to a tidset and represented by the TSNode data
structure. TSNode is a recursive structure that keeps track of useful informations about
its associated tidset such as its suffix, itemset and a set of immediate supersets. As for
the current tidset, its immediate supersets are themselves represented each by a TSNode
instance and so on.

Definition 5. (SUFFIX OF TIDSET) Let ts = {t1, t2 . . . tk} be an ordered sequence of
objects and nts its associated exploration node. Suff(ts) = tk is the last object in ts.
TSNode.s is the member property of the data structure TSNode in which Suff(ts) is
maintained ; nts.s = tk.
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a b c d e f g h

1 × ×
2 × × ×
3 × × × × ×
4 × × × × × ×
5 × × × × ×
6 × × ×
7 × × ×
8 × × ×
9 × × × × × × × ×

Table 1. Formal context

Definition 6. (CHILDREN’S NODE) TSNode.ss is a member of the TSNode structure
that holds a set of TSNode instances. TSNode.ss is the set of a TSNode immediate chil-
dren.

Definition 7. (NODE INTENT) Let ts be a tidset and nts its associated node. TSNode.is
is a TSNode member that holds the tidset image. nts.is = ts′.

Unlike nts.s which only holds the tidset suffix Suff(ts), nts.is integrally main-
tains ts′.

Example 1. With respect to the formal context depicted in Table 1, we have ts = {123}
and n123 its associated node, then n123.s = 3. In addition, we have : n123.ss={n1234,
n1235, n1236, n1237, n1238, n1239}. Besides, we also have n123.is = ts′ = {123}′ =
{g}.

In the following, we present a detailed description of DFSP algorithm. Let us re-
mind that the main idea of our new approach is to provide a simple and very efficient
strategy for computing stability through generators enumeration. The DFSP algorithm,
whose pseudo-code is sketched by Algorithm 1, operates mainly as follows:

Initially, the sizes of the extent and the intent are stored respectively into n and m
(lines 2,3). The root node is then built and it’s root.s and root.is members are set to ∅
(line 4). Then, the objects ai of A are scanned in order to build the first level nodes. For
each object ai, a child node is created, its member child.s is set to ai and its member
child.is is set to the intent of ai (line 6, 7). If the size of the intent a′

i is different from
m the size of B, then child is a non generator and is added to root.ss the set of the
root node immediate children (c.f lines 8, 9). Then the first level generators count is
determined using the generators counting formula (line 10). After that, the exploration
of space of tidset through the EXPLORETIDSET function updates gc one last time to
obtain the final count of generators (line 11). The stability index is determined when
the generators count gc is divided by the overall tidset count (line 12).

In the following part, we will explain the fundamental step of the algorithm which
is the recursive exploration of tidset’s space.
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Algorithm 1: Depth First Stability Processor (DFSP)
Data: TSNode
-TSNode.s: the tidset suffix
-TSNode.is: the tidset intent
-TSNode.ss: the set of immediate children nodes.
Input:
-K = (O, I, R): a formal context.
-C = (A, B): a formal concept.
Results:
-S : the stability of C.

Begin1
n := |A|;2
m := |B|;3
root.i := root.is := ∅;4
For i = 1 . . . n do5

nchild.s := ai;6
nchild.is := a′

i;7
If |nchild.is|! = m then8

root.ss∪ = nchild;9

gc :=
∑n−1

i=|root.ss| 2
i;10

gc := gc + EXPLORETIDSET(root.ss, K, m);11
S := gc

2n
;12

Return S ;13
End14

3.1 Depth First exploration of the Tidset space

The main goal of EXPLORETIDSET which pseudo-code is sketched through Algorithm
2 is counting generators while minimizing as much as possible the visited tidsets. This
is achieved by pruning generators and most importantly by detecting ”prunable” non
generators. The first invocation for EXPLORETIDSET (c.f line 11 of DFSP) is applied
on the root node immediate children.

The tidset space exploration pattern The exploration mechanics are straightforward.
To harness this process, lets ignore any possible optimisation that leads to nodes prun-
ing. On the first invocation of EXPLORETIDSET in DFSP, ss contains the nodes {na1,
. . . , nan} associated to unitary first level tidsets {a1},. . . , {an} for which EXPLORETID-
SET builds immediate children as follows: na1a2 the first immediate child of na1 is
built by adding the suffix of na2 to na1. More generally, naiaj the jth immediate child
of nai (line 12) is obtained by adding to nai the suffix of na(i+j) the jth node fol-
lowing nai (line 15). For the tidset {aiaj} associated to naiaj , only Suff({aiaj})
is stored in naiaj .s (line 16). Since, {aiaj} = {ai}|Suff({aj}) then {aiaj}′ =
{ai}′ ⋂Suff({aj})′. {aiaj}′ is stored integrally in naiaj .is (line 17). After building
nai.ss from nai followings, EXPLORETIDSET is recursively applied on nai.ss (line 22)
which only makes sense when |nai.ss| has at least 2 elements (line 21). After process-
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ing the nai subspace, EXPLORETIDSET moves to the next node na(i+1) (line 12). The
last node is nan is not processed as it has no followings.

Counting and pruning generators As described above, the generation process builds
a child node by adding an object to its parent node. A child node is therefore always
a superset of its parent. Otherwise, it is known that a superset of a generator is also
a generator. Therefore, applying the exploration process on a generator node will in-
evitably produce generators. The exploration branch starting from that node is said to
be monotonous and since we are able to count the population induced from that branch
we can save processing power by dismissing these nodes (line 8 in DFSP and line 18
in EXPLORETIDSET). Let’s find out how it is possible to count generators that are in-
ferred from a given generator without the need of exploring them. Let ni be the ith

node in ss and ni is a generator. Building the ni subspace by exploring its immediate
children then its children’s children and so on recursively is equivalent to generating all
possible supersets of the tidset associated to ni using the suffixes of ni following nodes
{n(i+1).s,. . . , n(i+1).s}. The count of all generators in ni branch (including even ni) is
equal 2(n−i−1).

We have to also consider supersets of ni that are not part of ni branch but rather
in nk branches {k >= 1 and k < i} the branches of all nodes that precedes ni in
ss. To avoid locating these nodes and simplify calculations, let’s virtually move ni

to the start of ss. All supersets of ni are now confined in ni branch and the updated
count of ni supersets is 2(n−1). Let nj be another generator in the same cluster. It
is important to count all nj supersets while avoid including elements that are already
counted as part of the ni branch. By virtually moving nj after ni in ss and counting
all elements in the nj branch, it is possible to fulfil both conditions. nj branch count
is 2(n−2) and the same process is applied to the remaining generators in the cluster.
Doing so leads us to the generalized generators counting formula gc =

∑|gs|
k=|ss|−1 2k

where |gs| is the generators count and |ss| is cluster size (line 10 in DFSP and line 20
in EXPLORETIDSET).

Detecting non generators monotony The most significant mop up mechanism in
DFSP is non generators pruning. In order to also eliminate non generators, EXPLORETID-
SET looks for nodes in ss that when combined together, the resulting clique superset
will still be a non generator. Those nodes are said to form a non generator monotonous
clique. Suppose, we’re building the branch of a node from this clique. If we use exclu-
sively nodes from the clique, all nodes in the branch are guaranteed to be subsets of
the clique superset. Since a subset of a non generator is also a non generator then all
branches in the clique will only contain non generators. Nodes in the clique are pushed
at the end of the ss set to insure that the generation process will only use nodes from
the clique. Nodes outside the clique are moved away to the beginning of ss. Nodes in
the clique are not expanded, since no generator could be found in their branches but are
still used to build branches outside the clique.

DFSP: Swift Computation of Formal Concept Set Stability 175



8 I. Dimassi et al.

Algorithm 2: EXPLORETIDSET

Input:
-K = (O, I, R): a formal context.
-ss=a set of TSNode siblings.
-m: the size of the intent.
Results:
-gc : the generators count.

Begin1
i := ssc := |ss|;2
ingpc := gc := 0;3
ingpi := I;4
While i < 1 do5

If |ngpi ∩ ss[i].is| = m then6
MOVETOHEAD(i, ss);7
ingpc := ingpc + 1;8

Else9
i := i − 1;10
ngpi := ngpi ∩ ss[i].is;11

For (i = 1 . . . ingpc) do12
nleft := ss[i];13
For (j = i + 1 . . . ssc) do14

nright := ss[j];15
nchild.s := nright.s;16
nchild.is := nleft.is ∩ f(nchild.s);17
If (|nchild.is|! = m) then18

nleft.ss∪ := nchild;19

gc+ =
∑ssc−i−1

k=|nleft.ss| 2
k;20

If (|nleft.ss| > 1) then21
gc+ = EXPLORETIDSET(nleft.ss, K, m);22

Return gc;23
End24

3.2 Illustrative example

To illustrate our approach, let us consider the formal concept C1 = (A1, B1) from the
formal context depicted by Table 1 such that A1 = {3, 4, 5, 6, 7, 9} and B1 = {f, g}.
As shown in figure 1, the DFSP algorithm operates as follows:

During the first step (1), the root node is created and initialized though the function
BUILDTREEROOT (gc=0). Initially, root.s = ∅ and nodes n3, n4, n5, n6, n7 will be
created through individual elements of {3, 4, 5, 6, 7, 9} (steps (2), (3), (4), (5), (6) and
(7)). These nodes are prospective direct children to the root node. Given that all these
nodes are non generators, they become in step (8) as effective direct children of root and
are decreasingly sorted with respect to their support value. In step (9), non generators
forming monotone clique are placed at the end of the list and marked by (*). However,
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Fig. 1. Illustrative example

instable generators are placed at the beginning of the list and marked by (+). After that,
in steps (10), (11), (12), (13) and (14) prospective direct children of node n3 are created
which are, respectively, n36, n39, n34, n35 and n37. The count of generators is updated
in step (15) (gc = 24+23 = 24). Only nodes n34, n35 and n39 are left as effective direct
children of n3. The latter are also sorted decreasingly. In step (16), all these effective
direct children form a monotone clique and exploration of this branch is stopped. After
that, nodes n69, n64, n65 and n67 are created and count of generators is also updated
in step (21) with the tree generators of n64, n65 and n67 (gc = gc + 23 + 22 + 21 =
24 + 14 = 38). Only the node n69 is kept in the list of effective direct children of n6.
Indeed, the latter does not fulfil the condition of EXPLORETIDSET to be launched.

4 Experimental results

In this section, we put the focus on the evaluation of the DFSP algorithm by stressing on
two complementary aspects : (i)Execution time; (ii) efficiency of search space pruning.
Experiments were carried out on an Intel Xeon PC, CPU E5-2630 2,30 GHz with 16
GB of RAM and Linux system. During the lead experiments, we used some benchmark
datasets commonly of extensive use within Data mining. The first three datasets are
considered as dense ones, i.e., yielding high number of formal concepts even for a
small number of objects and attributes, while the other ones are considered as sparse.
The characteristics of these datasets are summarized by Table 2. Thus, for each dataset
we report its number of objects, the number of attributes, as well as the number of
all formal concepts that may drawn. In addition, we also reported the respective sizes
of the smallest and the largest formal concepts (in terms of extent’s size). For these
considered concepts, we kept track of the number of the actually explored nodes as
well as the execution time (the column denoted |explor.|).

At a glance, statistics show that the DFSP algorithm is able to process dozens of
thousands of objects in a reasonable time. Indeed, the 15596 (respec. 16040) objects
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composing the extent of the largest formal concept extracted from the RETAIL (re-
spec. T10I4D100K) dataset are handled in only 27.27 (respec. 68.85) seconds. Even
though, the respective cardinalities are close (15596 vs 16040 objects), the difference
in execution time is not proportional to this low gap. A preliminary explanation could
be the difference in density of both datasets (RETAIL is dense while T10I4D100K is
a sparse one). A in-depth study of these performances in connection to the nature of
datasets is currently carried out. The most sighting fact is the low number of visited
nodes in the associated search space. For example for the MUSHROOM dataset, DFSP
algorithm actually handled only 83918 nodes from 21000 potential nodes of the search
space, i.e., in numerical terms it comes to only explore infinitely insignificant part equal
to 7.8 × 10−297 of the search space. The case of RETAIL and T10I4D100K datasets is
also worth of mention. For the respective smallest extracted concepts, DFSP algorithm
only explores, 1.14 × 10(−45) and 1.5 × 10(−90) parts of the respective search spaces.

Datasets # Attr # Obj # concepts smallest concept largest concept
|ext| |explor.| time (sec.) |ext| |explor.| time (sec.)

CHESS 75 3196 3316 2630 2362233 0.12 3195 5855899 0.64
MUSHROOM 119 8124 3337 1000 83918 0.10 8124 76749955 11.32
RETAIL 16470 88162 3493 150 164 0.10 15596 64847191 27.27
T10I4D100K 1000 100000 4497 300 306 0.11 6810 19719991 12.77
T40I10D100K 1000 100000 3102 1800 1495324 1.39 16040 92154598 68.85

Table 2. Characteristics of the considered benchmark datasets

These highlights are also confirmed by Figures 2-11. Indeed, Figures 2, 4, 6, 8 and
10 stress on the variation of the Execution time, while Figures 3, 5, 7, 9 and 11 assess
what we call the workload which means the efficiency of search space exploration. At
a glance, the execution time is in a snugness connection with the reduction of search
space, i.e., the variation of the workload has the same tendency as the performance
since we consider the visited tidset in the search space as the processing unit. Worth
of mention, the performance is rather correlated to the extent’s size rather than the
exponential nature of the search space.
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5 Conclusion and future work

Through the DFSP algorithm, we gaped in the combinatorics of lattices by the show-
ing that most of this sear space could be smartly explored thanks to the saturation of
generators. The swift computation of stability encouraged us to integrate the stability
as a on-the-fly pruning strategy during mining closed itemsets. We are currently work-
ing on a new algorithm for the stability computation given the Galois lattice. The new
algorithm only relies on the direct sub-concepts to compute the stability of a concept.
Outside the FCA field, the strategy of DFSP would be of benefit for very efficient ex-
traction well known problem of combinatorics : minimal transversals.
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Abstract. Inferring Good Maximally Redundant Classification Tests
(GMRTs) as Formal Concepts is considered. Two kinds of classification
subcontexts are defined: attributive and object ones. The rules of forming
and reducing subcontexts based on the notion of essential attributes and
objects are given. They lead to the possibility of the inferring control. In
particular, an improved Algorithm for Searching all GMRTs on the basis
of attributive subtask is proposed. The hybrid attributive and object
approaches are presented. Some computational aspects of algorithms are
analyzed.

Keywords: good classification test, Galois lattice, essential attributes
and objects, implications, subcontexts

1 Introduction

Good Test Analysis (GTA) deals with the formation of the best descriptions of
a given object class (class of positive objects) against the objects which do not
belong to this class (class of negative objects) on the basis of lattice theory. We
assume that objects are described in terms of values of a given set U of attributes,
see an example in Tab.1. The key notion of GTA is the notion of classification. To
give a target classification of objects, we use an additional attribute KL /∈ U . A
target attribute partitions a given set of objects into disjoint classes the number
of which is equal to the number of values of this attribute. In Tab.1, we have
two classes: the objects in whose descriptions the target value k appears and all
the other objects.

Denote by M the set of attribute values such that M = {∪dom(attr), attr ∈
U}, where dom(attr) is the set of all values of attr, i.e. a plain scaling in terms
of [3]. Let G = G+ ∪G− be the set of objects, where G+ and G− are the sets of
positive and negative objects respectively. Let P (B), B ⊆M, be the set of all the
objects in whose descriptions B appears. P (B) is called the interpretation of B
in the power set 2G. If P (B) contains only G+ objects and the number of these
objects is more than 2, then B is called a description of some positive objects or
a diagnostic (classification) test for G+ [1]. The words diagnostic (classification)
can be omitted in the paper.

c© Karell Bertet, Sebastian Rudolph (Eds.): CLA 2014, pp. 181–193,
ISBN 978–80–8152–159–1, Institute of Computer Science, Pavol Jozef Šafárik
University in Košice, 2014.



Table 1. Motivating Example of classification

No Height Color of Hair Color of Eyes KL

1 Low Blond Blue k(+)
2 Low Brown Blue k(−)
3 Tall Brown Hazel k(−)
4 Tall Blond Hazel k(−)
5 Tall Brown Blue k(−)
6 Low Blond Hazel k(−)
7 Tall Red Blue k(+)
8 Tall Blond Blue k(+)

Let us recall the definition of a good test or good description for a subset of
G+ (via partitions of objects). A subset B ⊆ M of attribute values is a good
test for a subset of positive objects if it is a test and no such subset C ⊆ M
exists, so that P (B) ⊂ P (C) ⊆ G+ [7].

Sec.2 is devoted to defining a concept of good diagnostic (classification) test
as a formal concept. Sec.3 gives the decomposition of good tests inferring based
on two kinds of subcontexts of the initial classification context. Sec.4 is devoted
to an analysis of algorithms based on using subcontexts including the evaluation
of the number of sub-problems to be solved, the depth of recursion, the structure
of sub-problems and their ordering, and some others.

2 Good Maximally Redundant Tests as Formal Concepts

Assume that G = 1, N is the set of objects indices (objects, for short) and
M = {m1,m2, . . . ,mj , . . .mm} is the set of attributes values (values, for short).
Each object is described by a set of values from M . The object descriptions are
represented by rows of a table whose columns are associated with the attributes
taking their values in M .

Let A ⊆ G, B ⊆ M . Denote by Bi, Bi ⊆ M , i = 1, N the description of
object with index i. The Galois connection between the ordered sets (2G,⊆) and
(2M ,⊆) is defined by the following mappings called derivation operators: for
A ⊆ G and B ⊆ M , A′ = val(A) = {intersection of all Bi| Bi ⊆ M, i ∈ A} and
B′ = obj(B) = {i| i ∈ G,B ⊆ Bi}. Of course, we have obj(B) = {intersection of
all obj(m)| obj(m) ⊆ G,m ∈ B}.

There are two closure operators [9]: generalization of(B) = B′′ = val(obj(B))
and generalization of(A) = A′′ = obj(val(A)). A set A is closed if A = obj(val(A)).
A set B is closed if B = val(obj(B)). For g ∈ G and m ∈M , {g}′ is denoted by
g′ and called object intent, and {m}′ is denoted by m′ and called value extent.
Let us recall the main definitions of GTA [7].

A Diagnostic Test (DT) for the positive examples G+ is a pair (A,B) such
that B ⊆ M , A = B′ 6= ∅, A ⊆ G+, B 6⊆ g′ ∀g ∈ G−. A diagnostic test (A,B)
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for G+ is maximally redundant if obj(B∪m) ⊂ A for all m /∈ B and m ∈M .
A diagnostic test (A,B) for G+ is good if and only if any extension A∗ = A∪ i,
i /∈ A, i ∈ G+ implies that (A∗, val(A∗)) is not a test for G+.

In the paper, we deal with Good Maximally Redundant Tests (GMRTs). If
a good test (A,B) for G+ is maximally redundant, then any extension B∗ =
B ∪m, m /∈ B, m ∈ M implies that (obj(B∗), B∗) is not a good test for G+.
Any object description d of g ∈ G in a given classification context is a maximally
redundant set of values because ∀m /∈ d, m ∈M, obj(d∪m) is equal to ∅. GMRT
can be regarded as a special type of hypothesis [4]

In Tab.1, ((1, 8), Blond Blue) is a GMRT for k(+), ((4, 6), Blond Hazel) is a
DT for k(−) but not a good one, and ((3, 4, 6), Hazel) is a GMRT for k(−).

3 The Decomposition of Inferring GMRTs into Subtasks

There are two possible kinds of subtasks of inferring GMRTs for a set G+ [8]:

1. given a set of values, where B ⊆ M, obj(B) 6= ∅, B is not included in
any description of negative object, find all GMRTs (obj(B∗), B∗) such that
B∗ ⊂ B;

2. given a non-empty set of values X ⊆M such that (obj(X), X) is not a test
for positive objects, find all GMRTs (obj(Y ), Y ) such that X ⊂ Y .

For solving these subtasks we need only form subcontexts of a given classifi-
cation context. The first subtask is useful to find all GMRTs whose intents are
contained in the description d of an object g. This subtask is considered in [2] for
fast incremental concept formation, where the definition of subcontexts is given.

We introduce the projection of a positive object description d on the
set D+, i.e. descriptions of all positive objects. The proj(d) is Z = {z| z =
d ∩ d∗ 6= ∅, d∗ ∈ D+ and (obj(z), z) is a test for G+}.

We also introduce a concept of value projection proj(m) of a given value
m on a given set D+. The value projection is proj(m) = {d|m appears in d, d ∈
D+}.

Algorithm Algorithm for Searching all GMRTs on the basis of attributive
subtask (ASTRA), based on value projections, was advanced in [6]. Algoritm
DIAGaRa, based on object projections, was proposed in [5]. In what follows,
we are interested in using both kinds of subcontexts for inferring all GMRTs
for a positive (or negative) class of objects. The following theorem gives the
foundation of reducing subcontexts [6].

Theorem 1. Let X ⊆ M, (obj(X), X) be a maximally redundant test for pos-
itive objects and obj(m) ⊆ obj(X), m ∈ M . Then m can not belong to any
GMRT for positive objects different from (obj(X), X).

Consider some example of reducing subcontext (see Tab.1). Let splus(m) be
obj(m) ∩G+ or obj(m) ∩G− and SPLUS be {splus(m)|m ∈ M}. In Tab.1, we
have SPLUS = obj(m) ∩G− = {{3, 4, 6}, {2, 3, 5}, {3, 4, 5}, {2, 5}, {4, 6}, {2, 6}}
for values “Hazel, Brown, Tall, Blue, Blond, and Low” respectively.
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We have val(obj(Hazel)) = Hazel, hence ((3, 4, 6),Hazel) is a DT for G−.
Then value “Blond” can be deleted from consideration, because splus(Blond) ⊂
splus(Hazel). Delete values Blond and Hazel from consideration. After that the
description of object 4 is included in the description of object 8 of G+ and the
description of object 6 is included in the description of object 1 of G+. Delete
objects 4 and 6. Then for values “Brown, Tall, Blue, and Low” respectively
SPLUS = {{2, 3, 5}, {3, 5}, {2, 5}, {2}}. Now we have val(obj(Brown)) = Brown
and ((2, 3, 5),Brown) is a test for G−. All values are deleted and all GMRTs for
G− have been obtained.

The initial information for finding all the GMRTs contained in a positive
object description is the projection of it on the current set D+. It is essential that
the projection is a subset of object descriptions defined on a certain restricted
subset t∗ of values. Let s∗ be the subset of indices of objects whose descriptions
produce the projection. In the projection, splus(m) = obj(m) ∩ s∗, m ∈ t∗.

Let STGOOD be the partially ordered set of elements s satisfying the con-
dition that (s, val(s)) is a good test for D+. The basic recursive procedure for
solving any kind of subtask consists of the following steps:

1. Check whether (s∗, val(s∗) is a test and if so, then s∗ is stored in STGOOD
if s∗ corresponds to a good test at the current step; in this case, the subtask
is over. Otherwise go to the next step.

2. The value m can be deleted from the projection if splus(m) ⊆ s for some
s ∈ STGOOD.

3. For each value m in the projection, check whether (splus(m), val(splus(m))
is a test and if so, then value m is deleted from the projection and splus(m)
is stored in STGOOD if it corresponds to a good test at the current step.

4. If at least one value has been deleted from the projection, then the reduction
of the projection is necessary. The reduction consists in checking, for each
element t of the projection, whether (obj(t), t) is not a test (as a result
of previous eliminating values) and if so, this element is deleted from the
projection. If, under reduction, at least one element has been deleted, then
Step 2, Step 3, and Step 4 are repeated.

5. Check whether the subtask is over or not. The subtask is over when either
the projection is empty or the intersection of all elements of the projection
corresponds to a test (see, please, Step 1). If the subtask is not over, then
the choice of an object (value) in this projection is selected and the new
subtask is formed. The new subsets s∗ and t∗ are constructed and the basic
algorithm runs recursively.

The algorithm of forming STGOOD is based on topological sorting of par-
tially ordered sets. The set TGOOD of all the GMRTs is obtained as follows:
TGOOD = {tg| tg = (s, val(s)), s ∈ STGOOD}.
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4 Selecting and Ordering Subcontexts and Inferring
GMRTs

Algorithms for inferring GMRTs are constructed by the rules of selecting and
ordering subcontexts of the main classification context. Before entering into the
details, let us recall some extra definitions. Let t be a set of values such that
(obj(t), t) is a test for G+. We say that the value m ∈ M,m ∈ t is essential
in t if (obj(t \m), (t \m)) is not a test for a given set of objects. Generally, we
are interested in finding the maximal subset sbmax(t) ⊂ t such that (obj(t), t)
is a test but (obj(sbmax(t)), sbmax(t)) is not a test for a given set of positive
objects. Then sbmin(t) = t \ sbmax(t) is a minimal set of essential values in t.
Let s ⊆ G+, assume also that (s, val(s)) is not a test.

The object tj , j ∈ s is said to be an essential in s if (s\j, val(s\j)) proves
to be a test for a given set of positive objects. Generally, we are also interested
in finding the maximal subset sbmax(s) ⊂ s such that (s, val(s)) is not a test
but (sbmax(s), val(sbmax(s)) is a test for a given set of positive objects. Then
sbmin(s) = s \ sbmax(s) is a minimal set of essential objects in s.

An Approach for Searching for Initial Content of STGOOD. In the
beginning of inferring GMRTs, the set STGOOD is empty. Next we describe
the procedure to obtain an initial content of it. This procedure extracts a quasi-
maximal subset s∗ ⊆ G+ which is the extent of a test for G+ (maybe not good).

We begin with the first index i1 of s∗, then we take the next index i2 of
s∗ and evaluate the function to be test({i1, i2}, val({i1, i2})). If the value of the
function is true, then we take the next index i3 of s∗ and evaluate the function
to be test({i1, i2, i3}, val({i1, i2, i3})). If the value of the function is false, then
the index i2 of s∗ is skipped and the function to be test({i1, i3}, val({i1, i3})))
is evaluated. We continue this process until we achieve the last index of s∗.

The complexity of this procedure is evaluated as the production of ||s∗||
by the complexity of the function to be test(). To obtain the initial content of
STGOOD, we use the set SPLUS = {splus(m)|m ∈M} and apply the procedure
described above to each element of SPLUS.

