
From Pen-and-Paper Sketches to Prototypes:
The Advanced Interaction Design Environment

Harald Störrle

Dept. of Applied Mathematics and Computer Science
Technical University of Denmark (DTU), hsto@dtu.dk

Abstract. Pen and paper is still the best tool for sketching GUIs. How-
ever, sketches cannot be executed, at best we have facilitated or animated
scenarios. The Advanced User Interaction Environment facilitates turn-
ing hand-drawn sketches into executable prototypes.

1 Introduction

Graphical user interfaces (GUIs) have two important, independent aspects: ap-
pearance and affordances (i.e., visuals vs. behavior). Existing techniques focus
mostly on visual appearances, providing tools for a limited scope of visual fidelity
(e.g., from GUI-builders at the high end via drawing tools such as Photoshop,
Visio or PowerPoint, to sketching tools like Balsamic at the low end). The sim-
plest possible tool for creating sketches of the visual appearance of a UI is, of
course, pen and paper (PaP). It turns out, that PaP is hard to beat in terms of
usability and cost/benefit ratio; thus it is our gold standard of drawing.

On the other hand, there is the behavioral aspect of GUIs. Most tools com-
pletely abstract from this aspect, restricting designers to simple mock-ups of
individual scenarios made from hyperlinked pictures, or manually facilitated pa-
per prototypes. A notable exception is Flowella (see http://www.youtube.com/
watch?v=xmuJwKYjiW0). An early approach of combining rough sketches with
interactive executability (to a degree) is the Silk/Denim line of work by Landay
et al. [3,2], where users would input a sketch with a digital pen. Both Flowella
and Silk/Denim are limited to very small UIs as the complexity of designs grows
dramatically with the number of behavioral variants and details added.

AIDE aspires to overcome this limitation by a number of mechanisms, most
notably using hierarchical state machines with concurrent substates, and syn-
tactic layers.1 Also, AIDE allows inputting UI designs by PaP, thus allowing to
include diverse audiences in the creation process and reducing overhead and ex-
traneous load caused by inadequate tooling. AIDE allows to complement rough
sketches (i.e., PaP input) by more elaborate input in the form of XUL (XML
User Interface Language, see https://developer.mozilla.org/en/XUL). PaP
and XUL may be mixed freely, allowing scalable fidelity. AIDE provides the
following advantages.

1 See https://www.youtube.com/watch?v=vbMblOWTRko&feature=youtube.be or the
AIDE homepage www.compute.dtu.dk/~hsto/tools.html for a demo.

http://www.youtube.com/watch?v=xmuJwKYjiW0
http://www.youtube.com/watch?v=xmuJwKYjiW0
https://developer.mozilla.org/en/XUL
https://www.youtube.com/watch?v=vbMblOWTRko&feature=youtube.be
www.compute.dtu.dk/~hsto/tools.html

– Inclusive Technology We all learn to use pen and paper from early child-
hood, so it is safe to assume everyone has sufficient dexterity in sketching;
artistic skills are not required. In contrast, operating a computer-based tool
often demands substantial expertise and/or training, which end users and do-
main experts may lack. Thus, using simple pen-and-paper sketches as AIDE
does allows us to include virtually everybody in the UI design process.

– Continuous Workflow Graphic designers appreciate sketching tools: their
low viscosity makes them ideal for exploring the design space (cf. [1,7,8]).
However, exploration has to turn into engineering eventually, at which point
developers take over from designers and visionary sketches give way to formal
models and code. Often, the overall development process is greatly affected
by this discontinuity of people, cultures, and methods. AIDE supports a con-
tinuous workflow integrating initial sketching with subsequent elaboration.

– Comprehensive Design While it is relatively easy to specify the appear-
ance of an interface by a drawing, specifying its behavior is much more
difficult (cf. [6]). In fact, the only way to completely describe arbitrary
complex interface behaviors is by programming them. Obviously, integrat-
ing drawings and code in a harmonious way is difficult, further disrupting
the interface design workflow. Most people are either good at graphic de-
sign or at programming, but rarely at both. Storyboards only offer a partial
solution, since they allow to specify a very limited degree of behavior only
(basically only linear sequences, see [5, p. 105]). So, in order to create com-
prehensive interface designs, we need a way to integrate both aspects of an
interface, appearance and behavior.