The idea of using subcontexts in inferring GMRTs, described in Sec.3, can be
presented in a pseudo-code form, see Fig.1. It presents a modification of ASTRA.
DIAGARA and a hybrid approach can be easily formalized by the same way.
The example below describes two general hybrid methods.

The initial part of GenAllGMRTs() is well discussed above. The abbreviation
LEV stands for the List (set) of Essential Values. The function DelObj(M,G+)
returns modified G and flag. The variable flag is necessary for switching at-
tributive subtasks. The novelty of ASTRA-2 is mainly based on using LEV.
There is the new function ChoiceOfSubtask(). It returns na := LEVj with
the maximal 2splus(LEVj). MainContext, defined FormSubTask(na,M,G+), con-
sists of object descriptions. There is the auxiliary function kt(m) = true if
(m′ ∈ G− = false) and false otherwise.

To illustrate this procedure, we use the sets D+ and D− represented in
Tab.2 and 3 (our illustrative example). In these tables, M = {m1, . . . ,m26}.
The set SPLUS0 for positive class of examples is in Tab.4. The initial content of
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1.Algorithm GenAllGMRTs()
Input: G,M
Output: STGOOD

2. begin
3. Forming STGOOD ;
4. Forming and Ordering LEV ;
5. flag:=1;

6. end
7. while true do
8. while flag=1 do
9. M, flag DelVal(M,G+);

10. if flag=1 then
11. return;
12. end
13. G+, f lag

DelObj(M,G+);

14. end
15. if M ′ ⊆ G− or

G+ ⊆ STGOOD then
16. return STGOOD;
17. end
18. MSUB :=∅;
19. GSUB :=∅;
20. ChoiceOfSubtask;
21. MSUB , GSUB

FormSubTask(na,M,G+);
22. GenAllGMRTs();
23. M :=M\Mna;
24. G+, f lag DelObj(M,G+);

25. end

(a) GenAllGMRTs

1.Algorithm DelVal()

2. i := 1;
3. flag := 0;

4. while i ≤ 2M do
5. if M ′i ⊆ G+ then
6. M := M\Mi;
7. flag := 1;

8. end
9. else if kt(M ′i ∩G+) then

10. j :=1 ;

11. while j ≤ 2STGOOD do
12. if STGOODj ⊆

M ′i ∩G+ then
13. STGOOD :=

STGOOD\
STGOODj

14. end

15. end
16. STGOOD :=

STGOOD ∪M ′i ∩G+;
17. M := M\Mi;
18. flag := 1;

19. return;

20. end

(b) DelVal

1.Algorithm DelObj()

2. i := 1;
3. flag := 0;

4. while i ≤ 2G+ do
5. if G+(i) ⊆M\LEV then
6. G+ := G+\G+(i);
7. flag := 1;

8. end

9. end
10. return;

(c) DelObj

1.Algorithm FormSubTask()

2. i := 1;
3. GSUB := M ′na ∩G+;

4. while i ≤ 2GSUB do
5. MSUB := MSUB ∪

(MainContext(GSUB(i)∩M));

6. end
7. return;

(d) FormSubTask

Fig. 1. Algorithms of ASTRA-2
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STGOOD0 is {(2,10), (3, 10), (3, 8), (4, 12), (1, 4, 7), (1, 5,12), (2, 7, 8), (3, 7,
12), (1, 2, 12, 14), (2, 3, 4, 7), (4, 6, 8, 11)}.

Table 2. The set D+ of positive object descriptions

G D+

1 m1 m2 m5 m6 m21 m23 m24 m26

2 m4 m7 m8 m9 m12 m14 m15 m22 m23 m24 m26

3 m3 m4 m7 m12 m13 m14 m15 m18 m19 m24 m26

4 m1 m4 m5 m6 m7 m12 m14 m15 m16 m20 m21 m24 m26

5 m2 m6 m23 m24

6 m7 m20 m21 m26

7 m3 m4 m5 m6 m12 m14 m15 m20 m22 m24 m26

8 m3 m6 m7 m8 m9 m13 m14 m15 m19 m20 m21 m22

9 m16 m18 m19 m20 m21 m22 m26

10 m2 m3 m4 m5 m6 m8 m9 m13 m18 m20 m21 m26

11 m1 m2 m3 m7 m19 m20 m21 m22 m26

12 m2 m3 m16 m20 m21 m23 m24 m26

13 m1 m4 m18 m19 m23 m26

14 m23 m24 m26

In these tables we denote subsets of values {m8,m9}, {m14,m15} by ma and
mb, respectively. Applying operation generalization of(s) = s′′ = obj(val(s)) to
∀s ∈ STGOOD, we obtain STGOOD1 = {(2,10), (3, 10), (3, 8), (4, 7, 12), (1, 4,
7), (1, 5,12), (2, 7, 8), (3, 7, 12), (1, 2, 12, 14), (2, 3, 4, 7), (4, 6, 8, 11)}.

By Th.1, we can delete value m12 from consideration, see splus(m12) in Tab.4.
The initial content of STGOOD allows to decrease the number of using the
procedure to be test() and the number of putting extents of tests into STGOOD.

The number of subtasks to be solved. This number is determined
by the number of essential values in the set M . The quasi-minimal subset of
essential values in M can be found by a procedure analogous to the proce-
dure applicable to search for the initial content of STGOOD. We begin with
the first value m1 of M , then we take the next value m2 of M and evalu-
ate the function to be test(obj({m1,m2}), {m1,m2}). If the value of the func-
tion is false, then we take the next value m3 of M and evaluate the function
to be test(obj({m1,m2,m3}), {m1,m2,m3}). If the value of the function is true,
then value m2 of M is skipped and the function to be test(obj({m1,m3}), {m1,
m3}) is evaluated. We continue this process until we achieve the last value of M .
The complexity of this procedure is evaluated as the production of ||M || by the
complexity of the function to be test(). In Tab.2,3 we have the following LEV :
{m16,m18,m19,m20,m21,m22, m23,m24,m26}.
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Table 3. The set D− of negative object descriptions

G D− G D−

15 m3m8m16m23m24 32 m1m2m3m7m9m13m18

16 m7m8m9m16m18 33 m1m5m6m8m9m19m20m22

17 m1m21m22m24m26 34 m2m8m9m18m20m21m22m23m26

18 m1m7m8m9m13m16 35 m1m2m4m5m6m7m9m13m16

19 m2m6m7m9m21m23 36 m1m2m6m7m8m13m16m18

20 m19m20m21m22m24 37 m1m2m3m4m5m6m7m12m14m15m16

21 m1m20m21m22m23m24 38 m1m2m3m4m5m6m9m12m13m16

22 m1m3m6m7m9m16 39 m1m2m3m4m5m6m14m15m19m20m23m26

23 m2m6m8m9m14m15m16 40 m2m3m4m5m6m7m12m13m14m15m16

24 m1m4m5m6m7m8m16 41 m2m3m4m5m6m7m9m12m13m14m15m19

25 m7m13m19m20m22m26 42 m1m2m3m4m5m6m12m16m18m19m20m21m26

26 m1m2m3m5m6m7m16 43 m4m5m6m7m8m9m12m13m14m15m16

27 m1m2m3m5m6m13m18 44 m3m4m5m6m8m9m12m13m14m15m18m19

28 m1m3m7m13m19m21 45 m1m2m3m4m5m6m7m8m9m12m13m14m15

29 m1m4m5m6m7m8m13m16 46 m1m3m4m5m6m7m12m13m14m15m16m23m24

30 m1m2m3m6m12m14m15m16 47 m1m2m3m4m5m6m8m9m12m14m16m18m22

31 m1m2m5m6m14m15m16m26 48 m2m8m9m12m14m15m16

Table 4. The set SPLUS0

splus(m),m ∈M splus(m),m ∈M

splus(ma)→ {2, 8, 10} splus(m22)→ {2, 7, 8, 9, 11}
splus(m13)→ {3, 8, 10} splus(m23)→ {1, 2, 5, 12, 13, 14}
splus(m16)→ {4, 9, 12} splus(m3)→ {3, 7, 8, 10, 11, 12}
splus(m1)→ {1, 4, 11, 13} splus(m4)→ {2, 3, 4, 7, 10, 13}
splus(m5)→ {1, 4, 7, 10} splus(m6)→ {1, 4, 5, 7, 8, 10}
splus(m12)→ {2, 3, 4, 7} splus(m7)→ {2, 3, 4, 6, 8, 11}
splus(m18)→ {3, 9, 10, 13} splus(m24)→ {1, 2, 3, 4, 5, 7, 12, 14}
splus(m2)→ {1, 5, 10, 11, 12} splus(m20)→ {4, 6, 7, 8, 9, 10, 11, 12}
splus(mb)→ {2, 3, 4, 7, 8} splus(m21)→ {1, 4, 6, 8, 9, 10, 11, 12}
splus(m19)→ {3, 8, 9, 11, 13} splus(m26)→ {1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14}
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Proposition 1. Each essential value is included at least in one positive object
description.

Proof. Assume that for an object description ti, i ∈ G+, we have ti ∩ LEV = ∅.
Then ti ⊆M\LEV. But M\LEV is included at least in one of the negative object
descriptions and, consequently, ti also possesses this property. But it contradicts
to the fact that ti is a description of a positive object. ut

Proposition 2. Assume that X ⊆ M . If X ∩ LEV = ∅, then to be test(X) =
false.

Proposition 2 is the consequence of Proposition 1.
Note that the description of t14 = {m23,m24,m26} is closed because of

obj{m23,m24,m26} = {1, 2, 12, 14} and val{1, 2, 12, 14} = {m23,m24,m26}. We
also know that s = {1, 2, 12, 14} is closed too (we obtained this result during
generalization of elements of STGOOD. So (obj({m23,m24,m26}), {m23,m24,
m26}) is a maximally redundant test for positive objects and we can, conse-
quently, delete t14 from consideration. As a result of deleting m12 and t14, we
have the modified set SPLUS (Tab.5).

Table 5. The set SPLUS1

splus(m),m ∈M splus(m),m ∈M

splus(ma)→ {2, 8, 10} splus(m22)→ {2, 7, 8, 9, 11}
splus(m13)→ {3, 8, 10} splus(m23)→ {1, 2, 5, 12, 13}
splus(m16)→ {4, 9, 12} splus(m3)→ {3, 7, 8, 10, 11, 12}
splus(m1)→ {1, 4, 11, 13} splus(m4)→ {2, 3, 4, 7, 10, 13}
splus(m5)→ {1, 4, 7, 10} splus(m6)→ {1, 4, 5, 7, 8, 10}

splus(m7)→ {2, 3, 4, 6, 8, 11}
splus(m18)→ {3, 9, 10, 13} splus(m24)→ {1, 2, 3, 4, 5, 7, 12}
splus(m2)→ {1, 5, 10, 11, 12} splus(m20)→ {4, 6, 7, 8, 9, 10, 11, 12}
splus(mb)→ {2, 3, 4, 7, 8} splus(m21)→ {1, 4, 6, 8, 9, 10, 11, 12}
splus(m19)→ {3, 8, 9, 11, 13} splus(m26)→ {1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 13}

The main question is how we should approach the problem of selecting and
ordering subtasks (subcontexts). Consider Tab.6 with auxiliary information. It
is clear that if we shall have all the intents of GMRTs entering into descriptions
of objects 1, 2, 3, 5, 7, 9, 10, 12, then the main task will be over because the
remaining object descriptions (objects 4, 6, 8, 11) give, in their intersection, the
intent of already an known test (see, please, the initial content of STGOOD).
Thus we have to consider only the subcontexts of essential values associated with
object descriptions 1, 2, 3, 5, 7, 9, 10, 12, 13. The number of such subcontexts
is 39. But this estimation is not realistic.
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Table 6. Auxiliary information

index of object m16 m18 m19 m20 m21 m22 m23 m24 m26

∑
mij

1 × × × × 4
2 × × × × 4
3 × × × × 4
5 × × 2
7 × × × × 4
9 × × × × × × × 7
10 × × × × 4
12 × × × × × × 4
13 × × × × 4

4 × × × × ×
6 × × ×
8 × × × × ×
11 × × × × ×∑

di 2 4 3 4 4 3 5 6 8 39

We begin with ordering index of objects by the number of their entering in
tests in STGOOD1, see Tab.7.

Table 7. Ordering index of objects in STGOOD1

Index of object 9 13 5 10 1 2 3 12 7

The number of entering in STGOOD1 0 0 1 2 3 4 4 4 5

Then we continue with object descriptions t9 and t13. Now we should select
the subcontexts (subtasks), based on proj(t×m), where t is object description
containing the smallest number of essential values and m is an essential value in
t, entering in the smallest number of object descriptions. After solving each sub-
task, we have to correct the sets SPLUS, STGOOD, and auxiliary information.
So, the first sub-task is t9 × m16. Solving this sub-task, we have not any new
test, but we can delete m16 from t9 and then we solve the sub-task t9×m19. As
a result, we introduce s = {9, 11} in STGOOD and delete t9 from consideration
because of m16, m19 are the only essential values in this object description.

In the example (method 1), we have the following subtasks (Tab. 8).
Tab.10 shows the sets STGOOD and TGOOD. All subtasks did not require a

recursion. A simpler method of ordering contexts is based on the basic recursive
procedure for solving any kind of subtask described in the previous section. At
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Table 8. The sequence of subtasks (method 1)

N subcontext Extent of New Test Deleted values Deleted objects

1 t9 ×m16

2 t9 ×m19 (9, 11) t9
3 t13 ×m18

4 t13 ×m19 (13) m16,m18 t13
5 t5 ×m23 m23

6 t5 ×m24 t5
7 t10 ×m20 (8, 10)
8 t10 ×m21

9 t10 ×m26 ma,m13,m4,m5 t10
10 t1 ×m21

11 t1 ×m24 m1,m2 t1
12 t2 ×m22 (7, 8, 11) m22

13 t2 ×m22

14 t2 ×m24 t2
15 t3 ×m19 (3, 11) m19

16 t3 ×m24 m24 t12, t7
17 t3 ×m26 t3

each level of recursion, we can select the value entering into the greatest number
of object descriptions; the object descriptions not containing this value generate
the contexts to find GMRTs whose intents are included in them. For our example,
value m26 does not cover two object descriptions: t5 and t8. The initial context is
associated with m26. The sequence of subtasks in the basic recursive procedure
is in Tab.9 (method 2). We assume, in this example, that the GMRT intent of
which is equal to t14 has been already obtained.

We consider only two possible ways of GMRTs construction based on de-
composing the main classification context into subcontexts and ordering them
by the use of essential values and objects. It is possible to use the two sets
QT = {{i, j} ⊆ G+| ({i, j}, val({i, j}) is a test for G+} and QAT = {{i, j} ⊆
G+|({i, j}, val({i, j}) is not a test for G+} for forming subcontexts and their or-
dering in the form of a tree structure.

5 Conclusion

In this paper, the decomposition of inferring good classification tests into sub-
tasks of the first and second kinds is presented. This decomposition allows, in
principle, to transform the process of inferring good tests into a step by step
reasoning process.

The rules of forming and reducing subcontexts are given, in this paper. Vari-
ous possibilities of constructing algorithms for inferring GMRTs with the use of
both subcontexts are considered depending on the nature of GMRTs features.
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Table 9. The sequence of subtasks (method 2)

N
Context,

associated with
Extents of tests

obtained
Values deleted
from context

Object descriptions
deleted

from context

1 m26
(2, 10), (3, 10),

(2, 3, 4, 7), (1, 4, 7)
ma,m13,mb,

m5,m6

t10

2 m26,m24
(3, 7, 12),
(4, 7, 12)

m3,m20,m23,m1,
m2,m4,m7,m16,
m18,m19,m22

Subtask is over; return to the previous context and delete m24

3 m26, not m24,m23 (13)
m3,m7,m16,m18,
m19,m20,m22

Subtask is over; return to the previous context, delete m23

4 m26, not m24, not m23
m2,m3,m4,m16,
m18m19,m21

5
m26,m22, not m24,
not m23

(9,11), (7,11) t2, t7

Subtask is over; return to the previous context and delete m22

6
m26, not m24,
not m23, not m22

(3,11), (4,6,11)
m2,m3,m4,m16,
m18,m19

t7, t9, t2, t3

Subtask is over; we have obtained all GMRTs whose intents contain m26

7 Context t5 (1,5,12) t5
Subtask is over; we have found all GMRTs whose intents are contained in t5 .

8 Context t8 ×m22 (7,8,11), (2,7,8)
m3,m20,mb,m6,
ma,m13,m19,m21

Subtask is over; return to the previous context and delete m22

9
Context t8
without m22

(8,10) ma t2, t7

10
Context t8 ×m21

without m22
(4,6,8,11) m7,m13,m19 t6, t10, t11

Subtask is over; return to the previous context and delete m21,m20

11
Context t8 without
m22,m21,m20

(3, 8) t4, t6, t10, t11

Subtask is over; we have found all GMRTs whose intents are contained in t8.
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Table 10. The sets STGOOD and TGOOD

N STGOOD TGOOD N STGOOD TGOOD

1 13 m1m4m18m19m23m26 9 2,7,8 mbm22

2 2,10 m4mam26 10 1,5,12 m2m23m24

3 3,10 m3m4m13m18m26 11 4,7,12 m20m24m26

4 8,10 m3m6mam13m20m21 12 3,7,12 m3m24m26

5 9,11 m19m20m21m22m26 13 7,8,11 m3m20m22

6 3,11 m3m7m19m26 14 2,3,4,7 m4m12mbm24m26

7 3,8 m3m7m13mbm19 15 4,6,8,11 m7m20m21

8 1,4,7 m5m6m24m26 16 1,2,12,14 m23m24m26
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Removing an incidence from a formal context
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Palacký University in Olomouc

17. listopadu 12, CZ-77146 Olomouc
Czech Republic

martin.kauer@upol.cz

michal.krupka@upol.cz

Abstract. We analyze changes in the structure of a concept lattice cor-
responding to a context resulting from a given context with a known
concept lattice by removing exactly one incidence. We identify the set
of concepts affected by the removal and show how they can be used for
computing concepts in the new concept lattice. We present algorithms
for incremental computation of the new concept lattice, with or without
structural information.

1 Introduction

When computing concept lattices of two very similar concepts (i.e., differing only
in a small number of incidences), it doesn’t seem to be efficient to compute both
concept lattices independently. Rather, an incremental method of computing one
of the lattices using the other would be more desirable. Also, analyzing structural
differences between concept lattices of two similar contexts would be interesting
from the theoretical point of view.

This paper presents first results in this direction. Namely, we consider two
formal contexts differing in just one incidence and develop a method of comput-
ing the concept lattice of the context without the incidence from the other one.
In other words, we give a first answer to the question “What happens to the
concept lattice, if we remove one cross from the context?”.

Our results are the following. We consider contexts 〈X,Y, I〉 and 〈X,Y, J〉
such that J results from I by removing exactly one incidence. Further we consider
the respective concept lattices B(I) and B(J). For these contexts and concept
lattices we

1. identify concepts in B(I), affected by the removal (they form an interval in
B(I)),
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2. show how they transform to concepts in the new concept lattice (they will
either vanish entirely, or transform to one or two concepts),

3. derive several further results on the correspondence between the two lattices,
4. propose two basic algorithms for transforming incrementally B(I) to B(J).

Several algorithms for incremental computation of concept lattices have been
developed in the past [1, 5, 8, 6, 7, 2] (see also [4] for a comparison of some of the
algorithms). In general, the algorithms build a concept lattice incrementally
by modifying formal contexts by adding or removing objects one by one. Our
approach is different as we focus on removing just one incidence.

2 Formal concept analysis

Formal Concept Analysis has been introduced in [9], our basic reference is [3].
A (formal) context is a triple C = 〈X,Y, I〉 where X is a set of objects, Y a set
of attributes and I ⊆ X × Y a binary relation between X and Y . For 〈x, y〉 ∈ I
it is said “The object x has the attribute y”.

For subsets A ⊆ X and B ⊆ Y we set

A↑I = {y ∈ Y | for each x ∈ A it holds 〈x, y〉 ∈ I},
B↓I = {x ∈ X | for each y ∈ B it holds 〈x, y〉 ∈ I}.

The pair 〈↑I , ↓I 〉 is a Galois connection between sets X and Y , i.e., it satisfies
for each A,A1, A2 ⊆ X, B,B1, B2 ⊆ Y ,

1. If A1 ⊆ A2, then A↑I2 ⊆ A↑I1 , if B1 ⊆ B2, then B↓I2 ⊆ B↓I1 .
2. A ⊆ A↑I↓I and B ⊆ B↓I↑I .

If A↑I = B and B↓I = A, then the pair 〈A,B〉 is called a formal concept of
〈X,Y, I〉. The set A is called the extent of 〈A,B〉, the set B the intent of 〈A,B〉.

A partial order ≤ on the set B(X,Y, I) of all formal concepts of 〈X,Y, I〉 is
defined by 〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). B(X,Y, I) along with
≤ is a complete lattice and is called the concept lattice of 〈X,Y, I〉. Infima and
suprema in B(X,Y, I) are given by

∧

j∈J
〈Aj , Bj〉 =

〈⋂

j∈J
Aj ,

( ⋃

j∈J
Bj

)↓I↑I〉
, (1)

∨

j∈J
〈Aj , Bj〉 =

〈( ⋃

j∈J
Aj

)↑I↓I
,
⋂

j∈J
Bj

〉
. (2)

One of immediate consequences of (1) and (2) is that the intersection of any
system of extents (resp. intents) is again an extent (resp. intent).

Mappings γI : x 7→ 〈{x}↑I↓I , {x}↑I 〉 and µI : y 7→ 〈{y}↓I , {y}↓I↑I 〉 assign to
each object x its object concept and to each attribute y its attribute concept. We
call a subset K ⊆ L, where L is a complete lattice,

∨
-dense (resp.

∧
-dense) if
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and only if any element of L can be expressed by suprema (resp. infima) of some
elements from K. The set of all object concepts (resp. attribute concepts) is

∨
-

dense (resp.
∧

-dense) in B(X,Y, I). This can be easily seen from (1) (resp. (2)).
We will also need a notion of an interval in lattice L. We call a subset K ⊆ L

an interval, if and only if there exist elements a, b ∈ L such that K = {k ∈
L | a ≤ k ≤ b}. We denote K as [a, b].

3 Problem statement and basic notions

Let 〈X,Y, I〉, 〈X,Y, J〉 be two contexts over the same sets of objects and at-
tributes such that 〈x0, y0〉 /∈ J and I = J ∪ {〈x0, y0〉}.

We usually denote concepts of 〈X,Y, I〉 by c, c1, 〈A,B〉, 〈A1, B1〉, etc., and
concepts of 〈X,Y, J〉 by d, d1, 〈C,D〉, 〈C1, D1〉, etc. The respective concept
lattices will be denoted B(I) and B(J).

Our goal is to find an efficient way to compute the concept lattice B(J) from
B(I). We provide two solutions to this problem. First solution computes just
elements of B(J), the second one adds also information on its structure. In this
section we introduce some basic tools and prove simple preliminary results.

The following proposition shows a correspondence between the derivation
operators of contexts 〈X,Y, I〉 and 〈X,Y, J〉.

Proposition 1. For each A ⊆ X and B ⊆ Y it holds

A↑J =

{
A↑I if x0 /∈ A,
A↑I \ {y0} if x0 ∈ A, B↓J =

{
B↓I if y0 /∈ B,
B↓I \ {x0} if y0 ∈ B.

In particular, A↑J ⊆ A↑I and B↓J ⊆ B↓I .

Proof. Immediate.

Formal concepts from the intersection B(I) ∩ B(J) are called stable. These
concepts are not influenced by removing the incidence 〈x0, y0〉 from I. When
computing B(J) from B(I), stable concepts need not be recomputed.

Proposition 2. A concept c ∈ B(I) is not stable iff c ∈ [γI(x0), µI(y0)].

Proof. If c = 〈A,B〉 /∈ [γI(x0), µI(y0)], then either x0 /∈ A, or y0 /∈ B. If, for
instance, x0 /∈ A, then by Proposition 1, B = A↑I = A↑J , showing B is the
intent of a d ∈ B(J). Now by Proposition 1,

B↓J =

{
B↓I = A if y0 /∈ B,
B↓I \ {x0} = A \ {x0} = A if y0 ∈ B

and so d = c. The case y0 /∈ B is dual.
To prove the opposite direction it is sufficient to notice that c ∈ [γI(x0), µI(y0)]

is equivalent to 〈x0, y0〉 ∈ A×B, excluding the case 〈A,B〉 ∈ B(J).
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For concepts c = 〈A,B〉 ∈ B(I), d = 〈C,D〉 ∈ B(J) we set

c� = 〈A�, B�〉 = 〈A↑J↓J , A↑J 〉, c� = 〈A�, B�〉 = 〈B↓J , B↓J↑J 〉,
d� = 〈C�, D�〉 = 〈D↓I , D↓I↑I 〉, d� = 〈C�, D�〉 = 〈C↑I↓I , C↑I 〉.

Evidently, c�, c� ∈ B(J) and d�, d� ∈ B(I). c� (resp. c�) is called the upper
(resp. lower) child of c. In our setting, d� = d� (it would not be the case if I \J
had more than one element). It is the (unique) concept from B(I), containing,
as a rectangle, the rectangle represented by d.

The following theorem shows basic properties of the pairs 〈�,�〉 and 〈�,�〉.

Proposition 3 (child operators). The mappings c 7→ c�, c 7→ c�, and d 7→
d� are isotone and satisfy

c ≤ c��, d ≤ d��, c��� = c�, d��� = d�,

c ≥ c��, d ≥ d��, c��� = c�, d��� = d�.

Proof. Isotony follows directly from definition.
Let c = 〈A,B〉. From Proposition 1 we have A↑J ⊆ A↑I . Thus, A = A↑I↓I ⊆

A↑J↓I , whence c ≤ c��. Similarly, for d = 〈C,D〉, D↓J ⊆ D↓I , whence D↓I↑J ⊆
D↓J↑J = D.

To prove c��� = c� it suffices to show that for the extent A of c it holds
A↑J↓I↑J = A↑J . By Proposition 1, we have two possibilities: either A↑J = A↑I ,
or A↑J = A↑I \ {y0}. In the first case A↑J↓I↑J = A↑J holds trivially, in the
second case A↑J↓I = A↑J↓J (by the same proposition, because y0 /∈ A↑J ) and
A↑J↓I↑J = A↑J↓J↑J = A↑J . The equality d��� = d� can be proved similarly.