– Scalable Abstraction Even small UIs may offer a large number of af-
fordances, all of which act together to create the overall user experience.
Capturing them in a prototype is expensive, time consuming, and inhibit-
ing change. Capturing them in a more abstract specification will lead to a
bloated and/or fragmented design that is difficult to reintegrate, maintain,
and communicate. Establishing and maintaining consistency is an arduous
and complex task [4]. So, we need a way of managing the complexity of large
interface designs in such a way, that neither the clarity of the initial vision,
nor the details of the interactions get lost.

2 Example

Consider an example Fig. 1. It shows a small portion of an interface design from a
teaching example, the Library Management System (LMS). This toy case study
is about searching for media in a library, lending them, prolonging, them, and
and so on. Fig. 1 shows an interface design for the process of issuing a new reader
card. The numbers in red dots are not part of the notation but have been added
to improve the presentation here.

First, a dialog for entering some data appears. It contains a text field, two
groups of radio buttons with two choices each, and two buttons to proceed and
abort. The user inputs a reader’s name, selects a few options, and eventually

D

B

C

A

E

F

Sketch & Explore
 create initial design as a pen-and-paper storyboard
 explore design space by e.g. group dynamic exercise
 elicit interface requirements by e.g. task analysis or reverse engineering

Elaborate Appearance
 transform sketch into appealing graphics
 incorporate appearance guidelines
 layout of WED

Elaborate Behavior
 add layers of transitions for event types
 add guards and effects (e.g. JavaScript)
 add menues and annotations

Generate & Validate
 generate XUL code for prototype
 usability test on prototype
 formal consistency checking
 expert walkthrough of UI design

Digitize & Import
 digitize paper dialog sketches by scanner or camera
 batch import digitized dialogs automatically
 annotate transitions with triggers,
 guards, and effects manually

Integrate Parts & Alternatives
 combine several WEDs into one using
 model merge techniques

WED LMS: Issue New Reader Card

Error: Card Can Not Be Issued

Confirm: Issue Card

Issue New Reader Card

First Card

Reader

Replacement Card

Pick up at library

Mail to home address

You are about to issue a new
reader card for <NAME>.

No new reader card will be
issued because of <REASON>.

H*

ProceedAbort
Proceed

Abort

ProceedRetry

[input ok]

[bad input]

/ process request

Help

Auto complete

Current Fees
Clear

/ lock
 window

beep!

ESC

Fig. 1. Stages in the UI development life cycle using WEDs and AIDE: Starting from
a traditional pen-and-paper wallpaper prototype, subsequent steps of elaboration yield
a prototype with executable XUL code. Note that XUL-elements, clickable areas, and
transitions have to be annotated manually in the current version of AIDE.

pressed “Proceed”. If the data validation is successful, the user must acknowl-
edges or aborts. If the process is aborted or the validation was not successful,
the user may either revise the inputs or terminate the whole process. Using the
right mouse button on the window “Issue New Reader Card” will open a pop-up
menu with four options.

States UI widgets like text boxes or buttons are represented as simple states.
Groups of widgets and complete dialogs are modeled as composite states. As a
default, only one widget or dialog can be active at any time, which in UML maps
to sequential composite states. In order to achieve different behavior, concurrent
composite may be used. Not all states need be visible in a design. For instance,
grouping radio buttons together can be achieved by an invisible compound state.
The same applies for layout elements such as vertical boxes.

Triggers Positioning a pointer over a WED element is interpreted as putting
the focus on that element. Technically, the corresponding state configuration tree

is activated. Any user events issued subsequently will be interpreted by that tree,
bottom up. For instance, positioning the mouse pointer over the “Abort” button
and pushing the left mouse button (a) issues the event single left click in the
state “IssueNewReaderCard.Abort” and triggers the transition emanating that
state. Likewise, moving the pointer over “Issue New Reader Card” and pressing
the Escape key (b) will reset the corresponding state. Any (user) actions the UI
affords may be used as triggers.

Guards Transitions may carry a guard that enforces the respective condi-
tion to be true before the transition is taken. Guards may refer to environment
variables that may be used to represent a hidden UI state such as a mode.

Effects Then, the effect of the transition (modeling a UI action) is executed
and its target state is entered. Effects may be described by plain text (a), code
snippets, invocation of library functions, or maybe visualized by an icon (b).
Probably the most common effects are opening a new window (a), closing one
(b), or opening a modal dialog (c).

Entering States When entering a composite state C for the first time, the
substate to be entered is determined by the initial state. Reentering C will reset
its state configuration unless a history state is added to C, which restores the
state configuration in effect at the time of exiting C. Exit Points (and and Entry
Points) help achieving a modular design (this is regular UML 2.2 syntax). Exiting
a state (or state machine) automatically exits all sub states, i.e., corresponding
windows are closed by reaching a final node.