The assertions for lower children are dual.

Corollary 1. The mappings c 7→ c�� and d 7→ d�� are closure operators and
the mappings c 7→ c�� and d 7→ d�� are interior operators.

Following two theorems utilize the operators �,�,�,� to give several equiv-
alent characterizations of stable concepts. First we prove a proposition.

Proposition 4. The following assertions are equivalent for any c = 〈A,B〉 ∈
B(I).

1. c is stable,
2. A↑I = A↑J ,
3. B↓I = B↓J .

Proof. “2⇒ 3”: by Proposition 1, A ⊆ A↑J↓J = B↓J ⊆ B↓I = A.
“3⇒ 2”: dual.
The other implications follow by definition, since c is stable iff both 2. and

3. are satisfied.

Proposition 5 (stable concepts in B(I)). The following assertions are equiv-
alent for a concept c ∈ B(I):
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1. c is stable,
2. c /∈ [γI(x0), µI(y0)],
3. c = c�,
4. c = c�,
5. c� = c�.

Proof. Directly from Proposition 4.

Proposition 6 (stable concepts in B(J)). The following assertions are equiv-
alent for a concept d ∈ B(J):

1. d is stable,
2. d = d�,
3. d� is stable.

Proof. Directly from Proposition 4.

4 Computing B(J) without structural information

Proposition 7. The following holds for c = 〈A,B〉 ∈ B(I) and d = 〈C,D〉 ∈
B(J): If d = c�, then B ∈ {D,D∪{y0}} and if d = c�, then A ∈ {C,C ∪{x0}}.
Proof. By definition of �, D = A↑J , which is by Proposition 1 either equal to
B, or to B \ {y0}. Similarly for �.

Proposition 8. A non-stable concept d ∈ B(J) is a (upper or lower) child of
exactly one concept c ∈ B(I). This concept is non-stable and satisfies c = d� =
d�.

Proof. Let d = 〈C,D〉. Since d is non-stable, then either C↑I 6= C↑J , or D↓I 6=
D↓J . Suppose C↑I 6= C↑J and set A = C, B = C↑I . By Proposition 1, x0 ∈ C,
y0 /∈ D and B = D ∪ {y0}. By the same proposition, A = C = D↓J = D↓I ,
whence A is an extent of I. Thus, c = 〈A,B〉 ∈ B(I) and it is non-stable because
x0 ∈ A and y0 ∈ B (Proposition 2). Since D = C↑J = A↑J , d = c�. A = C
yields c = d�.

We prove uniqueness of c. By Proposition 7, if for c′ = 〈A′, B′〉 ∈ B(I) we
have d = c′�, then either B′ = D, or B′ = D∪{y0}. The first case is impossible,
because it would make D an intent of I and, consequently, d a stable concept.
The second case means c′ equals c above. There is a third case left: if d = c′�,
then C = B′↓J . Since x0 ∈ C, we have y0 /∈ B′ (Proposition 1). Thus, C = B′↓I

(Proposition 1 again). Consequently, C↑I = B′ and since y0 /∈ B′, B′ = C↑J

(Proposition 1 for the last time). Thus, d = c′, which is a contradiction with
non-stability of d.

The case D↓I 6= D↓J is proved dually (in this case we obtain d = c�).

The meaning of the previous theorem is that for each non-stable concept in
B(J) there exists exactly one non-stable concept in B(I), such that these two
are related via mappings �,� or �,�.

The theorem leads the following simple way of constructing B(J) from B(I).
For each c ∈ B(I) the following has to be done:
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1. If c is stable, then it has to be added to B(J).
2. If c is not stable, then each its non-stable child (i.e., each non-stable element

of {c�, c�}) has to be added to B(J).

This method ensures that all proper elements will be added to B(J) (i.e., no
element will be omitted) and each element will be added exactly once.

Stable (resp. non-stable) concepts can be identified by means of Proposition
11. The following proposition shows a simple way of detecting whether a child
of a non-stable concept from B(I) is stable. It also describes the role of fixpoints
of operators �� and ��.

Proposition 9. Let c ∈ B(I) be non-stable. Then

– c� is non-stable iff c is a fixpoint of ��,
– c� is non-stable iff c is a fixpoint of ��.

Proof. If c� is not stable, then c = (c�)� by Theorem 8. On the other hand, if
c� is stable, then c�� = c� by Theorem 6, which rules out c�� = c, because in
that case c would be equal to c�, which would make it stable by Theorem 5.

The proof for c� is dual.

Example 1. In Fig. 1 we can see some examples of contexts with concepts of
different types w.r.t. operators ��,��.

The method is utilized in Algorithm 1.

Algorithm 1 Transforming B(I) into B(J) (without structural information).

procedure TransformConcepts(B(I))
B(J)← B(I);
for all c = 〈A,B〉 ∈ [γI(x0), µI(y0)] do
B(J)← B(J) \ {c};
if c = c�� then
B(J)← B(J) ∪ {c�};

end if
if c = c�� then
B(J)← B(J) ∪ {c�};

end if
end for
return B(J);

end procedure

Time complexity of Algorithm 1 is clearly O(|B(I)||X||Y |) in the worst case
scenario. Indeed, the number of non-stable concepts is at most equal to |B(I)|
and the computation of operators ��,�� can be done in O(|X| · |Y |) time.

5 Computing B(J) with structural information

To analyze changes in the structure of a concept lattice after removing an inci-
dence, we need to investigate deeper properties of the closure operator �� and
the interior operator �� and the sets of their fixpoints.
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y0 y1 y2

x0 • × ×
x1

x2

(a) The least concept is not sta-
ble and is a fixpoint of both op-
erators.

y1 y2 y3 y0

x0 × × × •
x1 × ×
x2 × ×
x3 × ×

(b) Several non-trival non-stable
concepts are fixpoints of both op-
erators.

y1 y2 y0

x0 × •
x1 × ×
x2 ×

(c) Concept 〈{x0, x1}, {y0, y2}〉
is a fixpoint of ��, but not ��.

y0 y1 y2

x0 • ×
x1 × × ×
x2

(d) Concept 〈{x0, x1}, {y0, y1}〉
is a fixpoint of ��, but not ��.

y0 y1 y2

x0 •
x1 × ×
x2

(e) Concept 〈{x0, x1}, {y0}〉 is
not a fixpoint of any operator.

y1 y2 y3 y4 y0

x0 × × •
x1 × × ×
x2 ×
x3 × × ×
x4 ×

(f) Two concepts are not fix-
points of any operator.

Fig. 1: Examples of contexts with concepts of different types w.r.t. operators
��,��.

Proposition 10. Each stable concept is a fixpoint of both �� and ��.

Proof. Follows directly from Theorem 5 and Theorem 6.

Since �� is an interior operator and �� is a closure operator on B(I), we
have for each c ∈ B(I), c�� ≤ c ≤ c��. Thus, we can consider the interval
[c��, c��] ⊆ B(I).

Proposition 11. For any c ∈ B(I), each concept from [c��, c��]\{c} is stable.

Proof. First we prove that either c�� equals c, or is its upper neighbor. Let
c = 〈A,B〉. By definition, the intent of c�� is equal to A↑J↓I↑I . By Proposition
1, A↑J ∈ {B,B \ {y0}}. Thus, A↑J↓I↑I ∈ {B,B \ {y0}}. If it equals B, then
c�� = c. Otherwise the intents of c and c�� differ in exactly one attribute,
which makes c and c�� neighbors. Also notice that in this case c�� is stable
because its intent does not contain y0 (Proposition 2).

Now let c′ ≤ c�� be non-stable. If c = c��, then c′ ≤ c. If c < c��, then c is
non-stable (Proposition 10) whereas c�� is stable. Non-stable concepts in B(I)
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form an interval (Theorem 5). Thus, c′ ∨ c is non-stable and should be less than
c��. Hence, c′ ∨ c = c (c is a lower neighbor of c��), concluding c′ ≤ c again.

In a similar way we obtain the inequality c′ ≥ c for each non-stable c′ ≥
c��.

The following proposition shows an important property of the sets of fixpoints
w.r.t. the ordering on B(I): The set of fixpoints of �� is a lower set whereas the
set of fixpoints of �� is an upper set.

Proposition 12. Let c ∈ B(I) be a non-stable concept. If c is a fixpoint of ��,
then each c′ ≤ c is also a fixpoint of ��. If c is a fixpoint of ��, then each c′ ≥ c
is also a fixpoint of ��.

Proof. Let c = c�� and c′ ≤ c. If c′ is stable, then the assertion follows by
Proposition 10. Suppose c′ is not stable. By extensivity and isotony of ��, c′ ≤
c′�� ≤ c�� = c. Thus, c′��

is not stable (Proposition 2) and c′��
= c′ by

Proposition 11.
The case c = c�� is dual.

The above results are used in Algorithm 2, which computes the lattice B(J)
together with the information of its ordering. The algorithm is more complicated
than the previous one. We provide a short description of the algorithm, together
with some examples. Due to space limitations, we will not dwell into details. We
will also leave out dual parts of similar cases.

The algorithm processes all non-stable concepts of B(I) in a bottom-up di-
rection, using an arbitrary linear ordering v such that if c1 ≤ c2, then c1 v c2.
Each concept is either modified (by removing x0 from the extent or y0 from in-
tent), or disposed of entirely. Sometimes, new concepts are created. All concepts
also get updated their lists of upper and lower neighbors.

Let c = 〈A,B〉 be an arbitrary non-stable concept from B(I) (c ∈ [γI(x0), µI(y0)]).

– If c = c��, c = c��, then c will “split” into d1 ≤ d2.

- We set d1 = c� and d2 = c�.
- The concept d1 will be a lower neighbor of d2.
- If for a lower neighbor cl of c it holds cl = cl

��, cl 6= cl��, then it
will be a lower neighbor of d2. It is necessary to check whether d1 and
cl�� will be neighbors. It certainly holds cl�� ≤ d1, but there can be
a concept k, such that cl�� ≤ k ≤ d1.

- Dually for upper neighbors.
- If for a non-stable neighbor cn of c it holds cn = cn

��, cn = cn��, i.e.,
the same conditions as for c (cn will split into dn1

, dn2
), then d1, dn1

and d2, dn2
will be neighbors.

- All other upper (resp. lower) neighbors will be neighbors of d2 (resp. d1).

– If c = c�� and c 6= c��, then c will lose y0 from its intent.

- Denote the transformed c as d = 〈C,D〉 = c� = 〈A,B \ {y0}〉.
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- If for an upper neighbor cu it holds cu = cu��, cu 6= cu
�� (cu will

lose x0 from its extent), then cu and d will become incomparable. It
is necessary to check whether c��, cu and c, cu

�� should be neighbors
(again, there can be a concept between them).

– If c 6= c�� and c = c��, then c will lose x0 from its extent.
- Denote transformed c as d = 〈C,D〉 = c� = 〈A \ {x0}, B〉.

– If c 6= c�� and c 6= c��, then c will vanish entirely.
- It is necessary to check whether c�� and c�� should be neighbors (again,

a concept can lie between them).
- Denote by U the set of all upper neighbors of c, except for c��. There

is no fixed point of �� among the elements from U .
- Denote by L the set of all lower neighbors of c, except for c��.
- Concepts from U and L will not be neighbors.

Concepts will either become incomparable or one of them or both will
vanish. There is also no need for additional checks regarding neighbor-
hood relationship between concepts from U and c�� (resp. L and c��)
or their neighbors.

- It holds ∀cl ∈ L : cl ≤ c ≤ c��, but it is necessary to check if there is a
concept between them.

- Similarly, it holds ∀cu ∈ U : c�� ≤ c ≤ cu, but again it is necessary to
check if there is a concept between them.

The number of iterations in TransformConceptLattice is at most |B(I)|,
which occurs when each concept in B(I) is non-stable. In each of the iterations,
tests c = c�� and c = c�� are performed and one of the procedures Split-
Concept, RelinkReducedIntent, UnlinkVanishedConcept is called. It
can be easily seen that the tests can be performed quite efficiently and do not
add to the time complexity.

The most time consuming among the above three procedures is SplitCon-
cept. It iterates through all upper (which can be bounded by |X|) and lower
(which can be bounded by |Y |) neighbors of the concept c. For each of the
neighbors it might be necessary to check if the interval between the neighbor
and certain other concept is empty (and we should make a new edge). This can
be done by checking intents/extents of its neighbors.

The above considerations lead to the result that time complexity of Algorithm
2 is in the worst case O(|B| · |X|2 · |Y |).

Example 2. In Fig. 2, we can see some examples of transformations of non-stable
concepts from B(I) into concepts of B(J).

In Algorithm 2 we will assume that following functions are already defined:

– UpperNeighbors(c) - returns upper neighbors of c;
– LowerNeighbors(c) - returns lower neighbors of c;
– Link(c1, c2) - introduces neighborhood relationship between c1 and c2;
– Unlink(c1, c2) - cancels neighborhood relationship between c1 and c2.
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Algorithm 2 Transforming B(I) with structural information into B(J).

procedure LinkIfNeeded(c1, c2)
if @k ∈ B(I) : c1 < k < c2 then

Link(c1, c2);
end if

end procedure

procedure SplitConcept(c ∈ [γI(x0), µI(y0)])

d1 = c�; d2 = c�;
Link(d1, d2);
for all u ∈ UpperNeighbors(c) do

Unlink(c, u); Link(d2, u);
end for
for all l ∈ LowerNeighbors(c) do

Unlink(l, c); Link(l, d1);
end for
for all u ∈ UpperNeighbors(c) do

if u 6= u�� then

Unlink(d2, u); Link(d1, u); LinkIfNeeded(d2, u
��);

end if
end for
for all l = 〈C,D〉 ∈ LowerNeighbors(c) do

if y0 /∈ D then
Unlink(l, d1); Link(l, d2); LinkIfNeeded(l��, d1);

end if
end for
return d1, d2;

end procedure

procedure RelinkReducedIntent(c ∈ [γI(x0), µI(y0)])
for all u = 〈C,D〉 ∈ UpperNeighbors(c) do

if u 6= u�� then
Unlink(c, u);

LinkIfNeeded(c��, u); LinkIfNeeded(c, u
��);

end if
end for

end procedure

procedure UnlinkVanishedConcept(c ∈ [γI(x0), µI(y0)])
for all u ∈ UpperNeighbors(c) do

Unlink(c, u); LinkIfNeeded(c��, u);
end for
for all l ∈ LowerNeighbors(c) do

Unlink(l, c);
end for

end procedure

procedure TransformConceptLattice(B(I))
for all c = 〈A,B〉 ∈ [γI(x0), µI(y0)] from least to largest w.r.t. v do

if c = c�� and c = c�� then . Concept will split.
B(I)← B(I) \ {c};
B(I)← B(I) ∪ SplitConcept(c);

else if c 6= c�� and c = c�� then . Extent will be smaller.
A← A \ {x0};

else if c = c�� and c 6= c�� then . Intent will be smaller.
RelinkReducedIntent(c);
B ← B \ {y0};

else if c 6= c�� and c 6= c�� then . Concept will vanish.
B(I)← B(I) \ {c};
UnlinkV anishedConcept(c);

end if
end for

end procedure
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cl��

cl = cl
��

cu = cu��

cu
��

cl��

clcu

cu
��

(a) Concepts become incomparable.

cl��

cl = cl
��

c = c�� = c��

cu = cu��

cu
��

cl��

clc�

c�cu

cu
��

(b) Concept in middle “splits into two”.

c�� cl = cl
��

c

c�� cu = cu��

c�� cl

c�� cu

(c) Concept in the middle vanishes.

c�� cl = cl
��

c

c�� cu = cu��

c�� cl

c�� cu

(d) Concept in the middle vanishes.
There is already another concept be-
tween its children.

Fig. 2: Examples of transformations of non-stable concepts from B(I) into con-
cepts of B(J).

6 Conclusion

We analyzed changes of the structure of a concept lattice, caused by removal
of exactly one incidence from the associated formal context. We proved some
theoretical results and presented two algorithms with time complexities O(|B| ·
|X| · |Y |) (Algorithm 1; without structure information) and O(|B| · |X|2 · |Y |)
(Algorithm 2; with structure information).

There exist several algorithms for incremental computation of concept lattice
[1, 5, 8, 6, 7, 2], based on addition and/or removal of objects. Our approach is new
in that we recompute a concept lattice based on a removal of just one incidence.

Note that the algorithm proposed by Nourine and Raynaud in [7] has time
complexity O((|Y | + |X|) · |X| · |B|), which is better than complexity of our
Algorithm 2. However, experiments presented in [5] indicate that this algorithm
sometimes performs slower than some algorithms with time complexity O(|B| ·
|X|2 ·|Y |). In the case of our Algorithm 2, some preliminary experiments indicate
that the size of the interval of non-stable concepts is usually relatively small,
which substantially reduces the overall processing time of the algorithm.

A natural next step would be investigate adding incidences to a formal con-
text, instead of removing. This problem, however, seems to be more difficult
than the first one, namely because the set of non-stable concepts in the lattice
B(J) has more complicated structure (it is not an interval) and also because not
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all non-stable concepts in B(I) can be computed via the operator �. We will try
to address this issues in the future. We will also focus on the following:

– experimenting with proposed algorithms on various datasets and comparing
them with other known algorithms,

– generalizing the results to allow removing and adding more incidences at the
same time.
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Abstract. We provide a new approach to synthesis of Formal Concept
Analysis and Rough Set Theory. In this approach, the formal concept is
considered to be a collection of objects accompanied with two collections
of attributes—those which are shared by all the objects and those which
are possessed by at least one of the objects. We define concept-forming
operators for these concepts and describe their properties. Furthermore,
we deal with reduction of the data by rough approximation by given
equivalence. The results are elaborated in a fuzzy setting.

1 Introduction

Formal concept analysis (FCA) [12] is a method of relational data analysis iden-
tifying interesting clusters (formal concepts) in a collection of objects and their
attributes (formal context), and organizing them into a structure called concept
lattice. Numerous generalizations of FCA, which allow to work with graded data,
were provided; see [19] and references therein.

In a graded (fuzzy) setting, two main kinds of concept forming-operators—
antitone and isotone one—were studied [2, 13, 20, 21], compared [7, 8] and even
covered under a unifying framework [4, 18]. We describe concept-forming oper-
ators combining both isotone and antitone operators in such a way that each
formal (fuzzy) concept is given by two sets of attributes. The first one is a
lower intent approximation, containing attributes shared by all objects of the
concept; the second one is an upper intent approximation, containing those at-
tributes which are possessed by at least one object of the concept. Thus, one can
consider the two intents to be a lower and upper approximation of attributes
possessed by an object.

Several authors dealing with synthesis of FCA and Rough Set Theory have
noticed that intents formed by isotone and antitone operators (in both, crisp
and fuzzy setting) correspond to upper and lower approximations, respectively
(see e.g. [15, 16, 24]). To the best of our knowledge, no one has studied concept-
forming operators which would provide both approximations being present in
one concept lattice.

In this papers we present such concept-forming operators, structure of their
concepts, and reduction of the data by means of rough approximations by equiv-
alences. Due to page limitation we omit proofs of some theorems.
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2 Preliminaries

In this section we summarize the basic notions used in the paper.

Residuated Lattices and Fuzzy Sets We use complete residuated lattices as basic
structures of truth-degrees. A complete residuated lattice [1, 14, 23] is a struc-
ture L “ xL,^,_,b,Ñ, 0, 1y such that xL,^,_, 0, 1y is a complete lattice, i.e.
a partially ordered set in which arbitrary infima and suprema exist; xL,b, 1y is
a commutative monoid, i.e. b is a binary operation which is commutative, asso-
ciative, and ab 1 “ a for each a P L; b and Ñ satisfy adjointness, i.e. ab b ď c
iff a ď bÑ c. 0 and 1 denote the least and greatest elements. The partial order
of L is denoted by ď. Throughout this work, L denotes an arbitrary complete
residuated lattice.

Elements a of L are called truth degrees. Operations b (multiplication) and
Ñ (residuum) play the role of (truth functions of) “fuzzy conjunction” and
“fuzzy implication”. Furthermore, we define the complement of a P L as  a “
aÑ 0.

An L-set (or fuzzy set) A in a universe set X is a mapping assigning to each
x P X some truth degree Apxq P L. The set of all L-sets in a universe X is
denoted LX , or LX if the structure of L is to be emphasized.

The operations with L-sets are defined componentwise. For instance, the
intersection of L-sets A,B P LX is an L-set AXB in X such that pAXBqpxq “
Apxq ^ Bpxq for each x P X. An L-set A P LX is also denoted tApxq{x | x P
Xu. If for all y P X distinct from x1, . . . , xn we have Apyq “ 0, we also write
tApx1q{x1, . . . ,

Apxnq{xnu.
An L-set A P LX is called normal if there is x P X such that Apxq “ 1, and

it is called crisp if Apxq P t0, 1u for each x P X. Crisp L-sets can be identified
with ordinary sets. For a crisp A, we also write x P A for Apxq “ 1 and x R A
for Apxq “ 0.

Binary L-relations (binary fuzzy relations) between X and Y can be thought
of as L-sets in the universe X ˆ Y . That is, a binary L-relation I P LXˆY

between a set X and a set Y is a mapping assigning to each x P X and each
y P Y a truth degree Ipx, yq P L (a degree to which x and y are related by I). For
L-relation I P LXˆY we define its transpose IT P LYˆX as ITpy, xq “ Ipx, yq
for all x P X, y P Y .

The composition operators are defined by

pI ˝ Jqpx, zq “
ł

yPY

Ipx, yq b Jpy, zq,

pI Ž Jqpx, zq “
ľ

yPY

Ipx, yq Ñ Jpy, zq,

pI Ż Jqpx, zq “
ľ

yPY

Jpy, zq Ñ Ipx, yq

for every I P LXˆY and J P LYˆZ .
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A binary L-relation E is called an L-equivalence if it satisfies IdX Ď E
(reflexivity), E “ ET (symmetry), E ˝ E Ď E (transitivity).

An L-set B P LY is compatible w.r.t. L-equivalence E P LYˆY if

Bpy1q b Epy1, y2q ď Bpy2q.

for any y1, y2 P Y .

Formal Concept Analysis in the Fuzzy Setting An L-context is a triplet xX,Y, Iy
where X and Y are (ordinary) sets and I P LXˆY is an L-relation between X
and Y . Elements of X are called objects, elements of Y are called attributes,
I is called an incidence relation. Ipx, yq “ a is read: “The object x has the
attribute y to degree a.” An L-context may be described as a table with the
objects corresponding to the rows of the table, the attributes corresponding to
the columns of the table and Ipx, yq written in cells of the table (for an example
see Fig. 1).

α β γ δ

A 0.5 0 1 0
B 1 0.5 1 0.5
C 0 0.5 0.5 0.5
D 0.5 0.5 1 0.5

Fig. 1. Example of L-context with objects A,B,C,D and attributes α, β, γ, δ.

Consider the following pairs of operators induced by an L-context xX,Y, Iy.
First, the pair xÒ, Óy of operators Ò : LX Ñ LY and Ó : LY Ñ LX is defined by

AÒpyq “
ľ

xPX

Apxq Ñ Ipx, yq, BÓpxq “
ľ

yPY

Bpyq Ñ Ipx, yq. (1)

Second, the pair xX, Yy of operators X : LX Ñ LY and Y : LY Ñ LX is defined by

AXpyq “
ł

xPX

Apxq b Ipx, yq, BYpxq “
ľ

yPY

Ipx, yq Ñ Bpyq. (2)

To emphasize that the operators are induced by I, we also denote the op-
erators by xÒI , ÓIy and xXI , YIy. Fixpoints of these operators are called formal
concepts. The set of all formal concepts (along with set inclusion) forms a com-
plete lattice, called L-concept lattice. We denote the sets of all concepts (as well
as the corresponding L-concept lattice) by BÒÓpX,Y, Iq and BXYpX,Y, Iq, i.e.

BÒÓpX,Y, Iq “ txA,By P LX ˆ LY | AÒ “ B, BÓ “ Au,

BXYpX,Y, Iq “ txA,By P LX ˆ LY | AX “ B, BY “ Au.
(3)
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For an L-concept lattice BpX,Y, Iq, where B is either BÒÓ or BXY, denote the
corresponding sets of extents and intents by ExtpX,Y, Iq and IntpX,Y, Iq. That
is,

ExtpX,Y, Iq “ tA P LX | xA,By P BpX,Y, Iq for some Bu,

IntpX,Y, Iq “ tB P LY | xA,By P BpX,Y, Iq for some Au.
(4)

When displaying L-concept lattices, we use labeled Hasse diagrams to include
all the information on extents and intents. In BÒÓpX,Y, Iq, for any x P X, y P Y
and formal L-concept xA,By we have Apxq ě a and Bpyq ě b if and only if
there is a formal concept xA1, B1y ď xA,By, labeled by a{x and a formal concept
xA2, B2y ě xA,By, labeled by b{y. We use labels x resp. y instead of 1{x resp.
1{y and omit redundant labels (i.e., if a concept has both the labels a{x and b{x
then we keep only that with the greater degree; dually for attributes). The whole
structure of BÒÓpX,Y, Iq can be determined from the labeled diagram using the
results from [2] (see also [1]).

In BXYpX,Y, Iq, for any x P X, y P Y and formal L-concept xA,By we have
Apxq ě a and Bpyq ď b if and only if there is a formal concept xA1, B1y ď

xA,By, labeled by a{x and a formal concept xA2, B2y ě xA,By, labeled by b{y
(see examples depicted in Fig. 2).

‚

0.5
{γ

‚A, 0.5{α, γ ‚ C, 0.5{β, 0.5{δ

‚D

‚0.5
{C, β, δ ‚ 0.5

{A,B, α

‚
0.5
{B, 0.5{D

‚

B, 0.5{β, 0.5{δ

‚D, 0.5{α

‚A, 0{β, 0.5{δ ‚ C, 0.5{β, 0.5{γ

‚0.5
{B ‚ C, 0{α

‚0.5
{A, 0.5{D

‚
0
{γ

Fig. 2. Concept lattice BÒÓpX,Y, Iq (left) and BXYpX,Y, Iq (right) of the L-context in
Fig. 1.
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3 L-rough concepts

We consider concept-forming operators induced by L-context xX,Y, Iy defined
as follows:

Definition 1. Let xX,Y, Iy be an L-context. Define L-rough concept-forming
operators as

AM “ xAÒ, AXy and xB,By
O
“ BÓ XB

Y

for A P LX , B,B P LY . L-rough concept is then a fixed point of xM,Oy, i.e. a

pair xA, xB,Byy P LX ˆpLˆLqY such that AM “ xB,By and xB,By
O
“ A.1 AÒ

and AX are called lower intent approximation and upper intent approximation,
respectively.

That means, M gives intents w.r.t. both xÒ, Óy and xX, Yy; O then gives inter-
section of extents related to the corresponding intents.

We denote the set of all fixed-points of xM,Oy, in correspondence with (3),
as BMOpX,Y, Iq and call it L-rough concept lattice. Below, we present an analogy
of the Main theorem on concept lattices for L-rough setting.

Theorem 1 (Main theorem on L-rough concept lattices).

(a) L-rough concept lattice BMOpX,Y, Iq is a complete lattice with suprema and
infima defined as follows

ľ

i

xAi, Bi, Biy “ x
č

i

Ai, x
ď

i

Bi,
č

i

Biy
OM
y,

ł

i

xAi, Bi, Biy “ xp
ď

i

Aiq
MO,

č

i

Bi,
ď

i

Biy.

(b) Moreover, a complete lattice V “ xV,ďy is isomorphic to BMOpX,Y, Iq iff
there are mappings

γ : X ˆ LÑ V and µ : Y ˆ Lˆ LÑ V

such that γpXˆLq is supremally dense in V, µpY ˆLˆLq is infimally dense
in V, and

ab b ď Ipx, yq and Ipx, yq ď aÑ b is equivalent to γpx, aq ď µpy, b, bq

for all x P X, y P Y, a, b, b P L.

When drawing a concept lattice we label nodes as in BÒÓ for lower intent
approximations and BXY for upper intent approximations. We write a{y or a{y
instead of just a{y to distinguish them. Fig. 3 (middle) shows an L-rough concept
lattice for the L-context from Fig. 1.

The following theorem explains that normal extents have natural intent ap-
proximations; that is B Ď B.

1 In what follows, we naturally identify xA, xB,Byy with xA,B,By.
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Theorem 2. For normal A P LX , we have AÒ Ď AX, for crisp singleton A P LX ,
we have AÒ “ AX.

Proof. Since A is normal, there is x1 P X such that Apx1q “ 1. Then we have

AÒpyq “
ľ

xPX

Apxq Ñ Ipx, yq ď Apx1q Ñ Ipx1, yq “ Ipx1, yq “

“ Apx1q b Ipx1, yq ď
ł

xPX

Apxq b Ipx, yq “ AXpyq
(5)

for each y P Y .

For A being a crisp singleton, one can show AÒ “ AX by changing all inequal-
ities in (5) to equalities. [\

Since xM,Oy is defined via xÒ, Óy and xX, Yy, one can expect that there is a
strong relationship between the associated concept lattices. In the rest of this
section, we summarize them.

Theorem 3. For S Ď LX , let rSs denote an L-closure span of S, i.e. the small-
est L-closure system containing S. We have

rExtÒÓpX,Y, Iq Y ExtXYpX,Y, Iqs “ ExtMOpX,Y, Iq.

Proof. “Ď”: LetA P ExtÒÓpX,Y, Iq. ThenA “ AXX “ xAÒ, Y y
O
P ExtMOpX,Y, Iq.

Similarly for A P ExtXYpX,Y, Iq.

“Ě”: Let A P ExtMOpX,Y, Iq and let xB1, B2y “ AM. Then we have A “

BÓ XBY P rExtÒÓpX,Y, Iq Y ExtXYpX,Y, Iqs since BÓ P ExtÒÓpX,Y, Iq and BY P

ExtXYpX,Y, Iq.

From Theorem 3 one can observe that no extent from ExtÒÓpX,Y, Iq and
ExtXYpX,Y, Iq is lost.

Corollary 1. ExtÒÓpX,Y, Iq Ď ExtMOpX,Y, Iq and ExtXYpX,Y, Iq Ď ExtMOpX,Y, Iq.

In addition, no concept is lost.

Corollary 2. For each xA,By P BÒÓpX,Y, Iq there is xA,B,AXy P BMOpX,Y, Iq.
For each xA,By P BXYpX,Y, Iq there is xA,AÒ, By P BMOpX,Y, Iq.

Remark 1. One can observe from Fig. 3 that in ExtMOpX,Y, Iq there exist ex-
tents which are present neither in ExtÒÓpX,Y, Iq nor in ExtXYpX,Y, Iq. On the
other hand, lower intent approximations are exactly those from IntÒÓpX,Y, Iq
and upper intent approximations are exactly those from IntXYpX,Y, Iq.

With results on mutual reducibility from [8] we can state the following the-
orem on representation of BMO by BÒÓ.
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Theorem 4. For a L-context xX,Y, Iy, consider the L-context xX,Y ˆ L, Jy
where J is defined by

Jpx, xy, ayq “

#

Ipx, yq if a “ 1,

Ipx, yq Ñ a otherwise.

Then we have that BÒÓpX,Y ˆ L, Jq is isomorphic to BMOpX,Y, Iq as a lattice.
In addition,

ExtÒÓpX,Y ˆ L, Jq “ ExtMOpX,Y, Iq.

Proof (sketch). In [8] we show that for L-contexts xX,Y, Iy and xX,Y ˆ Lzt1u, Jy
such that

Jpx, xy, ayq “ Ipx, yq Ñ a

it holds that ExtXYpX,Y, Iq “ ExtÒÓpX,Y ˆ Lzt1u, Jq. Using this fact, one can
check that mapping i defined as

ipxA,B,Byq ÞÑ xA,B1 YB
1
y,

where B1 P LYˆt1u, B
1
P LYˆLzt1u with

B1pxy, 1yq “ Bpyq,

B
1
pxy, ayq “ Bpyq Ñ a,

is the desired isomorphism from BMOpX,Y, Iq to BÒÓpX,Y ˆ L, Jq.

Theorem 4 shows how we can obtain a concept lattice formed by xÒ, Óy which
is isomorphic to L-rough concept lattice of given L-context.

4 Rough approximation of an L-context and L-concept
lattice

In [17] Pawlak introduced Rough Set Theory where uncertain elements are ap-
proximated with respect to an equivalence relation representing indiscernibility.

Formally, given Pawlak approximation space xU,Ey, where U is a non-empty
set of objects (universe) and E is an equivalence relation on U , the rough approx-
imation of a crisp set A Ď U by E is the pair xAóE , AòE y of sets in U defined
by

x P AóE iff for all y P U, xx, yy P E implies y P A,

x P AòE iff there exists y P U such that xx, yy P E and y P A.

AóE and AòE are called lower and upper approximation of the set A by E,
respectively.
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In the fuzzy setting, one can generalize xAóE , AòE y as in [10, 11, 22],

AóE pxq “
ľ

yPU

pEpx, yq Ñ Apyqq,

AòE pxq “
ł

yPU

pApyq b Epx, yqq

for L-equivalence E P LUˆU and L-set A P LU .
Considering L-context xU,U,Ey, we can easily see that óE is equivalent to

YE ; and òE is equivalent to XET . Since E is symmetric, we can also write

xóE ,òEy “ xYE , XEy. (6)

Note that for L-set A, AóE is its largest subset compatible with E and AòE

is its smallest superset compatible with E.
Below, we deal with situation where lower and upper intent approximations

are further approximated using Pawlak’s approach. In other words, instead of
lower intent approximation AÒ we consider the largest subset of AÒ compatible
with a given indiscernibility relation E, and similarly, instead of upper intent
approximation AX we consider its smallest superset compatible with E. In The-
orem 5 we show how to express this setting using L-rough concept forming
operators.

Definition 2. Let xX,Y, Iy be an L-context, E be an L-equivalence on Y . Define
L-rough concept-forming operators as follows:

AME “ xAÒóE , AXòE y,

xB,By
OE
“ BòEÓ XB

óEY
.

Directly from (6) and results in [5] we have:

Theorem 5. Let xX,Y, Iy be an L-context, E be an L-equivalence on Y . We
have

AME “ xAÒIŻE , AXI˝E y and xB,By
OE
“ BÓIŻE XB

YI˝E
.

Again, for normal extents we obtain natural upper and lower intent approx-
imations.

Theorem 6. For normal A P LX we have AÒIŻE Ď AXI˝E .

In correspondence with (3) and (4), we denote set of the set of fixpoints of
xME ,OEy in L-context xX,Y, Iy by BMEOE pX,Y, Iq and set of its extents and
intents by ExtMEOE pX,Y, Iq and IntMEOE pX,Y, Iq, respectively.

The following theorem shows that a use of a rougher L-equivalence relation
leads to a reduction of size of the L-rough concept lattices. Furthermore, this
reduction is natural, i.e. it preserves extents.
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Theorem 7. Let xX,Y, Iy be an L-context, and E1, E2 be L-equivalences on Y ,
such that E1 Ď E2. Then

ExtME2
OE2 pX,Y, Iq Ď ExtME1

OE1 pX,Y, Iq.

Example 1. Fig. 4 shows L-rough concept lattice of the L-context in Fig. 1 and
rough L-concept lattice approximated using the following L-equivalence relation
on Y .

α β γ δ
α 1 0.5 0 0
β 0.5 1 0 0
γ 0 0 1 0.5
δ 0 0 0.5 1

To demonstrate Theorem 7, the concepts with the same extents in the two
lattices are connected.

5 Conclusions and further research

We proposed a novel approach to synthesis of RTS na FCA. It provides a lot of
directions to be further explored. Our future research includes:

Study of attribute implications using whose semantics is related to the present
setting. That will combine results on fuzzy attribute implications [9] and at-
tribute containment formulas [6].

Generalization of the current setting. Note that the operators Ò and X which
compute the universal and the existential intent, need not be induced by the
same relation to keep most of the described properties. Actually, this feature is
used in Section 4. In our future research, we want to elaborate more on this.
For instance, it can provide interesting solution of problem of missing values
in a formal fuzzy context—the idea is to use Ò induced by the context with
missing values substituted by 0, and X induced by the context with missing
values substituted by 1.

Reduction of L-rough concept lattice via linguistic hedges As two intents are
considered in each L-rough concept, the size of concept lattice can grow very
large. The RST approach to reduction of data, i.e. use of rougher L-relation,
directly leads to reduction of L-rough concept lattice as we showed in Theorem 7.
FFCA provides other ways to reduce the size, one of them is parametrization of
concept-forming operators using hedges.
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Fig. 4. Rough L-concept lattices BMO
pX,Y, Iq (left) and BMEOE pX,Y, Iq (right) with L

being three-element  Lukasiewicz chain. The corresponding extents are connected.
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Reduction dimension of bags of visual words
with FCA
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Laboratoire L3i, University of La Rochelle, France

Abstract. In image retrieval involving bag of visual words, reduction
dimension is a fundamental task of data preprocessing. In recent years,
several methods have been proposed for supervised and unsupervised
cases. In the supervised case, the problem has been addressed with en-
couraging results. However, in the unsupervised case, reduction dimen-
sion is still an unavoidable challenge. In this article, we propose an appli-
cation of a logic reduction dimension method which is based on Formal
Concept Analysis for image retrieval. This method is the reduction of a
closure system without, theoretically, loss of information. In our context,
combining our proposed method with bag of visual words is original.
Experimental results on five data sets such as COREL, CALTECH256,
VOC2005, VOC2012 and MIR flickr are analyzed to show the influence
of the data structures and the parameters on the reduction factor.

1 Introduction

Thanks to the generalization of multimedia devices, huge collections of digital
images are available today. As far as mining in multimedia documents is con-
cerned, web search engines usually give poor results. Hence, such results are far
from expected regarding the semantics of the documents. Content Based Image
Retrieval (CBIR)[1] has been investigated in order to give an answer to this
problem for decades. The main idea is to build a description based on the image
content, and to find similarities between descriptions. Classically, visual features
are extracted from images and then compiled into an index or signature to give
a dense description of images. To perform the retrieval, a similarity function is
computed to compare the index of the query with those of collection. A ranking
of the results according to the calculated similarity is proposed to the users. The
detection of visual features can be performed by a SIFT detector[2] or a dense
grid which both select an important number of interest points (up to several
thousands) from the images. Each of these points is then described thanks to a
SIFT-like descriptor. However, to limit the dimension of the description space, a
vector quantization (usually k-means) is performed in order to cluster similar in-
terest points into ”visual words”, and to generate a dictionary of ”visual words”
(usually up to 1000 words). Then, the signature of the image is composed of
the set of all the visual words corresponding to each feature point detected into
the image (what formed a ”bag of visual words”[3]). The comparison between
the images then consists in comparing the bags of visual words of each image

c© Karell Bertet, Sebastian Rudolph (Eds.): CLA 2014, pp. 219–231,
ISBN 978–80–8152–159–1, Institute of Computer Science, Pavol Jozef Šafárik
University in Košice, 2014.



in a dataset. The processing cost introduced by these techniques makes them
difficult to use with large amounts of images such as a query on the Internet.

On the other hand, supervised data is labeled (the data has ground truth)
and classification methods are required to deal with the categorization problem.
Data in the case unsupervised is unlabeled, hence clustering methods are used
to gather the similar observations in the same cluster. There are many appli-
cations for classification and clustering on many domains of computer science
such as bioinformatics, numerical analysis, machine learning, data mining, pat-
tern recognition, etc., where data may contain a grand set of features, means
the description of the data is high dimension, and therefore it need to be re-
duced. However, reduction them while preserving the quality of the data is still
challenging.

To be able to manage high dimensional description spaces, reduction tech-
niques have been proposed. These techniques are much used as a data prepro-
cessing step in machine learning and pattern recognition. This step can usually
increase the accuracy of the results in the next steps such as classification or
clustering while the computational cost and time cost of the former step may be
significantly decreased. Regarding statistics and machine learning literature, we
distinguish two main strategies: feature extraction and feature selection. These
methods can be used for supervised case or unsupervised case. The main idea of
feature transformation consists in transforming the given set of features into a
new one. In case that the size of the new feature set is greater than the original
feature set, we called it the feature generation. And when new feature set size
is smaller than the original feature set, feature extraction is mentioned. Feature
selection methods propose a manipulation of data to select features from the
original set. This approach is interesting in some domains when they prefer the
existing features in order to maintain their physical properties.

In this article, we propose a logic and unsupervised feature reduction method
issued from FCA to address the visual word reduction problem in a CBIR sys-
tem. In FCA, data are organised into a ”context” by a set of observations (called
”objects”, ”samples” or ”experimental units” in other fields) and a set of features
(also known as ”attributes”, ”parameters”, or ”variables” in computer science,
machine learning and statistic communities) that are associated with each ob-
servation.

Context reduction is a simple and polynomial treatment in FCA classically
applied on the whole context, thus both reducing observations and features. This
treatment is based on a nice result establishing that the concept lattice of the
context can be reduced to a minimal one while preserving its graph structure
by deleting some redundant observations and features. For example, when two
attributes are shared by the same objects, then they belong to the same concepts
of the concept lattice, thus they are redundant and one of these two objects can
be deleted while preserving the concept lattice structure. In our case, we focus
on feature reduction of a context. Our algorithm accepts as input the closure
operator of the context on attributes set, and returns the redundant attributes.
Thus, this algorithm extends the classical attributes reduction of a context to the
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more general case of data described by a closure operator. Moreover, we propose
a new application in image analysis for features reduction of visual words.

This paper is organized as follows: In order to introduce our approach, we
recall some definitions of formal concepts in the section 2.1. Section 2.2 shows
details our proposed method. Section 3 shows some experimental results with
real data. Finally, section 4 ends this paper with a conclusion and perspectives.

2 The proposed features selection method

The feature reduction algorithm we propose is a logic and unsupervised method
stemming from FCA where a concept lattice, defining from a binary table, rep-
resents the description of all object-attribute combinations. When the concept
lattice structure is preserved after the deletion of some attributes and objects,
then these attributes are ”redundant” for the lattice structure and can be deleted
from the initial data without affecting the structure of object-attributes combi-
nations. Therefore, from a theoretical point of view, the description of data is
equivalently represented by a concept lattice where ”redundant” attributes and
objects are deleted.

The reduction is a simple and polynomial treatment in FCA, classically de-
composed into two steps: attribute and object reduction. In this article, we focus
on attributes/features reduction, thus on the detection of redundant attributes
for the concept lattice structure reduced to attributes. A nice result establishes
that each subset of a concept (A,B) is a closure defined on the objects and at-
tributes set, and the concept lattice reduced to the attributes/objects is denoted
a closure lattice.

In the first subsection, we introduce the notions of closure lattice according
to a closure operator, reduced closure lattice and redundant attributes. In the
second section, we presents the reduction algorithm aiming at removing redun-
dant attributes, with a closure operator as input. This algorithm is thus a generic
algorithm that can be applied either on attributes or on objects of a binary table,
but also on any closure system.

2.1 Reduced lattice

In FCA, the relationship between a set of attributes I and a set of objects O
are described by a formal context (O, I, (α, β)) where α(A) the set of attributes
sharing by a subset A of objects, and β(B) the set of objects sharing a subset
B of attributes. One can derive two closure systems from a context. The first
one is defined on the set of attributes I, with β ◦ α as closure operator. The
second one is defined on the set of objects O with α ◦ β as closure operator[18].
A closure system (ϕ, S) is defined by a closure operator ϕ on a set S, i.e. a map
on P(S) satisfying the three following properties: ϕ is isotone, extensive and
idempotent. A subset X ⊆ S is called closed if ϕ(X) = X (see Table 2). The set
system F of all closed subsets, fitted out with the inclusion relation ⊆, forms a
lattice usually called the closure lattice (see Fig. 1a). See the survey of Caspard
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and Monjardet[19] for more details about closure systems. There are infinitely
set systems whose closure lattice are isomorphic. A reduced closure lattice is a
closure lattice defined on a set S of the smallest size among all isomorphic closure
lattices. A nice result[20,18] establishes that a closure system is reduced when,
for each x ∈ S, the closure ϕ(x) is a join irreducible (Equation 1).

∀x ∈ S,∀Y ⊆ S so that x 6∈ Y, then ϕ(x) 6= ϕ(Y ) (1)

Therefore, a non-reduced closure system contains reducible elements - ele-
ments which do not satisfy Equation 1 - each reducible element x ∈ S is then
equivalent to a set Ex ⊆ S of equivalent elements with x 6∈ Ex and ϕ(x) = ϕ(Ex).
Reducible elements can be removed without affecting the structure of the closure
lattice. The reduction of a closure system consists then in removing or replacing
each reducible element x ∈ S by its equivalent set Ex.

2.2 Proposed reduction algorithm

The algorithm we propose is a generic reduction algorithm since it only needs a
closure operator as input. Thus it can be applied with the same complexity on
any closure system, and in particular on a context by considering the attributes
- using β ◦ α as closure operator.

a b c d e f g h

1 × ×
2 × × × ×
3 × × × × ×
4 × × × × × ×
5 × × × × ×
6 × × ×
7 × × ×
8 × × ×
9 × × × × × × × ×

(a) The context

a b c d e f

1 ×
2 × × ×
3 × × ×
4 × × × ×
5 × × ×
6 × ×
7 × ×
8 × ×
9 × × × × × ×

(b) The attribute-
reduced context

Table 1: The example of context

x a b c d e f g h

ϕ(x) a,g b,g a,c,g d,e,f,g e,g f,g g e,f,g,h

Table 2: Attributes x ∈ S and their closure ϕ(x) for the context in Table 1a

A direct application of the definition (see Eq. 1) would imply an exponential
cost by checking if any subset Y ⊂ S is equivalent to each x ∈ S. We use the
precedence relation (precedence graph) for a polynomial reduction. The prece-
dence graph is defined on the set S, with an edge between two elements x, y ∈ S

222 Ngoc Bich Dao, Karell Bertet and Arnaud Revel



 [g]

 [f, g]  [e, g] [b, g]  [a, g]

 [e, f, g, h] [b, f, g]  [a, f, g]

 [d, e, f, g, h]  [a, e, f, g, h]

 [a, d, e, f, g, h]

 [a, b, c, d, e, f, g, h]

 [a, e, g]

 [a, c, g]

(a) The closure lattice of context in
Table 1a

 []

 [f]  [e] [b]  [a]

 [e, f] [b, f]  [a, f]

 [d, e, f]  [a, e, f]

 [a, d, e, f]

 [a, b, c, d, e, f]

 [a, e]

 [a, c]

(b) The reduced closure lattice
of context in Table 1b

Fig. 1: The example of closure lattices

when ϕ(x) ⊆ ϕ(y). This graph is clearly acyclic for a reduced closure system.
We propose a generic algorithm in 3 steps:

Step 1: Standardization. Check if there exists x, y ∈ S such that ϕ(x) =
ϕ(y). When ϕ(x) = ϕ(y), then x and y belong to the same strongly connected
components of the graph. Each strongly connected components X ⊆ S in-
clude the elements xi, xj so that ϕ(xi) = ϕ(xj),∀xi 6= xj ∈ X. Thus, we
can delete all elements except one representative element x ∈ X of the com-
ponent. The obtained precedence graph is then an acyclic graph.

Step 2: Clarification. Check if there exists x ∈ S such that ϕ(x) = ϕ(∅).
When such an x exists, then ϕ(x) is included into ϕ(y) for any y ∈ S, thus
x is the only source of the precedence graph. The clarification test has only
to be performed for graphs with one source.

Step 3: Reduction. Check, for any x ∈ S, if there exists a set Ex ⊂ S such
that x /∈ Ex and ϕ(x) = ϕ(Ex). One can observe that an attribute x
with only one immediate predecessor y is not reducible, because it would
be equivalent to y, and thus belong to the same strongly connected com-
ponent already removed in the previous step. If there exists Ex ⊂ S such
that ϕ(x) = ϕ(Ex), then elements of Ex are clearly predecessors of x in the
precedence graph since, for ∀y ∈ Ex, ϕ(x) = ∩ϕ(y). Moreover, this test can
be reduced to maximal predecessors of x. Therefore, this treatment has only
to be performed for elements with more than one immediate predecessors,
and the equality has to be checked with the set of immediate predecessors
of x.

This algorithm takes into account a closure operator ϕ on a set S as input.
The output of the alforithm is the reducible element setX ⊂ S and the equivalent
elements set Ex for each x ∈ X.
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Alg. 1 reduces a closure system in O(|S|.cϕ + |S|2 log |S|) where cϕ is the cost
of a closure generation and —S— is the number of nodes. Indeed, the precedence
graph can be initialized in O(|S|cϕ + |S|2log|S|) by computing the closures in
O(|S|cϕ), and then comparing two closures in O(|S|2log|S|). Then, the SCCs can
be computed using Kosaraju’s algorithm by two passes of depth first search, thus
a complexity in O(|S|+ |A|) ≤ O(|S|2), with |A| nb of edges in the graph. Stan-
dardization and clarification are clearly in O(|S|) by a simple pass into the graph.
Finaly, reduction considers the immediate predecessors of each x ∈ S in O(|S|2),
and then computes and compare two closures in O(|S|cϕ+|S|2log|S|). Therefore,
Alg. 1 computes the attribute reduced context in O(|I|2|O|+ |I|2log|I|). since a
closure can be obtained in O(|I|.|O|).

Input: a closure operator ϕ on a set S
Output: the reducible elements set X ⊂ S, and the equivalent elements set Ex

for each x ∈ X
init a set Res with ∅;
init a graph G with S as set of node;
\\ Precedence graph;
foreach (x, y) ∈ S × S do

if ϕ(x) ⊆ ϕ(y) then
add the edge (x, y) in G;

end

end
compute the set CFC of the strongly connected components of G;
let source be the sources of the graph G;
\\ Step (1): Standardization;
foreach C ∈ CFC do

choose y ∈ C;
foreach x ∈ C such that x 6= y do

add x in Res with Ex = {y}; delete x from the graph G;
end

end
\\ Step (2): Clarification;
if |source| = 1 and ϕ(source) = ϕ(∅) then

add source in Res with Esource = ∅; delete source from G;
end
\\ Step (3): Reduction;
foreach x ∈ G do

let P the set of immediate predecessors x in the graph G;
if |P | 6= 1 and ϕ(x) = ϕ(P ) then

add x in Res with Ex = P ; delete x from the graph G;
end

end
return Res, (Ex)x∈Res;

Algorithm 1: Reduction of a closure system
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3 Experimentation

3.1 Datasets

In our experiments, we compare the performance of the method we propose on
different image data sets. Each image in a data set is described by a vector
composed of the occurrence frequencies of its visual words, where a set of visual
words is defined for each data set. Table 3 describes the different data sets we
used in our experiments, and the methods applied to generate the whole bag of
visual words.

Database Images nb Features
nb

Detector Descriptor Dictionary of
visual words

VOC2012[21] 17124 4096 Harris-
Laplace

CMI (Colour
Moment

Invariants)[22]

Random
selection of

all key points

MIR flickr[23] 24991 4096 Harris-
Laplace

CMI1 Random
selection of

all key points

COREL[24] 4998 500 SIFT SIFT[2] K-means[25]
(OpenCV)

CALTECH
256[26]

30607 500 SIFT SIFT2 K-means
(OpenCV)

Dataset 1
(VOC2005)[27]

1354 262 Harris-
Laplace and
Laplacian3

SIFT K-means
(OpenCV)

Table 3: Description of used datasets

3.2 Experimental protocol

As mentioned earlier, the algorithm we propose requires binary values indicating
for each object whether it possesses a given attribute or not. Since each image
is described by a visual word occurence frequency vector, its values can vary
from 0 to a max value depending on the image size and the quantity of visual
words in the image. For instance, if an image is black painted, there is only one
visual word ”black” for the whole image with a big frequency, and the vector

1 http://koen.me/research/colordescriptors/
2 http://www.robots.ox.ac.uk/ vgg/research/affine/#software
3 http://lear.inrialpes.fr/people/dorko/downloads.html
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will be sparse. Conversely, an image with a patchwork of colors is described by
a frequency vector mainly composed of low but not zero values. To be able to
compare several images, it is thus necessary to normalize their frequency vector
before binarization.

Normalization As mentioned before, the visual word occurrence frequency
can be very important in some images, and insignificant in others. In order to
compare the visual words, several strategies can be adopted.

First of all, it is necessary to find out a ”max” value in the data set and then
divide the visual word frequency by this max value to transform the values in a
range 0 to 1. Two manners to define the max value have been considered into
this article.