Secondary Notation Annotations and comment boxes may be used freely;
they are represented as UML PseudoStates.

There is no semantic difference between UML 2 state machines and a UI
design in this form: every construct in a UI design may be mapped to a UML
state machine construct. These mappings are typically very straightforward, but
have to be added manually in the current version of AIDE.

SM LMS: Issue New Reader Card

Issue New Reader Card

Confirm: Issue New Card

Error: Card Can Not Be Issued

First Card

Replacement Card

Pick up at library

Mail to home address

Proceed

Abort

ConfirmAbort

OkRetry

Reader

Context Menu

Clear

Auto complete

Help

Current Status

mouse(l) /
closeWindow()

mouse(l)

mouse(l) / closeModalWindow()

mouse(l)

mouse(l) /
issueRC()

mouse(r) / openModalWindow()

[credentials ok]
/spawnWindow()

[credentials not ok]
/spawnWindow()

mouse(l) /
spawnWindow()

key(tab)
key(tab)

key(tab)
key(tab)

/beep()

mouse(l)
/ switchWindow()

H*

key(esc)

Fig. 2. This UML state machine is yielded by stripping all appearance cues and elab-
orating effects to procedure calls.

3 The AIDE Tool

The Advanced Interaction Design Environment (AIDE) is a highly modular
platform independent direct interaction tool set for creating WEDs, refining
and elaborating them in a methodical fashion, supporting distributed concurrent
group work, and generating working prototypes from WEDs. AIDE has been
under development since 2006, with 25 students at Innsbruck University, Munich
University, and the Technical University of Denmark contributing a total of

approximately 10,000 work hours to it. Step B in Fig. 1 is actually a screenshot
of the AIDE tool.

AIDE is created using pure Java, using Piccolo2D, jEdit, JGoodies Looks,
the Tango Iconset, VLDocking, and JAXB for persistency. AIDE follows a strict
separation of logic and presentation. Extensibility of AIDE is ensured by a car-
tridge mechanism that encapsulates the visual appearance of elements and func-
tions associated with them. Cartridges may be dynamically loaded or unloaded.
Apart from the basic cartridges of UML state machines and annotations, there
are currently cartridges for the XML User Interface Language (XUL), and for
importing hand-drawn storyboards. XUL is used e.g., for defining the UIs of
Mozilla projects such as Firefox and Thunderbird. AIDE provides XUL export
and integrated simulation. Finally, AIDE also offers unbounded Undo/Redo,
user definable roll-back points, tear-off-menus to support very large screens, a
locator map, sophisticated zoom and scrolling functions, and multiple views on
elements.

References

1. Bill Buxton. Sketching User Experiences: Getting the Design Right and the Right
Design. Morgan Kaufmann, 2007.

2. James A. Landay and Brad A. Myers. Interactive Sketching for the Early Stages
of User Interface Design. Technical Report CMU-HCII-94-104, Carnegie Mellon
University, July 1994.

3. James A. Landay and Brad A. Myers. Sketching Interfaces: Toward More Human
Interface Design. IEEE Computer, 34(3), March 2001.

4. Francisco J. Lucas, Fernando Molina, and Ambrosio Toval. A systematic review
of UML model consistency management. Inf. Softw. Technol., 51(12):1631–1645,
December 2009.

5. Scott McCloud. Understanding Comics: The Invisible Art. HarperPerennial, 1993.
6. Brad A. Myers, Sun Young Park, Yoko Nakano, Greg Mueller, and Andrew J.

Ko. How Designers Design and Program Interactive Behaviors. In Paolo Bottoni,
Mary Beth Rosson, and Mark Minas, editors, Proc. IEEE Symp. Visual Languages
and humand Centric Computing (VL/HCC’08), pages 177–184. IEEE Press, 2008.

7. Mark W. Newman and James A. Landay. Sitemaps, Storyboards, and Specifications:
a Sketch of Web Site Design Practice. In Proc. 3rd Conf. Designing Interactive
Systems: Processes, Practices, Methods, and Techniques (DIS’00), pages 263–274.
ACM, 2000.

8. Y.Y. Wong. Rough and Ready Prototypes: Lessons from Graphic Design. In SIG
Computer Human Interaction (SIGCHI’92), page 685, 1992.

	From Pen-and-Paper Sketches to Prototypes:The Advanced Interaction Design Environment