Normalization by line (image) With this type of normalization, a max value is
computed for each image as being the maximum frequency value of the corre-
sponding image. The interpretation of this normalization is that we consider as
significant the ratio between the different attributes of a given image. This kind
of normalization does not depend on the database size and on the image size.
However, the normalized values do not account for the ratio measurement of the
same attribute between the images in the database.

Normalization by column (feature) Normalization by column finds out the max-
imum values of the frequency for each attribute in the database. With this ap-
proach, the correspondence between the images in the database is taken into ac-
count. The drawback is that each time a new image is inserted into the database,
the normalized values must be recomputed. Besides, the image size must also be
taken into account. Table 4 gives an illustrated example.

f1 f2 f3 f4

img1 1 0 50 5

img2 10 9 1 8

img3 0 0 0 99

(a) Initial data

f1 f2 f3 f4

img1 0.02 0 1 0.1

img2 1 0.9 0.1 0.8

img3 0 0 0 1

(b) After normalization
by line

f1 f2 f3 f4

img1 0.1 0 1 0.05

img2 1 1 0.02 0.08

img3 0 0 0 1

(c) After normalization
by column

Table 4: Illustration for normalization types

Binarization After the normalization, we simply binarize the normalized values
by comparing these values with a threshold varying from 0 to 0.9. At the highest
threshold one, in the normalization by line case, it is possible that most of the
attributes in an image should be below the threshold. To avoid removing all the
visual words from an image, the highest threshold has been assigned to 0.9.
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Reduction The next phase in the algorithm is to apply our reduction method
which is itself composed of three steps (clarification, standardisation, reduction).
Indeed, before applying the proposed method to bag of visual words, we must
remove all the visual words that appear (resp. do not appear) in each (resp.
any) image. This step corresponds to the clarification. The standardization step
reduces the feature that the vector of images of a given feature equivalent to
the vector of images of another feature. At last, in the reduction step, all the
features which are the combination of other features are removed.

3.3 Results

In this section, we detail the results obtained with our reduction method for 5
data sets, described in section 2.2. To analyze the behavior of our method, and
the contribution of each step of the algorithm, we introduce the ratio of removed
features for each step of the reduction algorithm as follows:

∆1 = a
Natt

, ∆2 = b
Natt−a , ∆3 = c

Natt−a−b

Where a (resp. b and c) is the number of removed attributes in the standard-
ization (resp. clarification and reduction) step; Natt is the attribute number in
total. Figure 2 shows the evolution of ∆1, ∆2, ∆3 with regard to the threshold
level, for both normalization types: line and column.

The maximum ratio of removed attributes of the data sets (CALTECH,
COREL, VOC2005, MIRflickr, VOC2012) are approximately equal to 0.67%,
2.6%, 22.5%, 95%, 96% respectively. The impact of the reduction is more in-
teresting in the last three datasets. This phenomenon can be explained by the
bag of visual words generation since the two data sets MIR flickr and VOC2012
are composed of randomly selected visual words stemming from the keypoints
set. Conversely, the data sets CALTECH, COREL and VOC2005, are composed
of bags of visual words defined by the SIFT detector and descriptor, and by a
K-means clustering. Thus, the randomly selected visual words are less consistent.

We can also observe that the percentage of removed attributes increases while
the binarization threshold increases. With an increasing threshold, only the most
frequent words are kept, thus more attributes are potentially equivalent and
removed.

At last, there is no attribute reduction in the step 1 (∆1 value) with a nor-
malization by column because this kind of normalization can not generate empty
columns. Morover, a normalization by line keeps the most frequent attributes in
each image whereas a normalization by column keeps the most frequent images
for each attribute. To summarize, the number of removed attributes depends
both on the visual words generation, on the chosen threshold of binarization
and on the normalization process (by line or column). However, care should be
taken, that the greater the binarization threshold is, the smaller the number of
images remaining. Except in the case normalization by line.
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CALTECH

COREL

V OC2005

MIRflickr

V OC2012

(a) Normalization by line (b) Normalization by column

Fig. 2: The ratio of removed attributes according to the initial attributes corre-
sponding to three cases of proposed method where red line is ∆1, blue dash is
∆2 and green dash dot dot is ∆3.
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4 Conclusion and perspective

In this article, we present a logic feature selection method of bags of visual
words. This method, stemming from Formal Concept Analysis, is a closure sys-
tem reduction without, theoretically, loss of information. That means that the
data description lattice is preserved by the reduction treatment. In our con-
text, combining our proposed method with a bag of visuals words is original.
The experimentations show that the number of deleted features can be interest-
ing, depending on the data set and the binarization treatment. Moreover, it is
possible to perform both an object and an attribute reduction.

A finer analysis should be obtained in the supervised case, by comparing
classification performance before and after reduction. Moroever, the number of
potentially deleted objects could also be usefull to autmatically define a good
binarization thresold in the supervised case: while suppression of objects belong-
ing to the same class is to promote, we must avoid removing objects of different
classes. Objects reduction can easily be performed by applying our reduction
algorithm on the objects set.

At last, we plan to study the number of deleted attributes and deleted objects
(of the same class / of different class) to evaluate the complexity of a data set,
and the quality of its visuals words.

Acknowledgment: We would like to thank Thierry URRUTY, Nhu Van
NGUYEN and Dounia AWAD who extracted the bag of visual words we used
in this paper.
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Abstract. An efficient one-pass online algorithm for triclustering of bi-
nary data (triadic formal contexts) is proposed. This algorithm is a
modified version of the basic algorithm for OAC-triclustering approach,
but it has linear time and memory complexities with respect to the car-
dinality of the underlying ternary relation and can be easily parallelized
in order to be applied for the analysis of big datasets. The results of
computer experiments show the efficiency of the proposed algorithm.

Keywords: Formal Concept Analysis, triclustering, triadic data, data
mining, big data

1 Introduction

Cluster analysis of multimodal data and specifically of dyadic and triadic re-
lations is a natural extension of the idea of normal clustering. In dyadic case
biclustering methods (the term bicluster was coined by B. Mirkin [17]) are used
to simultaneously find subsets of the sets of objects and attributes that form ho-
mogeneous patterns of the input object-attribute data. One of the most popular
applications of biclustering is gene expression analysis in Bionformatics [16,3].
Triclustering methods operate in triadic case in which for each object-attribute
pair one assigns a set of some conditions [18,8,5]. Both biclustering and triclus-
tering algorithms are widely used in such areas as the analysis of gene expression
[21,15,13], recommender systems [19,10,9], social networks analysis [6], etc. The
processing of numeric multimodal data is also possible by modifications of ex-
isting approaches for mining binary relations [12].

Though there are methods that can enumerate all triclusters satisfying cer-
tain constraints [1] (in most cases they ensure that triclusters are dense), their
time complexity is rather high, as in the worst case the maximal number of tri-
clusters usually is exponential (e.g. in case of formal triconcepts), showing that
these methods are hardly scalable. To process big data algorithms need to have
at most linear time complexity and be easily parallelizable. Also, in most cases,
it is necessary that such algorithms output the results in one pass.

c© Karell Bertet, Sebastian Rudolph (Eds.): CLA 2014, pp. 231–243,
ISBN 978–80–8152–159–1, Institute of Computer Science, Pavol Jozef Šafárik
University in Košice, 2014.
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In order to create an algorithm satisfying these requirements we adapted a tri-
clustering method based on prime operators (prime OAC-triclustering method)
[5]. As the result we developed an online version of prime OAC-triclustering
method, which is linear, one-pass and easily parallelizable.

The rest of the paper is organized as follows: in Section 2 we recall the
method and the basic version of the algorithm of prime OAC-triclustering. In
Section 3 we describe the online setting for the problem and the corresponding
online version of the basic algorithm with some optimizations. Finally, in Section
4 we show the results of some experiments which demonstrate the efficiency of
the online version of the algorithm.

2 Prime object-attribute-condition triclustering method

Prime object-attribute-condition triclustering method based on the framework
of Formal Concept Analysis [20,4,2] is an extension for the triadic case of object-
attribute biclustering method [7]. Triclusters generated by this method have the
same structure as the corresponding biclusters, namely the cross-like structure
of triples inside the iput data cuboid (i.e. formal tricontext).

Let K = (G,M,B, I) be a triadic context, where G, M , B are respectively
the sets of objects, attributes, and conditions, and I ⊆ G ×M × B is a triadic
incidence relation. Each prime OAC-tricluster is generated by applying the
following prime operators to each pair of components of some triple:

(X,Y )′ = {b ∈ B | (g,m, b) ∈ I for all g ∈ X,m ∈ Y },
(X,Z)′ = {m ∈M | (g,m, b) ∈ I for all g ∈ X, b ∈ Z},
(Y, Z)′ = {g ∈ G | (g,m, b) ∈ I for all m ∈ Y, b ∈ Z}

(1)

Then the triple T = ((m, b)′, (g, b)′, (g,m)′) is called prime OAC-tricluster
based on triple (g,m, b) ∈ I. The components of tricluster are called, respec-
tively, extent, intent, and modus. The triple (g,m, b) is called a generating triple
of the tricluster T . Figure 2 shows the structure of an OAC-tricluster (X,Y, Z)

based on triple (g̃, m̃, b̃), triples corresponding to the gray cells are contained in
the context, other triples may be contained in the tricluster (cuboid) as well.

The basic algorithm for prime OAC-triclustering method is rather simple
(Alg. 1). First of all, for each combination of elements from each two sets of K
we compute the results of applying the corresponding prime operator (we will
call the resulting sets prime sets). After that we enumerate all triples from I and
on each step we must generate a tricluster based on the corresponding triple,
check whether this tricluster is already presented in the tricluster set (by using
hashing) and also check conditions.

The total time complexity of the algorithm depends on whether there is a
non-zero minimal density threshold or not and on the complexity of the hashing
algorithm used. In case we use some basic hashing algorithm processing the
tricluster’s extent, intent and modus and have a minimal density threshold equal
to 0, the total time complexity of the main loop is O(|I|(|G|+ |M |+ |B|)), and of
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Fig. 1. Structure of prime OAC-triclusters

Algorithm 1 Algorithm for prime OAC-triclustering.

Input: K = (G,M,B, I) — tricontext;
ρmin — minimal density threshold

Output: T = {T = (X,Y, Z)}
1: T := ∅
2: for all (g,m) : g ∈ G,m ∈M do
3: PrimesOA[g,m] = (g,m)′

4: end for
5: for all (g, b) : g ∈ G,b ∈ B do
6: PrimesOC[g, b] = (g, b)′

7: end for
8: for all (m, b) : m ∈M ,b ∈ B do
9: PrimesAC[m, b] = (m, b)′

10: end for
11: for all (g,m, b) ∈ I do
12: T = (PrimesAC[m, b], P rimesOC[g, b], P rimesOA[g,m])
13: Tkey = hash(T )
14: if Tkey 6∈ T .keys ∧ ρ(T ) ≥ ρmin then
15: T [Tkey] := T
16: end if
17: end for
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the whole algorithm is O(|G||M ||B|+ |I|(|G|+ |M |+ |B|)). If we have a non-zero
minimal density threshold, the time complexity of the main loop, as well as the
time complexity of the algorithm, is O(|I||G||M ||B|).

The memory complexity is O(|I|(|G| + |M | + |B|)), as we need to keep the
dictionaries with the prime sets in memory.

3 Online version of the OAC-triclustering algorithm

At first, let us describe the online problem of finding the set of prime OAC-
triclusters. Let K = (G,M,B, I) be a triadic context. The user has no a priori
knowledge of the elements and even cardinalities of G, M , B, and I. At each
iteration we receive some set of triples from I: J ⊆ I. After that we must
process J and get the current version of the set of all triclusters. It is important
in this setting to consider every pair of triclusters different if they have different
generating triples, event if their extents, intents, and modi are equal, because
any other triple can change only one of them, thus making them different. The
picture 2 shows the example of such situation (dark gray cells are the generating
triples, light gray — prime sets).

Fig. 2. Example of modification of triclusters by adding a triple

Also the algorithm requires that the dictionaries containing the prime sets
are implemented as hash-tables. Because of this data structure the algorithm
can efficiently access prime sets for their processing.

The algorithm itself is also quite simple (Alg. 2). It takes some set of triples
(J) and current versions of the tricluster set (T ) and the dictionaries contain-
ing prime sets (PrimesOA, PrimesOC, PrimesAC) as input and outputs the
modified versions of the tricluster set and dictionaries. The algorithm processes
each triple (g,m, b) of J sequentially (line 1). On each iteration the algorithm
modifies the corresponding prime sets:
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– adds b to (g,m)′ (line 2)

– adds m to (g, b)′ (line 3)

– adds g to (m, b)′ (line 4)

Finally, it adds a new tricluster to the tricluster set. It is important to note
that this tricluster contains pointers to the corresponding prime sets (in the
corresponding dictionaries) instead of the copies of the prime sets (line 5).

In effect this algorithm is the same as the basic one but with some optimiza-
tions. First of all, instead of computing prime sets at the beginning, we modify
them on spot, as adding an additional triple to the relation modifies only three
prime sets by one element. Secondly, we remove the main loop by using pointers
for the triclusters’ extents, intents, and modi, as we can generate triclusters at
the same step as we modify the prime sets. And the third important optimiza-
tion is the use of only one pass through the triples of the ternary relation I,
instead of enumeration of different pairwise combinations of objects, attributes,
and conditions.

Algorithm 2 Add function for the online algorithm for prime OAC-triclustering.

Input: J — set of triples;
T = {T = (∗X, ∗Y, ∗Z)} — current set of triclusters;
PrimesOA, PrimesOC, PrimesAC;

Output: T = {T = (∗X, ∗Y, ∗Z)};
PrimesOA, PrimesOC, PrimesAC;

1: for all (g,m, b) ∈ J do
2: PrimesOA[g,m] := PrimesOA[g,m] ∪ b
3: PrimesOC[g, b] := PrimesOC[g, b] ∪m
4: PrimesAC[m, b] := PrimesAC[m, b] ∪ g
5: T := T ∪ (&PrimesAC[m, b],&PrimesOC[g, b],&PrimesOA[g,m])
6: end for

Let us estimate the complexities of this algorithm. Each step requires the
constant time: we need to modify three sets and add one tricluster to the set of
triclusters. The total number of steps is equal to |I|. Thus the time complexity
is linear O(|I|). Beside that the algorithms is one-pass.

The memory complexity is the same: for each of |I| steps the size of each dic-
tionary containing prime sets is increased either by one element (if the required
prime set is already present), or by one key-value pair (if not). Still, each of
these dictionary requires O(|I|) memory. Thus, the memory complexity is also
linear O(|I|).

Another important step used as an addition to this algorithm is post-processing.
In addition to the user-specific post-processing there are some common useful
steps. First of all, in the fixed moment of time we may want to remove addi-
tional triclusters with the same extent, intent, and modus from the output. Also
some simple conditions like minimal support condition can be processed during
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this step without increasing the original complexity. It should be done only dur-
ing the post-processing step, as the addition of a triple in the main algorithm
can drastically change the set of triclusters, and, respectively, the values used
to check the conditions. Finally, if we need to check more difficult conditions
like minimal density condition the time complexity of the post-processing will
be higher than the time complexity of the original algorithm, but it can be also
efficiently implemented.

To remove the same triclusters we need to use an efficient hashing procedure
that can be improved by implementing it in the main algorithm. For this for
all prime sets we need to keep their hash-values with them in the memory. And
finally, when using hash-functions other than LSH function (Locality-Sensitive
Hashing) [14] we can calculate hash-values of prime sets as some function of
their elements (for example, exclusive disjunction or sum). Then when we modify
prime sets we just need to get the result of this function and the new element. In
this case, the hash-value of the tricluster can be calculated as the same function
of the hash-values of its extent, intent, and modus.

Then it would be enough to implement the tricluster set as a hash-set in
order to efficiently remove the additional entries of the same tricluster.

Pseudo-code for the basic post-processing (Alg. 3).

Algorithm 3 Post-processing for the online algorithm for prime OAC-
triclustering.

Input: T = {T = (∗X, ∗Y, ∗Z)} — full set of triclusters;
Output: T = {T = (∗X, ∗Y, ∗Z)} — processed hash-set of triclusters;
1: for all T ∈ T do
2: Calculate hash(T )
3: if hash(T ) 6∈ T then
4: T := T ∪ T
5: end if
6: end for

If the names of the objects, attributes, and conditions are small enough (so
that we can consider the time complexity of computing their hash values as
O(1)), the time complexity of the post-processing is O(|I|) if we do not need
to calculate densities, and O(|I||G||M ||B|) otherwise. Also, the basic version
of the post-processing does not require any additional memory, so its memory
complexity is O(1).

Finally, the algorithm can be easily paralleled by splitting the subset of triples
J into several subsets, processing each of them independently, and merging the
resulting sets afterwards.
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4 Experiments

Two series of experiments were conducted in order to verify the time complexities
and efficiency of the online algorithm: first one was conducted on the first set of
synthetic contexts and on real world datasets, the second one — on the second
set of synthetic contexts with large number of triples in each. In each experiment
for the first set both versions of the OAC-triclustering algorithm were used to
extract triclusters from a given context. Only the online version of the algorithm
was applied to the second set of contexts as the computation time of the basic
version of the algorithm was too high. To evaluate the time more precisely, for
each context there were 5 runs of the algorithms with the average result recorded.

4.1 Datasets

Synthetic datasets. As it was mentioned, two sets of synthetic contexts were
generated.

First five contexts have the same size, but different average densities. The
sets of objects, attributes, and conditions of these contexts consist of 50 elements
each (thus, the maximal number of triples for them is equal to 125,000). To form
the relation I a pseudo-random number generator was used. It added each triple
to the context with the given probability that was different for each context.
These probabilities were: 0.02, 0.04, 0.06, 0.08, and 0.1.

The second set of uniform synthetic contexts consists of 10 contexts with the
same probability for each triple to be included (0.001), but with different sizes
of the sets of objects, attributes, and conditions. These sizes were 100, 200, 300,
. . . , 1000.

IMDB. This dataset consists of Top-250 list of the Internet Movie Database (250
best movies based on user reviews). For the analysis the following triadic context
was extracted: the set of objects consists of movie names, the set of attributes —
of tags, the set of conditions — of genres, and a triple of the ternary relation
means that the given movie has the given genre and is assigned the given tag.

Bibsonomy. Finally, a sample of the data of bibsonomy.org was used. This
website allows users to share bookmarks and lists of literature and tag them.
For the research the following triadic context was extracted: the set of objects
consists of users, the set of attributes (tags), the set of conditions (bookmarks),
and a triple of the ternary relation means that the given user has assigned the
given tag to the given bookmark.

The table 1 contains the summary of the contexts.

4.2 Results

The experiments were conducted on the computer running under Windows 8, us-
ing Intel Core i7-3517U 2.40 GHz processor, having 8 GB RAM. The algorithms
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Table 1. Contexts for the experiments

Context |G| |M | |B| # triples Density

Synthetic1, 0.02 50 50 50 2530 0.02024
Synthetic1, 0.04 50 50 50 5001 0.04001
Synthetic1, 0.06 50 50 50 7454 0.05963
Synthetic1, 0.08 50 50 50 10046 0.08037
Synthetic1, 0.1 50 50 50 12462 0.09970
Synthetic2, 100 100 100 100 996 0.001
Synthetic2, 200 200 200 200 7995 0.001
Synthetic2, 300 300 300 300 27161 0.001
Synthetic2, 400 400 400 400 63921 0.001
Synthetic2, 500 500 500 500 125104 0.001
Synthetic2, 600 600 600 600 216021 0.001
Synthetic2, 700 700 700 700 343157 0.001
Synthetic2, 800 800 800 800 512097 0.001
Synthetic2, 900 900 900 900 729395 0.001
Synthetic2, 1000 1000 1000 1000 1000589 0.001

IMDB 250 795 22 3818 0.00087
BibSonomy 51 924 2844 3000 0.000022

were implemented in C# under .NET Framework 4.5. Jenkins’ hash-function
[11] was used to generate hash-values.

Figure 3 shows the time performance of both versions of the algorithms for
different values of minimal density threshold. Figure 4 shows the computation
time for the online version of the algorithm on the second set of synthetic con-
texts. “Basic” graph refers to the average time required by the basic algorithm,
“Online, algorithm” — to average time required by the main algorithm part of
the online algorithm (addition of new triples), “Online, total” — to the aver-
age time required by both the main algorithm and post-processing. Table 4.2
contains summary of the results for the case of zero minimal threshold.

As it can be clearly seen from all the graphs, online version of the algorithm
significantly outperforms the basic version. However, post-processing in case of
non-zero minimal density threshold can minimize the difference, especially in
cases with small sets of objects, attributes, and conditions and large ternary
relation.

In the case of several contexts of the fixed size, but increasing density, total
computation time converges to the same value for the both algorithms, with
the time for the online one being slightly smaller. For the non-zero minimal
density threshold this convergence takes place for almost any average density
value. In this case there is a rather large number of triclusters of big size,
with many intersections, thus it takes much time to calculate all the triclusters’
densities. This situation is close to the worst case, where time complexity is
O(|G||M ||B|) for the main algorithm (because |I| converges to |G||M ||B|) and
O(|I||G||M ||B|) for the post-processing. Also, in the case where the context’s
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Fig. 3. Results of the experiments for both versions of OAC-triclustering algorithm
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Fig. 4. Computation time for the online algorithm for various numbers of triples

density getting closer to 1, total time for both algorithms should be almost the
same even in the case of zero minimal density threshold, as in the worst case for
dense contexts |I| is equal to |G||M ||B| (though it is an extremely rare case for
real datasets).

The results for the second set of synthetic contexts confirm that the algorithm
is indeed linear with respect to the number of triples. It also shows that the
significant number of triples does not affect the performance as long as the
context fits in the memory.

As for the other datasets with large sets of objects, attributes, and conditions
and small ternary relation, the online algorithm significantly outperforms the
basic one. The basic version spends much time on enumeration the large number
of combinations of the elements of different sets of the context, while the online
one just passes through the existing triples. Time to compute densities is quite
small for these datasets since due to their sparseness they contain small number
of rather small triclusters.

Finally, as it can be seen, for non-dense contexts the average density of
triclusters is rather high even in the case of zero minimal density threshold.
Because of that, it can be advised in most of the cases to use the online version
of the algorithm without any hard conditions, like minimal density condition, as
the results will still be good, but the performance will be significantly improved.
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Table 2. Tricluster sets summary

Context Number of triclusters Average density

Synthetic1, 0.02 2456 0.700
Synthetic1, 0.04 4999 0.426
Synthetic1, 0.06 7453 0.286
Synthetic1, 0.08 10046 0.218
Synthetic1, 0.1 12462 0.193
Synthetic2, 100 897 0.993
Synthetic2, 200 6972 0.972
Synthetic2, 300 23645 0.941
Synthetic2, 400 56584 0.909
Synthetic2, 500 113041 0.871
Synthetic2, 600 199210 0.834
Synthetic2, 700 322447 0.796
Synthetic2, 800 487982 0.759
Synthetic2, 900 703374 0.722
Synthetic2, 1000 973797 0.686
IMDB 1276 0.539
BibSonomy 1290 0.946

5 Conclusion

In this paper we have presented an online version of OAC-triclustering algorithm.
We have shown that the algorithm is efficient from both theoretical and practical
points of view. Its linear time complexity and performance in one pass (with an
additional pass for the required post-processing) allows us to use it for big data
problems. Moreover, the online algorithm as well as the basic one can be easily
parallelized to attain even larger efficiency.
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Abstract. Biclustering numerical data tables consists in detecting par-
ticular and strong associations between both subsets of objects and at-
tributes. Such biclusters are interesting since they model the data as
local patterns. Whereas there exists several definitions of biclusters, de-
pending on the constraints they should respect, we focus in this paper on
biclusters of similar values on columns. There are several ad hoc methods
for mining such biclusters in the literature. We focus here on two aspects:
genericity and efficiency. We show that Formal Concept Analysis pro-
vides a mathematical framework to characterize them in several ways,
but also to compute them with existing and efficient algorithms. The
proposed methods, which rely on pattern structures and triadic concept
analysis, are experimented and compared on two different datasets.

Keywords: biclustering, triadic concept analysis, pattern structure

1 Introduction

Biclustering has attracted a lot of attention for many years now, as it was used in
an extensive way for mining biological data [7]. Given a data-table with objects
as rows and attributes as columns, the goal is to find “sub-tables”, or pairs of
both subsets of objects and attributes, such that the values in the subtables
respect well-defined constraints or maximize a given measure [17].

There exist several types of biclusters depending on the relation the values
should respect. For example, constant biclusters are subtables with equal val-
ues [12, 6, 17]. Biclusters with similar values on columns (BSVC) are subtables
where all values are pairwise similar for each column [4, 17]. The latter can also
be generalized to biclusters of similar values (BSV): any two values in the sub-
table are similar [2, 3, 12, 21]. Dozens of algorithms, mostly ad hoc, have been
proposed for computing the different types of biclusters. In this paper, we are
interested in possible extensions of the Formal Concept Analysis (FCA) for-
malism for achieving the problem of biclustering. This comes with two goals:
(i) formalizing and understanding biclusters formation and structure, and (ii)
reusing existing algorithms for genericity purposes.

c© Karell Bertet, Sebastian Rudolph (Eds.): CLA 2014, pp. 243–255,
ISBN 978–80–8152–159–1, Institute of Computer Science, Pavol Jozef Šafárik
University in Košice, 2014.



Actually, the present paper is in continuation with the work of the authors
on the use of pattern structures –an extension of FCA for mining complex data
[8, 12]– for discovering functional dependencies in a crisp and a fuzzy settings
[1], and as well on the adaptation of pattern structures to a specific biclustering
task: the discovery of biclusters of type BSV [6, 11]. Moreover, the biclustering
task is usually considered as a “‘two-dimensional” (2D) process where biclusters
are rectangles in a table verifying some prior constraints. It was one main idea
of [11] to transpose the problem in a “three-dimensional” setting by using and
adapting triadic concept analysis [16] to the biclustering task.

Here we follow the same line and we propose a new approach for discovering
biclusters in a numerical dataset where biclusters have “similar values” w.r.t.
their columns (type BSVC). This works is a new attempt to extend the capabil-
ities of FCA and of pattern structures, in dealing with the important problem of
biclustering. Actually, biclustering can be also considered in a (pure) numerical
setting, where it is sometimes called coclustering [18] and where kernel or spec-
tral methods are often used for achieving the task. Here we keep the discrete
setting and more precisely an FCA-based setting.

The rest of this paper is organized as follows. In Section 2 we formally in-
troduce the biclustering problem. Then, we recall in Section 3 the FCA basics
that are necessary for developing our three methods in Section 4. We experiment
with these methods and compare them by processing two real-world datasets in
Section 5 before concluding.

2 Problem Definition

We introduce the problem of mining biclusters of similar values on columns, or
simply biclusters when no confusion can be made. A numerical dataset is defined
as a many-valued context in which biclusters are denoted as pairs of object and
attribute subsets for which a particular similarity constraint holds.

Definition 1 (Many-valued context and numerical dataset). A many-
valued context consists in a quadruple (G,M,W, I) where G is a set of objects,
M a set of attributes, W a set of attribute values, and I ⊆ G×M×W a ternary
relation. An element (g,m,w) ∈ I, also written m(g) = w or g(m) = w, can
be interpreted as: w is the value taken by the attribute m for the object g. The
relation I is such that g(m) = w and g(m) = v implies w = v.

In the present work, W is a set of numbers and Knum = (G,M,W, I) denotes
a numerical dataset, i.e. a many-valued context where W is a set of numbers.

m1 m2 m3 m4

g1 1 2 2 8
g2 2 1 2 9
g3 2 1 1 2
g4 1 0 7 6
g5 6 6 6 7

Fig. 1. A numerical dataset

Example. A tabular representation of a numer-
ical dataset is given in Table 1: objects G =
{g1, g2, g3, g4, g5} are represented by rows while at-
tributes M = {m1,m2, m3,m4} are represented by
columns. W = {0, 1, 2, 6, 7, 8, 9} and we have for ex-
ample g2(m4) = 9.
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Definition 2 (Biclusters with similar values on columns). Given a nu-
merical dataset (G,M,W, I), a pair (A,B) (where A ⊆ G,B ⊆ M) is called a
bicluster of similar values on columns when the following statement holds:

∀g, h ∈ A,∀m ∈ B,m(g) 'θ m(h)

where 'θ is a similarity relation: ∀w1, w2 ∈ W, θ ∈ [0,max(W ) − min(W )],
w1 'θ w2 ⇐⇒ |w1 − w2| ≤ θ. A bicluster (A,B) is maximal if @g ∈ G\A such
that (A ∪ {g}, B) is a bicluster, and @m ∈ M\B such that (A,B ∪ {m}) is a
bicluster.

Example. In Table 1, with θ = 1, we have that (A,B) = ({g1, g2}, {m1,m2,m3})
is a bicluster. Indeed, consider each attribute of B separately: the values taken
by the objects A are pairwise similar. However, (A,B) is not maximal, since
we have that both (A ∪ {g3}, B) and (A,B ∪ {m4}) are also biclusters. Then,
({g1, g2, g3}, {m1,m2,m3}) and ({g1, g2}, {m1,m2,m3,m4}) are both maximal.

Problem (Biclustering). Given a numerical dataset (G,M,W, I) and a simi-
larity parameter θ, the goal of biclustering is to extract the set of all maximal
biclusters (A,B) respecting the similarity constraint.

Remark. It should be noticed that in the formal definition, the similarity pa-
rameter is the same for all attributes. It is possible however to use a different
parameter for each attribute without changing neither the problem definition or
its resolution. For real-world datasets, one can choose different similarity param-
eters θm (∀m ∈M), but also can normalize/scale the attribute domains and use
a single similarity parameter θ.

3 Basics on Formal Concept Analysis

In this paper, we show how our biclustering problem can be formalized and
answered in FCA in different ways: (i) using standard FCA [9], (ii) using pattern
structures [8], and (iii) using triadic concept analysis [16]. We recall below the
basics of each approach.

Dyadic Concept Analysis. Let G be a set of objects, M a set of attributes
and I ⊆ G ×M be a binary relation. The fact (g,m) ∈ I is interpreted as “g
has attribute m”. The two following derivation operators (·)′ are defined:

A′ = {m ∈M | ∀g ∈ A : gIm} for A ⊆ G,
B′ = {g ∈ G | ∀m ∈ B : gIm} for B ⊆M

which define a Galois connection between the powersets of G and M . For A ⊆ G,
B ⊆M , a pair (A,B) such that A′ = B and B′ = A, is called a (formal) concept.
Concepts are partially ordered by (A1, B1) ≤ (A2, B2)⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1).
With respect to this partial order, the set of all formal concepts forms a complete
lattice called the concept lattice of the formal context (G,M, I). For a concept
(A,B) the set A is called the extent and the set B the intent of the concept.
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Triadic Concept Analysis. A triadic context is given by (G,M,B, Y ) where
G, M , and B are respectively called sets of objects, attributes and conditions,
and Y ⊆ G×M×B. The fact (g,m, b) ∈ Y is interpreted as the statement “Ob-
ject g has the attribute m under condition b”. A (triadic) concept of (G,M,B, Y )
is a triple (A1, A2, A3) with A1 ⊆ G, A2 ⊆ M and A3 ⊆ B satisfying the two
following statements: (i) A1×A2×A3 ⊆ Y , X1×X2×X3 ⊆ Y and (ii) A1 ⊆ X1,
A2 ⊆ X2 and A3 ⊆ X3 implies A1 = X1, A2 = X2 and A3 = X3. If (G,M,B, Y )
is represented by a three dimensional table, (i) means that a concept stands for
a 3-dimensional rectangle full of crosses while (ii) characterizes component-wise
maximality of concepts. For a triadic concept (A1, A2, A3), A1 is called the ex-
tent, A2 the intent and A3 the modus. To derive triadic concepts, two pairs of
derivation operators are defined. The reader can refer to [16] for their definitions
which are not necessary for the understanding of the present work.

Pattern Structures. Let G be a set of objects, let (D,u) be a meet-semi-
lattice of potential object descriptions and let δ : G −→ D be a mapping. Then
(G, (D,u), δ) is called a pattern structure. Elements of D are called patterns
and are ordered by a subsumption relation v such that given c, d ∈ D one has
c v d⇐⇒ cud = c. Within the pattern structure (G, (D,u), δ) we can define the
following derivation operators (·)�, given A ⊆ G and a description d ∈ (D,u):

A� =
l

g∈A
δ(g) d� = {g ∈ G|d v δ(g)}

These operators form a Galois connection between (℘(G),⊆) and (D,v). (Pat-
tern) concepts of (G, (D,u), δ) are pairs of the form (A, d), A ⊆ G, d ∈ (D,u),
such that A� = d and A = d�. For a pattern concept (A, d), d is called a pattern
intent and is the common description of all objects in A, called pattern extent.
When partially ordered by (A1, d1) ≤ (A2, d2)⇔ A1 ⊆ A2 (⇔ d2 v d1), the set
of all concepts forms a complete lattice called a (pattern) concept lattice.

Computing Concepts and Concept Lattices. Processing a formal context
in order to generate its set of concepts can be achieved by various algorithms
(see [15] for a survey and a comparison, see also itemset mining [19]). For pro-
cessing pattern structures, such algorithms generally need minor adaptations.
Basically, one needs to override the code for (i) computing the intersection of
any two arbitrary descriptions, and (ii) test the ordering between two descrip-
tions. Processing a triadic context is however not so direct and can be done with
nested FCA algorithms [10] or dedicated data-mining algorithm [5].

Similarity relations in FCA. The notion of similarity can be formalized by a
tolerance relation: a symmetric, reflexive but not necessarily transitive relation.
The similarity relation 'θ used for defining biclusters of similar values is a toler-
ance. Given W a set of numbers, any maximal subset of pairwise similar values
is called a block of tolerance.

Definition 3. A binary relation T ⊆W ×W is called a tolerance relation if:
(i) ∀x ∈W xTx (reflexivity)
(ii) ∀x, y ∈W xTy → yTx (symmetry)
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Definition 4. Given a set W , a subset K ⊆ W , and a tolerance relation T on
W , K is a block of tolerance if:

(i) ∀x, y ∈ K xTy (pairwise similarity)
(ii) ∀z 6∈ K,∃u ∈ K ¬(zTu) (maximality)

It is shown that tolerance blocks can be obtained from the formal context of a
tolerance relation [14]. In the context (W,W,'θ), one can characterize all blocks
of tolerance K (and only them) as formal concepts (K,K).

4 Mining biclusters of similar values on columns in FCA

The basic notions of FCA of the previous section allow us now to answer our
biclustering problem in various ways with: (i) an original method using inter-
val pattern structure, (ii) a recently introduced method using partition pattern
structures [6], and (iii) an original method relying on triadic concept analysis.
We emphasize the genericity of FCA to answer a data mining problem.

4.1 Interval Pattern Structure Approach

For a dataset Knum = (G,M,W, I), an interval pattern structure (G, (D,u), δ)
is defined as follows [13]: the objects from G are described by vectors of intervals,
where each dimension gives a range of values for an attribute m ∈M (following
a canonical ordering of the dimensions, i.e. dimension i corresponds to attribute
mi ∈M). Then, for m ∈M , the semi-lattice of intervals (Dm,um) is given by:

Dm = {[w1, w2] | ∃g, h ∈ G s.t. m(g) = w1 and m(h) = w2}
[a, b] um [c, d] = [min(a, c),max(b, d)]

c um d = c ⇐⇒ c vm d

[a, b] vm [c, d] ⇐⇒ [c, d] ⊇ [a, b]

The description space (D,u) of the interval pattern structure is a product of
meet-semi-lattices (D,u) = ×m∈M (Dm,um) which is a semi-lattice.

Examples. In Table 1, ({g1, g2, g3}, 〈[1, 2], [1, 2], [1, 2], [2, 9]〉) is a pattern concept:
δ(g1) = 〈[1, 1], [2, 2], [2, 2], [8, 8]〉

{g1, g2, g3}� = δ(g1) u δ(g2) u δ(g3) = 〈[1, 2], [1, 2], [1, 2], [2, 9]〉
〈[1, 2], [1, 2], [1, 2], [8, 9]〉 v 〈[1, 2], [1, 2], [1, 2], [2, 9]〉

{g1, g2, g3}�� = {g1, g2, g3}
We now give the intuitive idea on how the interval pattern concept lattice can
be used to characterize the biclusters. Consider first the concept (A1, d1) =
({g1, g2}, 〈[1, 2], [1, 2], [1, 2], [8, 9]〉). Consider also a function attr : D →M which
returns for an interval pattern the set of attributes whose interval is not larger
than the θ parameter, for d = 〈[ai, bi]〉, i ∈ [1, |M |]: attr(d) = {mi ∈ M |ai 'θ
bi}. (A1, attr(d1)) = ({g1, g2}, {m1,m2,m3,m4}) is a maximal bicluster. Con-
sider the interval pattern concept (A2, d2) = ({g1, g2, g3}, 〈[1, 2], [1, 2], [1, 2], [2, 9]〉):
(A2, attr(d2)) = ({g1, g2, g3}, {m1,m2,m3}) is a maximal bicluster (with θ = 1).
This means that biclusters can be characterized thanks to pattern concepts.
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Proposition 1. Consider a numerical dataset (G,M,W, I) as an interval pat-
tern structure (G, (D,u), δ). For any maximal bicluster (A,B), there exists a
pattern concept (A, d) such that (A,B) = (A, attr(d)).

Proof. To ease reading, the proof is given in an appendix. ut

4.2 Partition pattern structure approach

A partition pattern structure is a pattern structure instance where the de-
scription space is given by a semi-lattice of partitions over a set X [2]. Formally,
we have (G, (D,u), δ) where: D = Part(X) and d1 u d2 =

⋃
pi ∩ pj where

pi, pj ⊆ X, pi ∈ d1, pj ∈ d2. The semi-lattice is actually a complete lattice of
set partitions in which the bottom element is not considered. In [1], we showed
that the definition of u, and equivalently v, needs a slight modification when

D = 22
K

, i.e. a description d ∈ D is a set of subsets of X, and they do cover X
(possibly with overlapping). In that case, we have that d1 ud2 = max(

⋃
pi ∩ pj)

where pi, pj ⊆ X, pi ∈ d1, pj ∈ d2 and max(.) returns the maximal sets w.r.t.
inclusion.

Now we show that such a pattern structure can be constructed from a nu-
merical dataset, and that the corresponding concepts allow to generate all max-
imal biclusters. From a numerical dataset (G,M,W, I), we build the structure

(M, (D,u), δ) where D = 22
G

. The description of an object4 m ∈M is given by:
δ(m) = {p1, p2, ...} where p1, p2, .. ⊆ G and:

m(g1) 'θ m(g2),∀g1, g2 ∈ pi (similarity)

@g3 ∈ G\pi with m(g3) 'θ m(gk),∀gk ∈ pi (maximality)⋃

i

pi = G (covering)

In other words, each original attribute m ∈M is described by a family of subsets
of G, where each one corresponds to a block of tolerance w.r.t. the values of
attribute m. Let (A, d = {pi}) be a partition pattern concept, it is easy to see
how the pairs bici = (pi, A) are biclusters with rows g ∈ pi and columns m ∈ A5.
While any bici = (pi, A) is a bicluster, it is not necessarily a maximal bicluster.
Nevertheless, maximal biclusters can be identified using the concept lattice.

Proposition 2. Consider a pattern concept (A, d = {pi}). The bicluster bici =
(pi, A) is maximal if there is no pattern concept (C, {pi, ...}) with A ⊆ C.

Proof. The proof to this proposition is very intuitive. Recall from Section 2 that
the bicluster (pi, A) is maximal if two conditions are met, namely @g ∈ G\pi
such that (pi ∪ {g}, A) is a bicluster and @m ∈M\A such that (pi, A ∪ {m}) is

4 Object in the pattern structure; attribute in the numerical dataset.
5 In order to keep consistency with the previous notation, biclusters are written in-

versely as partition pattern concepts.
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a bicluster, The first condition holds for bici given the maximality condition of
the tolerance block pi; The second follows from the proposition declaration. ut
Example. The numerical dataset (G,M,W, I) given in Table 1 can be turned
into a pattern structure as follows with θ = 1:

δ(m1) = {{g1, g2, g3, g4}{g5}} δ(m2) = {{g2, g3, g4}{g1, g2, g3}{g5}}
δ(m3) = {{g1, g2, g3}{g4, g5}} δ(m4) = {{g4, g5}{g1, g5}{g1, g2}{g3}}

Indeed, each component of a description is a maximal set of objects hav-
ing pairwise similar values for a given attribute. The pattern concept lattice is
given in Figure 2. We remark that (i) any concept corresponds to a biclus-
ter, (ii) some of them correspond to a maximal bicluster, and most impor-
tantly, (iii) any maximal bicluster can be found as a concept. For example,
from the concept (A1, d1) = ({m3,m4}, {{g1, g2}, {g4, g5}, {g3}}) we obtain the
following biclusters: bic1 = ({g1, g2}, {m3,m4}) and bic2 = ({g4, g5}, {m3,m4}).
Whereas bic2 is a maximal bicluster bic1 is not since we have that (A2, d2) =
({m1,m2,m3,m4}, {{g1, g2}, {g3}, {g4}, {g5}}) with (A2, d2) ≤ (A1, d1). In turn,
bic3 = ({g1, g2}, {m1,m2,m3,m4}) is a maximal bicluster.

Remark. It is noticeable that an equivalent formal context can be built. By
equivalent, we mean that the concept lattices produced by both structures are
isomorphic. To obtain this formal context, we use a slight modification of the data
transformation of [9] (pp. 92): (M,B2(G), I) st. (m, (g, h)) ∈ I ⇐⇒ m(g) 'θ
m(h). The concept lattice is equivalent to the pattern concept lattice [2], and
thus it can be used in the same way to get maximal biclusters. In our running
example, such context is given in Table 1, and its associated concept lattice is
given in Figure 2 (right), a lattice isomorphic to the one raised from the pattern
structure (left). The proof can be done in a similar manner as it is done in [2].

(g1, g2) (g1, g3) (g1, g4) (g1, g5) (g2, g3) (g2, g4) (g2, g5) (g3, g4) (g3, g5) (g4, g5)

m1 × × × × × ×
m2 × × × × ×
m3 × × × ×
m4 × ×

Table 1. Formal context

4.3 Triadic Concept Analysis Approach

We present another original result: any maximal bicluster of similar values is
characterized as a triadic concept. The triadic context is derived from the nu-
merical dataset by encoding the tolerance relation between the values.

Proposition 3. Given a numerical dataset (G,M,W, I), consider the derived
triadic context given by (M,G,G, Y ) s.t. (m, g1, g2) ∈ Y ⇐⇒ m(g1) 'θ m(g2).
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Fig. 2. Pattern concept lattice on the left side, concept lattice of the right side.

There is a one-to-one correspondence between the set of all maximal biclusters
(A,B), the set of all triadic concepts (B,A,A) of the derived context.

Proof. Consider a maximal bicluster (A,B). We have that ∀g, h ∈ A : m(g) 'θ
m(h) ⇐⇒ m ∈ B, if and only if (by the definition of Y ) (B,A,A) ⊆ Y . We now
take (B′, A′, A′) ⊆ Y such that B ⊆ B′ and A ⊆ A′. Since (A,B) is a maximal
bicluster, we have that for any pair of objects g, h ∈ A′ and m ∈ B′ such that
g(m) 'θ h(m), implies that g, h ∈ A and m ∈ B. Let (B,A,A) be a triadic
concept. We have that for any pair of objects g, h ∈ A and m ∈ B we have that
g(m) 'θ h(m), this is, that ∀g, h ∈ A : g(m) 'θ h(m) ⇐⇒ m ∈ B, which is
the alternative definition of maximal bicluster. ut

Example. Taking again θ = 1, the triadic context derived from the numerical
dataset from Table 1 is given in Table 2. An example of triadic concept is:
({m3,m2,m1}, {g1, g3, g2}, {g1, g2, g3}) which is in turn the maximal bicluster
({g1, g3, g2}, {m3,m2,m1}).

5 Experiments

We experiment with the different FCA methods introduced in the previous sec-
tion. We report preliminary results in two aspects: efficiency (running time) and
compactness (number of concepts) to discuss the strengths and weaknesses of
the different methods.

m1 g1 g2 g3 g4 g5
g1 × × × ×
g2 × × × ×
g3 × × × ×
g4 × × × ×
g5 ×

m2 g1 g2 g3 g4 g5
g1 × × ×
g2 × × × ×
g3 × × × ×
g4 × × ×
g5 ×

m3 g1 g2 g3 g4 g5
g1 × × ×
g2 × × ×
g3 × × ×
g4 × ×
g5 × ×

m4 g1 g2 g3 g4 g5
g1 × × ×
g2 × ×
g3 ×
g4 × ×
g5 × × ×

Table 2. Triadic context derived from Table 1 thanks to '1.
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Data and experimental settings. The first dataset, “Diagnosis”6, contains
120 objects with 8 attributes. The first attribute provides temperature informa-
tion of a given patient with a range [35.5, 41.5] (numerical). For this attribute
we used θ = 0.1 and then θ = 0.3. The other 7 attributes are binary (θ = 0).
The second dataset, “dataSample 1.txt”, is provided with the BiCat software7.
It contains 420 objects and 70 numerical attributes with range [−5.9, 6.7]. We
used θ = 0.05 for all attributes. We provide results in Table 3 for the three dif-
ferent FCA methods discussed in this article, namely interval pattern structure
(IPS), tolerance blocks/partition pattern structures (TBPS) and triadic concept
analysis (TCA). We also report on the use of standard FCA using the discretiza-
tion technique discussed at the end of Section 4.2 (FCA). We also discuss the
computing of clarified contexts, given that it can dramatically reduce the size
of the context while keeping the same concept lattice (FCA-CL). A context is
clarified when there exists neither two objects with the same description, or two
attributes shared by the same set of objects.

For the methods based on FCA and pattern structures (IPS, TBPS), we used
a C++ version of the AddIntent algorithm [20]8. No restrictions were imposed
over the size of the biclusters. The TCA method was implemented using Data-
Peeler [5]. All the experiments were performed using a Linux machine with
Intel Xeon E7 running at 2.67GHz with 1TB of RAM.
Discussion. Results in Table 3 show that for the Diagnosis dataset, the clar-
ified context using standard FCA (FCA-CL) is the best of the five methods
w.r.t. execution time while for the BicAt sample 1, the best is TCA. Times are
expressed as the sum of the time required to create the input representation
of the dataset for the corresponding technique and its execution. In the case
of FCA and FCA-CL, the pre-processing can be as high as the time required
for applying the AddIntent algorithm. However, for large datasets such as the
BicAt example, this times can be ignored. It is also worth noticing that the
pre-processing depends on the chosen θ value, hence for each different θ config-
uration, a new pre-processing task has to be executed. This is not the case for
interval and partition pattern structures the pre-processing of which is linear

6 http://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
7 http://www.tik.ee.ethz.ch/sop/bicat/
8 https://code.google.com/p/sephirot/

Diagnosis BicAt sample 1

θ = 0.3 θ = 0.1 θ = 0.05

Technique Time [s] #Concepts Exec. Time [s] #Concepts Exec. Time [s] #Concepts
Preproc + Exec. Preproc + Exec. Preproc + Exec.

FCA 0.11 + 0.335 98 0.11 + 0.291 88 2.3 + 2,220 476,950
FCA-CL 0.11 + 0.02 98 0.11 + 0.011 88 2.3 + 2,220 476,950
TCA 0.04 + 33.3 3,322 0.04 + 31.34 2,127 3.17 + 360 741,421
IPS 0.011 + 0.303 928 0.001 + 0.178 301 0.02 + 2,340 722,442
TBPS 0.011 + 1.76 98 0.001 + 0.411 88 0.02 + 5,340 476,950

Table 3. Number of concepts and execution times (pre-processing + addIntent run)
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w.r.t. the number of objects (it is actually, just a change of format). We can
also appreciate a more compact representation of the biclusters by the use of
partition pattern structures (TBPS) and its formal context versions (FCA and
FCA-CL). While TBPS is the slowest of the five methods, it is also the cheapest
one in terms of the use of machine resources, more specifically RAM. TCA is the
more expensive method in terms of machine resources and data representation,
however this yields results faster. Interval pattern structures are in the middle
as a good trade-off of compactness and execution time.

For this initial experimentation we have not reported the number of maximal
biclusters nor the bicluster extraction algorithms that can be implemented for
each different technique, but only in the FCA techniques themselves. Regarding
the number of maximal biclusters, this is the same for each technique since
all of them are bicluster enumeration techniques, i.e. all possible biclusters are
extracted. Hence, the difference among techniques is not given by the number
of maximal biclusters extracted, but by the number of formal concepts found
and their post-processing complexity to extract the maximal biclusters from
them. In general, it is easy to observe from Propositions 1, 2 and 3 that the
post-processing of TCA is linear w.r.t. the number of triadic concepts found,
while for TPS is linear w.r.t. the number of interval pattern concepts times the
number of columns of the numerical dataset squared and for TBPS is linear
w.r.t. the number of super-sub concept relations in the tolerance block pattern
concept lattice. Nevertheless, different strategies for bicluster extraction can be
implemented for each technique rendering the comparison unfair. For example,
in [6] an optimization is proposed regarding biclustering using partition pattern
structures (which can be easily adapted to TBPS) which cuts in half its execution
time by breaking the structure of the lattice. Similar strategies for IPS and TCA
could also be implemented but are still a matter of research.

6 Conclusion

Biclustering is an important data analysis task that is used in several appli-
cations such as transcriptome analysis in biology and for the design of recom-
mender systems. Biclustering methods produce a collection of local patterns that
are easier to interpret than a global model. There are several types of biclus-
ters and corresponding algorithms, ad hoc most of the time. In this paper, our
main contribution shows how the biclusters of similar values on columns can be
characterized or generated from formal concepts, pattern concepts and triadic
concepts. Bringing back this problem of biclustering into formal concept anal-
ysis settings allows the usage of existing and efficient algorithms without any
modifications. However, and this is among the perspectives of research, several
optimizations can be made. For example, with the triadic method, one should
not generate both concepts (A,B,C) and (A,C,B): they are redundant since
only concepts with B = C correspond to maximal biclusters.
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7 Appendix: Proof of proposition 1

We introduce notations, before to recall and prove Proposition 1 that relates
maximal biclusters to interval pattern concepts of a pattern structure. The in-
tuition lies in the relation between the set of attributes M of (G,M,W, I)) in an
interval pattern structure (G, (D,u), δ). Let d = 〈[a1, b1], [a2, b2], . . . , [an, bn]〉 ∈
D be a pattern interval in an interval pattern structure (G, (D,u), δ), where
|M | = n. For any mi ∈M , we define: d(mi) = [ai, bi]. and |d(mi)| = |ai − bi|.
Definition 5. Let d be a pattern in an interval pattern structure (G, (D,u), δ).
The function attr : D 7→M is defined as: attr(d) = {m ∈M | |d(m)| ≤ θ}.
Definition 6. Let A ⊆ G be a set of objects and m ∈ M an attribute. We
define: A(m) = {g(m) | g ∈ B}. For instance, in Table 1, if A = {g1, g2, g3},
then, A(m4) = {2, 8, 9}.
Proposition 4. For A ⊆ G, we have that, for all mi ∈M :

A� = 〈[min(A(m1)),max(A(m1))], . . . , [min(A(mn)),max(A(mn))]〉
Proof. Since the operation u is associative and commutative, we have that

A� =
l

gi∈A
gi = 〈[min(A(m1)),max(A(m1))], . . . , [min(A(mn)),max(A(mn))]〉

ut
Now we reformulate and prove the Proposition 1.

Proposition 5. Consider a numerical dataset (G,M,W, I) as an interval pat-
tern structure (G, (D,u), δ). For any maximal bicluster (A,B), we define: d =
A�. Then: 1. B = attr(d) and 2. (A,D) is a pattern concept in (G, (D,u), δ).

Proof. 1. B = attr(d). We prove that m ∈ attr(b) ↔ m ∈ B. Since B = A�,
then, by the definition of maximal bicluster we have that ∀m ∈ M : m ∈
B ↔ |A(m)| ≤ θ, if and only if |min(A(m)) −max(A(m))| ≤ θ if and only
if (by the definition of d) m ∈ attr(d). ut

2. We need to prove that A = d� and that A� = d. A� = d holds by the
definition of d. As for A = d�, we take g ∈ d�, which means that ∀m ∈
M : g(m) ∈ d(m), also if m ∈ B, which implies that g ∈ A by definition of
maximal bicluster.
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Abstract. SPARQL queries over semantic web data usually produce
list of tuples as answers that may be hard to understand and interpret.
Accordingly, this paper focuses on Lattice-Based View Access (LBVA),
a framework based on FCA. This framework provides a classification of
the answers of SPARQL queries based on a concept lattice, that can be
navigated for retrieving or mining specific patterns in query results. In
this way, the concept lattice can be considered as a materialized view of
the data resulting from a SPARQL query.

Keywords: Formal Concept Analysis, SPARQL Query Views, Lattice-Based
Views, SPARQL, Classification.

1 Introduction

At present, Web has become a potentially large repository of knowledge, which is
becoming main stream for querying and extracting useful information. In partic-
ular, Linked Open Data (LOD) [2] provides a method for publishing structured
data in the form of RDF resources. These RDF resources are interlinked with
each other to form a cloud. SPARQL queries are used in order to make these
resources usable, i.e., queried. In some cases, queries in natural language against
standard search engines can be simple to use but sometimes they are complex
and may require integration of data sources. Then the standard search engines
will not be able to easily answer these queries, e.g., Currencies of all G8 coun-
tries. Such a complex query can be formalized as a SPARQL query over data
sources present in LOD cloud through SPARQL endpoints for retrieving answers.
Moreover, users may sometimes execute queries which generate huge amount of
results giving rise to the problem of information overload [5]. A typical example
is given by the answers retrieved by search engines, which mix between several
meanings of one keyword. In case of huge results, user will have to go through
a lot of results to find the interesting ones, which can be overwhelming with-
out any specific navigation tool. Same is the case with the answers obtained by
SPARQL queries, which are huge in number and it may be harder to extract
the most interesting patterns. This problem of information overload raises new
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challenges for data access, information retrieval and knowledge discovery w.r.t
web querying.

Accordingly, this paper proposes a new approach based on Formal Concept
Analysis (FCA [7])s. It describes a lattice-based classification of the results ob-
tained by SPARQL queries by introducing a new clause VIEW BY in SPARQL
query. This framework, called Lattice-Based View Access (LBVA), allows the
classification of SPARQL query results into a concept lattice, referred to as a
view, for data analysis, navigation, knowledge discovery and information retrieval
purposes. This new clause VIEW BY which enhances the functionality of already
existing GROUP BY clause in SPARQL query by adding sophisticated classification
and Knowledge Discovery aspects. Here after, we describe how a lattice-based
view can be designed from a SPARQL query. Afterwards, a view is accessed for
analysis and interpretation purposes which are totally supported by the concept
lattice. In case of large data only a part of the lattice [10] can be considered for
the analysis. In this way, this paper investigates also the capabilities of FCA to
deal with semantic web data.

The intuition of classifying results obtained by SPARQL queries is inspired
by web clustering engines [3] such as Carrot24. The general idea behind web
clustering engines is to group the results obtained by query posed by the user
based on the different meanings of the terms related to a query. Such systems
deal with unstructured textual data on web. By contrast, there are some stud-
ies conducted to deal with structured RDF data. In [5], the authors introduce
a clause Categorize By to target the problem of managing large amounts of
results obtained by conjunctive queries with the help of subsumption hierarchy
present in the knowledge base. By contrast, the VIEW BY clause generates lattice-
based views which provide a mathematically well-founded classification based on
formal concepts and an associated concept lattice. Moreover, it also paves way
for navigation or information retrieval by traversing the concept lattice and for
data analysis by allowing the extraction of association rules from the lattice.
Such data analysis operations allow discovery of new knowledge. Additionally,
unlike Categorize By, VIEW BY can deal with data that has no schema (which
is often the case with linked data). Moreover, VIEW BY has been evaluated over
very large set of answers (roughly 100,000 results) obtained over real datasets. In
case of larger number of answers, Categorize By does not provide any pruning
mechanism while this paper describes how the views can be pruned using iceberg
lattices.

The paper is structured as follows: Section 2 introduces a motivating exam-
ple. Section 3 gives a brief introduction of the state of the art while Section 4
defines LBVA and gives the overall architecture of the framework. Section 5 dis-
cusses some experiments conducted using LBVA. Finally, Section 6 concludes
the paper.

4 http://project.carrot2.org/index.html
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2 Motivation

In this section we introduce a motivating example focusing on why LOD should
be queried and why the SPARQL query results need classification. This scenario
will continue in the rest of the paper. Let us consider that a query Q searching for
museums where the exhibition of some famous artists is taking place along with
the location of the museum. Here, we do not discuss the interface aspects and we
will assume that SPARQL queries are provided. A standard query engine is not
adequate for answering such kind of questions and a direct query over LOD will
give better results. One of the ways to obtain such an information is to query
LOD through its SPARQL endpoint. This query will generate a huge amount of
results, which will need further manual work to group the interesting links.

3 Background

3.1 Linked Open Data

Linked Open Data (LOD) [2] is the way of publishing structured data in the
form of RDF graphs. Given a set of URIs U, blank nodes B and literals L, an
RDF triple is represented as t = (s, p, o) ∈ (U ∪B) ×U × (U ∪B ∪ L), where
s is a subject, p is a predicate and o is an object. A finite set of RDF triples is
called as RDF Graph G such that G = (V,E), where V is a set of vertices and E
is a set of labeled edges and G ∈ G, such that G = (U∪B)×U× (U∪B∪L).
Each pair of vertices connected through a labeled edge keeps the information
of a statement. Each statement is represented as 〈subject, predicate, object〉
referred to as an RDF Triple. V includes subject and object while E includes
the predicate.

SPARQL5 is the standard query language for RDF. In the current work we
will focus on the queries containing SELECT clause. Let us assume that there
exists a set of variables V disjoint from U in the above definition of RDF, then
(U ∪ V) × (U ∪ V) × (U ∪ V) is a graph pattern called a triple pattern. If a
variable ?X ∈ V and ?X = c then c ∈ U . Given U , V and a triple pattern t
a mapping µ(t) would be the triple obtained by replacing variables in t with
U . [[.]]G takes an expression of patterns and returns a set of mappings. Given
a mapping µ : V → U and a set of variables W ⊆ V , µ is represented as
µ|W , which is described as a mapping such that dom(µ|W ) = dom(µ) ∩W and
µ|W (?X) = µ(?X) for every ?X ∈ dom(µ) ∩W . Finally, the SPARQL SELECT
query is defined as follows:

Definition 1. A SPARQL SELECT query is a tuple (W,P ), where P is a graph
pattern and W is a set of variables such that W ⊆ var(P ). The answer of (W,P )
over an RDF graph G, denoted by [[(W,P )]]G , is the set of mappings:

[[(W,P )]]G = {µ|W |µ ∈ [[P ]]G}
5 http://www.w3.org/TR/rdf-sparql-query/
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In Definition 1, var(P ) is the set of variables in pattern P and W is the set
of variables in SELECT clause. Here, P includes the triple patterns containing
variables. This triple pattern is then evaluated against the RDF Graph G given
as [[P ]]G. It returns a set of mappings with respect to the variables in var(P ).
Finally a projection over µ is done w.r.t. the variables in W . The projected set of
mappings obtained as represented as µ|W . Further details on the formalization
and foundations of RDF databases are discussed in [1].

Example 1. Continuing the scenario in section 2, following is the SPARQL query:

1 SELECT ?museum ?country ?artist WHERE {
2 ?museum rdf:type dbpedia-owl:Museum .

3 ?museum dbpedia-owl:location ?city .

4 ?city dbpedia-owl:country ?country .

5 ?painting dbpedia-owl:museum ?museum .

6 ?painting dbpprop:artist ?artist}
7 GROUP BY ?country ?artist

This query retrieves the list of museums along with the artists whose work is
exhibited in a museum along with the location of a museum. Lines 5 and 6

retrieve information about the artists whose work is displayed in some museum.
More precisely, the page containing the information on a museum (?museum) is
connected to the page of the artists (?artist) through a page on the work of
artist (?painting) displayed in the museum. In order to integrate these three re-
sources, two predicates were used dbpedia-owl:museum and dbpprop:artist.
An excerpt of the answers obtained by Group by clause is shown below:

Pablo Picasso Musee d’Art Moderne France
Leonardo Da Vinci Musee du Louvre France
Raphael Museo del Prado Spain

The problem encountered while browsing such an answer is that there are too
many statements to navigate through. Even after using the GROUP BY clause the
answers are not organized in any ordered structure. By contrast, the clause VIEW
BY activates the LBVA framework, where the user will obtain a classification
of the statements as a concept lattice where statements are partially ordered
(see Figure 1a). To obtain the museums in UK displaying the work of Goya, all
the museums displaying the work of Goya can be retrieved and then the specific
concept containing Goya and UK is obtained by navigation. The answer obtained
is National Gallery in the example.

3.2 Formal Concept Analysis (FCA)

As the basics of Formal Concept Analysis (FCA) [7] are well known, we only
introduce some of the concepts which are necessary to understand this paper.
FCA is a mathematical framework used for a number of purposes, among which
classification and data analysis, information retrieval and knowledge discovery
[4]. In some cases we obtain a huge number of concepts. In order to restrict the
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(a) Classes of Museums w.r.t Artists and Countries, e.g., the
concept on the top left corner with the attribute France contains
all the French Museums, i.e., Musee du Louvre (Louvre) and
Musee d’Art Moderne (MAM). (VIEW BY ?museum)

(b) Classes of Artists w.r.t Museums and
Countries. (VIEW BY ?artist)

Fig. 1: Lattice-Based Views w.r.t Museum’s and Artist’s Perspective .

number of concepts, iceberg concept lattices can be used [10]. Iceberg concept
lattices contain only the top most part of the lattice. Along with iceberg lattices
a stability index [9] is also used for filtering the concepts. The stability index
shows how much the concept intent depends on particular objects of the extent.

FCA also allows knowledge discovery using association rules. An implication
over the attribute set M in a formal context is of the form B1 → B2, where
B1, B2 ⊆ M . The implication holds iff every object in the context with an
attribute in B1 also has all the attributes in B2. For example, when (A1, B1) ≤
(A2, B2) in the lattice, we have that B1 → B2. Duquenne-Guigues (DG) basis
for implications [8] is the minimal set of implications equivalent to the set of all
valid implications for a formal context K = (G,M, I). Actually, the DG-basis
contains all information lying in the concept lattice.

4 Lattice-Based View Access

4.1 SPARQL Queries with Classification Capabilities

The idea of introducing a VIEW BY clause is to provide classification of the
results and add a knowledge discovery aspect to the results w.r.t the vari-
ables appearing in VIEW BY clause. Let Q be a SPARQL query of the form Q

= SELECT ?X ?Y ?Z WHERE {pattern P} VIEW BY ?X then the set of variables
V = {?X, ?Y, ?Z} 6. According to the definition 1 the answer of the tuple (V, P )
is represented as [[({?X, ?Y, ?Z}, P )]] = µi where i ∈ {1, . . . , k} and k is the
number of mappings obtained for the query Q. For the sake of simplicity, µ|W
is given as µ. Here, dom(µi) = {?X, ?Y, ?Z} which means that µ(?X) = Xi,

6 As W represents set of attribute values in the definition of a many-valued formal
context, we represent the variables in select clause as V to avoid confusion.
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µ(?Y ) = Yi and µ(?Z) = Zi. Finally, a complete set of mappings can be given
as {{?X → Xi, ?Y → Yi, ?Z → Zi}}.

The variable appearing in the VIEW BY clause is referred to as object variable7

and is denoted as Ov such that Ov ∈ V . In the current scenario Ov = {?X}.
The remaining variables are referred to as attribute variables and are denoted as
Av where Av ∈ V such that Ov ∪Av = V and Ov ∩Av = ∅, so, Av = {?Y, ?Z}.

Example 2. Following the example in section 2, an alternate query with the VIEW
BY clause can be given as:

SELECT ?museum ?artist ?country WHERE {
?museum rdf:type dbpedia-owl:Museum .

?museum dbpedia-owl:location ?city .

?city dbpedia-owl:country ?country .

?painting dbpedia-owl:museum ?museum .

?painting dbpprop:artist ?artist}
VIEW BY ?museum

?museum ?artist ?country

µ1 Musee d’Art Moderne Pablo Picasso France

µ2 Museo del Prado Raphael Spain
...

...
...

...

Table 1: Generated Mappings for SPARQL Query Q

Here, V={?museum, ?artist, ?country} and P is the conjunction of pat-
terns in the WHERE clause then the evaluation of [[({?museum, ?artist, ?country}
, P )]] will generate the mappings shown in Table 1. Accordingly, dom(µi) =
{?museum, ?artist, ?country}. Here, µ1(?museum) = Musee d′Art Moderne,
µ1(?artist) = Pablo P icasso and µ1(?country) = France. We have Ov =
{?museum} because it appears in the VIEW BY clause and Av = {?artist,
?country}. Figure 1a shows the generated view when Ov = {?museum} and
in Figure 1b, we have; Ov = {?artist} and Av = {?museum, ?country}.

4.2 Designing a Formal Context of Answer Tuples

The results obtained by the query are in the form of set of tuples, which are
then organized as a many-valued context.

Obtaining a Many-Valued Context (G,M,W, I): As described previously, we
have Ov = {?X} then µ(?X) = {Xi}i∈{1,...,k}, where Xi denote the values
obtained for the object variable and the corresponding mapping is given as
{{?X → Xi}}. Finally, G = µ(?X) = {Xi}i∈{1,...,k}. Let Av = {?Y, ?Z} then
M = Av and the attribute values W = {µ(?Y ), µ(?Z)} = {{Yi}, {Zi}}i∈{1,...,k}.
The corresponding mapping for attribute variables are {{?Y → Yi, ?Z → Zi}}.
7 The object here refers to the object in FCA.
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In order to obtain a ternary relation, let us consider an object value gi ∈ G and
an attribute value wi ∈ W then we have (gi, “?Y ′′, wi) ∈ I iff ?Y (gi) = wi, i.e.,
the value of gi for attribute ?Y is wi, i ∈ {1, . . . , k} as we have k values for ?Y .

Obtaining Binary Context (G,M, I): Afterwards, a conceptual scaling used for
binarizing the many-valued context, in the form of (G,M, I). Finally, we have
G = {Xi}i∈{1,...,k}, M = {Yi} ∪ {Zi} where i ∈ {1, . . . , k} for object variable
Ov = {?X}. The binary context obtained after applying the above transforma-
tions to the SPARQL query answers w.r.t to object variable is called the formal
context of answer tuples and is denoted by Ktuple.

Example 3. In the example Ov = {?museum}, Av = {?artist, ?country}. The
answers obtained by this query are organized into a many-valued context as
follows: the distinct values of the object variable ?museum are kept as a set of
objects, so G = {MuseeduLouvre, MuseodelPrado, . . . }, attribute variables
provide M = {artist, country}, W1 = {Raphael, LeonardoDaV inci, . . . } and
W2 = {France, Spain, UK, . . . } in a many-valued context. The obtained many-
valued context is shown in Table 2. Finally, the obtained many-valued context
is conceptually scaled to obtain a binary context shown in Table 3.

Museum Artist Country

Musee du Louvre {Raphael, Leonardo Da Vinci, Caravaggio} {France}
Musee d’Art Moderne {Pablo Picasso} {France}
Museo del Prado {Raphael, Caravaggio, Francisco Goya} {Spain}
National Gallery {Leonardo Da Vinci, Caravaggio, Francisco Goya} {UK}

Table 2: Many-Valued Context (Museum).

Artist Country

Museum Raphael Da Vinci Picasso Caravaggio Goya France Spain UK

Musee du Louvre × × × ×
Musee d’Art Moderne × ×
Museo del Prado × × × ×
National Gallery × × × ×

Table 3: Formal Context Ktuple w.r.t ?museum.

The organization of the concept lattice is depending on the choice of ob-
ject variable and the attribute variables. Then, to group the artists w.r.t the
museums where their work is displayed and the location of the museums, the
object variable would be ?artist and the attribute variables will be ?museum

and ?country. Then, the scaling can be performed for obtaining a formal con-
text. In order to complete the set of attribute, domain knowledge can also be
taken into account, such as the the ontology related to the type of artists or mu-
seums. This domain knowledge can be added with the help of pattern structures,
an approach linked to FCA, on top of many-valued context without having to
perform scaling. For the sake of simplicity, we do not discuss it in this paper.

4.3 Building a Concept Lattice

Once the context is designed, the concept lattice can be built using an FCA algo-
rithm.There are some very efficient algorithms that can be used [7, 11]. However,
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in the current implementation we use AddIntent [11] which is an incremental
concept lattice construction algorithm. In case of large data iceberg lattices can
be considered [10]. The use of VIEW BY clause activates the process of LBVA,
which transforms the SPARQL query answers (tuples) to a formal contextKtuples

through which a concept lattice is obtained which is referred to as a Lattice-Based
View. A view on SPARQL query in section 2, i.e, a concept lattice corresponding
to Table 3 is shown in Figure 1a.

4.4 Interpretation Operations over Lattice-Based Views

A formal context effectively takes into account the relations by keeping the
inherent structure of the relationships present in LOD as object-attribute re-
lation. When we build a concept lattice, each concept keeps a group of terms
sharing some attribute (i.e., the relationship with other terms). This concept
lattice can be navigated for searching and accessing particular LOD elements
through the corresponding concepts within the lattice. It can be drilled down
from general to specific concepts or rolled up to obtain the general ones which
can be further interpreted by the domain experts. For example, in order to search
for the museums where there is an exhibition of the paintings of Caravaggio,
the concept lattice in Figure 1(a) is explored levelwise. It can be seen that the
paintings of Caravaggio are displayed in Musee du Louvre, Museo del Prado

and National Gallery. Now it can be further filtered by country, i.e., look
for French museums displaying Caravaggio. The same lattice can be drilled
down and Musee du Louvre as an answer can be retrieved. Next, to check the
museums located in France and Spain, the roll up operation from the French
Museums to the general concept containing all the museums with Caravaggio’s
painting can be applied and then the drill down operation to Museums in France

or Spain displaying Caravaggio can be performed. The answer obtained will be
Musee du Louvre and Museo del Prado.

A different perspective on the same set of answers can also be retrieved,
meaning that the group of artists w.r.t museums and country. For selecting
French museums according to the artists they display, the object variable will be
Ov = {?artist} and attribute variables will be Av = {?museum, ?country}. The
lattice obtained in this case will be from Artist’s perspective (see Figure 1b).
Now, it is possible to retrieve Musee du Louvre and Musee d’Art Moderne,
which are the French museums and to obtain a specific French museum displaying
the work of Leonardo Da Vinci a specific concept can be selected which gives
the answer Musee du Louvre.

FCA provides a powerful means for data analysis and knowledge discovery.
VIEW BY can be seen as a clause that engulfs the original SPARQL query and
enhances it’s capabilities by providing views which can be reduced using ice-
berg concept lattices. Iceberg lattices provide the top most part of the lattice
filtering out only general concepts. The concept lattice is still explored levelwise
depending on a given threshold. Then, only concepts whose extent is sufficiently
large are explored, i.e., the support of a concept corresponds to the cardinal of
the extent. If further specific concepts are required the support threshold of the
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iceberg lattices can be lowered and the resulting concept lattice can be explored
levelwise.

Knowledge Discovery: Among the means provided by FCA for knowledge
discovery, the Duquenne-Guigues basis of implications takes into account a min-
imal set of implications which represent all the implications (i.e., association
rules with confidence 1) that can be obtained by accessing the view i.e., a con-
cept lattice. For example, implications according to Figure 1(a) state that all the
museums in the current context which display Leonardo Da Vinci also display
Caravaggio (rule: Leonardo Da Vinci → Caravaggio). It also says that
only the museums which display the work of Caravaggio display the work of
Leonardo Da Vinci Such a rule can be interesting if the museums which dis-
play the work of both Leonardo Da Vinci and Caravaggio are to be retrieved.
The rule Goya, Raphael, Caravaggio → Spain suggests that there exists a
museum which have works of Goya, Raphael, Caravaggio only in Spain, more
precisely Museo Del Prado. (These rules are generated from only the part of
SPARQL query answers shown as a context in Table 3).

5 Experimentation

The experiments were conducted on real dataset. Our algorithm is implemented
in Java using Jena8 platform and the experiments were conducted on a laptop
with 2.60 GHz Intel core i5 processor, 3.7 GB RAM running Ubuntu 12.04. We
extracted the information about the movie with their genre and location using
SPARQL query enhanced with VIEW BY clause. The experiment shows that even
though the background knowledge (ontological information) was not extracted
the views reveal the hidden hierarchical information contained in the SPARQL
query answers and can be navigated accordingly. Moreover, it also shows that
useful knowledge is extracted from the answers through the the views using
DG−Basis of implications. We also performed quantitative analysis where we
discussed about the sparsity of the semantic web data. We also tested how our
method scales with growing number of results. The number of answers obtained
by YAGO were 100,000. The resulting view kept the classes of movies with
respect to genre and location.

5.1 YAGO

The construction of YAGO ontology is based on the extraction of instances and
hierarchical information from Wikipedia and Wordnet. In the current experi-
ment, we sent a query to YAGO with the VIEW BY clause.

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

PREFIX yago: http://yago-knowledge.org/resource/

SELECT ?movie ?genre ?location WHERE {
8 https://jena.apache.org/
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?movie rdf:type yago:wordnet movie 106613686 .

?movie yago:isLocatedIn ?location .

?movie rdf:type ?genre . }
VIEW BY ?movie

While querying YAGO it was observed that the genre and location informa-
tion was also given in the ontology. The first level of the obtained view over the
SPARQL query results over YAGO kept the groups of movies with respect to
their languages. e.g., the movies with genre Spanish Language Films. However,
as we further drill down in the concept lattice we get more specific categories
which include the values from the location variable such as Spain, Argentina

and Mexico. There were separate classes obtained for movies based on novels
which were then further specialized by the introduction of the country attribute
as we drill down the concept lattice. Finally with the help of lattice-based views,
it can be concluded that the answers obtained by querying YAGO provides a
clean categorization of movies by making use of the partially ordered relation
between the concepts present in the concept lattice.

DG-Basis of Implications: DG-Basis of Implications for YAGO were calcu-
lated. The implications were filtered in three ways. Firstly, pruning was per-
formed naively with respect to support threshold. Around 200 rules were ex-
tracted on support threshold of 0.2%. In order, to make the rules observable,
the second type of filtering based on number of elements in the body of the
rules was applied. All the implications which contained one item set in the body
were selected. However, if there still are large number of implications to be ob-
served then a third type of pruning can be applied which involved the selection
of implications with different attribute type in head and body, e.g., in rule#1
head contains United States which is of type country and body contains the
wikicategory. Such kind of pruning helps in finding attribute-attribute relations.

Table 4 contains some of the implications. Calculating DG −Basis of impli-
cations is actually useful in finding regularities in the SPARQL query answers
which can not be discovered from the raw tuples obtained. For example, rule#1
states that RKO picture films is an American film production and distribution
company as all the movies produced and distributed by them are from United
States. Moreover, rule#2 says that all the movies in Oriya language are from
India. This actually points to the fact that Oriya is one of many languages that
is spoken in India. This rule also tells that Oriya language is only spoken in
India. Rule#3 shows a link between a category from Wikipedia and Wordnet,
which clearly says that the wikicategory is more specific than the wordnet

category as remake is more general than Film remakes.

Impl. ID Supp. Implication

1. 96 wikicategory RKO Pictures films → United States

2. 46 wikicategory Oriya language films → India

3. 64 wikicategory Film remakes → wordnet remake

Table 4: Some implications from DG-Basis of Implication (YAGO)
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Fig. 2: Experimental Results.

5.2 Evaluation

Besides the qualitative evaluation of LBVA, we performed an empirical evalua-
tion. The characteristics of the dataset are shown in Table 5. These concepts were
pruned with the help of iceberg lattices and stability for qualitative analysis.

The plots for the experimentation are shown in Figure 2. Figure 2(a) shows a
comparison between the number of tuples obtained and the density of the formal
context. The density of the formal context is the proportion of pairs in I w.r.t
the size G ×M . It has very low range for both the experiments, i.e., it ranges
from 0.14% to 0.28%. This means in particular that the semantic web data is
very sparse when considered in a formal context and deviates from the datasets
usually considered for FCA (as they are dense). Here we can see that as the
number of tuples increases the density of the formal context is decreasing which
means that sparsity of the data also increases.

We also tested how our method scales with growing number of results. The
number of answers obtained by YAGO were 100,000. Figure 2(b) illustrate the
execution time for building the concept lattice w.r.t the number of tuples ob-
tained. The execution time ranges from 20 to 100 seconds, it means that the
the concept lattices were built in an efficient way and large data can be consid-
ered for these kinds of experiments. Usually the computation time for building
concept lattices depends on the density of the formal context but in the case
of semantic web data, as the density is not more than 1%, the computation
completely depends on the number of objects obtained which definitely increase
with the increase in the number of tuples (see Table 5).

No. of Tuples |G| |M | No. of Concepts

20% 3657 2198 7885

40% 6783 3328 19019

60% 9830 4012 31264

80% 12960 4533 43510

100% 15272 4895 55357

Table 5: Characteristics of Datasets (YAGO)

6 Conclusion and Discussion

In LBVA, we introduce a classification framework based on FCA for the set of
tuples obtained as a result of SPARQL queries over LOD. In this way, a view
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is organized as a concept lattice built through the use of VIEW BY clause that
can be navigated where information retrieval and knowledge discovery can be
performed. Several experiments show that LBVA is rather tractable and can be
applied to large data.

For future work, we are interested in extending the VIEW BY clause by in-
cluding the available background knowledge of the resources using the formalism
of pattern structures [6]. Moreover, we intend to use implications for complet-
ing the background knowledge. We also intend to use pattern structures with a
graph description for each considered object, where the graph is the set of all
triples accessible w.r.t reference object.
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Abstract. In Formal Concept Analysis the classical formal context is
analized taking into account only the positive information, i.e. the pres-
ence of a property in an object. Nevertheless, the non presence of a prop-
erty in an object also provides a significant knowledge which can only
be partially considered with the classical approach. In this work we have
modified the derivation operators to allow the treatment of both, positive
and negative attributes which come from respectively, the presence and
absence of the properties. In this work we define the new operators and
we prove that they are a Galois connection. Finally, we have also studied
the correspondence between the formal context in the new framework
and the extended concept lattice, providing new interesting properties.

1 Introduction

Data analysis of information is a well established discipline with tools and tech-
niques well developed to challenge the identification of hide patterns in the data.
Data mining, and general Knowledge Discovering, helps in the decision mak-
ing process using pattern recognition, clustering, association and classification
methods. One of the popular approaches used to extract knowledge is mining
the patterns of the data expressed as implications (functional dependencies in
database community) or association rules.

Traditionally, implications and similar notions have been built using the posi-
tive information, i.e. information induced by the presence of attributes in objects.
In Manilla et al. [6] an extended framework for enriched rules was introduced,
considering negation, conjunction and disjunction. Rules with negated attributes
were also considered in [1]: “if we buy caviar, then we do not buy canned tuna”.

In the framework of formal concept analysis, some authors have proposed the
mining of implications with positive and negative attributes from the apposition
of the context and its negation (K|K) [2, 4]. Working with (K|K) conduits to
a huge exponential problem and also as R. Missaoui et.al. shown in [9] real
applications use to have sparse data in the context K whereas dense data in K
(or viceversa), and therefore “generate a huge set of candidate itemsets and a
tremendous set of uninteresting rules”.

c© Karell Bertet, Sebastian Rudolph (Eds.): CLA 2014, pp. 267–279,
ISBN 978–80–8152–159–1, Institute of Computer Science, Pavol Jozef Šafárik
University in Košice, 2014.
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R. Missaoui et al. [7, 8] propose the mining from a formal context K of
a subset of all mixed implications, i.e. implication with positive and negative
attributes, representing the presence and absence of properties. As far as we
know, the approach of these authors uses, for first time in this problem, a set of
inference rules to manage negative attributes.

In [11] we followed the line proposed by Missaoui and presented an algo-
rithm, based on the NextClosure algorithm, that allows to obtain mixed impli-
cations. The proposed algorithm returns a feasible and complete basis of mixed
implications by performing a reduced number of requests to the formal context.
Beyond the benefits provided by the inclusion of negative attributes in terms
of expressiveness, Revenko and Kuznetsov [10] use negative attributes to tackle
the problem of finding some types of errors in new object intents is introduced.
Their approach is based on finding implications from an implication basis of
the context that are not respected by a new object. Their work illustrates the
great benefit that a general framework for negative and positive attributes would
provide.

In this work we propose a deeper study of the algebraic framework for Formal
Concept Analysis taking into account positive and negative information. The
first step is to consider an extension of the classical derivation operators, proving
to be Galois connection. As in the classical framework, this fact will allows
to built the two usual dual concept lattices, but in this case, as we shall see,
the correspondence among concept lattices and formal contexts reveal several
characteristics which induce interesting properties. The main aim of this work
is to establish a formal full framework which allows to develop in the future new
methods and techniques dealing with positive and negative information.

In Section 2 we present the background of this work: the notions related with
formal concept analysis and negative attributes. Section 3 introduces the main
results which constitute the contribution of this paper.

2 Preliminaries

2.1 Formal Concept Analysis

In this section, the basic notions related with Formal Concept Analysis (FCA)
[12] and attribute implications are briefly presented. See [3] for a more detailed
explanation. A formal context is a triple K = 〈G,M, I〉 where G and M are
finite non-empty sets and I ⊆ G ×M is a binary relation. The elements in G
are named objects, the elements in M attributes and 〈g,m〉 ∈ I means that the
object g has the attribute m. From this triple, two mappings ↑: 2G → 2M and
↓: 2M → 2G, named derivation operators, are defined as follows: for any X ⊆ G
and Y ⊆M ,

X↑ = {m ∈M | 〈g,m〉 ∈ I for all g ∈ X} (1)

Y ↓ = {g ∈ G | 〈g,m〉 ∈ I for all m ∈ Y } (2)

X↑ is the subset of all attributes shared by all the objects in X and Y ↓ is the
subset of all objects that have the attributes in Y . The pair (↑, ↓) constitutes
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a Galois connection between 2G and 2M and, therefore, both compositions are
closure operators.

A pair of subsets 〈X,Y 〉 with X ⊆ G and Y ⊆ M such X↑ = Y and
Y ↓ = X is named a formal concept. X is named the extent and Y the intent of
the concept. These extents and intents coincide with closed sets wrt the closure
operators because X↑↓ = X and Y ↓↑ = Y . Thus, the set of all formal concepts
is a lattice, named concept lattice, with the relation

〈X1, Y1〉 ≤ 〈X2, Y2〉 if and only if X1 ⊆ X2 (or equivalently, Y2 ⊆ Y1) (3)

This concept lattice will be denoted by B(G,M, I).
The concept lattice can be characterized in terms of attribute implications

being expressions A → B where A,B ⊆ M . An implication A → B holds in a
context K if A↓ ⊆ B↓. That is, any object that has all the attributes in A has also
all the attributes in B. It is well known that the sets of attribute implications
that are valid in a context satisfies the Armstrong’s Axioms:

[Ref] Reflexivity: If B ⊆ A then ` A→ B.
[Augm] Augmentation: A→ B ` A ∪ C → B ∪ C.
[Trans] Transitivity: A→ B,B → C ` A→ C.

A set of implications Σ is considered an implicational system for K if: an
implication holds in K if and only if it can be inferred, by using Armstrong’s
Axioms, from Σ.

Armstrong’s axioms allow us to define the closure of attribute sets wrt an
implicational system (the closure of a set A is usually denoted as A+) and it
is well-known that closed sets coincide with intents. On the other hand, several
kind of implicational systems has been defined in the literature being the most
used the so-called Duquenne-Guigues (or stem) basis [5]. This basis satisfies
that its cardinality is minimum among all the implicational systems and can be
obtained from a context by using the renowned NextClosure Algorithm [3].

2.2 Negatives attributes

As we have mentioned in the introduction, classical FCA only discover knowledge
limited to positive attributes in the context, but it does not consider information
relative to the absence of properties (attributes). Thus, the Duquenne-Guigues
basis obtained from Table 1 is {e → bc, d → c, bc → e, a → b}. Moreover, the
implications b → c and b → d do not hold in Table 1 and therefore they can
not be derived from the basis by using the inference system. Nevertheless, both
implications correspond with different situations. In the first case, some objects
have attributes b and c (e.g. objects o1 and o3) whereas another objects (e.g. o2)
have the attribute b and do not have c. On the other side, in the second case,
any object that has the attribute b does not have the attribute d.

A more general framework is necessary to deal with this kind of information.
In [11], we have tackled this issue focusing on the problem of mining implication
with positive and negative attributes from formal contexts. As a conclusion of
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I a b c d e

o1 × × ×
o2 × ×
o3 × × ×
o4 × ×

Table 1. A formal context

that work we emphasized the necessity of a full development of an algebraic
framework.

First, we begin with the introduction of an extended notation that allows
us to consider the negation of attributes. From now on, the set of attributes is
denoted by M , and its elements by the letter m, possibly with subindexes. That
is, the lowercase character m is reserved for positive attributes. We use m to
denote the negation of the attribute m and M to denote the set {m | m ∈ M}
whose elements will be named negative attributes.

Arbitrary elements in M ∪M are going to be denoted by the first letters in
the alphabet: a, b, c, etc. and a denotes the opposite of a. That is, the symbol a
could represent a positive or a negative attribute and, if a = m ∈M then a = m
and if a = m ∈M then a = m.

Capital letters A, B, C,. . . denote subsets of M ∪M . If A ⊆M ∪M , then A
denotes the set of the opposite of attributes {a | a ∈ A} and the following sets
are defined:

– Pos(A) = {m ∈M | m ∈ A}
– Neg(A) = {m ∈M | m ∈ A}
– Tot(A) = Pos(A) ∪Neg(A)

Note that Pos(A),Neg(A),Tot(A) ⊆M .

Once we have introduced the notation, we are going to summarize some
results concerning the mining of knowledge from contexts in terms of implications
with negative and positive attributes [11]. A trivial approach could be obtained
by adding new columns to the context with the opposite of the attributes [4].
That is, given a context K = 〈G,M, I〉, a new context (K|K) = 〈G,M ∪M, I∪I〉
is considered, where I = {〈g,m〉 | g ∈ G,m ∈ M, 〈g,m〉 6∈ I}. For example, if
K is the context depicted in Table 1, the context (K|K) is those presented in
Table 2. Obviously, the classical framework and its corresponding machinery can
be used to manage the new context and, in this (direct) way, negative attributes
are considered. However, this rough approach induces a non trivial growth of
the formal context and, consequently, algorithms have a worse performance.

In our opinion, a deeper study was done by R. Missaoui et al. in [7] where an
evolved approach has been provided. For first time –as far as we know– inference
rules for the management of positive and negative attributes are introduced [8].
The authors also developed new methods to mine mixed attribute implications
by means of the key notion [9].
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I ∪ I a b c d e a b c d e

o1 × × × × ×
o2 × × × × ×
o3 × × × × ×
o4 × × × × ×

Table 2. The formal context (K|K)

In [11], we have developed a method to mine mixed implications whose main
goal has been to avoid the management of the large (K|K) contexts, so that the
performance of the corresponding method has a controlled cost.

First, we extend the definitions of derivation operators, formal concept and
attribute implication.

Definition 1. Let K = 〈G,M, I〉 be a formal context. We define the operators

⇑: 2G → 2M∪M and ⇓: 2M∪M → 2G as follows: for X ⊆ G and Y ⊆M ∪M ,

X⇑ = {m ∈M | 〈g,m〉 ∈ I for all g ∈ X}
∪ {m ∈M | 〈g,m〉 6∈ I for all g ∈ X} (4)

Y ⇓ = {g ∈ G | 〈g,m〉 ∈ I for all m ∈ Y }
∩ {g ∈ G | 〈g,m〉 6∈ I for all m ∈ Y } (5)

Definition 2. Let K = 〈G,M, I〉 be a formal context. A mixed formal concept
in K is a pair of subsets 〈X,Y 〉 with X ⊆ G and Y ⊆M ∪M such X⇑ = Y and
Y ⇓ = X.

Definition 3. Let K = 〈G,M, I〉 be a formal context and let A,B ⊆ M ∪M ,
the context K satisfies a mixed attribute implication A → B, denoted by K |=
A→ B, if A⇓ ⊆ B⇓.

For example, in Table 1, as we previously mentioned, two different situations
were presented. Thus, in this new framework we have that K 6|= b → d and
K |= b→ d whereas K 6|= b→ c either K 6|= b→ c.

Now, we are going to introduce the mining method for mixed attribute im-
plications. The method is strongly based on the set of inference rules built by
supplementing Armstrong’s axioms with the following ones, introduced in [8]:
let a, b ∈M ∪M and A ⊆M ∪M ,

[Cont] Contradiction: ` aa→MM .
[Rft] Reflection: Aa→ b ` Ab→ a.

The closure of an attribute set A wrt a set of mixed attribute implications Σ,
denoted as A++, is defined as the biggest set such that A→ A++ can be inferred
fromΣ by using Armstrong’s Axioms plus [Cont] and [Rft]. Therefore, a mixed
implication A → B can be inferred from Σ if and only if B is a subset of the
closure of A, i.e. B ⊆ A++.
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The proposed mining method, depicted in Algorithm 1, uses the inference
rules in such a way that it is not centered around the notion of key, but it
extends, in a proper manner, the classical NextClosure algorithm [3].

Algorithm 1: Mixed Implications Mining

Data: K = 〈G,M, I〉
Result: Σ set of implications

begin1

Σ := ∅;2

Y := ∅;3

while Y < M do4

foreach X ⊆ Y do5

A := (Y rX) ∪X;6

if Closed(A, Σ) then7

C := A⇓⇑;8

if A 6= C then Σ := Σ ∪ {A→ C rA}9

Y := Next(Y ) // i.e. successor of Y in the lectic order10

return Σ11

end12

The algorithm to calculate the mixed implicational system doesn’t need to
exhaustive traverse all the subsets of mixed attributes, but only those ones that
are closed w.r.t. the set of implications previously computed. The Closed func-
tion is defined having linear cost and is used to discern when a set of attributes
is not closed and thus, the context is not visited in this case.

Function Closed(A,Σ): boolean

Data: A ⊆M ∪M with Pos(A)∩Neg(A) = ∅ and Σ being a set of mixed
implications.

Result: ‘true’ if A is closed wrt Σ or ‘false’ otherwise.
begin1

foreach B → C ∈ Σ do2

if B ⊆ A and C * A then exit and return false if B rA = {a},3

A ∩ C 6= ∅, and a 6∈ A then exit and return false

return true4

end5

3 Mixed concept lattices

As we have mentioned, the goal of this paper is to develop a deep study of the
generalized algebraic framework. In this section we are going to introduce the
main results of this paper providing the properties of the generalized concept
lattice. The main pillar of our new framework are the two derivation operators
introduced in Equations 4 and 5. The following theorem ensures that the pair
of these operators is a Galois connection:
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Theorem 1. Let K = 〈G,M, I〉 be a formal context. The pair of derivation
operators (⇑,⇓) introduced in Definition 1 is a Galois Connection.

Proof. We need to prove that, for all subsets X ⊆ G and Y ⊆M ∪M ,

X ⊆ Y ⇓ if and only if Y ⊆ X⇑

First, assume X ⊆ Y ⇓. For all a ∈ Y , we distinguish two cases:

1. If a ∈ Pos(Y ), exists m ∈M with a = m and, for all g ∈ X, since X ⊆ Y ⇓,
〈g,m〉 ∈ I and therefore a = m ∈ X⇑.

2. If a ∈ Neg(Y ), exits m ∈ M with a = m and, for all g ∈ X, since X ⊆ Y ⇓,
〈g,m〉 6∈ I and therefore a = m ∈ X⇑.

Conversely, assume Y ⊆ X⇑ and g ∈ X. To ensure that g ∈ Y ⇓, we need to
prove that 〈g, a〉 ∈ I for all a ∈ Pos(Y ) and 〈g, a〉 /∈ I for all a ∈ Neg(Y ), which
is straightforward from Y ⊆ X⇑. ut

Therefore, above theorem ensures that ⇑◦⇓ and ⇓◦⇑ are closure operators.
Furthermore, as in the classical case, both closure operators provide two dually
isomorphic lattices. We denote by B](G,M, I) to the lattice of mixed concepts
with the relation

〈X1, Y1〉 ≤ 〈X2, Y2〉 iff X1 ⊆ X2 (or equivalently, iff Y1 ⊇ Y2)

Moreover, as in the classical FCA, mixed implications and mixed concept lattice
make up the two sides of the same coin, i.e. the information mined from the
mixed formal context may be dually represented by means of a set of mixed
attribute implications or a mixed concept lattice.

As we shall see later in this section, unlike the classical FCA, mixed concept
lattices are restricted to an specific lattice subclass. There exist specific prop-
erties that lattices may observe to be considered a valid lattice structure which
corresponds to a mixed formal context. In fact, this is one of the main goal of this
paper, the characterization of the lattices in the mixed formal concept analysis.

In Table 3 six different lattices are depicted. In the classical framework, all of
them may be associated with formal contexts, i.e. in the classical framework any
lattice corresponds with a collection of formal context. Nevertheless, in the mixed
attribute framework this property does not hold anymore. Thus, in Table 3, as
we shall prove later in this paper, lattices 3 and 5 cannot be associated with a
mixed formal context.

The following two definitions characterizes two kind of significant sets of
attributes that will be used later:

Definition 4. Let K = 〈G,M, I〉 be a formal context. A set A ⊆ M ∪M is
named consistent set if Pos(A) ∩Neg(A) = ∅.

The set of consistent sets are going to be denoted by Ctts, i.e.

Ctts = {A ⊆M ∪M | Pos(A) ∩Neg(A) = ∅}
If A ∈ Ctts then |A| ≤ |M | and, in the particular case where |A| = |M |, we have
Tot(A) = M . This situation induces the notion of full set:
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◉

◉

◉

◉

◉

◉

Lattice 1 Lattice 2 Lattice 3

◉

◉ ◉

◉ ◉

◉

◉

◉

◉

◉

◉ ◉◉

◉◉

◉

Lattice 4 Lattice 5 Lattice 6

Table 3. Scheletons of some lattices

Definition 5. Let K = 〈G,M, I〉 be a formal context. A set A ⊆M ∪M is said
to be full consistent set if A ∈ Ctts and Tot(A) = M .

The following lemma, which characterize the boundary cases, is straightforward
from Definition 1.

Lemma 1. Let K = 〈G,M, I〉 be a formal context. Then ∅⇑ = M ∪M , ∅⇓ = G
and (M ∪M)⇓ = ∅.

In the classical framework, the concept lattice B(G,M, I) is bounded by 〈M↓,M〉
and 〈G,G↑〉. However, in this generalized framework, as a direct consequence
from above lemma, the lower and upper bounds of B](G,M, I) are 〈∅,M ∪M〉
and 〈G,G⇑〉 respectively.

Lemma 2. Let K = 〈G,M, I〉 be a formal context. The following properties
hold:

1. For all g ∈ G, {g}⇑ is a full consistent set.
2. For all g1, g2 ∈ G, if g1 ∈ {g2}⇑⇓ then {g1}⇑ = {g2}⇑. 1

3. For all X ⊆ G, X⇑ =
⋂

g∈X{g}⇑.

Proof. 1. It is obvious because, for all m ∈ M , 〈g,m〉 ∈ I or 〈g,m〉 /∈ I and
{g}⇑ = {m ∈M | 〈g,m〉 ∈ I}∪{m ∈M | 〈g,m〉 /∈ I} being a disjoint union.
Thus, Tot({g}⇑) = M and Pos({g}⇑) ∩Neg({g}⇑) = ∅.

1 That is, g1 and g2 have exactly the same attributes.
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2. Since (⇑,⇓) is a Galois connection, g1 ∈ {g2}⇑⇓ (i.e. {g1} ⊆ {g2}⇑⇓) implies
{g2}⇑ ⊆ {g1}⇑. Moreover, by item 1, both {g1}⇑ and {g2}⇑ are full consistent
and, therefore, {g1}⇑ = {g2}⇑.

3. In the same way that occurs in the classical framework, since (⇑,⇓) is a

Galois connection between (2G,⊆) and (2M∪M ,⊆), for any X ⊆ G, we have

that X⇑ =
(⋃

g∈X{g}
)⇑

=
⋂

g∈X{g}⇑. ut
The above elementary lemmas lead to the following theorem emphasizing a sig-
nificant difference with respect to the classical construction and it focuses on how
the inclusion of new objects influences the structure of mixed concept lattice.

Theorem 2. Let K = 〈G,M, I〉 be a formal context, g0 be a new object, i.e.
g0 /∈ G, and Y ⊆ M be the set of attributes that g0 satisfies. Then, there exists
g ∈ G such that {g}⇑ = {g0}⇑ if and only if there exists an isomorphism between
B](G,M, I) and B](G ∪ {g0},M, I ∪ {〈g0,m〉 | m ∈ Y }).
That is, if a new different object (an object that differs at least in one attribute
from each object in the context) is added to the formal context then the mixed
concept lattice changes.

Proof. Obviously, if there exists g ∈ G such that {g}⇑ = {g0}⇑, from Lemma 2 g
and g0 have exactly the same attributes, and moreover the lattices B](G,M, I)
and B](G ∪ {g0},M, I ∪ {〈g0,m〉 | m ∈ Y }) are isomorphic.

Conversely, if the mixed concept lattices are isomorphic, there exists X ⊆ G
such that the closed set X⇑ in B](G,M, I) coincides with {g0}⇑. Thus, in the
mixed concept lattice B](G ∪ {g0},M, I ∪ {〈g0,m〉 | m ∈ X}), by Lemma 2, we
have that {g0}⇑ = X⇑ = ∩g∈X{g}⇑. Moreover, since {g0}⇑ is a full consistent
set, X 6= ∅ because of, by Lemma 1, ∅⇑ = M ∪M . Therefore, for all g ∈ X
(there exists at least one g ∈ X), g0 ∈ {g}⇑ and, by Lemma 2, {g}⇑ = {g0}⇑. ut
Example 1. Let K1 = ({g1, g2}, {a, b, c}, I1) and K2 = ({g1, g2, g3}, {a, b, c}, I2)
be formal contexts where I1 and I2 are the binary relations depicted in Table 4.
Note that K2 is built from K1 by adding the new object g3. In the classical frame-

I1 a b c

g1 × ×
g2 × ×

I2 a b c

g1 × ×
g2 × ×
g3 ×

Table 4. The formal contexts K1 and K2

work, the concept lattices B({g1, g2}, {a, b, c}, I1) and B({g1, g2, g3}, {a, b, c}, I2)
are isomorphic. See Figure 1.

However, the lattices of mixed concepts cannot be isomorphic because the
new object g3 is not a repetition of one existing object. See Figure 2.

The following theorem characterizes the atoms of the new concept lattice B].
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<g1g2,a>

<g2,ab><g1,ac>

<⦰,abc>

<g1g2g3,a>

<g2,ab><g1,ac>

<⦰,abc>

B({g1, g2}, {a, b, c}, I1) B({g1, g2, g3}, {a, b, c}, I2)

Fig. 1. Lattices obtained in the classical framework

<g1g2,a>

<g2,abc><g1,abc>

<⦰,abcabc>

<g1g2g3,a>

<g2,abc>

<g1g3,ab> <g2g3,ac>

<g1,abc> <g3,abc>

<⦰,abcabc>

B]({g1, g2}, {a, b, c}, I1) B]({g1, g2, g3}, {a, b, c}, I2)

Fig. 2. Lattices obtained in the extended framework
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Theorem 3. Let K = 〈G,M, I〉 be a formal context. The set of atoms in the
lattice B](G,M, I) is {〈{g}⇑⇓, {g}⇑〉 | g ∈ G}.

Proof. First, fixed g0 ∈ G, we are going to prove that the mixed concept
〈{g0}⇑⇓, {g0}⇑〉 is an atom in B](G,M, I). If 〈X,Y 〉 is a mixed concept such that
〈∅,M ∪M〉 < 〈X,Y 〉 ≤ 〈{g0}⇑⇓, {g0}⇑〉, then {g0}⇑ ⊆ Y = X⇑  M ∪M . By
Lemma 2, {g0}⇑ ⊆ X⇑ =

⋂
g∈X{g}⇑. Moreover, for all g ∈ X 6= ∅, by Lemma 2,

both {g0}⇑ and {g}⇑ are full consistent sets and, since {g0}⇑ ⊆ {g}⇑, we have
{g0}⇑ = {g}⇑. Therefore, {g0}⇑ = X⇑ = Y and 〈X,Y 〉 = 〈{g0}⇑⇓, {g0}⇑〉.

Conversely, if 〈X,Y 〉 is an atom in B](G,M, I), then X 6= ∅ and there
exists g0 ∈ X. Since (⇑,⇓) is a Galois connection, {g0}⇑ ⊇ X⇑ = Y and,
therefore, 〈{g0}⇑⇓, {g0}⇑〉 ≤ 〈X,Y 〉. Finally, since 〈X,Y 〉 is an atom, we have
that 〈X,Y 〉 = 〈{g0}⇑⇓, {g0}⇑〉. ut

The following theorem establishes the characterization of the mixed concept
lattice, proving that atoms and join irreducible elements are the same notions.

Theorem 4. Let K = 〈G,M, I〉 be a formal context. Any element in B](G,M, I)
is ∨-irreducible if and only if it is an atom.

Proof. Obviously, any atom is ∨-irreducible. We are going to prove that any
∨-irreducible element belongs to {〈{g}⇑⇓, {g}⇑〉 | g ∈ G}. Let 〈X,Y 〉 be a ∨-
irreducible element. Then, by Lemma 2, Y = X⇑ =

⋂
g∈X{g}⇑. Let X ′ be the

smaller set such that X ′ ⊆ X and Y =
⋂

g∈X′{g}⇑. If X ′ is a singleton, then

〈X,Y 〉 ∈ {〈{g}⇑⇓, {g}⇑〉 | g ∈ G}.
Finally, we prove thatX ′ is necessarily a singleton. In other case, a bipartition

of X ′ in two disjoint sets Z1 and Z2 can be made satisfying Z1∪Z2 = X ′, Z1 6= ∅,
Z2 6= ∅ and Z1 ∩ Z2 6= ∅. Then, Y =

⋂
g∈Z1
{g}⇑ ∩⋂g∈Z2

{g}⇑ = Z⇑1 ∩ Z⇑2 and

so 〈X,Y 〉 = 〈Z⇑⇓1 , Z⇑1 〉∨〈Z⇑⇓2 , Z⇑2 〉 and Z⇑1 6= Y 6= Z⇑2 . However, it is not posible
because 〈X,Y 〉 is ∨-irreducible. ut

As a final end point of this study, we may conclude that unlike in the classical
framework, not every concept lattice may be linked with a formal context. Thus,
lattices number 3 and 5 from Table 3 cannot be associated with a mixed formal
context. Both of them have one element which is not an atom but, at the same
time, it is a join irreducible element in the lattice. More specifically, there does
not exists a mixed concept lattice with three elements.

4 Conclusions

In this work we have presented an algebraic study of a general framework to
deal with negative and positive information. After considering new derivation
operators we prove that they constitutes a Galois connection. The main results
of the work are devoted to establish the new relation among mixed concept
lattices and mixed formal concepts. Thus, the most outstanding conclusions are
that:
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– the inclusion of a new (and different) object in a formal concept has a direct
effect in the structure of the lattice, producing a different lattice.

– no any kind of lattice may be associated with a mixed formal context, which
induces a restriction in the structure that mixed concept lattice may have.
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Author Index

Aı̈t-Kaci, Hassan, 3
Al-Msie’Deen, Ra’Fat, 95
Alam, Mehwish, 255
Antoni, L’ubomı́r, 35, 83

Baixeries, Jaume, 1, 243
Bartl, Eduard, 207
Ben Yahia, Sadok, 169
Bertet, Karell, 145, 219
Bich Dao, Ngoc, 219

Cabrera, Inma P., 157
Ceglar, Aaron, 23
Cepek, Ondrej, 9
Codocedo, Victor, 243
Cordero, Pablo, 145, 267
Coupelon, Olivier, 131

Dia, Diyé, 131
Dimassi, Ilyes, 169

Enciso, Manuel, 145, 267

Gnatyshak, Dmitry V., 231
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Kŕıdlo, Ondrej, 35, 83
Krupka, Michal, 195
Kuznetsov, Sergei O., 231

Labernia, Fabien, 131

Liquière, Michel, 11
Loiseau, Yannick, 131
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